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ABSTRACT
Recent developments of the enhanced hardware on mobile devices

such as quad-core CPUs and various sensors have made it possible

to build a powerful heterogeneous mobile cloud o�oading service

that consists of a mobile ad-hoc cloud, nearby servers and public

cloud services. However, the availability and mobility management

of mobile devices in the network can signi�cantly hinder the per-

formance of mobile cloud systems due to the frequent system faults

caused by dynamic changes, and prevent applications from o�oad-

ing to mobile ad-hoc networks. In order to improve the mobile

cloud service reliability, we propose a group based fault tolerant

mechanism GFT-mCloud that classi�es mobile devices into groups

based on its processing capacity, mobility, and reliability. Di�erent

fault tolerance techniques are then devised adaptively based on the

task o�oading schedules and the speci�c group of machines it’s

o�oaded. GFT-mCloud is designed as a standalone module that

can work with existing mobile cloud code o�oading systems. Ex-

tensive experiments have been conducted to evaluate the proposed

mechanism. �e results show that our fault tolerant mechanism is

able to outperform conventional fault tolerant algorithms in the

mobile cloud o�oading environment.
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1 INTRODUCTION
Recent years have seen the exponential development of smart mo-

bile devices. �e powerful processors, higher capacity memory, and

various sensors introduce opportunities for new types of cognitive

mobile applications such as personal health monitoring, panorama

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

,
© 2016 Copyright held by the owner/author(s). 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

DOI: 10.1145/nnnnnnn.nnnnnnn

videos, and augmented reality on mobile devices. �ese emerging

mobile applications rely on intensive sensor data processing, which

is a non-trivial task on a single mobile device due to its constrained

resources.

Mobile cloud computing (MCC) comes into sight as a new com-

puting paradigm that leverages cloud resources to enhance the

performance of mobile devices. �e term ”cloud” here refers to

a shared resource pool consisting of both mobile devices cloud

(i.e. mobile ad-hoc networks) [8], nearby cloudlets [20], and pri-

vate/public cloud services [26]. �e shared resources collaborate

with each other to process the data obtained from sensors on each

mobile device. �e paradigm enables mobile devices to utilize com-

putation o�oading as well as crowd sourcing among the shared

computing resources to enhance the performance of cognitive mo-

bile applications. However, as a resource sharing environment of

heterogeneous devices connected via wireless communicationmedi-

ums, the reliability of the machines and the computing environment

have signi�cant e�ect on the system performance.

Since mobile cloud systems consist of mobile devices and servers

connected via wireless networks, the mobility of the devices and

intermi�ent network connections have become the major issues

that induce system failures and further hinder the system reliability.

Many fault tolerance solutions have been proposed to tackle the

reliability issue in distributed computing systems, e.g., computer

grids, mobile grids, and cloud computing systems. �ese approaches

mostly consider a homogeneous computing environment composed

of identical machines and wired network connections. As a result,

the fault tolerant policies proposed are o�en onefold solutions that

lack adaptivity to the heterogeneous computing environment. On

the contrary, mobile clouds are o�en composed of devices and

wireless networks that have di�erent speci�cations such as CPU

speed, data throughput and signal strength. �erefore, existing

fault tolerance approaches may not be able to maintain a similar

system reliability level on mobile cloud systems as they are on grid

computing systems.

In mobile cloud computing, code o�oading and task delegation

are two main techniques for resource augmentation. Many algo-

rithms and frameworks have been proposed to make task o�oading

decisions for a variety of mobile cloud computing environments

[1, 4, 9, 18]. However, these approaches mainly focus on the per-

formance gain of task o�oading without much development in

improving the reliability of task o�oading execution in mobile

clouds. In this paper, we aim to propose a standalone fault tolerant

mechanism that can work with existing frameworks and utilizes

task o�oading schedules devised from existing mobile code o�oad-

ing algorithms to maintain the reliability of mobile cloud systems.
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In order to make the FT mechanism adaptive to the heteroge-

neous mobile cloud, we propose a group-based fault tolerant mech-

anism GFT-mCloud for mobile cloud systems using reactive fault

tolerant techniques. �e machines such as mobile devices, cloudlets

and public cloud servers are classi�ed into di�erent groups based

on their hardware properties such as processing speed, reliability,

and ba�ery lifetime. �e proposed FT mechanism can dynamically

adjust di�erent fault tolerant policies for di�erent resource groups

as well as di�erent critical level of mobile tasks in a mobile ap-

plication to improve the system reliability with lower processing

overhead from the redundancy incurred.

�e key contributions of this paper are as follows.

• We present a machine grouping algorithm for dynamically

classifying machines in mobile cloud systems into multiple

groups that have machines with similar capabilities. �e

groups can then be utilized by the proposed FT mechanism

to obtain customized fault tolerant policies. �e machine

grouping algorithm is designed to be expandable for more

grouping criteria.

• We propose a standalone fault tolerant mechanism GFT-

mCloud for mobile cloud systems that can work with mo-

bile code o�oading algorithms. It is able to devise di�er-

ent fault tolerant policies adaptively for di�erent machine

groups with the consideration of minimizing the overhead

generated by the redundancy.

• �e proposed fault tolerant mechanism is implemented

as a library that can be added into the existing Android

mobile cloud o�oading frameworks as well as simulation

environments.

• We implement a simulation environment of heterogeneous

mobile clouds based on BRITE [14] and Weka, and test

the proposed algorithm with various experiment scenarios

as well as the e�ciency of working with existing code

o�oadng algorithms in mobile cloud computing.

�e rest of this paper is organized as follows. Section 2 discusses

the related works on the fault tolerant approaches in grid comput-

ing, mobile ad-hoc networks, and mobile clouds. �en we describe

the heterogeneous mobile cloud environment (HMC) and present

the preliminaries and models in Section 3. With the help of the

models, we propose the group-based fault tolerant scheduling algo-

rithm for HMC in Section 4. Section 5 presents the evaluation and

discussions on the experimental results. Finally, conclusions and

future work are discussed in Seciton 6.

2 RELATEDWORK
2.1 Task o�loading in mobile cloud computing
Task o�oading algorithms in mobile clouds aim to make decisions

on whether, where and how to o�oad mobile tasks to other com-

puting resources. �e computing resources can be public cloud,

nearby cloudlets, and mobile devices. Task o�oading algorithms

take into consideration task requirements such as computation and

deadline, and machine capabilities to decide the task execution loca-

tion (local or o�oading) to obtain system gains (shorter execution

time or less energy consumption). Cuervo et al. [4] proposed a code

o�oading framework for .NET applications. Linear programming

optimization framework is applied to decide which module of an

application to o�oad. �inkAir [9] is an Android platform for code

o�oading that aims to lower the execution time and energy con-

sumption at the same time. Rahimi et al. [18] proposed a multi-tier

o�oading framework that uses a greedy heuristic to make the of-

�oading decisions considering device mobility. Barbarossa et al. [1]

introduced a joint optimization problem of computation resource

and transmission power allocation among multiple users under

application delay constraints.

2.2 Fault tolerance techniques
Checkpointing and replication are two commonly used reactive

fault tolerance techniques [22]. Checkpointing periodically takes

snapshots of applications that contain running states and saves

snapshots on reliable storage. �e time between checkpoints de-

pends on the system reliability. On the contrary, replication does

not require state saving. Instead, it runs the replication of an appli-

cation simultaneously on multiple computing resources to ensure

task complete execution percentage meets certain level.

2.2.1 Fault tolerance in distributed computing. Distributed com-

puting paradigms include cluster computing, grid computing, mo-

bile grids, etc. �e loosely coupled computing resources connected

via networks require fault tolerance management to maintain the

system reliability. Dobber et al. [5] compared the performance

of job replication (JB) and dynamic load balancing (DLB) on dis-

tributed system robust level. �ey provided a threshold value Y of

Y ∗ based on job execution time that JB outperformed DLB when

Y < Y ∗. Naksinehaboon et al. [15] proposed an incremental check-

point and restart model for high performance computing (HPC). To

reduce the overhead of checkpointing, the model aims to perform

a set of incremental checkpoints between two full checkpoints by

only saving address space that has changed since the last checkpoint.

Noticeably, the fault tolerance in distributed computing systems

only considers machine crash failures since the wired networks are

stable. However, for a wireless computing system such as mobile

cloud, device mobility and network link stability are of concern.

Litke et al. [12] presented a replication-based algorithm, which

utilizes the Weibull distribution for mobility analysis to estimate

the number of replicas in order to maintain a certain level of fault

tolerance for mobile grids. Choi et al. [3] classi�ed devices in mo-

bile grids into groups based on similar hardware properties. For

tasks dispatched to low reliability groups, task replication is applied

for fault tolerance, whereas the tasks dispatched to high reliability

groups are migrated to another device upon failures. Most of the

existing algorithms only apply the onefold fault tolerance policy,

which is impractical for resource-scarce mobile devices involved

computing systems as there is no guarantee for available computing

nodes.

2.2.2 Fault tolerance in mobile cloud computing. A few fault

tolerance algorithms were proposed for mobile cloud computing.

Chen et al. [2] proposed the k-out-of-n reliability control method to

achieve energy e�ciency and maintain system reliability level for

data storage and processing in mobile cloud. �e failure probability

of a node is estimated by three factors: remaining ba�ery, node

mobility, and application factor. Park et al. [16] presented a fault
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tolerant algorithm for mobile cloud resource management. Di�er-

ent fault tolerance techniques such as checkpoint and replication

are applied to di�erent groups based on its availability and mobility.

However, the grouping algorithm only considers device mobility

and utilization rate. It is inextensible for more criteria.

3 PRELIMINARY MODELS
In this section, we formally present the models of the mobile cloud

system, including application models, machine models, and mobil-

ity model. We consider the mobile cloud computing system as a

network of heterogeneous machines consisting of mobile devices,

nearby cloudlets, and public cloud VMs. �e machines are loosely

connected via various types of wireless networks such as Bluetooth,

mobile cellular and WiFi. �e mobile devices are free to join and

leave the network at any time while the cloudlets and public cloud

VMs are considered stable. �erefore, the failures considered by

this work are: 1) Machine crash failures, where machines either

halt or do not response; 2) Loss of connection failures, where either

wireless connections are disrupted or machines move out of the

range of the mobile cloud network. �e Byzantine failures [11] are

not the focus of this work.

3.1 Application model
Each mobile device in the network runs a mobile application where

its tasks are evaluated to either o�oad to another machine or not.

An application is modelled as a directed acyclic graph (DAG) A =
〈S,E〉 (example shown in Figure 1), where S represents the set of

tasks si within the application, and E represents the dependencies

of the tasks. �e weight of each edge denotes the execution time

of its pointed task. For instance, task s1 in Figure 1 takes 3 time

units to complete a�er task s0 completed. It is assumed a task

cannot be divided into subtasks and that it needs to be executed as

a whole on a single processor of themachine. Each task is associated

with a time variable T sit f called total �oat, which is the amount of

time a task can be delayed without delaying the completion of the

entire application. T sit f of task si can be obtained by calculating

the di�erence between its latest �nish time and earliest �nish time.

�en the critical path of a DAG can be identi�ed as a path of tasks

with 0 total �oat, which indicates the longest task execution time,

i.e., the earliest �nishing time of the application [7]. �e rest of

tasks can be �nished as late as its total �oat and will not a�ect

the completion time of the application. �erefore, tasks on critical

paths of an application should be applied with fault tolerant policies

to ensure the application to complete on time.

3.2 Machine model
We consider the mobile cloud computing infrastructure M as a

network of n heterogeneous machines. mi ∈ M(i = 1, 2, · · · ,n)
denotes the ith machine. We model the hardware speci�cations of

a machine as follows.

mi ,< µi ,θi , I
wif i
i , Icelli , Ibti ,B

wif i
i ,Bcelli ,Bbti ,T

avail
i ,T ri > (1)

µi represents the processing speed of the machine. θi represents

the utilization rate of the processor. I
wif i
i , Icelli , Ibti are binary indi-

cators denoting if the machine is equipped with that type wireless

Figure 1: An example of application model. Critical path is
marked in red

medium. For instance, if I
wif i
i = 1, machinemi has access to WiFi,

otherwise if I
wif i
i = 0. Variables B

wif i
i ,Bcelli ,Bbti represents the

bandwidth of the wireless medium on machinemi . �e network

speed of each wireless medium is the product of bandwidth and

binary indicators Ii , plus current network latency. T avail
i is the

earliest available time of machinemi , which represents the current

workload of the machine. T ri denotes the time between failures of

machinemi . It is obtained by modelling the mobility of the machine.

3.3 Mobility model
In order to take into account the machine reliability, the available

time of a machine is considered. Note that the study of mobility

model and trajectory is not the focus of this paper.

To obtain the available time of a machine, the mean time between

failures (MTBF) is adopted as T ri . MTBF describes the expected

time of a machine between failures. In this case, it represents the

expected operating time of a machine before it is disconnected from

the network. �e Weibull distribution is o�en applied to e�ectively

represent the machine availability in distributed computing envi-

ronments [19]. �e MTBF of a machine can be calculated from the

Weibull distribution that abstracts the machine’s behaviour. �e

probability density function of a 2-parameter Weibull distribution

is given by:

f (t) = β

η
( t
η
)β−1e−(

t
η )β . (2)

�e history of the machine connection time to the mobile cloud

network is used to estimate the shape parameter β and scale param-

eter η. It consists of records of the time of that machine established

a wireless connection as well as the duration of that connection.

�e estimation of Weibull distribution parameters are obtained

by applying the linear regression method to the cumulative distri-

bution function (CDF) of Weibull distribution:

F (x) = 1 − e−(
x
η )β . (3)

�en Equation 3 is converted into a linear equation form as

ln(ln( 1

1 − F (t) )) = βln(t) − βln(η). (4)

�en the parameters can be calculated using median ranks and

least-squares �t on the data points generated from the history of

the machine connection time in the network.
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Figure 2: �e proposed fault tolerant mechanism as a stan-
dalone module

4 GROUP-BASED MOBILE CLOUD FAULT
TOLERANT MECHANISM GFT-MCLOUD

�e mobile cloud computing environment usually comprises het-

erogeneous mobile devices, cloud VMs, and intermi�ent wireless

network connections. To copewith the dynamics and heterogeneity,

in this paper, we propose a group-based fault tolerant mechanism

GFT-mCloud that classi�es machines into di�erent groups based

on its capability and adjusts di�erent fault tolerance policies for

tasks o�oaded to di�erent groups of machines.

�e GFT-mCloud is designed to operate on the o�oading sched-

ules of existing task o�oading frameworks in mobile cloud com-

puting. �e position of the proposed standalone fault tolerant

mechanism with the existing mobile cloud o�oading frameworks

is shown in Figure 2 and the proposed fault tolerant policies gen-

erating procedures in the view of one of the mobile devices are

depicted in Figure 3. All the mobile devices follow the same proce-

dures. �e Code O�oading Scheduler is provided by the existing

mobile cloud frameworks that have a decision engine to schedule

the o�oading tasks. We name the outputs of the decision engine

as schedule plan. GFT-mCloud works as an add-on module to the

framework. It includes a machine classi�er for grouping machines,

a Policy Generator for devising fault tolerant policy for each task,

and a Plan Editor to decode the o�oading schedule plan and encode

the fault tolerant policy generated.

4.1 Machine grouping algorithm
�e grouping algorithm considers three criteria: machine process-

ing capability, machine availability, and communication condition

of the machine. In order to provide an automatic classi�cation

approach that can adopt an arbitrary number of criteria, clustering

and decision tree learning are adopted in the machine grouping

algorithm. Decision tree [6] is a tree-like graph that is comprised of

interior nodes each representing a property variable, and leaf nodes

each representing a class label. �e path from the root node to each
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leaf node represents the values of the properties that classify the

machines.

For each interior node, there is a set of split values that divide the

set of objects into di�erent groups. Moreover, the property variable

on each level of the decision tree needs to be selected in order to

provide an accurate classi�cation. �e decision tree structure can

be trained from a set of supervised object data with the property

values and its class label. �e machine grouping algorithm includes

two phases: data pre-processing phase and decision tree generating

phase.

4.1.1 Data pre-processing. First, the data set of machine in-

stances with property values needs to be labelled so that it can

be used to train the decision tree. �e k-means clustering method

[13] is used for labelling the data set with sub-classes based on

each of the three criteria. �e three criteria are further set with

sub-classes based on the characteristics of the mobile cloud system.

�e machine processing capability criteria (P) is divided into slow,

medium and high processing speed. �e machine availability crite-

ria (A) is divided into low and high since the machines in mobile

cloud systems are mostly mobile devices and stationary machines.

�e communication condition criteria (C) is divided into poor and

good group. �e types of criteria and number of sub-classes of crite-

ria can be set by users in order to cooperate with the requirements

of di�erent executing conditions.

Second, each criteria needs to be quanti�ed based on the property

values from the machine data set. �e processing capability is

quanti�ed by calculating the CPU speed of the machine and its

utilization as follows.

Pi = µi ∗ θi , (5)

where Pi is the processing capability of machinemi , µi is the CPU
speed, and θi is the utilization of the CPU.

For machine availability, the algorithm considers the device

mobility and the remaining ba�ery lifetime of the device. Based

on the mobility model described in Section 3, the device mobility

is represented by its available time in the mobile cloud network.

Since the longer the available time of device there is and the more

ba�ery there remains, the higher its availability is, the availability
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Algorithm 1 Generate Decision Tree

1: procedure GetDecisionTree(S, C, V , L)
2: n ← create a root node for the tree
3: for all ai ∈ A do
4: eni = entropy(S, ai )
5: Gain(ai ) = entropy(S ) −

∑
v∈V

|Sv |
|S | eni

6: a∗ ← MAX (Gain(ai ))
7: assign a�ribute a∗ to node n
8: Svj ← seperate S based on values in Va∗, vj ∈ Va∗
9: for all Svj do
10: if Svj is empty then
11: mark Svj as a leaf node and end the branch
12: else if Svj only contains items of label ln ∈ L then
13: put ln as the leaf node and end the branch
14: else
15: A = A − a∗
16: ID3(Svj , A, V )
17: return T ← ID3(S, A, V )

is de�ned as follows.

Ai = αavailT
r
i + βavail ρbattery , (6)

where T ri is the device available time obtained from the mobil-

ity model, and ρbattery and the remaining ba�ery percentage.

αavail , βavail are weight factors that can be adjusted based on

user preferences, and αavail + βavail = 1. �e two components of

the equation are normalized to a range of 0 to 1.

�e communication condition re�ects on the data throughput

of the wireless networks in mobile cloud systems. For both check-

pointing and replication policy GFT-mCloud considers, it requires

fast communication and low energy consumption to constrain the

incurred overhead. �erefore, the direct connections to other ma-

chines as well as the speed of the wireless connection are both

considered. �e communication condition is quanti�ed as follows.

Ci =
∑
w
(αconnBwi + βconn ∗

kw

n
) ∗ Iwi , (7)

where Bwi is bandwidth of wireless mediumw , kw is number of ma-

chines that machinemi directly connected to via wireless medium

w , and n is the total number of machines in its current mobile

cloud network. �e bandwidth of the wireless link Bwi explicitly

represents the data transmission speed. kw re�ects the level of

redundancy machinemi can achieve in the network as the more

machines it has direct connections to, themoremachines can be cho-

sen for its fault tolerance redundancy. αconn , βconn are the weight

factors that can be adjusted by the system, and αconn + βconn = 1.

�e two components of the equation are normalized to a range of

0 to 1.

As a result, a total of 12 labels are considered. �e processed

data set is named as learning set.

4.1.2 Machine grouping algorithm. �e machine grouping algo-

rithm operates on the learning set with ID3 (Iterative Dichotomiser

3) algorithm [17] to generate the decision tree for further machine

grouping. �e pesudocode is shown in Algorithm 1.

S represents the learning set, C is the set of criteria (in this case,

three criteria available), V denotes the set of split values for each

criteria, and L is the set of class labels. Algorithm1 returns the

decision tree T for machine grouping. �e algorithm �rst creates

a root node for the tree. �en the criterion with the maximum

entropy value is selected as the criteria for the root node (step 1-7).

�e entropy is used to evaluate di�erences between groups and is

calculate as entropy(S,ai ) =
∑
v ∈Vai −vloд2(v). �e items in S are

separated into sub-groups Vj based on split values Va∗ of criteria
a∗ (step 8). For sub-groupsVj (step 9-18), if it is empty then marked

as an end node; If it only contains items of label ln , then make a

node of this branch as label ln ; Otherwise, remove criteria a∗ from
A and run ID3 with the sub-group Svj iteratively until the items in

S are classi�ed. �e decision tree generated by Algorithm 1 can be

updated with more machine data obtained or new criteria need to

be added.

4.2 Group-based fault tolerant algorithm
Due to the heterogeneity of mobile cloud system, a onefold fault

tolerant policy approach may not adapt di�erent execution con-

ditions. For instance, applying replication method to the group

with high reliability machines incur more operating overhead than

checkpointing. On the contrary, applying checkpointing to low

reliability machines can introduce unnecessary storing snapshots of

checkpoints. Moreover, as the task o�oading decision modules in

mobile cloud systems have already devised an o�oading schedule

for mobile tasks, the fault tolerance algorithm needs to consider

the execution location of the task being o�oaded to maintain the

o�oading bene�ts as well as load balance.

In order to tackle this issue, we propose a group-based fault

tolerance algorithm that takes into consideration the properties of

di�erent machine groups and adaptively select either checkpointing

or replication as fault tolerant policy for the task based on the

group of the machine the task is o�oaded onto. �e proposed fault

tolerant mechanism operates on the task o�oading schedules made

by the mobile cloud frameworks in order to make the mechanism

adaptive to the existing mobile cloud frameworks. Furthermore,

the mobile tasks of di�erent mobile applications on the devices are

di�erentiated if they are on the critical path in order to adjust the

fault tolerance policies.

Since the proposed fault tolerance mechanism adaptively applies

checkpointing and replication methods, the number of replications

as well as the frequency of checkpointing need to be determined.

• Replication
�e task replication is sent to machines in the same group of

the original scheduled machine where the task is o�oaded in or-

der to maintain the o�oading bene�t in terms of execution time

and energy consumption. Too many replications can incur large

resource redundancy with high energy overhead. To overcome

this issue, the machine for replicas is selected by ranking the

machines in the group by reliability. �e machines are ranked

based on the failure rate, the execution time for the replication

and number of directly connected machines.

rank(m) = αTmcomp + βp
m
f ail + γNconn , α + β + γ = 1, (8)

where α , β,γ are weight factors can be adjusted by users, Tmcomp
is the task completion time on machinem, Nconn denotes the

number of machines in the group that machine m has direct
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Algorithm 2 Group-based fault tolerance algorithm

1: procedure GroupbasedFT(TR, M, J )
2: if TR needs to update then
3: TR ← ID3(S, A, V )
4: for allm ∈ M do
5: GTR ← Classif y(TR, M )
6: {C, UC } ← classify the critical path of tasks inJ
7: while s ∈ J is scheduled by the o�oading algorithm do
8: д ← GTR (s)
9: if s ∈ UC then
10: if T scomp < T st f then
11: resend task s to originally scheduled machine
12: if machine is not available then
13: send s to the machine with EFT in д
14: else
15: дoto 7

16: else if s ∈ C then
17: if д contains L reliabiltiy property then
18: calculate ranks of machines in group д
19: m∗ ← lowest ranking machine
20: m∗ ← sr
21: else if д contains H reliabiltiy property then
22: Tc ← calculate checkpoint frequency
23: s ← insert checkpoint with Tc

connections with, and pmf ail is the task execution failure rate

calculated as:

pmf ail =
Nm
f ail

Nm
t otal

, (9)

and Nm
f ail ,N

m
total are the number of failed tasks and the number

of total tasks executed on machinem.

�en the machine with the lowest ranking score is considered

the most reliable machine in the group and selected to deploy

the replica of the task.

• Checkpointing �e checkpointing method saves a snapshot of

the running process periodically. �e frequency of checkpoints

is critical since it generates extra network tra�c for the wireless

communications and the checkpointing also incurs time over-

head. Hence, the frequency needs to be determined based on the

failure rate and the time taken by checkpointing. �e method

proposed in Young [25] is adopted to decide the frequency of

checkpointing as follows.

Tc =
√
2TsTf , (10)

whereTc is the time interval between checkpoints,Ts is the time

of checkpointing, and Tf is the time between failures.

�e proposed fault tolerant algorithm is listed in Algorithm 2. TR
represents the decision tree generated by Algorithm 1,M is the set

of machines available in the mobile cloud network, and J is the set
of tasks generated from mobile applications running on the mobile

devices inM . First,TR is updated if more machine observations are

captured in the system (step 2-3). �en, all the machines inM are

classi�ed into di�erent groups through decision tree TR (step 4-5).

Moreover, the tasks from each application are divided into critical

and uncritical tasks using critical path analysis (step 6). A�er the

machines and tasks are classi�ed, the fault tolerance scheduler waits

Table 1: �e con�guration for simulations

Workload

Application: Optical Character Recognition, Chess game

Number of applications: 50
Computation length (Instructions): Uniform(50000,

100000)

Data size (MB): Uniform(0.5, 10)

Machine

Processing Speed (MIPS): Uniform(5000,200000)

Total available time (s): Uniform(1000,30000)

Failure time point: Weibull distribution(α = 1.25, β =
92.74)

WiFi bandwidth(MBps): Uniform(1.0,1.2)

Bluetooth bandwidth(MBps): Uniform(0.2,0.3)

Cellular bandwidth(MBps): Uniform(0.8,0.9)

Number of machines: Uniform(20,50)

for an o�oading decision of a task made by the o�oading decision

module of the system. Upon receiving the task with the o�oading

decision, the proper fault tolerance policy is selected (step 7-23).

First, the group label д of the machine that task s scheduled is

identi�ed (step 8), then the task is identi�ed whether it is a task on

the critical path of its application. If it is uncritical and the total

�oat is long enough for re-execution, the task will be resent to

the machine scheduled by the o�oading decision module upon

receiving a failure occurrence. When the machine is not available,

the task will be scheduled to the machine within the same group

that has the earlier �nishing time (EFT) for the task (step 9-15).

If the task is on its application’s critical path, the fault tolerance

policy applied is based on the group of the machine that the task is

scheduled. If the group is with L reliability property, replication is

applied. �e replica of tasks is sent to the machine with the highest

reliability ranking (step 17-20). If the group is with H reliability

property, checkpointing is applied. �e checkpoint frequency is

calculated based on Equation 10 (step 21-23).

�etime complexity analysis ofGFT-mCloud. Assume there

arem machines in the network, and n tasks pass through the fault

tolerance algorithm. �e machine classi�cation (step 4-5) takes

O(m) for grouping. For the fault tolerance policy selection part, the

checkpoint frequency calculation (step 21-23) takes O(1) and ma-

chine ranking calculation for replication costsO(m). �erefore, the

worst case scenario for selecting fault tolerance policy for n tasks

costs O(mn). Hence, the overall time complexity of the proposed

algorithm is O(m +mn).

5 PERFORMANCE EVALUATION
In order to evaluate the performance of the proposed fault tolerant

mechanism, a series of simulations are conducted. �e application

completion time (i.e. makespan), the mechanism running overhead,

and the number of control messages for fault tolerance are the three

metrics for evaluation. Results from the proposed algorithm are

then compared with other conventional fault tolerance algorithms.

5.1 Experimental Setup
We implement a simulator based on BRITE [14] to simulate the

mobile cloud networks. BRITE is able to generate realistic Internet

topologies with di�erent bandwidth and delay values for each link
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Table 2: Results of the cross validation

Item

Synthetic

Set

CRAWDAD

Set 1

CRAWDAD

Set 2

CRAWDAD

Set 3

Correctly Classi�ed

Instances

997 1397 3986 3575

Incorrectly Classi�ed

Instances

5 3 14 7

Mean absolute error 0.0008 0.0004 0.0009 0.0003

Relative absolute error 0.6503% 0.2777% 0.6847% 0.2133%

Total number of

instances

1002 1400 4000 3582

Accuracy 99.501% 99.786% 99.649% 99.805%

of the topologies. We also adopted Weka [24] in the simulation to

implement the machine learning methods in the proposed grouping

algorithm. Table 1 lists the con�guration for the simulation.

Due to the lack of real-world traces that are suitable for the het-

erogeneous mobile cloud environment described above, the work-

loads used in the simulation are obtained by pro�ling an OCR

application and a chess game application running on mobile de-

vices in our experimental environment. �e workload contains a

set of applications represented by randomly generated DAGs. Each

vertex in the DAG represents a task of the application, and has two

values, the amount of computation and data size. �e two values

are generated from uniform distribution with the range obtained

from the application pro�ling.

�e parameters used to characterize the machines in the ex-

perimental environment are also listed in Table 1. MIPS (Million

Instructions per Second) is adopted in the simulation to represent

the processing speed of the machine. It can be pro�led by running a

multi-thread integer computation looping program with a number

of instructions and estimating the elapsed time upon completion.

In order to simulate the machine failures, a 2-parameter Weibulll

distribution is used for randomly generating the time between fail-

ures, and the failure time points are calculated by appending the

time generated from the distribution to the machine start time. To

capture the mobility pa�erns of real mobile devices in an area, the

CRAWDAD trace sets [10] are used to obtain the shape and slop

parameters of the Weibull distribution. �e trace set is composed

of system logs of WiFi access points on Dartmouth campus from

September 1st, 2005 to October 4th, 2006. �e number of sessions in

every minute is extracted from the trace to generate the probability

functions using rank regression.

5.2 Evaluation Results and Analysis
5.2.1 Machine Grouping Algorithm Performance Evaluation. In

the �rst set of experiments, the accuracy of the proposed machine

classi�cation algorithm with multiple machine instances is evalu-

ated. In order to improve the accuracy of the decision tree model

proposed, the training set of machine instances should cover as

many types of machine instances as possible. Since MIPS is used

to represent the processing speed of machine (re�ecting on CPU,

cache and memory) that is either mobile device, or remote servers,

we adopted the MIPS pro�les obtained from CPU benchmarks [23],

which include CPUs for desktops, laptops, and mobile devices. �e

overall available time of a machine is randomly generated from

Table 3: Weight factor setting cases

Case α β γ Case α β γ
1 1 0 0 7 0.2 0.6 0.2

2 0.8 0.1 0.1 8 0.2 0.2 0.6

3 0.6 0.3 0.1 9 0.1 0.7 0.2

4 0.6 0.1 0.3 10 0.1 0.2 0.7

5 0.4 0.4 0.2 11 0 1 0

6 0.4 0.2 0.4 12 0 0 1
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Figure 4: Average application completion time for di�erent
weight factor cases

a uniform distribution. �e network of machines in the mobile

cloud system is generated by BRITE with di�erent bandwidth on

di�erent links to represent multiple types of wireless medium. For

the validation sets, three sets of machine instances are extracted

from the real-world traces. �e �rst set is a synthetic set that is

generated from the same data distribution as the training set. �e

second and third validation set are extracted from the CRAWDAD

trace sets.

�ree features of the machines are considered in the machine

grouping algorithm when classifying machines: processing speed,

availability, and communication capacity. Processing speed is split

into three sub-groups: fast, medium, and low. �e availability

and communication capacity are both split into two sub-groups:

high and low. �e weight factors αavail , βavail ,αconn , βconn in

Equation 6 and 7 are all set to 0.5. Note that these weight factors

will not in�uence the performance of the classi�cation since both

training sets and validation sets are using the same weight factor

con�guration to quantify machine features. �e results of cross

validation using WEKA are reported in Table 2.

As we can observe from the WEKA results, the grouping algo-

rithm gives an accuracy of 99.5% on the synthetic machine instances

and for the three real-world trace machine instances, it gives 99.79%,

99.65% and 99.8% accuracy respectively. Also, the reported accu-

racy remains similar while the number of instances grows. �ese

results show that the proposed machine grouping algorithm can

accurately classify the machines into di�erent groups based on the

three features.
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Figure 5: Performance under di�erent machine availability

5.2.2 Group-based Fault Tolerant Mechanism Performance Eval-
uation. First, the weight factors α , β ,γ used in the models (Equa-

tion 8) are set in di�erent combinations to test their e�ects on the

fault tolerance performance. �e con�gurations of weight factors

are listed in Table 3. �e same network topology that contains a

total number of 30 machines are used as the simulation environ-

ment. 50 randomly generated application DAGs are generated as

the testing workload. �e task o�oading schedules of the appli-

cation DAGs among the machine network used are obtained from

the list scheduling heuristic HEFT (Heterogeneous Earliest Finish

Time) [21] for the remaining sets of experiments in this section.

�e schedule plans are then put through the proposed FT mecha-

nism and the other three policies for experiments. �e results of

application completion time (ACT) are depicted in Figure 4.

As the results show, the best weight factor se�ing with the

lowest ACT is from case 7, which is α = 0.2, β = 0.6,γ = 0.2. �e

average ACTs slightly decrease as the value of α decreases and

the value of β increases. However, the ACT begins to increase

again when the value of γ increases from 0.5 (case 6,8,10,12). �ese

results indicate that the weight factor β that represents the weight

of a machine’s number of failures dominates the e�ciency of the

replication, and further in�uences the performance of GFT-mCloud

in terms of overall application completion time. �is is because

when the mechanism selects replicas based on equation 8, the more

reliable the machine is, the less probability that the replication fails

to complete, which leads to a lower application completion time.

�e weight factor se�ing α = 0.2, β = 0.6,γ = 0.2 will be used for

the rest of the experiments in this section.

Secondly, we evaluate the GFT-mCloud in terms of the adaptivity

on generating di�erent fault tolerant policies based on di�erent

types of machines and tasks. �e proposed mechanism is tested

with 500 randomly generated application DAGs and machine net-

works in 50 runs. Each DAG is generated with a random number

of vertex as tasks and edges as task dependency. �e tasks are

coupled with data size and the amount of computation from the

application pro�ling. �e results are then compared with three

other fault tolerance baselines: 1) replication only policy (ReOnly),
2) checkpointing only policy (CheckOnly), and 3) no fault tolerant
policy (NoFT).ReOnly only applies replication of tasks as fault tol-

erance solution, while CheckOnly only uses checkpoint approach

to maintain the task completion reliability.

Test case A. In the �rst case, the performance of the proposed

FT mechanism for di�erent machine availability is evaluated. �e

machine availability is represented by the median of time between

failures (MTBF) of the machines. �e failure time points of each ma-

chine are generated from theWeibull distribution above-mentioned.

�e average application completion time of di�erent machine avail-

ability are shown in Figure 5(a). As we can observe, GFT-mCloud

outperformed the other three baselines. When the median time

between failures is as small as 10 and 20 (i.e., machines are highly

unavailable), the NoFT baseline generates the worst completion

time of more 4000 seconds. CleckOnly generates the second worst

completion time of around 3000. On the contrary, GFT-mCloud

and ReOnly generated the application completion time below 2000,

which is the lowest among the four algorithms compared. �is is

due to the fact that when the failure happens more frequent, the

NoFT baseline and CheckOnly baseline keeps restarting the task

execution, which leads to a higher overall application completion

time than proposed mechanism and ReOnly baseline.

Moreover, when themachines have frequent failures, GFT-mCloud

tends to apply replication as the policy, which makes its results

similar to the ReOnly baseline when the MTBF is low. As the

MTBF grows, the application completion time of NoFT and Check-

Only baseline decreases, and GFT-mCLoud and ReOnly baseline

increases. �is is because as the machine can execute tasks for

longer time, the number of restarts for NoFT and CheckOnly be-

comes less as well as the remaining execution of the task if failures

happen, which leads to a shorter makespan. Also, as machines be-

come more available, the replicas are delayed to run on the backup

machine since it needs to �nish its own tasks �rst, which leads to a

longer makespan for ReOnly. All four algorithms generate stable

results when the median time between failures are greater than

90. �is is because as the machines become more reliable, ReOnly

baseline generates more redundancy overhead for replica transmis-

sions than CheckOnly baseline (Figure 5(b)). As the median time

becomes longer, most of the tasks complete before failures happen,

which makes the completion time generated by the four algorithms

more stable.

As shown in Figure 5(b) and Figure 5(c), the running overhead

and number of messages incurred with the overhead are decreasing
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Figure 6: Performance under di�erent task computation requirements
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Figure 7: Performance under di�erent task data sizes

and become stable, which is consistent with the overall applica-

tion completion time. �e running overhead of the proposed FT

algorithm accounts for around 9% a�er being stable.

Test case B. In the second case, the algorithms are evaluated

with DAGs that have di�erent amount of task computation require-

ments in terms of MIPS, to show the performance of the proposed

FT mechanismwith di�erent applications. Machines used in this ex-

periment are generated with the median time between failures from

90s to 120s. �e average application completion time generated

by four algorithms is depicted in Figure 6. When the computa-

tion amount is low, the application completion time generated by

the four algorithms are almost same. As the computation require-

ment grows, the completion time grows in the similar speed, with

NoFT giving the worst results among the four algorithms and GFT-

mCloud outperforming the other three baselines. �e growths of

the completion time from the four algorithms are similar. �is is

consistent with the results shown in Figure 5 when the machine’s

median time between failures is around 90s to 120s. Additionally,

GFT-mCloud performs the best when the average task computation

requirement is above 1500 kMIPS as we can observe in Figure 6.

Additionally, Figure 6(b) and Figure 6(c) show the running over-

head and control messages incurred by the redundancy of the fault

tolerance management for GFT-mCloud, ReOnly and CheckOnly

baselines. For ReOnly baseline, the overhead and number of con-

trol messages have not �uctuated much under machine availability

change, because ReOnly baseline generates replicas for all tasks

in the application. However, the running overhead and control

messages increased for GFT-mCloud and CheckOnly baseline since

more checkpointing snapshots were generated when the task exe-

cution is longer.

Test case C. In the third case, the performance of the proposed

FT mechanism is tested with di�erent amount of data (i.e., data size)

to see its e�ect in case of task migrations due to failures. �emedian

of task computation in the workload is 1800 kMIPS. Machines used

in this experiment are generated with the median time between

failures from 90 seconds to 120 seconds. Results from the proposed

algorithm along with the three baselines are shown in Figure 7.

In Figure 7(a), the makespans generated by NoFT, which are

around 3300, do not �uctuate too much when data size grows. For

GFT-mCloud and CheckOnly baseline, the makespan increased

slowly as the data size grows, while the makespan of ReOnly in-

creased more rapidly. �is is due to the growth of data size having a

greater impact on replication as each task has to maintain its replica

in the beginning, but only small impact on checkpointing as it only

requires task migration when failure happens. It can be further ob-

served from Figure 7(b) and Figure 7(c) that the data size growth has

li�le impact on GFT-mCloud and ReOnly as the running overhead

remain stable, while the running overhead of ReOnly increased due

to the replication requires more time for migration and processing.

Moreover, the number of fault tolerant related control messages

for the three algorithms do not change much with the data size

growth. Comparing to the results in Figure 5(c) and Figure 6(c), the
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number of control messages will only be a�ected by the machine

availability and task computation amount instead of data size.

Discussion. �e results from four sets of experiments conducted

showed that the proposed GFT-mCloud is able to adapt its poli-

cies to di�erent execution conditions, such as di�erent machine

availability and di�erent applications (computation requirement

and data size), and can generate the lowest makespan among the

algorithms compared with around 5-10% running overhead and a

small number of control messages. �e application computation

intensity (Figure 6) has the most e�ect on the performance of the

proposed FT mechanism, while the data size of applications have

limited impact of around 8% (Figure 7) in terms of makespan.

6 CONCLUSIONS AND FUTUREWORK
Mobile cloud computing environment consists of mobile devices,

cloudlets, and remote cloud services, connected via wireless net-

works. �e mobility of mobile devices, as well as the intermi�ent

wireless connections, makes mobile cloud computing systems vul-

nerable to failures. As the existing fault tolerant algorithms for

distributed systems only focus on machine crash failures, they do

not suit mobile cloud environment that involves wireless network

failures. In this paper, we proposed a group-based fault tolerance

mechanism that works as a standalone module with the existing mo-

bile cloud o�oading frameworks. It classi�es the machines in the

mobile cloud network into di�erent groups based on its capabilities

using decision tree method. Di�erent fault tolerant policies such as

checkpointing and replication are adaptively applied based on the

o�oading tasks and the group of its o�oaded machine in order to

select a machine within that group for redundancy. �e experimen-

tal results have shown that the proposed fault tolerance mechanism

is able to adapt di�erent machine capability and generate stable

makespans, with low running overhead.

For the future work, we plan to investigate the optimal solution

of checkpointing and replication frequency to achieve minimum

energy consumption with the same level of performance on appli-

cation makespan. We also want to investigate the e�ect of hard

deadline applications and SLA violations of mobile cloud services

on the performance of the proposed algorithms.
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