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FLyer: Federated Learning-based Crop Yield
Prediction for Agriculture 5.0

Abstract—Crop yield prediction is a significant area of preci-
sion agriculture. In this paper, we propose a crop yield prediction
framework named FLyer, based on federated learning and edge
computing. In FLyer, the soil and environmental data are locally
processed inside the edge servers, and the model parameters
are transmitted between the edge servers and the cloud with
encrypted gradients. LSTM is used as the local and global
models for data analysis. As the LSTM model can capture the
temporal dependencies and hold the sequential nature of the
data, we use LSTM in FLyer. By encrypting the gradients, the
gradient information leakage ratio is reduced, and data privacy is
protected. For gradient encryption, we use AES-256, and for data
encryption during local storage we use RSA and AES-256. The
results demonstrate that FLyer diminishes the latency by ∼39%
and energy consumption by ∼40% than the conventional edge-
cloud framework respectively. The experimental results show
that the global model in FLyer achieves above 99% accuracy,
precision, recall, and F1-score in crop yield prediction. The results
also present that the local models also achieve >94% accuracy
in crop yield prediction.

Impact Statement—The proposed framework FLyer provides
crop yield prediction with high accuracy and data privacy pro-
tection. The proposed approach is based on federated learning.
The soil and environmental data are processed locally inside the
edge servers using LSTM. The model parameters are exchanged
between the edge servers and the cloud after encrypting gradi-
ents. The use of encryption during model parameters’ exchange
has reduced gradient information leakage ratio to 0.038 for
50% malicious participants. From the results we observe that
FLyer has achieved above 99% accuracy in crop yield prediction.
We also have observed that FLyer has reduced the latency by
∼39% and energy consumption by ∼40% than the edge-cloud
framework without federated learning respectively.

Index Terms—Federated learning, Latency, Energy, Crop yield
prediction, Gradient encryption.

I. INTRODUCTION

THE transition regarding sustainability in Agriculture 5.0
[1] represents a significant transformation, where tech-

nological advancements align with environment, society, and
economy. Artificial Intelligence (AI) is incorporated with
the Internet of Things (IoT) for developing smart systems.
Agriculture 5.0 emphasizes a comprehensive strategy that goes
beyond the traditional methods in the field of smart agriculture.
The convergence of advanced technology, such as AI and
data analytics, signifies a new era when precision farming
aligns with environmental awareness. The IoT-based crop
recommendation system is a pioneering agricultural solution
that represents a remarkable technological achievement in
the era of smart farming. The integration of sensors, data
analytics, and machine learning, provides farmers with sug-
gestions customized to the respective soil and environmental
parameters’ values. By collecting and analyzing data on soil
and environmental factors such as soil moisture, soil nutrients,

temperature, and humidity, the system provides farmers with
insightful guidance regarding planting, irrigation, and fertil-
ization.

In the realm of agricultural data analytics, cloud computing
performs as the backbone for processing huge amounts of data
generated using IoT devices [2]. Nevertheless, the agricultural
lands are frequently located across rural areas, where Internet
connectivity is unstable. As a result, the transfer of data to
cloud servers experiences disruptions, which leads to increased
delay in data transmission. Edge computing offers a strategic
solution by placing computational resources at the network
edge [2], [3], [4]. Furthermore, cache-based dew computing
[2], [5] enables the temporary storage of data when Internet
connectivity is unavailable. In dew computing, the dew servers
provide micro-services, and a dynamic framework is estab-
lished with the cloud for periodic data synchronization. The
concern over delays, data traffic, and cloud overhead in the
conventional model for transmitting all data for storage and
processing in the cloud, prompts the integration of Federated
Learning (FL). In FL, multiple clients perform local data anal-
ysis with their datasets using the model initiated by the central
server and send the model parameters to the server connected
to the clients [6]. The server revises the global model and then
sends the revised model parameters to the clients. In an FL-
based edge-cloud model, the clients are the local edge nodes,
which communicate their updated weights to the cloud server.
The cloud compiles those updates and sends the resulting
combined model back to the edge nodes for further training.
This process is repeated until the convergence is reached [7].
This strategy provides the local-level data processing facility,
and the model parameters are exchanged between the clients
and the server to update the global model accordingly [8], [9].
FL reduces data traffic significantly by locally processing and
storing the data. FL employs the obtained weighted parameters
to improve the training process, providing a more efficient
and privacy-focused approach compared to the traditional way
of transmitting data to the cloud for storage and processing
purposes [10].

In the agricultural domain, variations in soil, environment,
and weather parameters are inherent and depend upon geo-
graphical diversity. Moreover, each farm has unique soil com-
positions and specific weather requirements. Hence, the data
of each farm is confidential. FL [11] is a crucial approach that
permits to train model on devices or edge nodes, eliminating
the requirement for centralized data exchange. The strategic
implementation of FL not only maintains privacy by avoiding
the sharing of raw data but also enables a flexible adjustment to
individual circumstances [12]. The model is finely adjusted to
explore the convergence of the decentralized models while op-
timizing the Federated Averaging model of the smart farming
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dataset [7]. The implementation of FL-based systems promotes
collaborative efforts among multiple users, as they collectively
contribute to improve the prediction models while maintaining
the secrecy of individual data. Hence, the use of FL in crop
yield prediction may lead to a significant improvement in the
overall performance of the system by enhancing data privacy
and prediction accuracy of the system.

A. Motivations and Contributions

Latency, energy consumption, and sustainability are crucial
factors for any digitized framework of next-generation net-
works. The objective is to construct a secure, low-latency, and
energy-efficient framework that will predict crop yield. This
paper makes the following key contributions:

• An FL-based crop yield prediction framework referred
to as FLyer is proposed. The rural regions mainly con-
tain agricultural lands, where network connectivity is
not good. The dew computing based on cache, offers
the provision of temporary data storage inside the user
device, when Internet connection is not available.

• The FL along with edge computing is used to provide
local data processing facility that helps to reduce the
latency, and the privacy is preserved by avoiding raw
data sharing. Also, during model parameters’ exchange
between the edge nodes and cloud, the gradients are
encrypted to prevent gradient information leakage. The
local data storage inside the edge servers takes place in
encrypted form for data security purpose.

• For data analysis, Long Short-Term Memory (LSTM)
network is used in the local and global models. The
training on real data in the distributed edge nodes gives a
benefit over training on centralized data inside the cloud
from the perspective of latency and energy consumption.

B. Layout of the paper

The rest of the paper is organized as follows: Section II
presents a brief description of the existing literature. Section III
illustrates the proposed framework FLyer. Section IV analyses
the performance of the FLyer. Section V presents conclusion
with future research directions.

II. RELATED WORK

Crop yield prediction is a vital area of smart agricul-
ture. In [13], IoT-based architecture provided extensive data
collection in agriculture, improving crop prediction models
using machine learning (ML). The studies employing algo-
rithms like Multilayer Perception (MLP), JRip, and decision
tables demonstrated significant accuracy in forecasting optimal
crops [13]. In [14], Multivariate Linear Regression, k-Nearest
Neighbor (KNN), and Decision Tree (DT), were employed
to forecast the yields of six different crops. For crop yield
prediction, KNN was used in [15]. Various ML models such
as Support Vector Machine (SVM), Light Gradient Boosting
Machine (LGBM), Radom Forest (RF), KNN, and DT, were
used for crop yield prediction in [16]. The deep learning
models such as Gated Recurrent Unit (GRU), LSTM, and

Bidirectional-LSTM (Bi-LSTM)-based crop yield prediction
framework was proposed in [17]. In [6], [18], FL was used
for irrigation decision-making, and the use of FL achieved
high prediction accuracy. Various Deep Neural Networks
(DNNs) were specifically developed to forecast soil moisture
by utilizing data obtained from diverse sources in [19]. The
incorporation of AI, particularly ML, revolutionized precision
agriculture by enabling smarter, data-driven solutions for im-
proving crop management [20]. The research concentrated on
assessing algorithms such KNN, DT, RF, Extreme Gradient
Boosting (XGBoost), and Support Vector Machine (SVM) to
determine the most effective method for improving agricultural
decision-making [20]. In [21], FL utilizing Residual Networks
(ResNet)-based models demonstrated efficacy in optimizing
yield forecasts inside decentralized environments. It exhibited
enhanced performance relative to conventional centralized
architectures [21]. A federated RF algorithm was introduced in
[22] to allow breeding institutions to interact without revealing
or exchanging their data. A study was conducted to empirically
validate the joint modeling of locally stored tabular data,
including field breeding trial phenotypes and climatic condi-
tions, for predicting maize variety yield [22]. An approach
of integrating data from several sensors was implemented in
[23] to categorize eight different crops using DT, Hoeffding
Tree, and RF. An alternative ML method was proposed in
[24] to enhance the precision of forecasting Plant Nitrogen
Concentration (PNC) during the critical growth stages of
wheat, maize, rice, and potato. In [7], the implementation of
FL was explored in smart farming. The Federated Averaging
model was utilized to classify crops by using climate indicators
as predictors and crop categories as output labels [7].

In assessing several studies on ML and FL applications in
agriculture, it is crucial to evaluate both the pros and cons
of each method. Idoje et al. [7] emphasized the benefits of
privacy preservation, and focused on secure data management.
However, the scope of the study was constrained by a limited
dataset, and the latency and energy consumption were not
considered [7]. Zhang et al. [22] implemented rigorous privacy
safeguards, supported by empirical validation. However, the
latency and energy consumption were not considered in [22].
Reyana et al. [23] focused on the integration of multisensor
data to refine precision in agricultural forecasts, representing
a notable advantage, particularly in enhancing accuracy. How-
ever, the study was confined to particular crops, a limited
set of ML algorithms were utilized, and the latency and
energy consumption were not considered [23]. Thilakarathne
et al. [20] presented a cloud-based, ML-driven methodology
that promotes the implementation of AI-enhanced precision
farming via complimentary, open-access platforms. However,
the authors used only ML models and the cloud-only system
and did not consider the latency and energy consumption [20].
Bakthavatchalam et al. [13] proposed an IoT-enabled, ML-
driven crop recommendation system that utilized real-time
environmental data, benefiting from immediate data capture
and open-source technologies such as WEKA. However, the
authors used only ML models and did not consider the energy
efficiency issue [13]. Cedric et al. [14] used three ML models
to forecast the annual yields of six principal crops across nine
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West African nations, employing cross-validation to mitigate
overfitting. The restricted crop choices and dependence on fun-
damental ML models limit its wider applicability and capacity
to manage more intricate agricultural data [14]. Further, the
latency and energy consumption were not considered in [14].

We observe that most of the existing approaches ([13],
[14], [20]) considered only ML models. Further, none of the
existing approaches ([7], [13], [14], [20], [22], [23]) consider
the latency and energy issues which are crucial for real-
time applications. Further, there are some limitations, such
as insufficient privacy mechanisms, limited scalability, limited
crop selection, limited dataset, dependence on centralized data
processing that heightens latency and energy expenses, inade-
quate capacity to capture temporal dependencies in agricultural
data, etc. In our proposed approach, we use FL for privacy
preservation, deep learning (DL) for large-scale data analysis,
and edge computing for low latency and energy efficiency.
FLyer integrates FL with edge computing to facilitate local
data processing while ensuring privacy. Furthermore, the ap-
plication of LSTM models in both local and global contexts
effectively captures the sequential characteristics of crop data,
thereby enhancing prediction accuracy and efficiency. Table
I presents a comparison between FLyer and existing crop
yield prediction systems, along with the pros and cons of
each approach. Dew computing enables temporary data storage
inside the user devices and edge computing with FL mit-
igates issues such as latency and energy consumption. The
gradient encryption during model parameters’ exchange, and
data encryption during local storage protects data privacy. The
exchange of model parameters between the edge nodes and the
cloud, collaborative learning, and subsequent adjustment of the
global model, improve the accuracy of predictions.

III. FLYER FRAMEWORK

FLyer integrates edge computing, FL, DL-based data an-
alytics, and data encryption, for crop yield prediction in
Agriculture 5.0. In FLyer, LSTM is used as the DL model
for data analysis, which is improved time-to-time with more
data arrival. In FLyer, the edge nodes serve as clients, which
perform local data processing, and the cloud acts as the server,
where the global model is executed.

A. Proposed Architecture

The principal elements of FLyer are sensors with micro-
controllers, user devices, edge servers, and private cloud
servers. Fig. 1 pictorially demonstrates the four-tier architec-
ture of FLyer, described as follows.

• Tier-I is the IoT layer that contains sensors and micro-
controllers as the IoT devices. A sensor (ζ) is represented
by a three tuple:

ζ =< ζid, ζm, ζo >

where ζid denotes ID of the sensor node, ζm denotes
its mode (active or idle), and the type of the object is
represented by ζo. The sensors collect soil data such as
nitrogen (N), phosphorus (P), potassium (K), pH, and
environmental data such as rainfall, temperature, and

transmit the data to the connected microcontroller. A
microcontroller (η) is represented by a three-tuple:

η =< ηid, ηm, ηsp >

where ηid, ηm, and ηsp denotes the microcontroller ID,
its mode, and its configuration in terms of memory,
processor, etc., respectively. The microcontroller receives
data from the sensors and sends it to the user’s device
present in tier-II.

• Tier-II contains the user devices, such as mobile phones,
tablets, etc. A user device (µ) is represented as a three
tuple:

µ =< µid, µm, µcf >

where µid denotes ID of the user device, µm denotes
its mode, and the configuration (processor, memory, etc.)
is represented by µcf . The user device pre-processes the
data after receiving from the microcontroller, and holds
the data when Internet connectivity is not present. The
pre-processed data is transmitted to the corresponding
edge server in tier-III, when the Internet connectivity is
available.

• Tier-III represents the edge layer that has the edge
servers. An edge server (ξ) is represented by a three-
tuple:

ξ =< ξid, ξm, ξcf >

where ξid represents the ID of the edge server, the mode
is represented by ξm, and ξcf represents the configura-
tion (processor, storage, memory, etc.). The edge server
receives pre-processed data from the user device, and then
locally processes the data. In FLyer, local models are
trained on each edge server using distinct local datasets.
The edge servers transmit their model updates to the
cloud in tier-IV. For gradient encryption, we consider
Advanced Encryption Standard (AES), and for data en-
cryption during local storage we consider RSA and AES.
AES is a popular private key cryptography algorithm used
for gradient and data encryption purposes in FLyer. RSA
algorithm is a popular public key cryptography algorithm
used for data encryption purpose.

• Tier-IV represents the cloud layer that contains the cloud
servers. The connection between the edge server and the
cloud is crucial in the system architecture. Once training
is completed, the updated weighted parameters from each
edge server are sent to the cloud for aggregation, and the
global model in the cloud is then updated. The updated
model parameters are then transmitted back to the edge
servers from the cloud. Notably, gradient encryption is
applied during the exchange of model parameters, to en-
sure data security. A cloud server instance is represented
by a two-tuple:

τ =< τid, τpr >

where τid represents the ID of the cloud server instance
and τpr represents the set of the IDs of the processing
units.
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TABLE I
COMPARISON AMONG FLYER AND EXISTING CROP YIELD PREDICTION SYSTEMS

Work Model Pros Cons Used Edge FL-centric Measured Measured Energy Used
used computing system Latency consumption Encryption

Idoje Hyper- Privacy Limited ✓ ✓ ✗ ✗ ✗
et al. [7] tuned preservation dataset

federated
averaging

Bakthavatchalam ML models Real-time Limited ✗ ✗ ✗ ✗ ✗
et al. [13] data scalability

acquisition analysis,
privacy
is not

considered
Cedric ML models Cross Limited ✗ ✗ ✗ ✗ ✗

et al. [14] validation crop
to avoid selection

overfitting
Cruz et al. ML model Real-time Limited ✗ ✗ ✗ ✗ ✗
et al. [15] data scalability

analysis,
privacy
is not

considered
Kathiria et al. ML models Real-time Limited ✗ ✗ ✗ ✗ ✗

et al. [16] data scalability
analysis,
privacy
is not

considered
Gopi et al. Deep learning models Real-time Privacy ✗ ✗ ✗ ✗ ✗
et al. [17] data is not

considered
Thilakarathne ML models Real-time Limited ✗ ✗ ✗ ✗ ✗

et al. [20] data scalability
analysis,
privacy
is not

considered
Zhang Federated Privacy Limited ✗ ✓ ✗ ✗ ✓

et al. [22] breeding preservation, clients
Emperical
validation

Reyana Multisensor Multisensor Crop- ✗ ✗ ✗ ✗ ✗
et al. [23] Machine- data fusion specific

Learning
FLyer FL using Privacy Only ✓ ✓ ✓ ✓ ✓

(Proposed) DL preservation, CFL is
low latency, considered
low energy

B. Data Analysis using FL

The edge server-side process for local model update is stated
in Algorithm 1, and the cloud server-side process for global
model update is stated in Algorithm 2. Each edge server has
its local dataset, which is trained locally. Each edge server
transmits the local model updates to the cloud that performs
aggregation using FAV function of Algorithm 2. The cloud
server modifies the global model after receiving all the updates
and sends the revised model updates to the connected edge
servers after encrypting the gradients. In the algorithms, ξ
denotes an edge server, Nξ represents the number of edge
servers connected with the cloud, Pξ represents the proportion
of edge servers that are involved in the FL process, Nr denotes
the number of rounds, θ denotes the cloud, β denotes the
batches, Ne denotes the number of epochs, the local dataset
of ξ is denoted by Dataξ, Nβ denotes the number of batches,
and during training the dataset is split into Nβ batches.

In FLyer, LSTM is used in global model as well as in local
model. LSTM is a gated Recurrent Neural Network (RNN)
with memory cells to deal with sequential data, capable of
learning long term dependencies, and forget unrelated infor-
mation. In predicting crop yield, different types of environment
and soil-related data are often combined as input features for
the prediction model. Especially throughout the crop growing
season, these input features change over time. The LSTM
model can capture the temporal dependencies and hold the
sequential nature of the data.

The training of an LSTM model follows several steps
with the sequence of inputs xt, computed hidden state (ht),
and output sequences. In forward propagation, formulation of
hidden layers of the LSTM for each time step t with forget
gate (Gft), input gate (Git), output gate (Got), candidate
gate (Gct), new cell state (Sct), and hidden state (ht), are
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Fig. 1. Four-Tier architecture of FLyer

Algorithm 1 Local model update inside the edge server
Input: Dataξ, β, Nβ , Ne

Output: Model parameters (Mup)
1: Function Update(Dataξ, β,Nβ , Ne):
2: Datapr ← Process(Dataξ)
3: while (connection between ξ and θ is present) do
4: collect Mcolen ▷ Mcolen denotes model parameters with

encrypted gradients
5: Mcol ← decryptgradient(Mcolen)
6: Mupn ← FLAvg(Mup)
7: end while
8: SaveParam(Mupn)
9: Men ← encryptgradient(Mupn)

10: return Men to θ
11: Function FLAvg(Mup, β,Nβ , Ne):
12: β ← Split(Datapr, Nβ)
13: for e = 1 to Ne do
14: for b ∈ β do
15: Mup ←Mup − LR ∗Gradient(Mup, b) ▷ LR denotes

learning rate
16: end for
17: end for

mathematically presented as follows:
Gft = σ(wGfht−1 + wGfxt + biasGf ) (1)
Git = σ(wGiht−1 + wGixt + biasGi) (2)

Gct = tanh(wGcht−1 + wGcxt + biasGc) (3)

Sct = (Git ∗Gct) + (Gft ∗ Sct−1) (4)

Got = σ(wGoht−1 + wGoxt + biasGo) (5)

ht = Got ∗ tanh(Sct) (6)

where ht−1 represents the hidden state at time (t−1). biasGi

is the bias for the input gate, biasGf is the bias for the forget

Algorithm 2 Global model update inside the cloud
Input: Nξ, Pξ, Nr

Output: Model parameters (Mr) at the end of all rounds
1: Function Gather(Nξ, Pξ, Nr):
2: while k = 1 to Nξ do
3: receive model parameters from k
4: Mup ← decryptgradient(Men)
5: end while
6: FAV (Nξ, Pξ, Nr)
7: release edge servers which are connected
8: Function FAV (Nξ, Pξ, Nr):
9: M1 ← InitModel() ▷ model parameters are initialized

10: for r = 1 to Nr do
11: ξr ← Subset(max(Pξ ∗Nξ, 1), “random”)
12: for k = 1 to Nξr do ▷ Nξr denotes number of elements in

ξr
13: Mk

r+1 ← FLAvg(Mk) ▷ call FLAvg function from
Algorithm 1

14: end for
15: Mr+1 ←

∑Nξr
k=1

size(Datak)
size(DataNξr

)
·Mk

r+1 ▷ Datak

denotes local dataset of k, DataNξr
denotes total dataset of all

edge servers
16: end for

TABLE II
THE VALUES OF THE PARAMETERS FOR MODEL CLASSIFICATION

Classifier Feature Value

LSTM

LSTM unit:
First Dense layer unit:
Dropout:
Second Dense layer unit:
Dropout:
Output layer unit:
Optimizer:

64
128
0.2
64
0.4
2
Adam

gate, biasGc is the bias for the candidate gate, and biasGo

is the bias for the output gate, wGi is the weight matrix for
the input gate, wGf is the weight matrix for the forget gate,
wGc is the weight matrix for the candidate gate, and wGo is the
weight matrix for the output gate. The weighted parameters are
revised during the training. For classification using SoftMax
function, the output layer yt is expressed as:

yt = SoftMax(wht + biast) (7)

Table II presents the LSTM model features with their values
used for classification in FLyer. As the first and second dense
layer activation function ReLU is used. Sparse Categorical
Crossentropy (SCC) is used as the loss function.

1) Time complexity: To train using local dataset, the time
complexity is given by, O(Neloc ·nξ · (u1 ·u2+u2 ·u3+ . . .+
uU−1 · uU )), where the number of local epochs is denoted
by Neloc , the number of local data samples for ξ is denoted
as nξ where ξ ∈ ξtot, ξtot is the set of edge servers, Nξ

is the number of edge servers, ui denotes ith layer, and the
number of layers in the neural network is represented by U .
The global model’s time consumption is dependent on Nξ

i.e. the number of edge servers and M that represents the
aggregated model parameters. For exchanging parameters, the
time consumption is dependent on M . Therefore, if both the
local and global models are incorporated, the time complexity
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is given by equation (8).
T (FLyer) = O(Nξ · (Neloc · nξ · (u1 · u2+

u2 · u3 + . . .+ uU−1 · uU ))) +O(Nξ.M) +O(M)+

T (Cryptgrad) + T (Cryptdata)

(8)

where T (Cryptgrad) denotes the time complexity for gradient
encryption and decryption, and T (Cryptdata) denotes the
time complexity for data encryption and decryption. The
selection of the cryptography algorithm will depend on the
user. In FLyer, we consider AES for gradient encryption, and
for data encryption during local storage we consider AES
and RSA.
The time complexity for gradient encryption is
O(AESGradbits), where AESGradbits denotes the
size of the gradient information in bits. Then,
T (Cryptgrad) = O(AESGradbits). If RSA is used
for data encryption, T (Cryptdata) = O(RSAkeydata

),
where RSAkeydata

denotes the key size used for data
encryption using RSA. If AES is used for data encryption,
T (Cryptdata) = O(AESdata), where AESdata denotes the
data size in bits.

2) Training Energy Consumption: The training energy is
obtained by adding the energy consumed by the cloud (Ecloud)
with the energy consumed by the edge servers (Eedge), as
follows [6]:

EFLyer = Ecloud + Eedge (9)

Ecloud and Eedge are determined by equations (10) and (11)
as follows.

Ecloud =

Nr∑
r=1

(tθr · eθr ) (10)

and

Eedge =

Nr∑
r=1

Nξ∑
k=1

(tkr · ekr ) (11)

where Nr represents the number of rounds, Nξ represents the
number of edge servers, tθr represents the time consumption
for cloud (θ) at round r, eθr represents the energy consumed
by the cloud (θ) at round r, tkr represents the time consumed
by edge server k at round r, and ekr

represents the energy
consumed by edge server k at round r.

C. Latency in FLyer

To determine the latency, the communication latency and
computational latency for data analysis are considered. The
communication latency for transmitting data from node j
to node q is determined as (1 + ϕjq) · datajq

ρjq
, where ϕjq

denotes the rate of link failure, datajq denotes the data
amount, and ρjq denotes the rate of data transmission [2],
[6]. The computational time for analyzing data by a node j is
determined as dataj

speedj
, where dataj represents the data amount

and speedj represents the processing speed of node j [2], [6].
Let, the data pre-processing latency is Lpre, the latency

for transmitting data from tier-II to tier-III is denoted as
Lµξ, the latency for local data analysis in tier-III is Lpξ,
the latency for model parameters’ exchange between tier-III

and tier-IV is Lξτ , the latency for global model update in
tier-IV is Lpτ , the time consumption for gradient encryption
and decryption is Lgen, and the time consumption for data
encryption and decryption is Lden. Then, the total latency of
FLyer is determined by equation (12) as follows:
LFLyer = Lpre+Lµξ+Lpξ+Lξτ +Lpτ +Lgen+Lden (12)

The performance of FLyer is evaluated in Section IV from
the perspective of prediction accuracy, latency, and consump-
tion of energy.

IV. PERFORMANCE EVALUATION

In the realm of data analysis, our investigation relies on a
dataset1 that contains crop-oriented information across districts
of Western Maharashtra, India. The collection comprises a
detailed study of 4513 samples. The dataset includes essential
factors such as Soil colour, Nitrogen (N), Potassium (K),
Phosphorus (P), pH, Rainfall, and Temperature. Based on the
parameters the suitable crop for the land is predicted. Table III
presents a statistical summary of the quantitative parameters
of the dataset.

TABLE III
STATISTICAL SUMMARY OF THE DATASET USED FOR ANALYSIS

Parameter Minimum Maximum Mean Standard
value value deviation

N 20 150 95.41 38.06
P 10 90 54.34 16.55
K 5 150 63.595 35.69
pH 5.5 8.5 6.715 0.625

Rainfall 300 1700 819.189 251.73
Temperature 10 40 25.915 5.897

A. Test-bed for Experiment

For data analysis, we have used FL. The data is locally
analyzed inside the edge servers and global model training
occurs inside the cloud servers. We have considered four
edge servers (RAM: 16 GB, HDD: 1TB, processor: Intel(R)
Xeon(R) CPU E5-2667 0 @ 2.90GHz (Octa Core)). For cloud
services, private cloud servers are used (RAM: 16 GB, HDD:
2TB, processor: Intel(R) Xeon(R) CPU ES-2667 0 @ 2.90
GHz (Hexa Core)). The python is used for implementation,
and for the deep learning TensorFlow Enterprise 2.3 (CUDA
11.0) is used. In our testbed, we have considered the edge
servers and private cloud servers within the same Local area
network. For exchanging model parameters between an edge
server and the private cloud server, we have used socket
programming and TCP client-server model. The experimental
setup is presented in Fig. 2. The dataset is split into five parts.
The four parts are assigned as the local datasets to the edge
servers, and one part is assigned to the cloud as the global
dataset.

1) Prediction accuracy: The assessment metrics for the
local and global models in FLyer are presented in Table IV
and Fig. 3. The confusion matrices for the local models are
presented in Figs. 4 to 7. The confusion matrix for the global
model is presented in Fig. 8. The prediction accuracy achieved

1https://www.kaggle.com/datasets/sanchitagholap/
crop-and-fertilizer-dataset-for-westernmaharashtra

https://www.kaggle.com/datasets/sanchitagholap/crop-and-fertilizer-dataset-for-westernmaharashtra
https://www.kaggle.com/datasets/sanchitagholap/crop-and-fertilizer-dataset-for-westernmaharashtra
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Fig. 2. Experimental setup with four edge nodes and cloud

TABLE IV
PERFORMANCE OF LSTM IN FLYER

Model Accuracy Precision Recall F1-score
Local 0.9601 0.93 0.91 0.91

model 1
Local 0.9645 0.95 0.95 0.94

model 2
Local 0.9732 0.97 0.98 0.97

model 3
Local 0.9463 0.92 0.9 0.91

model 4
Global >0.99 >0.99 >0.99 >0.99
model

by the local models for the edge servers 1, 2, 3, and 4 are
96.01%, 96.45%, 97.32%, and 94.63%, respectively. The pre-
cision, recall, and F1-score for the edge servers 1, 2, 3, and 4
are ≥0.9, i.e. 90%. The average prediction accuracy, precision,
recall, and F1-score for the local models are 96.1%, 94.25%,
93.5%, and 93.25%, respectively. The results demonstrate that
the crop yield prediction accuracy achieved by the global
model in the proposed framework FLyer is above 99%. The
high level of crop yield prediction accuracy achieved by the
FLyer highlights its effectiveness in producing precise and
dependable outcomes within the specified framework.

2) Latency: From the experimental results, we have ob-
served that the latency for gradient encryption and decryption

Fig. 3. Performance of the local and global models in FLyer

using AES-256 is 4.29 ms. From the results, we have also
observed that the latency for data encryption and decryption
during local storage using RSA and AES-256 are 145s and
39.08 ms respectively. We observe that AES-256 consumes
less time for data encryption than RSA. The time consumption
for data encryption and decryption is not very high in AES,
but privacy can be protected. Hence, during local storage AES
can be used to encrypt the data to protect data privacy. As
FL is used, the raw data is not shared; further, gradients are
encrypted using AES in FLyer. The results show that the time
consumed for gradient encryption and decryption using AES
is low. Hence, during model parameters’ exchange gradient
encryption is recommended to reduce the gradient information
leakage ratio. This is observed that the average gradient
information leakage ratio for 20%, 40%, and 50% malicious
participants are 0.002, 0.02, and 0.038, respectively, which
is very low. The total latency considering data transmission
and analysis for FLyer, edge-cloud-based framework without
FL, and cloud-only framework are determined and presented
in Fig. 9. The average data transmission speed of uplink
has been 5 Mbps and downlink has been 10 Mbps. For the
considered scenario, FLyer, edge-cloud framework without FL,
and cloud-only framework have the latency of 10-15s, 20-
25s, and 30-35s, respectively. The results demonstrate that
FLyer achieves a reduction of 39% and 56% latency than
the edge-cloud-based framework without FL, and cloud-only
framework, respectively.

3) Energy consumption: The training energy consump-
tion for FLyer, edge-cloud-based framework without FL, and
cloud-only framework are determined and presented in Fig.
10. For the considered scenario, FLyer, edge-cloud frame-
work without FL, and cloud-only framework have the energy
consumption of 4-6KJ, 8-10KJ, and 12-14KJ, respectively.
This is observed that FLyer reduces approximately 40% and
57% energy consumption than edge-cloud-based framework
without FL, and cloud-only framework, respectively.

4) Comparison with existing frameworks: FLyer is com-
pared with the existing approaches on crop yield prediction in
Table V. In [7], FL was used and Gaussian Naive Bayes was
used as the classifier, and the achieved accuracy was 90%.
In [13], MLP was used as the classifier, and the achieved
accuracy was 98.23%. In [20], RF, DT, KNN, XGBoost,
and SVM were used as the classifiers, and among them
RF achieved the highest accuracy of 97.18%. In [23], DT,
Hoeffding tree, and RF, were used, and the achieved accuracy
was 91.25%. In [13], [20], and [23], FL was not used. The
results demonstrate that the accuracy in FLyer is higher than
the existing schemes [7], [13], [20], and [23]. This is also seen
that the existing approaches did not measure the latency and
energy consumption, though energy consumption and latency
both are vital for sustainable real-time systems. As FL is used
in FLyer, no raw data sharing takes place. Thus, data privacy
is protected in FLyer. Moreover, the use of encryption in local
data storage and gradient encryption during model parameters’
exchange, enhance data security. This is also observed that
the gradient information leakage ratio is only 0.038 for 50%
malicious participants in FLyer. Therefore, we can conclude
that FLyer is better than the state-of-the-art.



8

Fig. 4. Confusion matrix for local model 1 Fig. 5. Confusion matrix for local model 2

Fig. 6. Confusion matrix for local model 3 Fig. 7. Confusion matrix for local model 4

TABLE V
PERFORMANCE COMPARISON AMONG FLYER AND EXISTING CROP YIELD PREDICTION FRAMEWORKS

Work Classifier FL is used Accuracy Latency Energy consumption Gradient information
leakage ratio

Idoje et al. [7] Gaussian Naive Bayes Yes 90% Not Not Not
determined determined determined

Bakthavatchalam et al. [13] Multilayer Perceptron (MLP) No 98.23% Not Not Not
determined determined determined

Thilakarathne et al. [20] RF (Highest), DT, KNN, No 97.18% Not Not Not
XGBoost, SVM determined determined determined

Reyana et al. [23] DT, Hoeffding tree, RF No 91.25% Not Not Not
determined determined determined

FLyer LSTM Yes >99% 2.43 Yes 0.038 (for 50%
malicious participants)

Fig. 8. Confusion matrix for the global model

V. CONCLUSIONS AND FUTURE WORK

This paper has proposed a crop yield prediction framework
using FL, referred to as FLyer. The soil and environmental data

Fig. 9. Comparison of latency in FLyer (proposed), edge-cloud framework
without FL, and cloud-only framework
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Fig. 10. Comparison of energy consumption in FLyer (proposed), edge-cloud
framework without FL, and cloud-only framework

are processed locally inside the edge servers using LSTM. The
model parameters are exchanged between the edge servers and
the cloud. No raw data sharing is performed, further, model
parameters are exchanged after encrypting gradients. The use
of encryption during model parameters’ exchange reduces
gradient information leakage ratio to 0.038 for 50% malicious
participants. Further, during local data storage encryption is
performed. We have used AES-256 for gradient encryption.
For data encryption during local storage, we have used RSA
and AES-256, and observed that AES-256 consumes lesser
time. The use of gradient encryption-based FL improves data
privacy, and the data is locally processed inside the edge
servers to reduce latency and energy consumption. From the
results we have observed that the global model in FLyer
has achieved above 99% accuracy in crop yield prediction.
We have also observed that FLyer reduces the latency by
∼39% and energy consumption by ∼40% than the edge-cloud
framework without FL respectively.

The FLyer architecture improves model explainability by
utilizing LSTM networks to capture temporal relationships
that is crucial for crop yield prediction, while FL maintains
data privacy by processing information locally and exchanging
only model parameters with encrypted gradients. The use of
AES-256 for gradient and data encryption achieves a balance
between security and computing efficiency, making the model
both secure and efficient. FLyer’s operations are sustain-
able and comprehensible for agricultural applications due to
lowered latency and energy consumption. Future initiatives
may enhance explainability by incorporating generative AI to
produce synthetic data for more comprehensive local model
training, alongside employing Bayesian LSTM to provide
probabilistic insights, thereby reducing the limitations for end-
users.
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