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ABSTRACT
Introduction: Federated learning has become an emerging technology in data analysis for IoT applications.
Methods: This paper implements centralized and decentralized federated learning frameworks for crop yield prediction based on
Long Short-Term Memory Network and Gated Recurrent Unit. For centralized federated learning, multiple clients and one server
are considered, where the clients exchange their model updates with the server that works as the aggregator to build the global
model. For the decentralized framework, a collaborative network is formed among the devices either using ring topology or using
mesh topology. In this network, each device receives model updates from the neighboring devices and performs aggregation to
build the upgraded model.
Results: The performance of the centralized and decentralized federated learning frameworks is evaluated in terms of prediction
accuracy, precision, recall, F1-Score, and training time. The experimental results show that >93% prediction accuracy is achieved
using the centralized and decentralized federated learning-based frameworks. The results also show that using centralized feder-
ated learning, the response time can be reduced by ∼75% than the cloud-only framework.
Conclusion: Centralized and decentralized federated learning architectures show good performance in terms of prediction accu-
racy and loss. The training time, including communication for both case studies, is also not very high, as observed from the results.
Further, as no raw data is shared, the data privacy is protected.
Finally, the future research directions of the use of federated learning in crop yield prediction are proposed.

1 | Introduction

Agriculture is an important sector that has a huge impact on
the economy of most of the countries. The conventional farming
practices depend on manual decision-making on crop harvest-
ing, irrigation, etc., that suffers from improper selection of crops,
inefficient utilization of lands, water resources, etc. To overcome
these problems, smart agriculture and farming practices come
into the scenario, where the Internet of Things (IoT) plays a
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significant role [1, 2]. In IoT-based smart agricultural systems,
IoT devices are used for soil and environmental parameters’ data
collection, and then the data is analyzed for decision-making
[3, 4]. For data analysis, machine learning (ML) and deep learn-
ing (DL) are used, and the cloud servers are used for storing
and analyzing the large volume of data. However, data stor-
age and analysis inside the cloud require huge amounts of IoT
data transmission to the cloud, which requires seamless network
connectivity and high network bandwidth. However, agricultural
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lands are mainly located at rural areas, where the network
bandwidth may not be high, as well as seamless network connec-
tivity may not be available. Hence, data transmission from IoT
devices to the cloud is a challenge. Further, entire data transmis-
sion from IoT devices to the cloud causes high network traffic,
and storage and analysis of the huge volume of data increase
cloud overhead, latency, etc. To address these issues, edge com-
puting and fog computing have come [4, 5]. In edge computing,
the resources are placed at the edge of the network to reduce
the latency and computation overhead on the cloud. In fog com-
puting, the intermediate devices, e.g., switch, router, etc., process
data to reduce latency and overhead on the cloud. Nevertheless,
the concern regarding data security and privacy still remains.
Moreover, the soil data, environmental data, and climate and
weather conditions of various geographical regions are different,
and the user may not like to transmit and store the data over
the cloud due to privacy issues. Hence, personalized local mod-
els and an efficient global model are required to perform accurate
predictions and utilize the agricultural resources efficiently. To
utilize the edge devices for local data analysis and for collabora-
tive training to develop a global model, federated learning (FL)
[6–8] comes into the scenario.

FL is a learning approach that allows collaborative training with
the coordination of multiple devices and a central server with-
out sharing individual datasets [7, 9]. In an edge-cloud-based FL,
the edge devices serve as the clients, and the cloud server acts as
the central server for collaborative training [5]. In an FL-based
framework [7], the central server serves as the aggregator that
at first creates an initial global model with learning parame-
ters. Each of the clients downloads the current model from the
server, computes it own model updates using its local dataset,
and offloads the local update to the server. The server receives
local updates from all clients and develops an improved global
model. The clients download the global update from the server,
compute their local updates again, and offload the updates to the
server. This process is continued until the global training is fin-
ished. The principal advantages of FL are enhanced data privacy,
low-latency and learning quality enhancement [7]. As no data is
shared, privacy is protected [9, 10]. Further, an enhanced version
of the global model is created through collaborative training. As
local data analysis takes place, the latency is reduced.

According to networking structure and data partitioning, the FL
algorithms are classified into several categories. Based on data
partitioning, FL algorithms are classified into three types [7]:
Vertical FL, Horizontal FL, and federated transfer learning. In
vertical FL systems, the clients have datasets with the same sam-
ple space but different feature spaces. In horizontal FL systems,
the clients have datasets with the same feature spaces but differ-
ent sample space. In federated transfer learning, the clients have
datasets with different feature spaces as well as different sam-
ple space. According to the networking structure, FL algorithms
are divided into two categories: Centralized Federated Learning
(CFL) and Decentralized Federated Learning (DFL). In a CFL
system, all the clients train a model in parallel using their local
datasets. Then, the clients send the trained parameters to the
server. The server aggregates model parameters after receiving
them from all clients and builds the updated global model. The
clients get the updated model parameters from the server for the
next training round. After the server finishes the global model

training, each of the clients has the same global model as well
as its personalized local model. However, communication with
the server may not always be available. In such a case, DFL can
be adopted. In DFL, all the clients form a collaborative network.
For each of the communication rounds, the clients use their local
datasets for local training. After that, each client performs aggre-
gation based on model updates received from the neighbor nodes.

In this article, we focus on the use of FL in the field of agri-
culture, especially crop yield prediction. Though various frame-
works on FL exist, their use in agricultural data analysis was not
much explored. Further, the implementation of FL in agricul-
tural data analysis was not provided in detail in existing frame-
works. Agricultural data of different geographical regions vary
due to variations in soil, environment, and weather parameters.
Further, the data of each farm is confidential because the soil
compositions of agricultural lands differ, and production highly
relies on the soil, environment, and weather parameters. In such
a circumstance, a cloud-only system for data analysis compro-
mises data privacy. Moreover, agricultural lands are located in
rural regions, and therefore, seamless data transmission to the
cloud servers is difficult. To deal with these issues, the use of FL
is recommended along with a detailed implementation of both
centralized and decentralized architectures in this paper. The col-
laborative learning also helps to build a model with good pre-
diction accuracy. The paper provides a study of the centralized
and decentralized FL architectures with a case study of crop yield
prediction.

1.1 | Motivation and Contributions

Crop yield prediction is an important domain of smart agricul-
ture, where ML is used for data analysis [11]. As farmers’ infor-
mation is shared as well as soil and environmental parameters’
data analysis takes place, privacy is a major issue. In such a case,
the use of a conventional cloud-only framework for data analysis
using ML raises concerns regarding data privacy, latency, connec-
tivity interruption due to poor network connectivity inside the
agricultural lands, etc. To address these issues, the objective of
the paper is to explore the use of FL for crop yield prediction. The
major contributions of the paper are:

• The use of FL in farming practices is discussed, and then an
experimental case study is performed to analyze the perfor-
mance of CFL and DFL in crop yield prediction. We consider
a scenario where different numbers of devices perform col-
laborative training using CFL and DFL. Long Short-Term
Memory (LSTM) Network and Gated Recurrent Unit (GRU)
are used as the underlying approaches for both the CFL and
DFL mechanisms.

• To implement CFL, a client-server paradigm is developed
using socket programming, and multiple clients are han-
dled by the server in the conducted experiment. For trans-
mission of model updates MLSocket is used. For aggrega-
tion, Federated Averaging (FedAvg) is used. The perfor-
mance of the CFL-based framework has been evaluated
in terms of prediction accuracy, precision, recall, F1-Score,
and training time. The experimental results show that the
CFL-based framework has better prediction accuracy and
lower response time than the cloud-only framework, where
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the cloud server analyzes the data after receiving it from the
client.

• To implement the DFL, a collaborative network is formed
using mesh topology or ring topology. In the conducted
experiment, each node receives model updates from the
neighbour nodes (the neighbor nodes depend on the selected
topology), and performs aggregation to build the upgraded
model. The performance of the nodes in both the topologies
is evaluated in terms of prediction accuracy, precision, recall,
F1-Score, and training time.

• Finally, the research challenges with CFL and DFL-based
frameworks in crop yield prediction are highlighted in this
paper.

The rest of the paper is organized as follows: Section 2 briefly dis-
cusses the existing literature on FL, smart agriculture, and crop
yield prediction. Section 3 illustrates the use of CFL and DFL in
crop yield prediction. An experimental case study is presented in
Section 4 on the use of CFL and DFL in crop yield prediction.
Section 5 demonstrates another case study to analyze the perfor-
mance of CFL and DFL. Section 6 explores the future research
directions of FL in crop yield prediction. Finally, Section 7 con-
cludes the paper.

The list of acronyms used in this article is listed in Table 1.

2 | Related Work

Crop yield prediction and recommendation is a crucial area
of IoT-based smart farming practices [1, 2]. There are several
research works carried out on the use of ML and DL in crop yield
prediction. In [12], the authors explored the use of several ML
algorithms such as KNN, DT, RF, XGBoost, and SVM for crop
yield prediction. In [13], the authors used MLP, decision tables,
and JRip for crop yield prediction. In [14], KNN was used for crop
yield prediction. In [15], the authors used several ML approaches
such as DT, SVM, KNN, LGBM, and RF for crop yield predic-
tion. The LSTM, Bi-LSTM, and GRU-based framework was used
in [16] for data analysis to predict crop yield. For crop yield predic-
tion, MLR with ANN was used in [17]. In [18], Bi-LSTM was used
for data analysis, and for better network connectivity, the use
of a small cell with computation ability was explored. However,
none of the existing approaches adopted FL in their frameworks.
The major disadvantages of the conventional ML-based frame-
work are compromise with data privacy as data sharing takes
place with the cloud for analysis, the requirement of high net-
work bandwidth that may not be available in rural regions, high
response time, high network traffic, huge overhead on the cloud
server, etc. To address all these issues, FL can be adopted in crop
yield prediction.

The concept of FL relies on local data analysis, collaborative
training, and generating global as well as personalized models.
As no individual dataset is shared and a distributed learning
is performed, data privacy is protected [7]. Further, due to its
distributed nature, FL can be adopted in various IoT applica-
tions, including healthcare, agriculture, transportation systems,
etc. The use of FL in IoT was elaborated in [7]. The use of FL in
a fog computing environment was explored in [19]. In [20], for

TABLE 1 | Acronyms with full forms.

Acronyms Full form

ANN Artificial Neural Network
ML Machine Learning
DL Deep Learning
FL Federated Learning
CFL Centralized Federated Learning
DFL Decentralized Federated Learning
IoT Internet of Things
IoAT Internet of Agricultural Things
LSTM Long Short-Term Memory Network
Bi-LSTM Bidirectional Long Short-Term Memory Network
FedAvg Federated Averaging
KNN K-Nearest Neighbours
DT Decision Tree
RF Random Forest
XGBoost Extreme Gradient Boosting
SVM Support Vector Machine
MLP MultiLayer Perceptron
LGBM Light Gradient Boosting Machine
GRU Gated Recurrent Unit
MLR Multiple Linear Regression
NB Naive Bayes
DNN Deep Neural Network
RNN Recurrent Neural Network
P2P Peer-to-Peer
FTL Federated Transfer Learning
AWS Amazon Web Services

distributed data analytics, FL and transfer learning were adopted
to propose an intelligent microservices-based framework for IoT
applications. The use of FL in agriculture was explored in a few
research works. In [5], CFL was used for soil health monitoring
for irrigation decision-making. The authors used CFL based on
LSTM and DNN in their work. In [21], FL was used for soybean
yield prediction using deep residual network-based regression
models for risk management in agricultural production. In [22],
FL was used for intrusion detection in IoT-based agricultural sys-
tems. For yield forecasting, FL was used in [23]. For efficient data
sharing in the agri-food sector, the use of FL was discussed in [24].
For crop classification, FL was used by [25]. The authors adopted
CFL for crop classification based on Gaussian NB in [25]. As we
observe, the use of FL in crop yield prediction was explored in a
few existing works, and most of them focused on the use of CFL.
In this paper, we provide an experimental study of both the CFL
and DFL in crop yield prediction.

In Table 2, the existing works are compared with the proposed
FL-based framework for crop yield prediction. As we observe
from the table, most of the existing works rely on conven-
tional ML/DL-based framework, and compared to the existing
CFL-based framework, this work explores the use of both CFL
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TABLE 2 | Comparison of our work with existing crop yield prediction frameworks.

Work Classifier

Multi-crop
dataset is

used
CFL is
used

DFL is
used

Training
time is

measured

Response
time is

measured

[12] RF, DT, KNN ✓ ✗ ✗ ✗ ✗

XGBoost, SVM
[13] MLP, Decision Table ✓ ✗ ✗ Measured model ✗

JRip build time
[14] KNN ✓ ✗ ✗ ✗ ✗

[15] DT, SVM, KNN ✓ ✗ ✗ ✗ ✗

LGBM, RF
[16] LSTM, Bi-LSTM ✓ ✗ ✗ ✗ ✗

GRU
[18] Bi-LSTM ✓ ✗ ✗ Measured model Measured

build time latency
[25] Gaussian NB ✓ ✓ ✗ ✗ ✗

Our work LSTM ✓ ✓ ✓ ✓ ✓

and DFL (with mesh as well as ring-based frameworks) in crop
yield prediction and determines the training time as well as
response time.

3 | Federated Learning in Crop Yield Prediction

In Section 1, we have briefly discussed CFL and DFL. For crop
yield prediction, both approaches can be used. In an IoT-based
crop yield prediction framework, the IoT devices collect data on
soil and environmental parameters such as temperature, humid-
ity, rainfall, soil pH, Nitrogen, Phosphorus, Potassium level, etc.
The collected IoT data is processed inside the cloud servers. How-
ever, for data privacy protection, to reduce latency and deal with
poor network connectivity inside the rural regions containing the
agricultural lands, FL is adopted in IoAT. The integration of FL
with an IoT-based crop yield prediction framework permits local
data analysis inside the edge devices that work as the clients. For
data analysis we have used LSTM and GRU in this work. To cap-
ture the temporal dependencies and retain the sequential nature
of the soil and environmental data, LSTM and GRU are consid-
ered. The mathematical notations used in this work are defined
in Table 3.

GRU is an RNN that uses gates to update the hidden state selec-
tively at each time step. The GRU has two gates: The reset gate and
the update gate. The reset gate is used to determine how much of
the previous hidden state to forget and the update gate is used
to determine how much of the new input to use for hidden state
update. The reset gate is mathematically presented as:

𝜃𝑡 = 𝜎(𝑤𝑒𝑖𝑔ℎ𝑡𝜃 ∗ [ℎ𝑡−1, 𝑥𝑡]) (1)

where 𝜎 denotes the sigmoid function.

The update gate is presented as:

𝜇𝑡 = 𝜎(𝑤𝑒𝑖𝑔ℎ𝑡𝜇 ∗ [ℎ𝑡−1, 𝑥𝑡]) (2)

The candidate hidden state is presented as:

ℎ𝑡′ = 𝑡𝑎𝑛ℎ(𝑤𝑒𝑖𝑔ℎ𝑡ℎ ∗ [𝜃𝑡 ∗ ℎ𝑡−1, 𝑥𝑡]) (3)

where 𝑤𝑒𝑖𝑔ℎ𝑡ℎ denotes the weight.

The hidden state is presented as:

ℎ𝑡 = (1 − 𝜇𝑡) ∗ ℎ𝑡−1 + 𝜇𝑡 ∗ ℎ𝑡′ (4)

LSTM is an upgraded version of RNN that considers a memory
cell that is controlled by an input gate, a forget gate, and an output
gate. LSTM maintains a chain-like structure that has four neu-
ral networks and different memory blocks referred to as cells. To
learn long-term dependencies, the gates play significant roles by
retaining or discarding information in a selective manner. For the
short-term memory, a hidden state is maintained by the LSTM
network that is updated depending on the previous hidden state,
input, and the current state of the memory cell.

In LSTM, the forget gate controls which information will
be removed from the memory cell and is mathematically
expressed as:

𝜙𝑡 = 𝜎(𝑤𝑒𝑖𝑔ℎ𝑡𝜙 . . . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖𝑎𝑠𝜙) (5)

where 𝜎 denotes the sigmoid function.

The input gate is used to add information to the memory cell and
is mathematically expressed as:

𝜁𝑡 = 𝜎(𝑤𝑒𝑖𝑔ℎ𝑡𝜁 . . . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖𝑎𝑠𝜁 ) (6)

where a sigmoid function is used to regulate the information and
filter the values to retain. After that, the 𝑡𝑎𝑛ℎ function is used to
create a vector having all possible values from ℎ𝑡−1 and 𝑥𝑡, as fol-
lows:

𝐶̂𝑡 = 𝑡𝑎𝑛ℎ(𝑤𝑒𝑖𝑔ℎ𝑡𝐶 . . . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖𝑎𝑠𝐶 ) (7)
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TABLE 3 | Mathematical notations with definitions.

Notation Definition

𝜃𝑡 Reset gate

𝜇𝑡 Update gate

𝜙𝑡 Forget gate

𝜁𝑡 Input gate

𝜆𝑡 Output gate

𝑤𝑒𝑖𝑔ℎ𝑡𝜃 Weight matrix of reset gate

𝑤𝑒𝑖𝑔ℎ𝑡𝜇 Weight matrix of update gate

𝑤𝑒𝑖𝑔ℎ𝑡𝜙 Weight matrix of forget gate

𝑤𝑒𝑖𝑔ℎ𝑡𝜁 Weight matrix of input gate

𝑤𝑒𝑖𝑔ℎ𝑡𝜆 Weight matrix of output gate

𝑏𝑖𝑎𝑠𝜙 Bias for forget gate

𝑏𝑖𝑎𝑠𝜁 Bias for input gate

𝑏𝑖𝑎𝑠𝜆 Bias for output gate

ℎ𝑡 Present hidden state

ℎ𝑡−1 Previous hidden state

𝑥𝑡 Current input

𝐶̂𝑡 Candidate value

𝐶𝑡 Cell state

𝐶𝑡−1 Previous cell state

𝐷𝑎𝑡𝑎𝑐 Data of client 𝑐

𝐵 Batch size

𝜂 Learning rate

𝑁𝑏 Number of batches

𝑁𝑒 Number of epochs

𝑁𝑟 Number of rounds

𝑚𝑐 Model update of client 𝑐

𝑁𝑐 Number of connected clients

𝑓𝑐 Fraction of clients participating in CFL

𝑚𝑠 Model parameter of the server

𝑚𝑓𝑖𝑛𝑎𝑙 Final global model update

𝑚0 Initial model parameters of a node in DFL

𝑚𝑝 Model update of node 𝑝 in DFL

𝑃 Set of nodes in the DFL framework

𝑁𝑝 Number of neighbors nodes in DFL

 Loss function

𝛼 True positive

𝛽 True negative

𝛾 False positive

𝜌 False negative

 Accuracy

 Precision

 Recall

 F1-Score

where 𝑤𝑒𝑖𝑔ℎ𝑡𝐶 denotes the weight matrix and 𝑏𝑖𝑎𝑠𝐶 denotes
the bias.

Finally, the regulated values are multiplied with the values of the
vector to get the information to be added to the memory cell, as
follows:

𝐶𝑡 = 𝜙𝑡 ⊙ 𝐶𝑡−1 + 𝜁𝑡 ⊙ 𝐶̂𝑡 (8)

The output gate that extracts the useful information from the cur-
rent memory cell state as the output, is mathematically expressed
as follows:

𝜆𝑡 = 𝜎(𝑤𝑒𝑖𝑔ℎ𝑡𝜆 . . . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖𝑎𝑠𝜆) (9)

Firstly, using the 𝑡𝑎𝑛ℎ function, a vector is generated. After that,
a sigmoid function is used to regulate the information and filter
the values to retain using the inputs ℎ𝑡−1 and 𝑥𝑡. Finally, the reg-
ulated values are multiplied with the values of the vector to be
sent as an output as well as input to the next cell. As LSTM is
able to capture long-term dependencies, LSTM performs well in
sequence prediction tasks, time series, etc.

3.1 | CFL-Based Framework

In our CFL-based system, all the clients get the initial model
parameters from the server, train their individual models using
their local datasets, and then transmit the model updates to the
server node. The server node works as the aggregator that receives
model updates from all the clients and performs aggregation to
update the global model accordingly. Here, for aggregation, we
use FedAvg. The updated global model is sent to the participat-
ing clients. Hence, at the end of the process, each client has its
personalized local model and the global model. The client and
server-side algorithms are stated in Algorithms 1 and 2, respec-
tively. In the algorithms, 𝑐 represents a client and 𝑆 represents
the server. Algorithm 1 presents the steps of the client-side pro-
cess. The clients get connected with the server and get model
parameters. Each client splits its local dataset into batches and

ALGORITHM 1 | Client-side algorithm.

Input: 𝐷𝑎𝑡𝑎𝑐 , 𝑁𝑏, 𝑁𝑒

Output: 𝑚𝑐

1: 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑈𝑝𝑑𝑎𝑡𝑒(𝐷𝑎𝑡𝑎𝑐,𝑁𝑏,𝑁𝑒):
2: 𝑃𝐷𝑎𝑡𝑎𝑐 ← 𝑃𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠(𝐷𝑎𝑡𝑎𝑐)
3: while 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑆 do
4: 𝑇 𝑟𝑎𝑖𝑛(𝑚𝑐 ← 𝑔𝑒𝑡𝑚𝑜𝑑𝑒𝑙𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠())
5: end while
6: 𝑆𝑎𝑣𝑒𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠(𝑚𝑐)
7: 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑇 𝑟𝑎𝑖𝑛(𝑚𝑐):
8: 𝑁𝑏 ← 𝑆𝑝𝑙𝑖𝑡(𝑃𝐷𝑎𝑡𝑎𝑐, 𝐵) ⊳ Split data into 𝑁𝑏 batches
9: for 𝑒 = 0 𝑡𝑜 𝑁𝑒 − 1 do

10: for 𝑏 = 1 𝑡𝑜 𝑁𝑏 do
11: 𝑚𝑒+1

𝑐
← 𝑚𝑒

𝑐
− 𝜂𝛻𝑚𝑒

𝑐
⊳ 𝛻𝑚𝑒

𝑐
represents the gradient

12: end for
13: end for
14: 𝑚𝑐 ← 𝑚

𝑁𝑒

𝑐

15: 𝑠𝑒𝑛𝑑𝑚𝑜𝑑𝑒𝑙𝑢𝑝𝑑𝑎𝑡𝑒(𝑚𝑐) ⊳ Send model update to 𝑆
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ALGORITHM 2 | Server-side algorithm.

Input: 𝑁𝑐 , 𝑓𝑐 , 𝑁𝑟

Output: 𝑚𝑓𝑖𝑛𝑎𝑙

1: 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐶𝑜𝑙𝑙𝑒𝑐𝑡(𝑁𝑐,𝑁𝑟):
2: 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑𝐶𝑙𝑖𝑒𝑛𝑡𝑠 ← []
3: while (𝑙𝑒𝑛𝑔𝑡ℎ(𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑𝐶𝑙𝑖𝑒𝑛𝑡𝑠) ≠ 𝑁𝑐) do
4: 𝑙𝑖𝑠𝑡𝑒𝑛()
5: 𝑎𝑐𝑐𝑒𝑝𝑡𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛()
6: end while
7: 𝐹𝑒𝑑𝐴𝑣𝑔()
8: Release clients
9: 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐹𝑒𝑑𝐴𝑣𝑔():

10: 𝑚0
𝑠
← 𝐼𝑛𝑖𝑡𝑀𝑜𝑑𝑒𝑙() ⊳ initial model is generated

11: for 𝑟 = 1 𝑡𝑜 𝑁𝑟 do
12: 𝑀𝑟 ← 𝑆𝑢𝑏𝑠𝑒𝑡(𝑚𝑎𝑥(𝑓𝑐 ∗ 𝑁𝑐, 1), }}𝑟𝑎𝑛𝑑𝑜𝑚ε)
13: 𝑀𝑈 ← []
14: for 𝑐 ∈ 𝑀𝑟 do
15: 𝑚𝑟

𝑐
← 𝑔𝑒𝑡𝑚𝑜𝑑𝑒𝑙𝑢𝑝𝑑𝑎𝑡𝑒(𝑐) ⊳ Get model update from

client 𝑐 at round 𝑟

16: 𝑀𝑈.𝑎𝑝𝑝𝑒𝑛𝑑(𝑚𝑟
𝑐
) ⊳ Append model update of client 𝑐

17: end for
18: 𝑚𝑟+1

𝑠
← 1

|𝑀𝑟|
∑|𝑀𝑟|

𝑐=1 ⋅𝑚𝑟
𝑐

19: 𝑠𝑒𝑛𝑑𝑡𝑜𝑐𝑙𝑖𝑒𝑛𝑡𝑠(𝑚𝑟+1
𝑠

)
20: end for
21: 𝑚𝑓𝑖𝑛𝑎𝑙 ← 𝑚

𝑁𝑟+1
𝑠

performs local model training. After the training, the client saves
the updated model parameters and sends the model update to
the server. Algorithm 2 presents the steps of the server-side pro-
cess. The server accepts connections for 𝑁𝑐 clients. After receiv-
ing model updates from all the clients, the server stores the
model updates in𝑀𝑈 . After receiving model updates from all the
clients, the server performs aggregation using𝐹𝑒𝑑𝐴𝑣𝑔() function
after each round, and sends the updated model parameters to the
clients. This process is repeated for the number of rounds con-
sidered in the FL process. The pictorial representation of CFL is
presented in Figure 1, where 𝑁𝑐 clients participate in a collabora-
tive training process with the server that works as the aggregator
to aggregate the model updates received from the clients to build
the global model.

In CFL, the server is the aggregator, and it distributes the model
updates with the clients. The clients have their personalized
models along with the global model update. Each of the clients
performs data analysis locally through a collaborative training
process without sharing the data. Hence, privacy is protected,
as well as through collaborative training, prediction accuracy
is enhanced. The time complexity of the CFL process depends
on the time complexity of model initialization, local model
training, exchange of model updates, and aggregation. The time
complexity of model initialization is given as𝑂(1). The time com-
plexity of local model training is given as 𝑂(𝑁𝑟 ⋅𝑁𝑒 ⋅𝑁𝑏 ⋅ 𝑚𝑐).
The time complexity of exchanging model updates is given as
𝑂(𝑁𝑟 ⋅𝑁𝑐 ⋅ (𝑚𝑐 + 𝑚𝑠)). The time complexity of aggregation is
given as 𝑂(𝑁𝑟 ⋅𝑁𝑐 ⋅ 𝑚𝑐).

Though there are several benefits, the CFL has some limitations.
As the server performs as the aggregator, good network

connectivity with the server is highly desirable. However, many
applications do not have the provision of seamless connectivity
with the server. Further, the overhead on the server is very high
because the aggregation takes place inside the server. Further,
sharing model updates by all the clients with the server may raise
a concern regarding security. To address these limitations, DFL
has come.

3.2 | DFL-Based Framework

In the case of crop yield prediction, the data collection takes place
in the rural regions, where the network connectivity is usually
poor. In that case, the communication with the cloud server is
a major issue. Therefore, if connectivity with the cloud server
is poor, DFL can be used by the edge devices for collaborative
training purposes. In DFL, the clients form a network among
themselves and perform collaborative learning. Here, each node
is a learner as well as contributor. In our work, we have consid-
ered two types of DFL frameworks where the clients form a net-
work either using ring or mesh topology. The ring-based network
is referred to as P2P network also, where each peer exchanges
its model updates with two neighbor nodes. In the case of the
mesh-based network, each node exchanges its model updates
with the rest of the nodes in that network. The DFL process for
ring-based and mesh-based frameworks is stated in Algorithms 3
and 4, respectively, where 𝑝 denotes a node and 𝑃 denotes the set
of nodes in the formed network. In Algorithms 3 and 4, 𝑗 denotes
a neighbor node. In a ring-based framework, each node has a pre-
ceding node (𝑝𝑝𝑟𝑒) and a succeeding node (𝑝𝑠𝑢𝑐), which act as its
neighbors. In the mesh-based network, each node is directly con-
nected with the rest of the nodes. Hence, in a mesh-based frame-
work, each node has the rest of the nodes as its neighbors. As
each node communicates with the rest of the nodes, the number
of communications will be (|𝑃 |(|𝑃 | − 1))∕2, where |𝑃 | denotes
the number of nodes in the formed network. In both of the mesh
and ring-based DFL frameworks, each node splits its own local
dataset and performs local model training. After training, each
node sends and receives model updates to and from the neigh-
bors. The pictorial representations of DFL using ring topology
and mesh topology are presented in Figures 2 and 3, where four
nodes form a network using ring topology and mesh topology,
respectively.

We observe from Algorithm 3 that in the ring-based DFL
approach, a node 𝑝 sends and receives model updates to and
from its preceding node (𝑝𝑝𝑟𝑒) and succeeding node (𝑝𝑠𝑢𝑐). In the
mesh-based DFL approach as presented in Algorithm 4, a node
𝑝 sends and receives model updates to and from the rest of the
nodes of the network. As the model updates are received from the
neighbor nodes, the received updates are appended to store all the
received updates in 𝑀𝑟𝑒𝑐𝑣. Finally, aggregation takes place based
on the received updates from the nodes in both the ring-based and
mesh-based frameworks. The time complexity of the DFL-based
framework depends on the time complexity of model initializa-
tion, local model training, exchanging model updates, and aggre-
gation. The time complexity of model initialization is given as
𝑂(1). The time complexity of local model training is given as
𝑂(𝑁𝑟 ⋅𝑁𝑒 ⋅𝑁𝑏 ⋅ 𝑚𝑝). The time complexity of exchanging model
updates is given as 𝑂(𝑁𝑟 ⋅𝑁𝑝 ⋅ (𝑚𝑝 + 𝑚𝑗)). The time complexity
of aggregation is given as 𝑂(𝑁𝑟 ⋅𝑁𝑝 ⋅ 𝑚𝑗), where 1 ≤ 𝑗 ≤ 𝑁𝑝.

6 of 20 Software: Practice and Experience, 2025
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FIGURE 1 | The CFL process.

FIGURE 2 | DFL framework using ring topology.

If a DFL framework contains three nodes, then the number of
exchanges of model updates will be the same for both the mesh
and ring-based networks. However, for 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 >= 4,
the results will be different as the number of model updates
exchanged differ for the mesh and ring-based networks.

3.3 | Proof of Convergence in FL

For both the CFL and DFL approaches, the final objective is to
minimize the global loss function (𝑚) that is mathematically
defined as follows:

(𝑚) = 1
𝐾

𝐾∑
𝑖=1

𝑖(𝑚) (10)

where 𝐾 is the number of participating nodes, i.e., 𝐾 = 𝑁𝑐 for
CFL and 𝐾 = 𝑁𝑝 for DFL, and 𝑖(𝑚) is the local loss function at
node 𝑖.

FIGURE 3 | DFL framework using mesh topology.

Definition 1. Lipschitz Continuity: 𝑖(𝑚) is -Lipschitz con-
tinuous if there exists a constant 𝐶1 > 0 such that ∀𝑚,w, we have

𝑖(𝑚) ≤ 𝑝(w) + ∇𝑝(w)𝑇 (𝑚 − w) +
𝐶1

2
||𝑚 − w||2 (11)

Definition 2. Bounded Variance: The variance of the stochas-
tic gradients is bounded if there exists a constant𝐶2

2 > 0 such that
∀𝑚:

𝔼[||∇𝑖(𝑚) − ∇(𝑚)||2] ≤ 𝐶2
2 (12)

Definition 3. Unbiased Gradients: The stochastic gradients
are unbiased estimates of the true gradients if ∀𝑚:

𝔼[∇𝑖(𝑚)] = ∇(𝑚) (13)

7 of 20
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ALGORITHM 3 | Model update in ring-based P2P framework.

Input: 𝐷𝑎𝑡𝑎𝑝, 𝑃 , 𝑁𝑝, 𝑚0, 𝑁𝑟

Output: 𝑚𝑝,∀𝑝 ∈ 𝑃

1: 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑇 𝑟𝑎𝑖𝑛𝑖𝑛𝑔(𝑁𝑝,𝑚0):
2: for 𝑝 = 1 𝑡𝑜 |𝑃 | do
3: 𝑚𝑝 ← 𝑚0 ⊳ Initialize model parameters
4: end for
5: for 𝑟 = 1 𝑡𝑜 𝑁𝑟 do
6: for 𝑝 = 1 𝑡𝑜 |𝑃 | do ⊳ Local model training
7: 𝑃𝐷𝑎𝑡𝑎𝑝 ← 𝑃𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠(𝐷𝑎𝑡𝑎𝑝)
8: 𝑁𝑏 ← 𝑆𝑝𝑙𝑖𝑡(𝑃𝐷𝑎𝑡𝑎𝑝, 𝐵) ⊳ Split data into 𝑁𝑏 batches
9: for 𝑒 = 0 𝑡𝑜 𝑁𝑒 − 1 do

10: for 𝑏 = 1 𝑡𝑜 𝑁𝑏 do
11: 𝑚𝑒+1

𝑝
← 𝑚𝑒

𝑝
− 𝜂𝛻𝑚𝑒

𝑝
⊳ 𝛻𝑚𝑒

𝑝
represents the

gradient
12: end for
13: end for
14: end for
15: for 𝑝 = 1 𝑡𝑜 |𝑃 | do ⊳ Exchange of model updates and

aggregation
16: 𝑀𝑟𝑒𝑐𝑣 ← []
17: for 𝑗 ∈ {𝑝𝑝𝑟𝑒, 𝑝𝑠𝑢𝑐} do
18: Send 𝑚𝑝 to 𝑗 ⊳ Send model parameters to node 𝑗
19: 𝑚𝑟

𝑗
← 𝑔𝑒𝑡𝑚𝑜𝑑𝑒𝑙𝑢𝑝𝑑𝑎𝑡𝑒(𝑗) ⊳ Get model parameters

from node 𝑗
20: 𝑀𝑟𝑒𝑐𝑣.𝑎𝑝𝑝𝑒𝑛𝑑(𝑚𝑟

𝑗
) ⊳ Append model parameters

received from node 𝑗
21: end for
22: 𝑚𝑟+1

𝑝
←

∑𝑁𝑝

𝑗=1 𝑚
𝑟
𝑗
∕𝑁𝑝 ⊳ Aggregate model updates

received from 𝑝𝑝𝑟𝑒 and 𝑝𝑠𝑢𝑐
23: end for
24: end for

Assumption 1. Smoothness: The global loss function (𝑚) is
smooth, i.e., there exists a constant 𝐶3 > 0, such that ∀𝑚,w:

(𝑚) ≤ (w) + ∇(w)𝑇 (𝑚 − w) +
𝐶3

2
||𝑚 − w||2 (14)

Assumption 2. Strong Convexity: The global loss function
(𝑚) is strongly convex, i.e., there exists a constant 𝐶4 > 0 such
that ∀𝑚,w:

(𝑚) ≥ (w) + ∇(w)𝑇 (𝑚 − w) +
𝐶4

2
||𝑚 − w||2 (15)

Lemma 1. Gradient Bound: Under the assumptions of Lips-
chitz continuity and bounded variance, the gradient of (𝑚) is
bounded:

𝔼[||∇(𝑚)||2] ≤ 𝐶1

𝐾

𝐾∑
𝑖=1

||∇𝑖(𝑚)||2 +
𝐶2

2

𝐾
(16)

Proof. By Lipschitz continuity of 𝑖(𝑚):

||∇𝑖(𝑚)||2 ≤ 𝐶2
1 ||𝑚||2 (17)

ALGORITHM 4 | Model update in mesh-based framework.

Input: 𝐷𝑎𝑡𝑎𝑝, 𝑃 , 𝑁𝑝, 𝑚0, 𝑁𝑟

Output: 𝑚𝑝,∀𝑝 ∈ 𝑃

1: 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑇 𝑟𝑎𝑖𝑛𝑖𝑛𝑔(𝑁𝑝,𝑚0):
2: for 𝑝 = 1 𝑡𝑜 |𝑃 | do
3: 𝑚𝑝 ← 𝑚0 ⊳ Initialize model parameters
4: end for
5: for 𝑟 = 1 𝑡𝑜 𝑁𝑟 do
6: for 𝑝 = 1 𝑡𝑜 |𝑃 | do ⊳ Local model training
7: 𝑃𝐷𝑎𝑡𝑎𝑝 ← 𝑃𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠(𝐷𝑎𝑡𝑎𝑝)
8: 𝑁𝑏 ← 𝑆𝑝𝑙𝑖𝑡(𝑃𝐷𝑎𝑡𝑎𝑝, 𝐵) ⊳ Split data into 𝑁𝑏 batches
9: for 𝑒 = 0 𝑡𝑜 𝑁𝑒 − 1 do

10: for 𝑏 = 1 𝑡𝑜 𝑁𝑏 do
11: 𝑚𝑒+1

𝑝
← 𝑚𝑒

𝑝
− 𝜂𝛻𝑚𝑒

𝑝
⊳ 𝛻𝑚𝑒

𝑝
represents the

gradient
12: end for
13: end for
14: end for
15: for 𝑝 = 1 𝑡𝑜 |𝑃 | do ⊳ Exchange of model updates and

aggregation
16: 𝑀𝑟𝑒𝑐𝑣 ← []
17: for 𝑗 = 1 𝑡𝑜 𝑁𝑝 do
18: Send 𝑚𝑝 to 𝑗, where 𝑗 ∈ (𝑃 − 𝑝) ⊳ Send model

parameters to node 𝑗
19: 𝑚𝑟

𝑗
← 𝑔𝑒𝑡𝑚𝑜𝑑𝑒𝑙𝑢𝑝𝑑𝑎𝑡𝑒(𝑗), where 𝑗 ∈ (𝑃 − 𝑝) ⊳

Get model parameters from node 𝑗
20: 𝑀𝑟𝑒𝑐𝑣.𝑎𝑝𝑝𝑒𝑛𝑑(𝑚𝑟

𝑗
) ⊳ Append model parameters

received from node 𝑗
21: end for
22: 𝑚𝑟+1

𝑝
←

∑𝑁𝑝

𝑗=1 𝑚
𝑟
𝑗
∕𝑁𝑝 ⊳ Aggregate model updates

received from all other nodes
23: end for
24: end for

Taking the expectation and summing over all nodes:

𝔼[||∇(𝑚)||2] = 1
𝐾2

𝐾∑
𝑖=1

𝔼[||∇𝑖(𝑚)||2] ≤
𝐶2

1

𝐾2

𝐾∑
𝑖=1

||𝑚||2 + 𝐶2
2

𝐾
(18)

Thus,

𝔼[||∇(𝑚)||2] ≤ 𝐶1

𝐾

𝐾∑
𝑖=1

||∇𝑖(𝑚)||2 +
𝐶2

2

𝐾
(19)

◽

Theorem 1. Under the Lipschitz continuity, bounded variance,
unbiased gradients, smoothness, and strong convexity, the FL-based
framework converges to a stationary point of (𝑚).

Proof. Step 1: Local Update Rule: Each node 𝑖 performs local
updates using stochastic gradient descent for𝑁𝑒 local epochs. Let
𝑚𝑒
𝑖

denote the model parameters at node 𝑖 at epoch 𝑒. Then,

𝑚𝑒+1
𝑖

= 𝑚𝑒
𝑖
− 𝜂∇𝑚𝑒

𝑖
(20)

Step 2: Aggregation: After 𝑁𝑒 epochs, each node exchanges its
model update with other nodes in DFL and with the server in
CFL. For CFL, the aggregation takes place at the server. After

8 of 20 Software: Practice and Experience, 2025
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receiving the model update, the client trains with local dataset
and sends the update to the server.

For CFL, the global model update at round 𝑟 is defined as:

𝑚𝑟+1 = 1
𝐾

𝐾∑
𝑖=1

𝑚𝑟
𝑖

(21)

where 𝐾 = 𝑁𝑐 .

For DFL, each node aggregates the updates after receiving from
neighbor nodes (𝑁𝑝). Hence, the local model update at round 𝑟 is
defined as:

𝑚𝑟+1
𝑖

= 1
𝑁𝑝

𝑁𝑝∑
𝑗=1

𝑚𝑟
𝑗

(22)

The global model update at round 𝑟 is defined as:

𝑚𝑟+1 = 1
𝐾

𝐾∑
𝑖=1

𝑚𝑟+1
𝑖

(23)

where 𝐾 = 𝑁𝑝.

Step 3: Bounding the Global Loss: Using the smoothness
assumption, the change in (𝑚) is expressed as follows:

(𝑚𝑟+1) ≤ (𝑚𝑟) + ∇(𝑚𝑟)𝑁𝑟 (𝑚𝑟+1 − 𝑚𝑟) +
𝐶2

2
||𝑚𝑟+1 − 𝑚𝑟||2

(24)

Taking the expectation over the stochastic gradients, we
obtain

𝔼[(𝑚𝑟+1)] ≤ (𝑚𝑟) − 𝜂

𝐾
||∇(𝑚𝑟)||2 + 𝐶3𝜂

2𝐶2
2

2𝐾
(25)

Now, summing this inequality over 𝑁𝑟 rounds, we get

𝑁𝑟∑
𝑟=1

𝔼[(𝑚𝑟+1) − (𝑚𝑟)] ≤ − 𝜂

𝐾

𝑁𝑟∑
𝑟=1

||∇(𝑚𝑟)||2 + 𝐶3𝜂
2𝐶2

2𝑁𝑟

2𝐾
(26)

After rearranging terms, we find

1
𝑁𝑟

𝑁𝑟∑
𝑟=1

𝔼[||∇(𝑚𝑟)||2] ≤ (𝑚1) − (𝑚𝑁𝑟+1)
𝜂𝑁𝑟

+
𝐶3𝜂𝐶

2
2

2𝐾
(27)

As 𝑁𝑟 → ∞, the term (𝑚1)−(𝑚𝑁𝑟+1)
𝜂𝑁𝑟

approaches zero, ensuring the
following

lim
𝑁𝑟→∞

1
𝑁𝑟

𝑁𝑟∑
𝑟=1

𝔼[||∇(𝑚𝑟)||2] = 0 (28)

This demonstrates that the global model update 𝑚 converges to a
stationary point of (𝑚). ◽

3.4 | Performance Metrics

In the next section, we have analyzed the performance of both
the CFL and DFL-based frameworks in crop yield prediction in
terms of prediction accuracy, precision, recall, F1-Score, and aver-
age training time per round.

The accuracy of a model is determined as follows:

 = 𝛼 + 𝛽

𝛼 + 𝛽 + 𝛾 + 𝜌
(29)

The precision of a model is determined as follows:

 = 𝛼

𝛼 + 𝛾
(30)

The recall of a model is determined as follows:

 = 𝛼

𝛼 + 𝜌
(31)

The F1-Score of a model is determined as follows:

 = 2 ∗  ∗ 

 +
(32)

We have already discussed the time complexity of CFL and DFL,
where we observe that the time consumption depends on the time
consumed for model initialization, training, exchange of model
updates, and aggregation.

Therefore, in the CFL-based approach, the training time (𝑇𝐶𝐹𝐿) of
the server is determined as the sum of the time consumption for
model initialization (𝑇𝑖𝑛𝑖𝑡1 ), model training (𝑇𝑡𝑟𝑎𝑖𝑛1

), exchanging
updates with the clients (𝑇𝑒𝑥1

), and aggregation (𝑇𝑎𝑔𝑔1
), given as

𝑇𝐶𝐹𝐿 = 𝑇𝑖𝑛𝑖𝑡1 + 𝑇𝑡𝑟𝑎𝑖𝑛1
+ 𝑇𝑒𝑥1

+ 𝑇𝑎𝑔𝑔1
(33)

In the DFL-based framework, the training time (𝑇𝐷𝐹𝐿) of a node
is determined as the sum of the time consumption for model
initialization (𝑇𝑖𝑛𝑖𝑡2 ), model training (𝑇𝑡𝑟𝑎𝑖𝑛2

), exchanging updates
with the neighbor nodes (𝑇𝑒𝑥2

), and aggregation (𝑇𝑎𝑔𝑔2
), given as

𝑇𝐷𝐹𝐿 = 𝑇𝑖𝑛𝑖𝑡2 + 𝑇𝑡𝑟𝑎𝑖𝑛2
+ 𝑇𝑒𝑥2

+ 𝑇𝑎𝑔𝑔2
(34)

The response time (𝑇𝑟𝑒𝑠𝑝) is determined as the difference between
the timestamp of receiving the result after prediction and the
timestamp of submitting the request for prediction, given as

𝑇𝑟𝑒𝑠𝑝 = 𝑇𝑟𝑒𝑐𝑣𝑟 − 𝑇𝑠𝑢𝑏𝑟 (35)

where 𝑇𝑟𝑒𝑐𝑣𝑟 denotes the timestamp of receiving the predicted
result, and 𝑇𝑠𝑢𝑏𝑟 denotes the timestamp of submitting the
request.

4 | Performance Evaluation

This section describes the implementation1, the experimental
setup used for analysis, and then analyzes the performance of
CFL and DFL based on the experimental setup.
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4.1 | Implementation

A design and implementation of the architecture of CFL shown in
Figure 1 is presented in Figure 4 along with detailing interaction
between the FL clients and the global server. In Figures 2 and 3,
we have presented the architecture of DFL using ring and mesh
topology, respectively. Here, we present the implementation dia-
grams of DFL using ring and mesh topology with four nodes in
Figures 5 and 6, respectively. For implementation, we use Python
language. Tensorflow is used along with LSTM and GRU sup-
ported by it. To build the client-server model and communication
over the network, socket programming is used. For the transfer
of model updates, we have used MLSocket. For secure commu-
nication, Secure Shell protocol is used. The considered dataset is
split, and assigned to the clients as the local datasets, and to the
server as the global dataset. As the first and second dense layer
activation function ReLU is used in the LSTM-based framework.
In both LSTM and GRU-based frameworks, Softmax is used as
the Output layer activation function, Categorical Crossentropy is
used as the Loss function, and as the optimizer, Adam is used.

4.2 | Experimental Setup

The experiment was conducted in the CLOUDS lab at the Univer-
sity of Melbourne. We created sixteen instances (H1 to H16) over
the AWS-based Australian academic RONIN Cloud Platform. The
configuration of each instance is:

• 4 GB RAM

• 2 vCPUs

• 100 GB SSD

Among these instances one instance (H3) was selected as the
server machine, and other fifteen instances (H1, H2, H4–H15)
served as the client machines. The performance of CFL and DFL

in crop yield prediction was analyzed in terms of prediction
accuracy and average training time per round. For experimen-
tal analysis, we used the dataset2, containing 2200 samples of
22 different classes (rice, maize, pigeonpeas, chickpea, moth-
beans, mungbean, kidneybeans, blackgram, lentil, jute, grapes,
pomegranate, watermelon, mango, muskmelon, orange, papaya,
banana, apple, coconut, cotton, coffee). There are seven features:
Nitrogen (N), Phosphorous (P), Potassium (K), temperature, pH,
humidity, and rainfall, which were considered as the input, and
the crop was considered as the output. The learning rate was con-
sidered 0.001. The number of local epochs was considered 30 in
both CFL and DFL.

4.3 | CFL in Crop Yield Prediction

In CFL, we performed three case studies: (i) Scenario 1: Five
instances as client machines and one instance as the server
machine, (ii) Scenario 2: Ten instances as client machines and
one instance as the server machine, and (iii) Scenario 3: Fif-
teen instances as client machines and one instance as the server
machine. We considered 𝑓𝑐 = 1. Each of the client machines
had its local dataset, and the server machine had the global
dataset. The client machines shared their model updates with
the server machine. The server machine performed aggregation
and updated the global model. The global model update was then
shared with the clients. The maximum number of rounds was
considered 10.

4.3.1 | Accuracy, Precision, Recall, and F1-Score

The prediction accuracy, precision, recall, and F1-score of the
global model using LSTM for the considered three scenarios
are presented in Figure 7. As we observe from the figure, the
global model using LSTM has achieved a prediction accuracy of
0.97 in scenario 3. In scenarios 1 and 2, the global model using

FIGURE 4 | The experimental implementation diagram of CFL-based crop yield prediction.
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FIGURE 5 | The experimental implementation diagram of DFL-based crop yield prediction using ring topology.

FIGURE 6 | The experimental implementation diagram of DFL-based crop yield prediction using mesh topology.

11 of 20
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FIGURE 7 | Accuracy, precision, recall, and F1-score of global model
in LSTM-based CFL.

FIGURE 8 | Global model loss in LSTM-based CFL.

LSTM has achieved an accuracy of 0.95 and 0.96, respectively.
The global model loss using LSTM for Scenario 3 is presented in
Figure 8. After ten rounds, the global loss is less than 0.0007 for
the LSTM-based CFL framework.

The prediction accuracy, precision, recall, and F1-score of the
global model using GRU for the considered three scenarios are
presented in Figure 9. The global model using GRU has achieved
a prediction accuracy of 0.98 in scenario 3. In scenarios 1 and 2,
the global model using GRU has achieved an accuracy of 0.89 and
0.96, respectively. The global model loss using GRU for Scenario 3
is presented in Figure 10. As we observe for the GRU-based frame-
work, the loss is below 0.44 after ten rounds.

As the number of clients participating in the CFL varies and each
client has a different dataset, the prediction accuracy, precision,
recall, and F1-score differ for different numbers of clients. We
observe that the accuracy of the global model is higher (>0.96)
for scenario 3 in both LSTM and GRU-based frameworks. The

FIGURE 9 | Accuracy, precision, recall, and F1-score of global model
in GRU-based CFL.

FIGURE 10 | Global model loss in GRU-based CFL.

high accuracy, precision, recall, and F1-Score indicate the model
provides accurate predictions with stability.

4.3.2 | Training Time

The average training time (per round) for the global model for
scenarios 1, 2, and 3 using LSTM and GRU is presented in
Figures 11 and 12, respectively. The training time is measured
in seconds (s). As observed from the results, the average train-
ing times of the global model for scenarios 1, 2, and 3 while using
LSTM are 64.13 s, 153.04 s, and 192.33 s, respectively. The average
training times of the global model for scenarios 1, 2, and 3 while
using GRU are 43.11 s, 124.52 s, and 165.23 s, respectively. Here,
the training time is measured as the sum of the time consump-
tion in model initialization, local model training, exchanging
model updates with participating nodes (communication over-
head), and aggregation, and then the average value is calculated
based on the number of rounds. As the aggregation takes place
only after receiving updates from all the participating clients, the

12 of 20 Software: Practice and Experience, 2025
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FIGURE 11 | Average training time (including communication) per
round in CFL while using LSTM.

FIGURE 12 | Average training time (including communication) per
round in CFL while using GRU.

training time increases with the number of participating clients.
Thus, the training time for scenario 1 with five clients is low com-
pared to the other two scenarios.

4.4 | DFL in Crop Yield Prediction

In this work, we used DFL frameworks with ring and mesh topol-
ogy. Here, also, we considered three network scenarios: (i) Sce-
nario 1: Four nodes form the network, (ii) Scenario 2: Seven
nodes form the network, and (iii) Scenario 3: Ten nodes form
the network. The maximum number of rounds we had consid-
ered was 10. In Scenario 1, we had considered four nodes (H1,
H2, H4, and H5), which were connected either using ring topol-
ogy or mesh topology. H3 worked as the server in our experiment.
In the mesh-based network, each node shares its model updates
with the rest of the nodes. In the considered ring-based P2P net-
work, H1 shares its model updates with H2 and H5, H2 shares
its model updates with H1 and H4, H4 shares its model updates,
with H2 and H5, and H5 shares its model updates with H1 and
H4. After receiving model updates each node performs aggrega-
tion and updates its local model accordingly.

FIGURE 13 | Accuracy, precision, recall, and F1-score of the models
using LSTM in ring-based DFL with four nodes.

FIGURE 14 | Accuracy, precision, recall, and F1-score of the models
using LSTM in mesh-based DFL with four nodes.

4.4.1 | Accuracy, Precision, Recall, and F1-Score

While using ring-based DFL with LSTM, the prediction accuracy,
precision, recall, and F1-score of all four nodes are presented in
Figure 13. The prediction accuracy, precision, recall, and F1-score
of all four nodes while using mesh topology are presented in
Figure 14.

We conducted the experiment for seven and ten nodes also. The
prediction accuracy, precision, recall, and F1-score for the ring
and mesh-based DFL frameworks using LSTM for all three sce-
narios are presented in Figures 15 and 16 respectively. We observe
that for both the mesh and ring-based DFL frameworks, the
accuracy for scenario 3 (number of nodes: 10) is higher. For
scenario 3, the prediction accuracy is above 0.95 for both ring
and mesh-based frameworks. The precision, recall, and F1-score
are also above 0.95 for scenario 3. The global model loss for
LSTM-based DFL frameworks for scenario 3 using ring and mesh
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FIGURE 15 | Accuracy, precision, recall, and F1-score of the models
using LSTM in ring-based DFL for three scenarios.

FIGURE 16 | Accuracy, precision, recall, and F1-score of the models
using LSTM in mesh-based DFL for three scenarios.

topology is presented in Figures 17 and 18 respectively. As we
observe, the global model loss for the ring and mesh-based DFL
frameworks is below 0.0007 and 0.0006, respectively, after ten
rounds.

We have again conducted an experiment for scenario 3 where
we considered GRU as the underlying model. As we observe
using GRU, we obtained an accuracy, precision, recall, and
F1-Score of 0.935, 0.9325, 0.945, and 0.9275, respectively, for
the ring-based DFL framework. The accuracy, precision, recall,
and F1-score for the mesh-based DFL framework using GRU
are 0.955, 0.9525, 0.96, and 0.9525, respectively. The results
are pictorially presented in Figure 19. The global model loss
for GRU-based DFL frameworks for scenario 3 using ring and
mesh topology is presented in Figures 20 and 21 respectively.
We observe that after ten rounds, the global model losses are
below 0.46 for both the ring and mesh-based DFL frameworks
using GRU.

FIGURE 17 | Global model loss in LSTM-based DFL framework with
ten nodes connected using ring topology.

FIGURE 18 | Global model loss in LSTM-based DFL framework with
ten nodes connected using mesh topology.

4.4.2 | Training Time

The average training time (per round) of the four nodes in
ring and mesh-based frameworks for scenario 1 is presented in
Figure 22. As we observed in the ring-based framework, the aver-
age training times of nodes 1, 2, 3, and 4 are 35.53 s, 27.86 s,
31.84 s, and 30.62 s, respectively. We also observed that the aver-
age training times of the nodes 1, 2, 3, and 4 are 36.99 s, 39.65 s,
36.8 s, and 32.97 s, while using the mesh-based framework. We
have measured the training time for scenarios 2 and 3 also. The
average training times (per round) for all three scenarios are pre-
sented in Figure 23. Here, we have used LSTM as the underlying
model.

As observed from the results, the average training times (per
round) of the local models for scenarios 1, 2, and 3 are 31.46
s, 32.26 s, and 30.98 s, respectively, while using ring topology.
We also observed that while using mesh topology, the average
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FIGURE 19 | Accuracy, precision, recall, and F1-score of the models
in the GRU-based DFL framework with ten nodes.

FIGURE 20 | Global model loss in GRU-based DFL framework with
ten nodes connected using ring topology.

FIGURE 21 | Global model loss in GRU-based DFL framework with
ten nodes connected using mesh topology.

FIGURE 22 | Average Training time (including communication) of
the nodes in ring and mesh-based frameworks.

FIGURE 23 | Average training time (including communication) per
round in ring and mesh-based frameworks.

training times (per round) of the local models for scenarios 1,
2, and 3 are 36.6 s, 58.4 s, and 96.71 s, respectively. In ring
topology, each node exchanges model updates with the adjacent
nodes, whereas in mesh topology, each node exchanges model
updates with the rest of the nodes in the formed network. As we
observed in our experiment, the training time for mesh topol-
ogy was higher. We also measured the response time for both
the mesh-based and ring-based frameworks, and we observed
that for both ring and mesh topology, the response time was in
the range of 1.2–3.5 s, in all three cases. The average training
times per round for the ring and mesh-based frameworks with
ten nodes are 20.35 s and 85.53 s, respectively, while using GRU
as the underlying model. The response time for the ring and
mesh-based DFL frameworks using GRU was approximately 3.2
s, for scenario 3.

Finally, we observe that (i) for CFL with fifteen nodes, we
achieved >96% accuracy, and (ii) for DFL using ring and mesh
topology with ten nodes, we achieved >93% prediction accuracy.
As we observe from the experimental results, using CFL and
DFL, high prediction accuracy can be obtained without sharing
the data.
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4.5 | Comparison With Cloud-Only Model

In Figures 24 and 25, the accuracy, precision, recall, and F1-Score
of the global model for the CFL framework using LSTM and GRU
are compared to the cloud-only framework, where the entire
dataset is analyzed inside the cloud. The number of participat-
ing nodes was 15. The results show that the use of collaborative
learning using CFL has improved the accuracy, precision, recall,
and F1-score by∼5%–8% than the cloud-only framework for both
LSTM and GRU. Figures 26 and 27 present the comparison of the
response time of the CFL-based model to the cloud-only frame-
work using LSTM and GRU, respectively. The results show that
the CFL-based framework reduces the response time ∼75% than
the cloud-only framework.

4.6 | Comparison With Existing Approaches

In this section, we compare the performance of the CFL
and DFL-based frameworks in crop yield prediction with the

FIGURE 24 | Comparison of accuracy, precision, recall, and F1-score
between the CFL-based and Cloud-only frameworks using LSTM.

FIGURE 25 | Comparison of accuracy, precision, recall, and F1-score
between the CFL-based and Cloud-only frameworks using GRU.

state-of-the-art models for crop yield prediction. The comparative
analysis is presented in Table 4. At first, we compare the CFL and
DFL-based frameworks with the existing crop yield prediction
frameworks that used the 𝑠𝑎𝑚𝑒 𝑑𝑎𝑡𝑎𝑠𝑒𝑡1 that we used for per-
formance analysis. After that we draw a comparison of the CFL
and DFL-based frameworks with an existing FL-based frame-
work that used another dataset for performance evaluation.

In [12], the authors used RF, DT, KNN, XGBoost, and SVM, which
are well-known ML models, and among them RF achieved the
highest accuracy of 97.18%. In [13], MLP, decision table, and JRip
were used, and MLP achieved the highest accuracy of 98.23% in
crop yield prediction. KNN was adopted in [14] for data analysis,
and a recall value of 92.62% was achieved for crop yield predic-
tion. In [15], the authors used DT, SVM, KNN, LGBM, and RF, in
crop yield prediction, and among them RF achieved the highest
accuracy of 99.24%. The authors in [16] used an LSTM, Bi-LSTM,
and GRU-based framework for data analysis and achieved an
accuracy of 98.45% in crop yield prediction. In [18], Bi-LSTM
was used for crop yield prediction, and the achieved accuracy
was 98.64%. As we observe from Table 4, none of the existing
approaches used FL. Most of the existing approaches focused
on the use of ML/DL approaches for crop yield prediction with-
out addressing the concern of using a cloud-only paradigm for
data analysis, such as network connectivity issues, data privacy,
response time, etc. To achieve data privacy protection without

FIGURE 26 | Comparison of response time between the CFL-based
and Cloud-only frameworks using LSTM.

FIGURE 27 | Comparison of response time between the CFL-based
and Cloud-only frameworks using GRU.
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TABLE 4 | Comparison of performance of proposed and existing crop yield prediction frameworks.

Work Classifier FL is used Accuracy
Training time

per round Response time

[12] RF (Highest) No 97.18% Not Not
DT, KNN measured measured

XGBoost, SVM
[13] MLP (Highest) No 98.23% Model build time: Not

Decision table, JRip 10.56 s (MLP) measured
[14] KNN No 92.62% (Recall) Not Not

measured measured
[15] DT, SVM No 99.24% Not Not

KNN, LGBM measured measured
RF (Highest)

[16] LSTM, Bi-LSTM, GRU No 98.45% Not Not
measured measured

[18] Bi-LSTM No 98.64% Model build time: Latency:
0.53 s 4.54–4.91 s

[25] Gaussian NB Yes 90% Not Not
(CFL) measured measured

FL-based framework LSTM, GRU Yes CFL: 97% (LSTM) CFL: 192.33 s (LSTM) CFL: 2.5–5 s
(CFL 98% (GRU) 165.23 s (GRU) (5–15 clients)
and (15 clients) (15 clients) DFL: 1.2–3.5 s

DFL) DFL: >95% (LSTM) DFL: 30.98 s (LSTM) (4–10 nodes)
>93% (GRU) (Ring) 20.35 s (GRU) (Ring)

>95% (LSTM) 96.71 s (LSTM)
>95% (GRU) (Mesh) 85.53 s (GRU) (Mesh)

(10 nodes) (10 nodes)

sharing data but obtain a model with high prediction accuracy
through collaborative training has been addressed in our work.
We have explored the use of FL in crop yield prediction through
an experimental analysis using multiple clients. As we observe,
CFL and DFL have achieved high prediction accuracy but with-
out sharing actual datasets. Hence, we observe that using FL,
high prediction accuracy can be obtained like the state-of-the-art
models but with enhanced data privacy. In [25], CFL was used for
crop yield prediction based on Gaussian NB, and 90% prediction
accuracy was achieved with Adam optimizer and learning rate
0.001. As we observe, only CFL was used in [25], whereas we
have used both CFL and DFL in crop yield prediction based
on LSTM and GRU. Further, we have achieved higher accuracy
(>96%) than [25] (Optimizer: Adam, learning rate: 0.001), while
using CFL. Further, the training time for both the CFL and DFL
approaches has been determined in our work, and we observe
that the training time is medium for the considered scenarios. We
also observe that the response time is low for both the CFL and
DFL-based frameworks. Thus, crop yield prediction with high
accuracy but low response time can be achieved using FL-based
frameworks.

5 | Another Case Study: Road Traffic
Monitoring

To evaluate the performance of the proposed FL architectures, we
considered another application also. As the underlying model,

GRU was used. In this case, we considered the dataset of road
traffic monitoring3. From the dataset, the input parameters con-
sidered were the number of cars, bikes, buses, and trucks, and the
output is the traffic situation (low, normal, high, heavy). There are
5952 samples in the dataset. The number of rounds considered in
both CFL and DFL was 10.

For implementing the CFL scenario, we used three VM instances
as the clients and one VM instance as the server. The dataset was
divided into four parts. Three parts were assigned to the clients,
and one part was assigned to the server. The accuracy, precision,
recall, and F1-score for the global and local models are presented
in Figure 28.

To implement the DFL scenario, we considered four VMs that
were connected using mesh topology. The dataset is divided into
four parts and assigned to these four nodes. The accuracy, preci-
sion, recall, and F1-score for the four nodes in the DFL scenario
are presented in Figure 29. The average training time, including
communication for both CFL and DFL scenarios, was approx-
imately 45 s. We observe from the second case study that the
CFL-based framework has a prediction accuracy of 0.96 for the
global model and≥0.95 for the local models. The precision, recall,
and F1-score are also 0.96 for the global model and ≥0.95 for the
local models in the CFL-based framework. The prediction accu-
racy, precision, recall, and F1-score are >0.95 for the DFL-based
framework. The global model loss for both the CFL and DFL
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FIGURE 28 | Accuracy, precision, recall, and F1-score of the models
in CFL for case study 2.

FIGURE 29 | Accuracy, precision, recall, and F1-score of the models
in DFL for case study 2.

scenarios is less than 0.15 after ten rounds. The low loss and high
prediction accuracy, precision, recall, and F1 score denote that
both the CFL and DFL frameworks are stable and can accurately
predict the road traffic.

For both the case studies (crop yield prediction and road traf-
fic prediction), the CFL and DFL architectures show good per-
formance in terms of prediction accuracy and loss. The training
time, including communication for both case studies, is also not
very high, as observed from the results. Further, as no raw data is
shared in FL, the data privacy is protected.

6 | Future Research Directions

In this work, we have highlighted the use of CFL and DFL in crop
yield prediction. However, there still remain several open chal-
lenges discussed below:

• Data heterogeneity: Data heterogeneity is a critical issue of
FL. As the data is distributed among several clients, it may
lead to non-independent, identically distributed, and unbal-
anced datasets. In such a scenario, model training is a chal-
lenge, and it becomes critical to build a global model with
consistent performance across all the clients.

• Use of FTL: The datasets of different clients may have differ-
ent sample spaces as well as different feature spaces. In that
case, FTL can be used. In FTL, features from different fea-
ture spaces are transferred to the same presentation. Further,
for enhancing data privacy and security, gradient updates are
encrypted. The use of FTL with gradient encryption is a sig-
nificant research direction.

• Resource limitation of user device: The FL encourages local
data analysis and collaborative learning. However, the user
device may not have sufficient resources for executing an
ML/DL algorithm, and the user has to use the cloud server
for data analysis. Another difficulty may arise when a device
cannot execute its local model due to resource limitation or
any other issue. In that case, the model of that device along
with the dataset needs to be transferred to a nearby node. In
both scenarios, cryptography or steganography can be used
to protecting the data privacy by either encrypting or hiding
it inside a media during transmission.

• Enhance the security of model parameters and the system:
Though no data is shared, and only the model updates are
exchanged in FL, there is still a possibility of leakage of gra-
dient information. In such a scenario, gradient encryption
can be used. Further, blockchain [26] can be integrated with
FL for enhancing the security of the entire system.

• Communication overhead: In FL, the exchange of model
updates during training enhances the communication over-
head and latency. Therefore, a trade-off should be main-
tained between the number of rounds of training the model
and communication overhead so that prediction accuracy
can be good but the latency will not be very high.

• Straggler effect: The straggler effect is another challenge of
FL, where the training inside the local devices may slow
down the devices that degrade the overall performance. Fed-
erated offloading can be used as a solution to this issue [27].
In federated offloading, one part of the dataset is used for
local training, and the other part is offloaded to a nearby
lightly loaded device or to the cloud. The offloaded data is
used for training inside the lightly loaded device or inside the
cloud. After each round, the parameter weights from both
the training are used for aggregation. Cryptography can be
used for protecting data during offloading.

7 | Conclusions

Crop yield prediction is a crucial area of smart agriculture. In
this paper, we have explored the use of CFL and DFL in crop
yield prediction based on LSTM and GRU. An experimental case
study has been conducted, where different numbers of devices
perform collaborative training using CFL and DFL. To imple-
ment CFL, a client-server paradigm is developed using MLSocket,
and multiple clients are handled by the server. To implement
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DFL, a collaborative network is formed among the nodes using
ring topology and mesh topology. In the ring-based P2P frame-
work, each node exchanges model updates with the neighbor
nodes and performs aggregation to build the upgraded model. In
the mesh-based framework, each node exchanges model updates
with rest of the nodes and performs aggregation to build the
upgraded model. The performance of the CFL and DFL-based
frameworks is evaluated in terms of prediction accuracy, preci-
sion, recall, F1-Score, and training time. If the communication
with the cloud server is not good, DFL can be adopted. The DFL
framework with mesh topology can have more communication
overhead compared to the ring-based framework if the number
of participating nodes is high. However, good prediction accu-
racy is achieved by both the CFL and DFL frameworks with-
out compromising with data privacy. The experimental results
show that >93% prediction accuracy has been achieved using the
CFL and DFL-based frameworks. The results also show that the
CFL-based framework reduces the response time ∼75% than the
cloud-only framework. The average accuracy, precision, recall,
and F1-Score are also improved by ∼5%–8% using CFL than
the cloud-only framework. As we observe from the experimen-
tal implementations of the CFL and DFL architectures, for both
cases high prediction accuracy with low loss is achieved for the
considered applications. Finally, the future research directions in
crop yield prediction are highlighted in this paper.

Author Contributions

The author takes full responsibility for this article.

Acknowledgments

This work is partially supported by an ARC Discovery Project
(DP240102088) and ARC LIEF. Open access publishing facilitated
by The University of Melbourne, as part of the Wiley - The Univer-
sity of Melbourne agreement via the Council of Australian University
Librarians.

Data Availability Statement

Data sharing is not applicable to this article as no new data were created
or analyzed in this study.

Endnotes
1 https://github.com/AnuTuli/FL-Implementation.
2 https://www.kaggle.com/datasets/atharvaingle/

crop-recommendation-dataset.
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