Simulating Fog Computing Applications)
Using iFogSim Toolkit e

Kamran Sattar Awaisi, Assad Abbas, Samee U. Khan, Redowan Mahmud,
and Rajkumar Buyya

Abstract Fog computing is a novel distributed computing paradigm that provides
cloud-like services at the edge of the network. It emerges as an efficient paradigm
to process the enormous amount of Internet of Things (IoT) data and can address
the limitations of cloud-centric IoT models in terms of large end-to-end delays,
and huge network bandwidth consumption. Recently, fog computing and IoT have
been employed in several domains, including transportation, education, healthcare,
and manufacturing industry. To imitate different complex application scenarios for
these domains, a notable number of fog computing-based simulators has already
been developed. Among them, iFogSim has attained significant attention because
of its simplified interface and low complexity. In this article, we present a tutorial
on how to use iFogSim toolkit to simulate four real-time case studies for (1) smart
car parking, (2) smart waste management system, (3) smart coal mining industry,
and (4) sensing as a service. This article is expected to assist the researchers
in understanding and implementing various aspects of fog computing using the
iFogSim toolkit.

Keywords Fog computing - iFogSim - Smart car parking - Smart waste
management system - Smart mining industry

K. S. Awaisi - A. Abbas (<)
COMSATS University Islamabad, Islamabad, Pakistan
e-mail: assadabbas @comsats.edu.pk

S. U. Khan
Mississippi State University, Mississippi, MS, USA
e-mail: skhan @msstate.edu

R. Mahmud - R. Buyya

Cloud Computing and Distributed Systems (CLOUDS) Laboratory, School of Computing and
Information Systems, The University of Melbourne, Melbourne, VIC, Australia

e-mail: mahmudm @student.unimelb.edu.au; rbuyya@unimelb.edu.au

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021 565
A. Mukherjee et al. (eds.), Mobile Edge Computing,
https://doi.org/10.1007/978-3-030-69893-5_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-69893-5_22&domain=pdf
mailto:assadabbas@comsats.edu.pk
mailto:skhan@msstate.edu
mailto:mahmudm@student.unimelb.edu.au
mailto:rbuyya@unimelb.edu.au
https://doi.org/10.1007/978-3-030-69893-5_22

566 K. S. Awaisi et al.

1 Introduction

Internet of Things (IoT) has connected billions of devices across the world and
is consistently promoting the realization of smart cyber-physical environments
including smart factories, smart homes, smart transport, and smart healthcare.
However, due to limited processing and storage capabilities of IoT devices, cloud
computing is often used as the backbone platform to provide computational capacity
and storage services to the loT-enabled environments [1]. Nevertheless, cloud data-
centers have some potential challenges, such as large end-to-end delays and huge
network bandwidth consumption. These challenges pertinent to cloud computing
impact the response time of latency-sensitive real-time applications, for example
healthcare systems, traffic management, and fire control systems. Additionally, IoT
devices can generate an enormous amount of data within a very short period. When
every loT device initiates sending these data to cloud servers, the performance of
cloud services is more likely to degrade.

Fog computing extends the cloud services near the edges of the network and
overcomes the challenges of cloud computing [2]. This new distributed computing
paradigm has exhibited tremendous potential to effectively process the data gener-
ated by millions of IoT devices [3]. Since fog computing brings computations closer
to the data generating devices, consequently the latency and network bandwidth
utilization are significantly minimized [4]. Compared to the cloud data centers, fog
nodes have less computational power and storage capacity. Therefore, fog and cloud
computing paradigms work in an integrated manner to provide resources for large-
scale IoT systems.

Since the fog computing systems involve fog nodes, cloud data centers, and
IoT devices; therefore, the real-world implementation of fog scenarios for research
purposes is very expensive [5]. In such situations, simulation and validation of fog
scenarios with the help of toolkits are very beneficial. Currently, there are several
simulation toolkits available, such as FogNetSim++ [6], Edgecloudsim [7], and
iFogSim [8] for modeling and simulating the fog computing environments. Among
these toolkits, iFogSim has significantly attracted the attention of the researchers
and is being used to model a variety of fog computing cases. In this article, we aim
at providing a tutorial on iFogSim to help the researchers quickly understand the
fundamental concepts and the advanced implementation steps. To make the study
more intriguing, we implement four real-time fog-based scenarios namely, (1) smart
car parking system, (2) smart waste management system, (3) smart mining industry,
and (4) sensing as a service in the iFogSim. The tutorial not only provides step by
step installation guidelines but also contains instructions to simulate the scenarios
and create devices, classes, and objects in the iFogSim. Moreover, the tutorial
also presents the corresponding code snippets of all the case studies simulated
in iFogSim. The remainder of the article is organized as follows: Sect. 2 briefly
discusses the installation and setup of iFogSim. Section 3 presents case studies and
code snippets whereas Sect. 4 concludes the paper.

Simulating Fog Computing Applications Using iFogSim Toolkit 567
2 Installation and Setup of iFogSim

iFogSim is a Java based open-source simulation tool for simulating fog computing
scenarios. It is developed by Harshit Gupta and the team at the Cloud Computing
and Distributed Systems (CLOUDS) Lab University of Melbourne Australia [8].
The following are the steps to download, install, and setup the iFogSim.

1. Download the iFogSim source code in the zip file from the GitHub https://
github.com/Cloudslab/iFogSim.

2. Extract the iFogSim zip file and there will be a folder named iFogSim-master.

3. Make sure that you have installed Java Runtime Environment (JRE) or Java
Development Kit (JDK) 1.7 or more.

4. Install Eclipse Mars or any latest release on the computer.

5. Define the workspace for the Eclipse Integrated Development Environment
(IDE).

6. Create a new folder for the iFogSim in the Eclipse workspace and paste all the
files and content of the iFogSim-master in this folder or you can simply copy
the iFogSim-master folder and paste it into the workspace folder

7. Open the Eclipse IDE and create the new Java project.

8. Make sure that the name of the Java project is the same as the name of the folder
as you have created in the workspace for iFogSim.

9. Now open the src of the project and explore the package org.fog.test.perfeval.
In this package, you will find three example scenarios of iFogSim.

10. Open any example scenario, explore it, and run it. You will get the results on
the console.

3 Case Studies

This section presents the four case studies that are implemented using the iFogSim
toolkit. Section 3.1 presents the case study of a smart car parking system, Sect. 3.2
explains the smart waste management system, Sect. 3.3 describes the smart mining
industry case study and Sect. 3.4 discusses the sensing as a service case study.

3.1 Smart Car Parking System

Most of the people are moving towards the cities due to better facilities and
resources. Owing to the increasing population to the cities, the number of vehicles
on the roads have increased enormously as the personal vehicles have become a
significant transportation resource nowadays. Consequently, finding the vacant car
parking space has become a potential issue in the populated areas. People spend a
lot of time finding the vacant car parking space which essentially results in CO2

https://github.com/Cloudslab/iFogSim
https://github.com/Cloudslab/iFogSim

568 K. S. Awaisi et al.

emission, time wastage, and fuel wastage. Parking problems have attracted more
consideration in the past few years and many researches have proposed IoT based
car parking solutions. We presented a fog based smart car parking architecture in [9]
to solve the car parking issues by using fog computing. The fog-based car parking
architecture consists of the following:

— Smart cameras

— Fog nodes

— Light Emitting Diode (LED) display screens
— A cloud server

The smart cameras are deployed in the parking lanes which take the image of the
parking lanes and transmit the images to the fog node. On the fog node, we have
implemented an image processing algorithm to identify those parking slots which
are vacant. After detecting the vacant parking slots, the parking slots information
is updated on the LED. The data is stored in the fog node for a limited amount
of time, and then it is moved to the cloud server for permanent storage. When the
vehicle arrives at the parking gate, the driver finds the vacant car parking space
immediately and parks the vehicle on the desired location. The information on the
LED is updated after every 5s interval. The communication between the fog node
and the cloud server is enabled through a proxy server. The fog-based car parking
system is displayed in Fig. 1.

Building Scenario with iFogSim for Smart Parking System To simulate the
smart car parking scenario, we need to create two modules in iFogSim i.e.

Cloud server

Proxy server

Fog nodes

Smart cameras

Fig. 1 Fog based smart car parking system

Simulating Fog Computing Applications Using iFogSim Toolkit 569

Fig. 2 Fog based smart car
parking system application

model of iFOgSim Module-1 (picture-

capture)

T l

Sensors (Smarnt
cameras)

——> Module-2 (slot-detector)

Actuator (LED)

picture-capture and slot-detector. The picture-capture module is embedded in smart
cameras. The smart cameras are programmed in such a way that it takes the pictures
after a specific time interval of 5 s and transmits the images to the fog node. We can
attach the micro-controller device with the smart cameras to establish a connection
with the fog node.

Moreover, we create a proxy server and a cloud server. The proxy server enables
the communication between the fog node and the cloud server. The cameras here
act as the sensor as well. In iFogSim, when we create any device which takes the
input to the system for processing, we call it a sensor and any device which receives
the output after processing is termed as the Actuator. The sensors, actuators, and fog
devices are created in iFogSim using their respective classes. In the smart parking
system scenario, the cameras are created and attached to the fog node. Figure 2
depicts the data flow of the smart parking application model. The picture-capture
module is created in smart cameras. It is programmed to capture the pictures of
parking lane after every 5 s.

The pictures are handed over to the second module which is a slot-detector and
it detects the vacant parking slots. In iFogSim, any computation elements are called
modules.

Building Simulation with iFogSim for Smart Car Parking System The iFogSim
provides built-in classes to create fog nodes, sensors, and actuators. It also takes care
of resource allocation and management policies. The following classes will be used
to create a smart car parking scenario in iFogSim.

1. FogDevice: This class provides a constructor to create the fog devices and
to define the hardware properties of the fog devices i.e. node name (name of
the device to be used in simulation), MIPS (Million Instructions Per Second),
RAM (main memory of the fog node), uplink bandwidth, downlink bandwidth,
level (hierarchy level of the device), ratePerMips (cost rate per MIPS used),
busyPower (the amount of power consumed when the fog node is in busy state),
and idlePower (the amount of power used when the fog node is in the idle state).
When we create the fog device, all these parameters are assigned values. In our
implementation of the case studies, all the computational devices are created
using the FogDevice class.

2. Sensor: By using the sensor class, we create [oT devices in iFogSim. While
creating the sensors, we define the gateway device id and setup link latency.

570 K. S. Awaisi et al.

Gateway device is the device with whom the sensor is attached and any devices,
such as a router, fog node, or a proxy can serve as the Gateway. Setup link latency
is the latency time to create a connection between the sensor and fog device.
Normally, we set the setup link latency time between 1 to 3 ms.

3. Actuator: Actuator class allows to create the objects in iFogSim that are used to
display the output or any information. In the smart car parking scenario, the LED
is created actuator because the vacant car parking slot position will be displayed
on the LEDs. The actuator needs to be connected with any gateway device. The
gateway device sends the data to actuator. Therefore, when we create actuator in
iFogSim, we define the gateway device id and setup link latency.

A new class in org.fog.test.perfeval package is required to create for simulating
this scenario in iFogSim. The FogDevice class lets you to create fog nodes with
different configurations by providing a constructor. A code snippet to create
heterogeneous fog devices is given below:

Code Snippet-1 This code snippet is to be placed in the main class.

//Here we are creating a list for fog devices.

static List<FogDevice> fogDevices = new ArrayList<FogDevices () ;
static List<Sensor> sensors = new ArrayList<Sensors();

static List<Actuator> actuators = new ArrayList<Actuators>();
static int numOfAreas = 7; //the number of fog nodes
static int numOfCamerasPerAreal=10;

// the number of cameras per fog node.

static double CAM TRANSMISSION TIME = 5; //time interval
private static boolean CLOUD = false;

private static void createFogDevices (int userId, String appId) ({
FogDevice cloud = createFogDevice ("cloud", 44800, 40000,

100, 10000, O, 0.01, 16%103, 16%83.25);

cloud.setParentId(-1) ;

fogDevices.add (cloud) ;

FogDevice proxy = createFogDevice ("proxy-server", 2800, 4000,
10000, 10000, 1, 0.0, 107.339, 83.4333);
proxy.setParentId(cloud.getId()) ;

double costPerStorage
proxy.setUplinkLatency (100) ;

fogDevices.add (proxy) ;

for (int i=0;i<numOfAreas;i++)

addArea (i+"", userId, appld, proxy.getId());
}

}

private static FogDevice addArea(String id, int userId,
String appId, int parentId) {

FogDevice router = createFogDevice ("a-"+1id, 2800, 4000,
1000, 10000, 2, 0.0, 107.339,83.4333);

fogDevices.add (router) ;

router.setUplinkLatency (2) ;

for (int i:O;i<numOfCamerasPerAreal;i++){

String mobileId = id+"-"+i;

Simulating Fog Computing Applications Using iFogSim Toolkit 571

FogDevice camera = addCamera (mobileId, userId,
appId, router.getId());
camera.setUplinkLatency(2) ;

fogDevices.add (camera) ;

}

router.setParentId (parentId) ;

return router;

}

private static FogDevice addCamera (String id, int userId,
String appId, int parentId) {

FogDevice camera = createFogDevice("c-"+id, 500, 1000, 10000,
10000, 3, 0, 87.53, 82.44);

camera.setParentId (parentId) ;

Sensor sensor = new Sensor ("s-"+id, "CAMERA", userId, appIld, new
DeterministiCDistribution(CAM_TRANSMISSION_TIME));
sensors.add (sensor) ;

Actuator ptz = new Actuator ("ptz-"+id, userId,

appId, "PTZ_ CONTROL") ;

actuators.add(ptz) ;

sensor.setGatewayDeviceId (camera.getId()) ;
sensor.setLatency(40.0) ;

ptz.setGatewayDevicelId (parentId) ;

ptz.setLatency(1.0) ;

return camera;

}

Code Snippet-2 This code snippet is to be placed in the newly created main class.
In this code snippet we are creating the modules on fog devices and assigning these
modules to fog nodes. Figure 3 illustrates the physical topology of the car parking
system in iFogSim that we have created in the code-snippet 1 and code-snippet 2.

private static Application createApplication

(String appId, int userId) {

Application application =
Application.createApplication (appId, userId) ;
application.addAppModule ("picture-capture", 10);
application.addAppModule ("slot-detector", 10);

// adding edge from CAMERA (sensor) to picture-capture module
carrying tuples of type CAMERA

application.addAppEdge ("CAMERA", "picture-capture", 1000, 500,
"CAMERA", Tuple.UP,

AppEdge . SENSOR) ;

application.addAppEdge ("picture-capture", "slot-detector",
1000, 500, "slots",Tuple.UP, AppEdge.MODULE) ;

// adding edge from Slot Detector to PTZ CONTROL (actuator)
application.addAppEdge ("slot-detector", "PTZ_ CONTROL", 100,
28, 100, "PTZ_ PARAMS",

Tuple.UP, AppEdge.ACTUATOR) ;

application.addTupleMapping ("picture-capture", "CAMERA", "slots",
new FractionalSelectivity(1.0));
application.addTupleMapping ("slot-detector", "slots",

"PTZ_ PARAMS", new FractionalSelectivity(1.0));

572 K. S. Awaisi et al.

C=Camera
5
Cloud
[
Proxy server
E oy -y
Fog node 1 Fog node 2 Fog node 3 Fog node 4

ECECEDED ROREDEDRE PR EORDEPDE SR DRSO PED)

C1 c2 c3 C4 LEM OS5 6 7 C8 LEDPZ ©9 CI0 <11 C12 LED3 C13 Cl4 C15 C16 LED4

Fig. 3 iFogSim topology of smart car parking system

final AppLoop loopl = new AppLoop (new ArrayList<Strings ()
{{add ("CAMERA") ;

add ("picture-capture") ;add ("slot-detector") ;

add ("PTZ_ CONTROL") ; }}) ;

List<AppLoop> loops = new ArrayList<AppLoops> () {{add(loopl);}};
application.setLoops (loops) ;

return application;

}

3.2 Smart Waste Management System

With the rapid increase in population and urbanization, the waste generation level
in the cities is increasing day by day. Waste is generated by humans and by every
living thing. Wherever life and human beings are, the waste will be generated
there. According to the World Bank Report published in 2012 [10], the solid
waste management generation level was about 1.3 billion tons per year and it
will reach 2.2 billion tons per year in 2025. Nonetheless, the generation of waste
cannot be prevented; however, introducing smart measures to collect and manage
the generated waste can help in providing health environments [11]. The timely
collection of waste not only prevents the spread of several diseases but also plays
its part in keeping the environment green, clean, and healthy. A cloud-based waste
management system is presented in [12] where authors used the cloud server to
automate the waste management system. The smart waste bins are connected to the
cloud server. The waste level information is transmitted to the cloud server after a
specific time interval. If the waste level has reached the threshold value, then the
waste is collected otherwise no action is taken unless the waste bin generates an
alert indicating that the threshold level is reached.

Cloud computing is suffering from many problems like a large end to end delay
and huge network bandwidth consumption [13]. In case, if we increase the number

Simulating Fog Computing Applications Using iFogSim Toolkit 573

of smart waste bins connected with the cloud server, then there will be network
congestion and it will not be easy to handle and manage the waste data from all the
areas. In a certain community belonging to developing countries, there is a need to
place smart waste bins at different points in streets that people can use to throw the
waste. In this case, if all the waste bins are connected to the cloud server, it will
cause latency and network usage problems. The best possible solution for this is to
geographically partitions different areas and subsequently connect the waste bins of
a particular area to a specific data management server. Consequently, deployment
of fog nodes in the waste management system will make it more efficient and easily
manageable for all the concerned stakeholders.

Building Scenario with iFogSim for Smart Waste Management System In the
proposed fog-based waste management system, there are different waste bins. Each
waste bin is allocated to a different kind of waste, such as kitchen waste, plastic,
paper and cardboard, and metal. Smart waste bins will be placed in rural areas to
manage and collect waste properly and efficiently. Each waste bin is equipped with
the sensor (Ultrasonic sensor HC-SR04) to notify the waste level. Ultrasonic sensors
emit the waves at a specific frequency and then wait for the wave to be reflected
back. Based on the distance and the time taken back after reflection, we measure
the percentage or level of waste in the bin. Figure 4 depicts the fog-based waste
management system. The smart waste bins are connected to the fog server via a
router device.

Figure 5 shows the data flow application model of the fog-based smart waste
management system. In this scenario, five modules will be created. Waste-info-
module collects the waste level information of the waste bins. The module passes
the data to the master-module which is basically responsible for managing the waste
information on the fog node. We create the separate modules for all the stakeholders,
such as healthcare department, recycling unit, and head of the municipal authority
to disseminate the waste collection information among the relevant collection staff.
These modules represent the logical placement and creation of connection for each
stakeholder at the fog node. The location tracking feature of waste collectors can be
implemented in real time implementation of smart waste management system.

Building Simulation with iFogSim for Smart Waste Management System
To simulate the smart waste management scenario, first make a new class in
org.fog.test.perfeval package.

Code Snippet-3 This code snippet is to be placed in main class. In this code
snippet we are adding the modules to the fog devices. Cloud mode is set to FALSE,
and all the computational operations will be performed at fog nodes. In case if
cloud mode is set to TRUE, then all the modules will be placed on cloud server,
and all the computations will be performed on cloud server. There is no need to
change the module placement. The code is commented so that you can develop the
understanding of code. This code snippet should be added in the main method after
initializing the module mapping.

574 K. S. Awaisi et al.

Recycling and Disposal
Department

-

~
~
Municipal Administration ™ §
-~

~

Location Tracking o

=N

O 0 Router

Waste Collectors | Waste Collection

- Health Department

+

Fog Server

Ultrasonic sensor

Smart Waste Bin

Fig. 4 Fog-based smart waste management system architecture

Propagate waste information to

health department

Transfer waste level
information

Propagate waste information
to municipal office

Propagate waste information to
recyclers

Sensors (Smart waste
i Actuator

Fig. 5 Fog based smart waste management system application model of iFogSim

Simulating Fog Computing Applications Using iFogSim Toolkit 575

//Create the list of fog devices
static List<FogDevice> fogDevices = new ArrayList<FogDevices () ;
//Create the list of sensors
static List<Sensor> sensors = new ArrayList<Sensors>();
//Create the list of actuators
static List<Actuator> actuators = new ArrayList<Actuators>();
//Define the number of areas
static int numOfTotalAreas = 10;
//Define the number of waste bins with each fog nodes
static int numOfBinsPerArea=1;
//We are using the fog nodes to perform the operations.
//cloud is set to false
private static boolean CLOUD = false;
public static void main(String[] args) ({
Log.printLine ("Waste Management system...");
try {
Log.disable() ;
int num user = 1; // number of cloud users
Calendar calendar = Calendar.getInstance() ;
boolean trace flag = false; // mean trace events
CloudSim.init (num user, calendar, trace_flag) ;
String appId = "swms"; // identifier of the application
FogBroker broker = new FogBroker ("broker") ;
Application application = createApplication (appId,
broker.getId()) ;
application.setUserId(broker.getId()) ;
createFogDevices (broker.getId(), appId);
Controller controller = null;
ModuleMapping moduleMapping = ModuleMapping.createModuleMapping() ;
for (FogDevice device : fogDevices) {
if (device.getName () .startsWith("b")) {
// names of all Smart Bins start with ’b’
moduleMapping.addModuleToDevice ("waste-info-module",
device.getName ()) ;
// mapping
waste information module on waste bins
}
}

for (FogDevice device : fogDevices) {

if (device.getName () .startsWith("a")) {

// names of all fog devices start with ’a’

// mapping master-module on area devices.
moduleMapping.addModuleToDevice ("master-module",
device.getName ()) ;

// mapping health-module on area devices
moduleMapping.addModuleToDevice ("health-module",
device.getName ()) ;

// mapping recycle-module on area devices.
moduleMapping.addModuleToDevice ("recycle-module",
device.getName ()) ;

// mapping municipal-module on area devices.
moduleMapping.addModuleToDevice ("municipal-module™",
device.getName ()) ;

}

576 K. S. Awaisi et al.

if (CLouD) { // if the mode of deployment is cloud-based
// placing all instances of master-module in the Cloud

moduleMapping.addModuleToDevice ("master-module", "cloud") ;

// placing all instances of health-module in the Cloud
moduleMapping.addModuleToDevice ("health-module", "cloud") ;
//placing all instances of recycle-module in the Cloud
moduleMapping.addModuleToDevice ("recycle-module", "cloud") ;
// placing all instances of municipal-module in the Cloud
moduleMapping.addModuleToDevice ("municipal-module", "cloud") ;

}

controller = new Controller ("master-controller",
fogDevices, sensors, actuators);
controller.submitApplication (application,
(CLOUD) ? (new ModulePlacementMapping (fogDevices,
application, moduleMapping))

: (new ModulePlacementEdgewards (fogDevices, sensors,
actuators, application, moduleMapping))) ;
TimeKeeper.getInstance () .setSimulationStartTime (
Calendar.getInstance() .

getTimeInMillis()) ;

CloudSim.startSimulation () ;
CloudSim.stopSimulation() ;

Log.printLine ("waste management simulation finished!");

}

catch (Exception e) {
e.printStackTrace() ;
Log.printLine ("Unwanted errors happen") ;

}
}

After adding this code snippet initialize the controller object.

Code Snippet-4 This code snippet is to be placed in main class. In this code snippet
we are creating the heterogeneous fog devices. The fog nodes will be placed in
geographical distributed location and we will also need the location of the smart
bin therefore, while creating the fog nodes and smart bins, we are setting the x-
coordinate and y-coordinate value of the fog nodes and smart bin. In case of smart
bin, the location awareness will help us to know that in which area or street, a
particular waste bin is placed. Moreover, the fog node location will help us to
be aware of the location of the particular fog node. In code snippet-6, we have
created a method which generates the random values and these random value are
then assigned as x and y coordinate to the waste bins and fog nodes.

private static void createFogDevices (int userId, String appId)
FogDevice cloud = createFogDevice ("cloud", 44800, 40000, 100,
10000, 0, 0.01, 16%103, 16%83.25);

cloud.setParentId(-1) ;

fogDevices.add (cloud) ;

Simulating Fog Computing Applications Using iFogSim Toolkit 577

FogDevice router = createFogDevice ("proxy-server", 7000, 4000,
10000, 10000, 1, 0.0,

107.339, 83.4333);

router.setParentId(cloud.getId()) ;

// latency of connection between proxy server and cloud is 100 ms
router.setUplinkLatency (100.0) ;

fogDevices.add (router) ;

for (int i=0;i<numOfTotalAreas;i++) {

addArea (i+"", userId, appld, router.getId());

}

}

//creating the fog nodes for each area

private static FogDevice addArea(String id, int userId,
String appId, int parentId) {

FogDevice area_ fognode = createFogDevice("a-"+id, 5000, 4000,
10000, 10000, 3, 0.0, 107.339, 83.4333);
fogDevices.add(area_fognode) ;
area_fognode.setUplinkLatency(1.0) ;

for (int i:O;i<numOfBinsPerArea;i++){

String mobileId = id+"-"+1i;

FogDevice bin = addBin(mobileId, userId,

appld, area fognode.getId()) ;
bin.setUplinkLatency(2.0) ;

fogDevices.add (bin) ;

}

//assigning x coordinate value to the fog node
area_fognode.setxCoordinate (getCoordinatevalue (10)) ;
//assigning y coordinate value to the fog node
area_fognode.setyCoordinate (getCoordinatevalue (10)) ;
area_fognode.setParentId(parentId) ;

return area_fognode;

}

//creating the smart waste bins

private static FogDevice addBin(String id, int userId,
String appId, int parentId) {

FogDevice bin = createFogDevice ("b-"+id, 5000, 1000, 10000,
10000, 4, 0, 87.53, 82.44);

bin.setParentId (parentId) ;

Sensor sensor = new Sensor ("s-"+id, "BIN", userId, appld,
new DeterministicDistribution (getCoordinatevalue(5))) ;
sensors.add (sensor) ;

Actuator ptz = new Actuator ("act-"+id, userId,

appId, "ACT CONTROL") ;

actuators.add(ptz) ;

sensor.setGatewayDeviceId (bin.getId()) ;
sensor.setLatency (1.0) ;

ptz.setGatewayDeviceId (parentId) ;

ptz.setLatency(1.0) ;

//assigning x coordinate value to the smart bin
bin.setxCoordinate (getCoordinatevalue (10)) ;
//assigning y coordinate value to the smart bin
bin.setyCoordinate (getCoordinatevalue (10)) ;

return bin;

}

578

K. S. Awaisi et al.

Code Snippet-5 This code snippet is to be placed in main class.

private static Application createApplication

(String appId, int userId) {

Application
Application.

application =

createApplication (appId, userId);

application.addAppModule ("waste-info-module", 10);
application.addAppModule ("master-module", 10);
application.addAppModule ("recycle-module", 10) ;
application.addAppModule ("health-module", 10);
application.addAppModule ("municipal-module", 10);

application.addAppEdge ("BIN",
"BIN", Tuple.UP,
AppEdge . SENSOR) ;

application.addAppEdge ("waste-info-module",

1000, 2000, "Taskl",

Tuple.UP, AppEdge.MODULE) ;
application.addAppEdge ("master-module",
1000, 2000, "Task2",

Tuple.UP, AppEdge.MODULE) ;
application.addAppEdge ("master-module",
1000, 2000, "Task3",

Tuple.UP, AppEdge.MODULE) ;
application.addAppEdge ("master-module",
1000, 2000, "Task4",

Tuple.UP, AppEdge.MODULE) ;
application.addAppEdge ("master-module",
100, 28, 100, "ACT PARAMS",

Tuple.UP, AppEdge.ACTUATOR) ;

"waste-info-module", 1000,

2000,

"master-module",

"municipal-module",

"recycle-module",

"health-module",

"ACT_CONTROL",

application.addTupleMapping ("waste-info-module",

llBIN", "TaSkl",
new FractionalSelectivity(1.0));

application.addTupleMapping ("master-module",

new FractionalSelectivity(1.0));

application.addTupleMapping ("master-module",

new FractionalSelectivity(1.0));

application.addTupleMapping ("master-module",

new FractionalSelectivity(1.0));

application.addTupleMapping ("master-module",

new FractionalSelectivity(1.0)) ;

final AppLoop loopl =
{{add ("BIN") ;

"BIN", "Task2",
"BIN", "Task3",
"BIN", "Task4",
"BIN", "ACT_CONTROL",

new AppLoop (new ArrayList<Strings ()

add ("waste-info-module") ;add ("master-module") ;

add ("municipal-module") ;

add ("recycle-module") ;add ("health-module") ;

add ("ACT_CONTROL") ; } }) ;
List<AppLoop> loops =

application.setLoops (loops) ;
return application;

}

new ArrayList<AppLoop> () {{add(loopl);}};

Simulating Fog Computing Applications Using iFogSim Toolkit 579

Code Snippet-6 This code snippet is to be placed in main class. In this code snippet,
we have created a method will generate the random number.

private static double getCoordinatevalue (double min)

{

Random rn=new Random/() ;
return rn.nextDouble () +min;

}

Code Snippet-7 This code snippet is to be placed in FogDevice class. This code
snippet is taken from [5]. We have declared two variables xCoordinate, and
yCoordinate to store the value of x and y coordinate respectively.

public double xCoordinate;

//specifying the xCoordinate of the fog device
public double yCoordinate;

//specifying the yCoordinate of the fog device
//method to set the value of xCoordinate
public void setxCoordinate (double xCoordinate)

{

this.xCoordinate=xCoordinate;

}

//method to get the value of xCoordinate
public double getxCoordinate ()

{

return xCoordinate;

}

//method to set the value of yCoordinate
public void setyCoordinate (double yCoordinate)

{

this.yCoordinate=yCoordinate;

}

//method to get the value of yCoordinate
public double getyCoordinate ()

{

return yCoordinate;

}

3.3 Smart Mining Industry System

Mining is one of the most important and prominent industries that requires a lot of
data analysis. With every passing day, the enormity of mining industry is increasing
day by day. According to the IBM research [14], the requirement of mines increasing
day by day and every individual requires approximately 3.11 million pounds of
fuel, minerals, and metals in his/her life. Despite its significance, mining industry
entails multiple risks. During the mineral and coal mining, chemical reactions,
hazardous gas emission, suffocation, and rock sliding are among the probable
risks that are hazardous for the lives of mining personnel [16]. Therefore, it is
important to employ the IoT devices, such as heterogeneous sensors to pick up the

580 K. S. Awaisi et al.

gasinfo-module

Gas sensor data

Gas sensors \
/ Chemical sensors data

Chemical sensors —-P master-module - > chinfo-module l

Surrounding data / o s .

Response

collection sensors
Response

sninfo-module

Fig. 6 Fog based smart mining industry application model of iFogSim

gases, chemicals, and the surrounding data and to inform the concerned personnel
regarding the undesired and dangerous situations. The surrounding sensors will
collect the data before the digging process. This can also reduce cost and save
the energy by predicting the probability of finding coal and minerals at certain
places before the actual digging process. Gas sensors can be deployed everywhere
in the mines that cannot only help in measuring the biological gases value in the
mines and tunnels but also control the emission of gases. Moreover, numerous
chemical reactions occur in the mines which can be very dangerous for human
labors working in the mine. Therefore, collecting and analyzing the surrounding,
biological gases and chemical reactions’ data is very useful in the mining industry
in making predictions about the digging process and hazardous events.

Building Scenario with iFogSim for Smart Mining Industry System To sim-
ulate this case study, first make a new class in org.fog.test.perfeval package. In
the fog based smart mining industry, there would be heterogeneous sensors i.e.
surrounding sensors, biological sensors, and chemical sensors that are connected to
the fog nodes through a router device. In the fog nodes, we create four modules that
include: (1) master module, (2) gasinfo-module, (3) chinfo-module, and (4) srinfo-
module. The master-module will collect the sensors data from all type of sensors.
It will categorize the data and send the specific data to the respective modules. For
example, the gas sensors data will be sent to the gasinfo-moudule. The gasinfo-
module will process the gas sensors data, analyze the gas values, and it will send
the response back to the master-module. The response is basically the action, which
will be taken in account of gas sensors values. Figure 6 depicts the data flow of the
smart mining industry application model.

Simulating Fog Computing Applications Using iFogSim Toolkit 581

Building Simulation with iFogSim for Mining Industry System To simulate this
scenario, first make a new class in org.fog.test.perfeval package.

Code Snippet-8 This code snippet is to be placed in the main class. In this code
snippet we created the variables for fog devices and sensors. Three type of sensors
variables are created for biological, chemical and surrounding sensors. Moreover,
the modules are placed on the fog nodes. This code snippet should be added in the
main method after initializing the module mapping.

//Create the list of fog devices

static List<FogDevice> fogDevices = new ArrayList<FogDevices () ;
//Create the list of sensors

static List<Sensor> sensors = new ArrayList<Sensors();
//Create the list of actuators

static List<Actuator> actuators = new ArrayList<Actuators();
//Define the number of fog nodes will be deployed

static int numOfFogDevices = 10;

//Define the number of gas sensors with each fog nodes
static int numOfGasSensorsPerArea=1;

//Define the number of chemical sensors with each fog nodes
static int numOfChSensorsPerArea=1;

//Define the number of surrounding sensors with each fog nodes
static int numOfSrSensorsPerArea=1;

//We are using the fog nodes to perform the operations.
//cloud is set to false

private static boolean CLOUD = false;

public static void main(String[] args) ({

Log.printLine ("Waste Management system...");

try {
Log.disable ()
int num user 1; // number of cloud users

Calendar calendar = Calendar.getInstance() ;

boolean trace flag = false; // mean trace events
CloudSim.init (num user, calendar, trace_ flag);
String appId = "mins"; // identifier of the application
FogBroker broker = new FogBroker ("broker") ;
Application application =

createApplication (appId, broker.getId()) ;
application.setUserId (broker.getId()) ;
createFogDevices (broker.getId(), appld);

Controller controller = null;

// initializing a module mapping

ModuleMapping moduleMapping =
ModuleMapping.createModuleMapping () ;

for (FogDevice device : fogDevices) {

if (device.getName () .startsWith("a")) {
moduleMapping.addModuleToDevice ("master-module",
device.getName ()) ;

if (device.getName () .startsWith("g")) {
moduleMapping.addModuleToDevice ("gasinfo-module",
device.getName ()) ; }

if (device.getName () .startsWith("c")) {
moduleMapping.addModuleToDevice

582 K. S. Awaisi et al.

("chemicalinfo-module", device.getName()) ; }
if (device.getName () .startsWith("s")) {
moduleMapping.addModuleToDevice
("srinfo-module", device.getName()) ;

I8

// if the mode of deployment is cloud-based

if (CLOUD) {

// placing all instances of master-module in Cloud
addModuleToDevice ("mastermodule", "cloud") ;
moduleMapping.addModuleToDevice ("gasinfo-module", "cloud") ;
moduleMapping.addModuleToDevice ("chinfo-module", "cloud") ;
moduleMapping.addModuleToDevice ("srinfo-module", "cloud");}

controller = new Controller ("master-controller", fogDevices,
sensors, actuators);

controller.submitApplication(application,

(CLOUD) ? (new ModulePlacementMapping (fogDevices, application,
moduleMapping))

: (new ModulePlacementEdgewards (fogDevices, sensors, actuators,
application, moduleMapping))) ;

TimeKeeper.getInstance () .setSimulationStartTime (
Calendar.getInstance() .
getTimeInMillis()) ;

CloudSim.startSimulation () ;
CloudSim.stopSimulation() ;

Log.printLine ("mining industry simulation finished!");
} catch (Exception e) {

e.printStackTrace () ;

Log.printLine ("Unwanted errors happen") ;

}
}

Code Snippet-9 1t is to be placed in the main class. In this code snippet we are
creating cloud server, proxy server, fog nodes, gas sensors, chemical sensors, and
surrounding sensors.

private static void createFogDevices (int userId, String appId) ({
FogDevice cloud = createFogDevice ("cloud", 44800, 40000, 100,
10000, 0O, 0.01, 16%103,

16%83.25) ;

cloud.setParentId(-1) ;

fogDevices.add(cloud) ;

FogDevice router = createFogDevice ("proxy-server", 7000, 4000,
10000, 10000, 1, 0.0, 107.339, 83.4333);
router.setParentId(cloud.getId()) ;
router.setUplinkLatency (100.0) ;

fogDevices.add (router) ;

for (int i=0;i<numOfFogDevices;i++) {

addFogNode (i+"", userId, appId, router.getId());

}

Simulating Fog Computing Applications Using iFogSim Toolkit 583

}

private static FogDevice addFogNode (String id,

int userId, String appld, int parentId)

{

FogDevice fognode = createFogDevice("a-"+id, 5000, 4000, 10000,
10000, 3, 0.0, 107.339, 83.4333);

fogDevices.add(fognode) ;

fognode.setUplinkLatency(1.0) ;

for (int 1i=0;i<numOfGasSensorsPerArea;i++) {

addGasSensors (i+"", userId, appld, fognode.getId());

}

for (int i=O;i<numOfChSensorsPerArea;i++){

addChSensors (i+"", userId, appld, fognode.getId()) ;

}

for (int i:O;i<numOfSrSensorsPerArea;i++){

addSrSensors (i+"", userId, appld, fognode.getId()) ;

}

return fognode;

}

private static FogDevice addGasSensors (String id, int userId,
String appId, int parentId) {

FogDevice gasSensor = createFogDevice("g-"+id, 5000, 1000, 10000,
10000, 4, 0, 87.53, 82.44);
gasSensor.setParentId(parentId) ;

Sensor sensor = new Sensor ("s-"+id, "GAS", userId, appld, new
DeterministicDistribution(5)) ;

sensors.add (sensor) ;

Actuator ptz = new Actuator ("act-"+id, userId,

appId, "ACT CONTROL") ;

actuators.add(ptz) ;

sensor.setGatewayDevicelId (gasSensor.getId()) ;
sensor.setLatency (1.0) ;

ptz.setGatewayDeviceId (parentId) ;

ptz.setLatency(1.0) ;

return gasSensor;

}

private static FogDevice addChSensors (String id, int userId,
String appId, int parentId) {

FogDevice chSensor = createFogDevice("c-"+id, 5000, 1000, 10000,
10000, 4, 0, 87.53, 82.44);

chSensor.setParentId(parentId) ;

Sensor sensor = new Sensor ("sch-"+id, "CH", userId, appld,
new DeterministicDistribution(5)) ;

sensors.add (sensor) ;

Actuator ptzch = new Actuator ("actch-"+id, userId,

appId, "ACT_CONTROLCH") ;

actuators.add (ptzch) ;

sensor.setGatewayDeviceId (chSensor.getId()) ;
sensor.setLatency (1.0) ;

ptzch.setGatewayDevicelId (parentId) ;

ptzch.setLatency (1.0) ;

return chSensor;

}

private static FogDevice addSrSensors (String id, int userId,

584 K. S. Awaisi et al.

String appId, int parentId) {

FogDevice srSensor = createFogDevice("s-"+id, 5000, 1000, 10000,
10000, 4, 0, 87.53, 82.44);

srSensor.setParentId (parentId) ;

Sensor sensor = new Sensor ("ssr-"+id, "SR", userId, appld,
new DeterministicDistribution(5)) ;

sensors.add (sensor) ;

Actuator ptzch = new Actuator ("actsr-"+id, userId,

appId, "ACT_CONTROLSR") ;

actuators.add (ptzch) ;

sensor.setGatewayDeviceId (srSensor.getId()) ;
sensor.setLatency (1.0) ;

ptzch.setGatewayDeviceld (parentId) ;

ptzch.setLatency (1.0) ;

return srSensor;

}

Code Snippet-10 1t is to be placed in the main class. In this code snippet we are
creating the modules and mapping it to the fog devices.

private static Application createApplication(String appId,
int userId)

Application application = Application.createApplication(appId,
userId) ;

application.addAppModule ("gasinfo-module", 10);
application.addAppModule ("master-module", 10);
application.addAppModule ("chinfo-module", 10);
application.addAppModule ("srinfo-module", 10);
application.addAppEdge ("GAS", "master-module",1000,

2000, "GAS", Tuple.UP, AppEdge.SENSOR) ;
application.addAppEdge ("CH", "chinfo-module", 1000,

2000, "CH", Tuple.UP, AppEdge.SENSOR) ;

application.addAppEdge ("SR", "srinfo-module", 1000, 2000,
"gSR",

Tuple.UP, AppEdge.SENSOR) ;

application.addAppEdge ("master-module", "gasinfo-module",
1000, 2000,

"gasTask", Tuple.UP, AppEdge.MODULE) ;

application.addAppEdge ("master-module", "chinfo-module", 1000,
2000, "chTask", Tuple.UP, AppEdge.MODULE) ;
application.addAppEdge ("master-module", "srinfo-module", 1000,
2000, "srTask", Tuple.UP, AppEdge.MODULE) ;

//Response

application.addAppEdge ("gasinfo-module", "master-module",
1000, 2000, "gasResponse", Tuple.UP, AppEdge.MODULE) ;
application.addAppEdge ("chinfo-module", "master-module",

1000, 2000, "chResponse", Tuple.UP, AppEdge.MODULE) ;
application.addAppEdge ("srinfo-module", "master-module",

1000, 2000, "srResponse", Tuple.UP, AppEdge.MODULE) ;
application.addTupleMapping ("master-module", "GAS", "gasTask",
new FractionalSelectivity(1.0));

application.addTupleMapping ("master-module", "CH", "chTask",

new FractionalSelectivity(1.0)) ;
application.addTupleMapping ("master-module", "SR", "srTas",

Simulating Fog Computing Applications Using iFogSim Toolkit 585

new FractionalSelectivity(1.0));
application.addTupleMapping ("gasinfo-module",
"gasTask", "gasResponse",

new FractionalSelectivity(1.0));
application.addTupleMapping ("chinfo-module",
"chTask", "chResponse",

new FractionalSelectivity(1.0));
application.addTupleMapping ("srinfo-module",
"srTask", "srResponse",

new FractionalSelectivity(1.0));

final AppLoop loopl = new AppLoop (new ArrayList<Strings()
{{add ("cas") ;
add ("master-module") ;
add ("gasResponse") ; }
final AppLoop loop
{
)

d("gasinfo-module") ;add ("gasTask") ;

|chll) ;
("chinfo—module");

ArrayList<Strings (
add ("master-module"
add ("chTask")

;add ("chResponse") ; }}) ;

final AppLoop loop3 = new AppLoop (new
ArrayList<String> () {{add("SR") ;

add ("master-module") ;add ("srinfo-module")
;add ("srTask") ;add ("srResponse") ; }})
List<AppLoop> loops = new
ArrayList<AppLoops> () {{add (loopl) ;add (loop2)
;add(loop3) ;}};

—v[\)\

}
= new AppLoop (new
{

application.setLoops (loops) ;
return application;

}

3.4 Sensing as a Service

Nowadays Unmanned Aerial Vehicles (UAVs) are widely used to support on-
demand IoT services [15]. The sensors and actuators associated with an UAV helps
in perceiving the external environments and triggering physical actions respectively
where the structured deployment of IoT devices is infeasible and costly. However,
UAVs are mobile in nature and most of them are energy constrained and are
equipped with limited processing capabilities [17]. Therefore, the data generated
by the UAVs requires assistance from Fog or Cloud computing paradigms to be
processed. It also demands faster networking support for real-time interactions [18].
Considering these requirements, we model an application case scenario and build a
simulation setup to illustrate the UAV-based sensing as a service in integrated Fog-
Cloud environments.

Building Scenario with iFogSim for UAV-Based Sensing as a Service Figure7
depicts the conceptual integration of UAVs with gateways, Fog nodes and Cloud

586 K. S. Awaisi et al.

== —

. = _ "“' ;a . . i [[@
i _gi_lz_____----'"___--_--‘ o9 . Proxy server

Fog nodes Cloud datacentre

- Gateways
UAVSs

Fig. 7 Prospective computing environments for UAV-based sensing as a service
D_SENSOR
PROCESSED

% .‘ TION_COMMAND ACKNOWLEDGEMENT
Actuation .~y ATION SIGNA
module '

Fig. 8 Application model for UAV-based sensing as a service

data centers. Additionally, the data-driven interactions among these heteroge-
neous components can be realized through a distributed application as shown
in Fig.8 where the Sensing and Actuation module operate on the UAV-based
sensor and actuator, respectively. The Sensing module forwards D_SENSOR to
the Client module which is more likely to be placed in the UAV. Later, the
Client module performs pre-processing of the sensor generated data and dispatches
to the Processing module. This module incorporates data analytic that help in
transforming the RAW_DATA to a meaningful information suitable for evaluation,
comparison and making actuation decisions. After performing such operations, the
Processing module generates two types of data namely PROCESSED_DATA and
ACTION_COMMAND that are directed to Storage and Client module respectively.
The Storage module preserves the outcome of Processing module for location-
independent and scalable distribution whereas the Client module digest the outcome
for generating the ACTUATION_SIGNAL for the Actuation module.

Building Simulation with iFogSim for UAV-Based Sensing as a Service To
simulate the prospective UAV-based sensing as a service scenario, a new class in
org.fog.test.perfeval package is required to be created.

Code Snippet-11 This code snippet helps in creating the computing environments
for UAV-based sensing as a service and it should be placed in the main class.

private static void createFogDevices (int userId, String appId)

FogDevice cloud = createFogDevice ("cloud", 44800, 40000, 100,

Simulating Fog Computing Applications Using iFogSim Toolkit

10000,0.01, 16%103, 16%x83.25);

cloud.setParentId(-1) ;

locator.setLevel (cloud, 0);

FogDevice proxy = createFogDevice ("proxy-server", 2800, 4000,
10000, 10000, 0.0, 107.339, 83.4333);
proxy.setParentId(cloud.getId()) ;
proxy.setUplinkLatency (100) ;

locator.setLevel (proxy, 1);

fogDevices.add(cloud) ;
fogDevices.add (proxy) ;

for (int i=0;i<numOfGatewayDevices;i++) {
FogDevice gateway = addGw("gateway "+i,
userId, appId, proxy.getId());
gateway.setUplinkLatency (4) ;
locator.setLevel (gateway, 2);
fogDevices.add (gateway) ;

}

for (int i:O;i<numOroTDrones;i++){

FogDevice drone = addDrone ("drone "+i, userId, appld, -1);
drone.setUplinkLatency (2) ;

locator.setLevel (drone, 3);

fogDevices.add (drone) ;

}
}

private static FogDevice addGw (String name, int userId,
String appId, int parentId) {

FogDevice gateway = createFogDevice (name, 2800, 4000, 10000,
10000, 0.0, 107.339, 83.4333);

//locator.setInitiallocation (name,gateway.getId()) ;
gateway.setParentId (parentId) ;

return gateway;

}

private static FogDevice addDrone (String name, int userId,
String appId, int parentId) {

FogDevice drone = createFogDevice (name, 500, 20,

1000, 270, 0, 87.53, 82.44);

drone.setParentId (parentId) ;

//locator.setInitiallocation (name,drone.getId()) ;

Sensor droneSensor = new Sensor ("sensor-"+name, "D-SENSOR",
userId, appId,

new DeterministicDistribution (SENSOR TRANSMISSION TIME)) ;
sensors.add (droneSensor) ;

Actuator dronedisplay = new Actuator ("actuator-"+name, userId,

appId, "D-DISPLAY");

actuators.add (dronedisplay) ;
droneSensor.setGatewayDevicelId (drone.getId()) ;
droneSensor.setLatency (6.0) ;
dronedisplay.setGatewayDeviceId (drone.getId()) ;
dronedisplay.setLatency(1.0) ;

587

588 K. S. Awaisi et al.

return drone;

}

Code Snippet-12 This code snippet creates the application model for UAV-based
sensing as a service and it is also required to be placed in the main class.

private static Application createApplication(String appId,
int userId)

Application application =
Application.createApplication(appId, userId);

application.addAppModule ("clientModule", 10) ;

application.addAppModule ("processingModule", 10) ;
application.addAppModule ("storageModule", 10);

if (SENSOR_TRANSMISSION TIME==5.1)

application.addAppEdge ("D-SENSOR", "clientModule",
2000, 500, "D-SENSOR", Tuple.UP, AppEdge.SENSOR) ;
else

application.addAppEdge ("D-SENSOR", "clientModule",

3000, 500, "D-SENSOR", Tuple.UP, AppEdge.SENSOR) ;
application.addAppEdge ("clientModule",
"processingModule", 3500, 500, "RAW_DATA",
Tuple.UP, AppEdge.MODULE) ;

application.addAppEdge ("processingModule",
"storageModule", 1000, 1000, "PROCESSED DATA",
Tuple.UP, AppEdge.MODULE) ;

application.addAppEdge ("processingModule",
"clientModule", 14, 500, "ACTION COMMAND",
Tuple.DOWN, AppEdge.MODULE) ;
application.addAppEdge ("clientModule", "D-DISPLAY",
1000, 500, "ACTUATION SIGNAL", Tuple.DOWN,
AppEdge . ACTUATOR) ;

application.addTupleMapping ("clientModule™",
"D-SENSOR", "RAW_DATA",

new FractionalSelectivity(1.0));
application.addTupleMapping ("processingModule",
"RAW_DATA", "PROCESSED DATA",

new FractionalSelectivity(1.0));
application.addTupleMapping ("processingModule™",
"RAW_DATA", "ACTION_ COMMAND",

new FractionalSelectivity(1.0));
application.addTupleMapping ("clientModule",
"ACTION_COMMAND", "ACTUATION_ SIGNAL",

new FractionalSelectivity(1.0));

final AppLoop loopl = new AppLoop (new ArrayList<Strings()
{{add ("D-SENSOR") ;
add("clientModule") ;add ("processingModule") ;
add("clientModule") ;

Simulating Fog Computing Applications Using iFogSim Toolkit 589

add ("D-DISPLAY") ; }})

List<AppLoop> loops

new ArrayList<AppLoop> () {{add(loopl);}};

application.setLoops (loops) ;

return application;

}

4 Conclusions

In this article, we described the key features of iFogSim along with a step by step
installation and simulation guide to help researchers model and simulate difference
IoT and fog-based scenarios. To help readers gain a better understanding of the
iFogSim toolkit, we modeled four real-time case studies related to smart car parking,
smart waste management system, the smart mining industry and UAV-based sensing
as a service. Moreover, we provided the corresponding code snippets of every case
study. The simulation source codes of the case studies can be accessed from the link:
https://sites.google.com/site/assadabbasciit/.

References

1. R. Mahmud, K. Ramamohanarao, and R. Buyya, “Edge Affinity-based Management of

Applications in Fog Computing Environments,” in Proceedings - 12th [IEEE/ACM International
Conference on Utility and Cloud Computing, UCC 2019, 2019, pp. 61-70.

. S.Yi, Z. Hao, Z. Qin, and Q. Li, “Fog computing: Platform and applications,” in Proceedings

- 3rd Workshop on Hot Topics in Web Systems and Technologies, HotWeb 2015, 2016, pp.
73-78.

. L. Stojmenovic and S. Wen, “The Fog computing paradigm: Scenarios and security issues,” in

2014 Federated Conference on Computer Science and Information Systems, FedCSIS 2014,
2014, pp. 1-8.

. M. Afrin, M. R. Mahmud, and M. A. Razzaque, “Real time detection of speed breakers and

warning system for on-road drivers,” in Proceedings - IEEE International WIE Conference on
Electrical and Computer Engineering, WIECON-ECE 2015, 2015, pp. 495-498.

. R. Mahmud and R. Buyya, “Modeling and Simulation of Fog and Edge Computing Environ-

ments Using iFogSim Toolkit,” in Fog and Edge Computing, 2019, pp. 433-465.

. T. Qayyum, A. W. Malik, M. A. K. Khattak, O. Khalid, and S. U. Khan, “FogNetSim++: A

Toolkit for Modeling and Simulation of Distributed Fog Environment,” IEEE Access, vol. 6,
pp. 63570-63583, 2018.

. C. Sonmez, A. Ozgovde, and C. Ersoy, “EdgeCloudSim: An environment for performance

evaluation of edge computing systems,” Trans. Emerg. Telecommun. Technol., vol. 29, no. 11,
Nov. 2018.

. H. Gupta and R. Buyya, “iFogSim: A toolkit for modeling and simulation of resource

management techniques in the Internet of Things , Edge,” no. October 2016, pp. 1275-1296,
2017.

. K. S. Awaisi et al., “Towards a Fog Enabled Efficient Car Parking Architecture,” IEEE Access,

vol. 7, no. 1, pp. 159100-159111, 2019.

https://sites.google.com/site/assadabbasciit/

590

10.

11.

12.

13.

14.

15.

16.

17.

18.

K. S. Awaisi et al.

D. Hoornweg and P. Bhada-Tata, “What a waste: a global review of solid waste management,”
2012.

M. Aazam, S. Zeadally, and K. A. Harras, “Deploying Fog Computing in Industrial Internet of
Things and Industry 4.0,” IEEE Trans. Ind. Informatics, vol. 14, no. 10, pp. 4674-4682, 2018.
M. Aazam, M. St-Hilaire, C. H. Lung, and I. Lambadaris, “Cloud-based smart waste
management for smart cities,” in IEEE International Workshop on Computer Aided Modeling
and Design of Communication Links and Networks, CAMAD, 2016, pp. 188-193.

R. Mahmud, A. N. Toosi, K. Ramamohanarao, and R. Buyya, “Context-aware Placement of
Industry 4.0 Applications in Fog Computing Environments,” IEEE Transactions on Industrial
Informatics, vol. 16, no. 11, pp. 7004-7013, 2020.
“IBM”,https://www.ibm.com/blogs/internet- of-things/mining-industry-benefits/, Accessed on
August 14, 2020 .

M. Afrin, J. Jin, and A. Rahman, “Energy-delay co-optimization of resource allocation for
robotic services in cloudlet infrastructure,” in International Conference on Service-Oriented
Computing, 2018, pp. 295-303.

M. Afrin, J. Jin, A. Rahman, Y. Tian, and A. Kulkarni, “Multi-objective resource allocation for
Edge Cloud based robotic workflow in smart factory,” Future Generation Computer Systems,
vol. 97, pp. 119-130, 2019.

R. Mahmud, S. N. Srirama, K. Ramamohanarao, and R. Buyya, “Quality of Experience (QoE)-
aware placement of applications in Fog computing environments,” Journal of Parallel and
Distributed Computing, vol. 132, pp. 190-203, 2019.

A. N. Toosi, R. Mahmud, Q. Chi, and R. Buyya, “Management and Orchestration of Network
Slices in 5G, Fog, Edge and Clouds,” in Fog and Edge Computing, 2019, pp. 79-102.

https://www.ibm.com/blogs/internet-of-things/mining-industry-benefits/

	Simulating Fog Computing Applications Using iFogSim Toolkit
	1 Introduction
	2 Installation and Setup of iFogSim
	3 Case Studies
	3.1 Smart Car Parking System
	3.2 Smart Waste Management System
	3.3 Smart Mining Industry System
	3.4 Sensing as a Service

	4 Conclusions
	References

