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a b s t r a c t 

Recently much emphasize is given on integrating Edge, Fog and Cloud infrastructures to support the exe- 

cution of various latency sensitive and computing intensive Internet of Things (IoT) applications. Although 

different real-world frameworks attempt to assist such integration, they have limitations in respect of 

platform independence, security, resource management and multi-application execution. To address these 

limitations, we propose a framework, named FogBus that facilitates end-to-end IoT-Fog(Edge)-Cloud inte- 

gration. FogBus offers platform independent interfaces to IoT applications and computing instances for 

execution and interaction. It not only assists developers to build applications but also helps users to run 

multiple applications at a time and service providers to manage their resources. Moreover, FogBus ap- 

plies Blockchain, authentication and encryption techniques to secure operations on sensitive data. Due 

to its simplified and cross platform software systems, it is easy to deploy, scalable and cost efficient. 

We demonstrate the effectiveness of FogBus by creating a computing environment with it that inte- 

grates finger pulse oximeters as IoT devices with Smartphone-based gateway and Raspberry Pi-based 

Fog nodes for Sleep Apnea analysis. We also evaluate the characteristics of FogBus in respect of other ex- 

isting frameworks and the impact of various FogBus settings on system parameters through deployment 

of a real-world IoT application. The experimental results show that FogBus is comparatively lightweight 

and responsive, and different FogBus settings can tune the computing environment as per the situation 

demands. 

© 2019 Published by Elsevier Inc. 
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1. Introduction 

Internet of Things (IoT) paradigm enables different sensors, ma-

chines and objects to perceive external ambiance and exchange

data via Internet. It supports data integration and analysis us-

ing applications to identify events and trigger necessary actions

through actuators. Thus, IoT helps in building cyber-physical sys-

tems with limited human intervention in different application

domains such as healthcare, transportation, utility infrastructure,

agriculture and surveillance management services ( Gubbi et al.,

2013 ). It leads to the realization of smarter environments such as

smart health, smart cities, smart transport, smart grid, smart farm-

ing, and smart security enabling real-time decisions. For example,

surveillance for disaster detection and prevention needs IoT data

analysis to be completed within strict deadlines to enable response

teams for rapid and timely action. Based on current trends, it is
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xpected that by 2025 such smart environments will incorporate

ver 1 trillion IoT devices with 50% increased demand for latency

ensitive applications ( McKinsey & Company, May, 2018 ). 

By hosting applications for different smart systems, existing

loud datacenters can offer a possible way to deal with large num-

er of geographically distributed IoT devices ( Muhammad et al.,

017 ). However, Cloud datacenters reside at a multi-hop distance

rom IoT devices that increases communication delay in data

ransfer and application service delivery ( Afrin et al., 2015 ). For

atency-sensitive applications such as remote patient monitoring,

orest fire detection and traffic signal management, this high-

atency communication affects the service quality drastically.

oreover, IoT devices can generate huge amount of data within

inimal time. When large number of IoT devices simultaneously

ransfer data to Cloud datacenters through Internet, severe network

ongestion occurs. To overcome these limitations of Cloud-centric

oT model, Fog and Edge computing paradigms have been emerged

 Bonomi et al., 2012 ). Both utilize edge computing resources for

ecision making and executing IoT applications in real-time. Smart

https://doi.org/10.1016/j.jss.2019.04.050
http://www.ScienceDirect.com
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evices with computing processors such as Raspberry Pi devices,

ersonal computers, mobile phones, routers and micro-datacenters

an provide potential edge resources ( Mahmud et al., 2018b ).

ased on the operations running on edge resources, some consider

og and Edge computing paradigm similar and use them inter-

hangeably while others treat Edge computing as a subset of Fog

omputing ( Chang et al., 2019 ), which is in accord with the view

aken by us in this paper. 

Fog environment manages an intermediate layer between IoT

evices and Cloud datacenters, and supports a variety of IoT appli-

ations which exhibit different characteristics. Some of these appli-

ations are compute intensive while others are network or storage

ntensive. The computing instances of Fog are known as Fog nodes

nd deployed across the edge network in distributed manner.

hysical resources within Fog nodes, different service-oriented

rameworks and various application programs assist Fog to extend

loud-like service models such as Infrastructure as a Service (IaaS),

latform as a Service (PaaS) and Software as a Service (SaaS) closer

o the IoT data sources ( Yi et al., 2015b ). Consequently, it reduces

ervice latency and network congestion, and improves Quality

f Service (QoS) and user experience ( Mahmud et al., 2018c ).

owever, most of the Fog nodes are resource constrained and

eterogeneous in terms of their computing capabilities, operating

ystems and peer-to-peer communication standards ( Gupta et al.,

017 ). With limited resources, it is not possible to accommodate

very IoT application at the Fog layer. Therefore, seamless integra-

ion of IoT-enabled systems with Fog and Cloud infrastructures is

equired so that both edge and remote resources can be harnessed

ccording to the requirements of applications ( Mahmud et al.,

018a ). In this integration, Cloud-centric top-down approach for

anaging Fog-based resources becomes infeasible when IoT-data is

eceived at a higher frequency for processing. On such occurrence,

ather than relying on centralized resource management policies,

t is effective to take decisions locally and provision resources fol-

owing distributed bottom-up approach. Moreover, while placing

nd executing applications on integrated environment, both inter-

al and external operations get obstructed by the heterogeneity of

omputing instances. In this circumstance, platform independent

echniques can overcome the impediments of peer to peer commu-

ication and application runtime environment. Nevertheless, the

mplementation of an integrated environment going beyond the

nfrastructure and platform-level diversity with decentralized re-

ource management policies is a challenging task. Its complexity is

urther intensified due to coexistence of multiple decision-making

ntities, unaware network topology security and scalability issues. 

In literature, there exists a number of works implementing

oftware frameworks for integrating IoT-enabled systems, Fog

nd Cloud infrastructures ( Rahmani et al., 2018; Dubey et al.,

017; Yangui et al., 2016; Bruneo et al., 2016 ). However, these

rameworks barely support simultaneous execution of multiple

pplications and platform independence. Moreover, they offer

arrow scope to application developers and users to tune the

ramework according to individual requirements. These frame-

orks exploit Cloud resources for data storage and often compel

nergy constrained IoT devices to process the raw data. To reduce

he management overhead, existing frameworks apply centralized

echniques that eventually degrade the QoS. They also confine

he concentration on few security aspects which in consequence

ncreases vulnerability of the integrated environment. In order to

vercome such limitations of available frameworks, we develop a

ightweight framework named FogBus . 

FogBus allows an end-to-end implementation of integrated IoT-

og-Cloud environment by harnessing variety of edge network re-

ources. It supports platform independent application execution

nd node-to-node interaction. It is designed to assist in implemen-

ation of (a) different concurrent/application programming models
uch as SPMD (Single Program and Multiple Data), workflows and

treams and (b) resource management and scheduling policies for

xecuting these kinds of applications in Fog and Cloud integrated

omputing environments. To ensure data integrity, protection and

rivacy, FogBus also implements Blockchain ( Zyskind et al., 2015 )

nd applies authentication and encryption techniques which con-

equently increase its reliability. 

The major contributions of this work are as follows: 

• We propose a lightweight framework named FogBus for inte-

grating IoT-enabled systems, Fog and Cloud infrastructure to

harnesses edge and remote resources according to application

requirements. It applies Blockchain to ensure data integrity

while transferring confidential data. 
• We design a platform independent application execution and

node-to-node interaction architecture to overcome heterogene-

ity within the integrated environment. 
• We develop a prototype application system for Sleep Apnea

data analysis, evaluate characteristics of FogBus and illustrate

how an application (in healthcare domain) composed using

SPMD model can be realised using different settings of FogBus

to process IoT-data in integrated computing environment. 

The rest of the paper is organized as follows. Section 2 high-

ights key elements of existing frameworks and compare them

ith proposed framework. In Section 3 , the description of FogBus

ramework is provided. The design and implementation of FogBus

re discussed in Section 4 . In Section 5 a case study on Sleep Ap-

ea analysis is presented. Sections 6 and 7 look into evaluation of

ogBus in respect of framework characteristics and application de-

loyment respectively. Section 8 concludes the paper proposing fu-

ure works to improve FogBus. 

. Related work 

The existing frameworks that integrate different IoT-enabled

ystems with Fog and Cloud infrastructure are roughly classified

nto two types. The first type focuses on application specific proto-

ypes while the other offers generalized PaaS model. Table 1 pro-

ides a brief summary of these frameworks. 

Rahmani et al. (2018) develop a prototype-based framework

or IoT-enabled health-care system with an architecture of smart

ateways to facilitate local storage and data processing. In this

ramework, Cloud acts as a back-end infrastructure for data anal-

sis and decision making. The framework depends on operating

ystem-level security features. Another prototype framework for

mart health-care is developed by Dubey et al. (2017) . Intel Edi-

on and Raspberry Pi devices are used in the framework as Fog

odes. Through role-based authentication, it ensures data privacy.

n this framework, Cloud is partially adopted for storing data.

zimi et al. (2017) also discuss a hierarchical prototype framework

or health-care solutions. The health analytics are divided into two

arts and are placed separately in Cloud and Fog infrastructures.

he framework follows MAPE-K model to conduct the computa-

ions that supports execution of diverse applications and provides

ata encryption. 

Moreover, Gia et al. (2017) present a low-cost health mon-

toring framework to facilitate autonomic analysis of IoT data.

n the framework, IoT devices are computationally capable and

an pre-process raw data. They can also forward data to dif-

erent Fog nodes consuming less energy. In Fog layer, dis-

ributed database is managed for data categorization and security.

krivopoulos et al. (2017) develop another prototype framework

hat allows users to share health data and notify during emergency.

ach operation within the framework is managed by a Spark IoT

latform Core residing at the Cloud. The framework uses encryp-

ion and authentication techniques for security. 
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Table 1 

Summary of the literature study. 

Work Integrates Platform 

independent 

Security features Supports 

multi-applications 

Targets Decentralized 

management 
IoT Fog Cloud Integrity Authentication Encryption Developers Users 

Rahmani et al. (2018) � � � � � � � 

Dubey et al. (2017) � � � � � � 

Azimi et al. (2017) � � � � � � � � 

Gia et al. (2017) � � � � � � 

Akrivopoulos et al. (2017) � � � � � � 

Chen et al. (2017) � � � � 

Craciunescu et al. (2015) � � � � 

Hu et al. (2017) � � � � 

Yangui et al. (2016) � � � � � � � � 

Bruneo et al. (2016) � � � � � � � � 

Verba et al. (2017) � � � � � � � � 

Yi et al. (2015a) � � � � � � � 

Vatanparvar et al. (2015) � � � � � � � � 

Chang et al. (2017) � � � � � � � � 

Mohamed et al. (2017) � � � � � � � � � 

FogBus [this work] � � � � � � � � � � � 
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Chen et al. (2017) and Craciunescu et al. (2015) develop sepa-

rate prototype framework for smart city surveillance and gas-leak

monitoring system respectively. In both frameworks the Fog infras-

tructure conducts necessary data processing and decision-making

operations. Remote Cloud is partially adopted in these frame-

works for managing a record of IoT-data. However, the authors nei-

ther mention any security features nor techniques for managing

heterogeneity of the Fog nodes within the framework. Likewise,

Hu et al. (2017) omit the security issues of their developed proto-

type framework for face identification system. In this framework, a

centralized Cloud manages all resources of integrated environment

and offloads partial computational tasks to Fog infrastructure. After

completing tasks on Fog, only the results are sent back to Cloud for

further analysis and storage. 

To promote IoT, Fog and Cloud integration, a Cloud-centric PaaS

framework is developed by Yangui et al. (2016) that automates

the provisioning of applications. The PaaS facilitates developing

diverse applications, their deployment and management of Fog

nodes. The framework can deal with heterogeneity of the nodes.

In addition, security features from Cloud Foundry architecture are

extended in the framework. Similarly, Bruneo et al. (2016) propose

a Fog-centric PaaS framework named Stack4Things for deploy-

ing and executing multiple applications over computationally

sound IoT devices. There, Fog infrastructure acts as a centralized

programmable coordinator. The framework applies Cloud-based

security features and deal with diverse applications surpassing

heterogeneity of the instances. 

Moreover, Verba et al. (2017) propose a gateway architecture

that offers PaaS for integrating Fog nodes and IoT devices. The

gateways assist messaging communication with authentication.

The framework supports horizontal integration of gateways and

Cloud datacenters for application deployment and task migration.

Yi et al. (2015a) also propose a comprehensive Cloudlet-based PaaS

framework for integrated environment. The framework requires

resource-enriched Fog nodes to run and each node including IoT

devices are required to be virtualized. Existing authentication

techniques help to secure the framework operations. Additionally,

Vatanparvar et al. (2015) develop a PaaS framework that manages

electricity usage in a home and in micro grid levels over Fog

infrastructures. It deals with the heterogeneity of Fog nodes and

IoT devices, and encrypts data. 

The PaaS framework called Indie Fog proposed by

Chang et al. (2017) utilizes user’s networking devices to execute

IoT applications. In this framework, core services and resource

management instructions are extended from Cloud datacenters to

Fog nodes based on application requirements. It supports Cluster
f Fog nodes and incorporates user’s hand-held devices. For secu-

ity, it runs a registry service. Mohamed et al. (2017) also discuss

 service-oriented framework for managing smart-city based

ervices through Fog and Cloud infrastructures. In this framework,

ervices are classified in two types. The first one manages the

ore operations of the framework including resource management

nd security. and another type incorporates the requirements of

pecific applications. The security of the framework is ensured

y authentication and access control mechanisms. In aforemen-

ioned frameworks, security issues are exploited from narrow

erspective and computing capabilities of both edge and remote

esources have not been fully leveraged. Due to pushing compu-

ation towards IoT devices or resource enriched Fog nodes, their

verall deployment cost and energy consumption also increase. In

ddition, most of the frameworks overlook heterogeneity within

omputing infrastructures and it is difficult for them to support

ultiple applications simultaneously. However, our proposed

ogBus framework offers service tuning facility to both users and

roviders. It ensures data integrity through Blockchain and assists

ser authentication and data encryption side by side. FogBus

xpands the execution platform for different applications from

esource constrained Fog nodes to Cloud datacenters going beyond

heir diversity. 

. Fogbus framework 

The FogBus framework integrates diverse hardware instruments

hrough software components that offer structured communica-

ion and platform independent execution of applications. High

evel view of integrated IoT-Fog-Cloud environment using FogBus

s shown in Fig. 1 . It includes the following elements. 

.1. Hardware instruments 

The hardware instruments such as IoT devices, Fog Gateway

odes (FGN), Fog Computational Nodes (FCN) and Cloud datacen-

ers that form the base for FogBus are discussed below. 

IoT devices : IoT devices contain sensors that perceive the exter-

al environment and actuators that convert any given command

o physical actions. Usually, IoT devices are energy and resource

onstrained and act as mere data producer or consumer. In some

ases, IoT devices are equipped with limited computation capabil-

ties to pre-process raw data. FogBus allows IoT devices to con-

ect with proximate gateways via wireless or wired communi-

ation protocols such as Zigbee, Bluetooth and NFC. The sensing
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Fig. 1. High level view of integrating IoT-Fog and Cloud through FogBus framework. 
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requency of IoT devices can be tuned according to context of the

ystem where the format of IoT-data varies from device to device. 

Fog Gateway Nodes (FGN) : In FogBus, Fog Gateway Nodes

FGN) are the entry points of distributed computing infrastruc-

ures. FGNs assist IoT devices to get configured with integrated

nvironment for placing and executing corresponding applications.

hrough FGNs, FogBus offers front-end program of applications so

hat users can set authentication credentials, access the back-end

rogram, convey service expectations, receive service outcome,

anage IoT-devices and request resources according to their af-

ordability. In addition, FGNs operate data filtration and organize

hem in a general format. FGNs also aggregate the data received

rom different sources of a smart system. For large scale pro-

essing, FGNs forward the data to other computing instances of

ntegrated environment. FGNs maintain rapid and dynamic com-

unication with accessible Fog nodes through either Constrained

pplication Protocol (CoAP) or Simple Network Management

rotocol (SNMP) ( Slabicki and Grochla, 2016 ). 

Fog Computational Nodes (FCN) : FogBus can deal with many

eterogeneous Fog Computational Nodes (FCNs) simultaneously.

CNs are equipped with processing cores, memory, storage and

andwidth to conduct various FogBus operations. Based on these

perations, FCNs perform three different roles: 

1. Broker nodes : To run the back-end program of IoT-

pplications, FogBus facilitates corresponding FGNs to connect with

ny of the accessible FCNs. This FCN initiates data processing

rovided that required resources for the application are available

ithin it. If it fails to meet the application’s requirements, as a bro-

er node it communicates with other FCNs and Cloud datacenters

o provision necessary resources for executing the back-end pro-

ram. In this case, it distributes the computational tasks over com-

uting instances, seamlessly monitors and coordinates their activ-

ties, and conducts load balancing. FogBus supports such broker

odes with adequate security features and fault tolerant techniques

uch as Blockchain and replication so that they can ensure reliabil-

ty while interacting with FGNs, FCNs and Cloud datacenters. 

2. General Computing Nodes (GCNs) : For security issues, FogBus

oes not expose all FCNs directly to FGNs. They are used for gen-

ral computing purposes and accessible via broker nodes. In this

ase, broker nodes work as firewall for GCNs. Besides, broker nodes

xplicitly manage their resources and forwards the data along with

xecutable back-end applications for processing. GCNs form clus-

ers under the supervision of specific broker node while execut-

ng distributed applications. A GCN can relate to multiple broker

odes. In this case, basic Vector Clocks are used for synchronizing

he system ( Bravo et al., 2015 ). Vector Clocks help GCNs to iden-

ify the concurrent commands issued to them by different broker
 t  
odes. Later, the concurrent commands are arbitrarily ordered by

CNs and corresponding broker nodes are notified. While carry-

ng out a command, GCNs interact with associated broker node in

ne-to-one manner. Furthermore, to ensure application-level con-

istency, a GCN executes at most one application at a time. 

3. Repository nodes : Apart from conducting brokering and com-

uting operations, some FCNs manage distributed database to fa-

ilitate data sharing, replication, recovery and secured storage. The

epository nodes offer interfaces for instant access and analysis of

istorical data. They maintain meta-data of various applications in-

luding application model, runtime requirements and dependen-

ies. Moreover, these nodes can preserve some intermediate data

uring application execution so that data processing can be started

rom any anomaly-driven stopping point. In addition, to ensure

ata-level consistency, repository nodes manage all data in a log

tructured manner which is driven by their updating timestamp

nd source. 

Cloud datacenters : When Fog infrastructure becomes over-

oaded or service requirements are latency-tolerant, FogBus ex-

ends resources from Cloud datacenters to execute back-end IoT

pplications. Through Cloud datacenters, FogBus expands the com-

uting platform for IoT applications across the globe. In association

ith Fog repository nodes, it facilitates extensive data storage and

istribution so that access and processing of data become location

ndependent. 

.2. Software components 

To simplify IoT-Fog-Cloud integration, FogBus provides various

nterrelated software components that can deal with Operating

ystem(OS) and peer to peer (P2P) communication-level hetero-

eneity of different hardware instruments. These components are

roadly classified into three types of System Services . The Broker

ervice manages the functionalities of a broker node and initiates

ther software components according to the necessity, whereas the

omputing service is responsible for controlling the operations of

 GCN. When a broker node itself starts the execution of back-

nd applications, the computing service is triggered within it. Con-

ersely, Repository service can run across all the Fog nodes to

anage repository-related operations. The interaction among dif-

erent FogBus software components are presented in Fig. 2 . The

etails of FogBus software components are discussed as follows. 

.2.1. Broker service 

Broker Security Manager : After receiving user’s authentication

redentials from a FGN, the Broker Security Manager verifies

hem in association with Credential Archive of Repository Service.
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Fig. 2. Interaction of different software components within FogBus. 
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The Credential Archive also assist this component with required

security certificates for remote Cloud integration. The Broker

Security Manager generates the public and private key value pairs

to facilitate port knocking, privileged port authentication and

attribute-based encryption for securing the communication of

corresponding broker node with other Fog nodes. Additionally, this

component acts as the Blockchain interface for ensuring integrity

while exchanging data with multiple entities. In this case, with

the help of Data Manager it creates new blocks from the received

data. The hash values and proof-of-work for each block are sent

to Credential Archive for distributing among other nodes so that

consistent verification of the chain can be ensured at different

destinations. The Broker Security Manager along with Credential

Archive and Executor Security Manager of Computing service

manage further security issues within FogBus and offers other

components flexible accesses to the required information. 

Resource Manager : This component is responsible for select-

ing suitable resources to execute applications. It identifies the re-

quirements of different applications from Application Catalogue of

Repository service and perceives the resource status within each

broker and GCN through Resource Monitor of Computing service.

Cloud Integrator assists Resource Manager with contextual data of

Cloud-based instances such as virtual machines and containers. Af-

ter attaining all information, Resource Manager provisions required

resources on FCNs and Cloud for applications. In this case, Re-

source Manager explicitly considers the heterogeneity of comput-

ing instances in terms of their processing capabilities. Application

Executor from Computing service and internal software system of

FCNs and Cloud respectively help the Resource Manager to provi-

sion resources. FogBus facilitates service providers to apply vari-

ous policies with Resource Manager during resource provisioning.

In addition, this component maintains a resource configuration file

that tracks the addresses of FCNs and Cloud instances along with

deployed applications so that subsequent data streams can directly

be sent to the allocated resources for processing. This file is also

shared with Cloud for recovering the placement information dur-

ing failure of the corresponding nodes. 

Data Manager : This component receives the sensed and pre-

processed data from the IoT devices. It can also aggregate data

from multiple sources and calibrate data receiving frequency ac-

cording to the context. However, with this data, blocks and their

chains are created for maintaining integrity in association with the

Broker Security Manager. Later it forwards the data to Application

Executor of Computing service for processing and stores them in
ncrypted manner on Data Container of Repository service for fur-

her use. After deployment of applications on allocated resources,

esource Manager shares the resource configuration file to Data

anager so that it can directly send subsequent data stream to the

rocessing destination. 

Cloud Integrator : All interactions of FogBus with Cloud are

andled by Cloud Integrator. It notifies the context of Cloud in-

tances to the framework and forwards the storage and resource

rovisioning commands to the Cloud. Through this component,

ogBus not only offers interface to providers for developing cus-

omized Cloud-integration scripts but also allows third-party soft-

are systems such as Aneka Calheiros et al. (2012b) to deal with

ultiple Cloud datacenters simultaneously using their Application

rogramming Interfaces (API). 

.2.2. Repository service 

Credential Archive : User’s authentication credentials, that are

et during IoT device configuration, are preserved in Credential

rchive. It distributes the security keys and details of each data

lock generated by the Broker Service to others. This component

lso provides the Secure Socket Layer (SSL) and Transport Layer

ecurity (TLS) certificates for Cloud integration. In addition, it sup-

orts Data Container for encrypting and decrypting the stored data.

hrough Cloud Dilator of Repository service, it periodically updates

ts image on Cloud so that security attributes can be recovered and

istributed among others easily after uncertain failure occurs. 

Application Catalogue : This component is responsible for main-

aining the details about various types of applications including

heir operations, recommended system properties from their de-

elopers, execution and programming model. Moreover, it specifies

esource requirements and dependencies of the applications and

heir member tasks. The Application Catalogue can extend this in-

ormation from Cloud through Cloud Dilator. Based on its provided

pecifications, Resource Manager of Broker service provisions re-

ources for an application. According to the commands of Resource

anager, it also assembles applications on allocated resources in

ssociation with the Application Executor of Computing service. 

Data Container : Data received from IoT devices are stored in

ata container so that it can be used for long term analysis. Here,

ata privacy is ensured by applying encryption techniques. During

pplication execution, it also receives some intermediate data from

pplication Executor that helps FogBus to restart the processing

f data from any halting point. Moreover, in FogBus, the schema

f Data Container based databases can be customized and shared

ccording to the requirements of different IoT-enabled systems. In

ddition, Data Container maintains simultaneous association with

loud Dilator to grasp the remote data and disperse the local data

hrough Cloud. 

Cloud Dilator : This component facilitates other software com-

onents of Repository service to interact with Cloud. In this case,

he Cloud Integrator of Broker service assists Cloud dilator with re-

uired commands for extending application specifications, transfer-

ing security attributes and exchanging data. 

.2.3. Computing services 

Executor Security Manager : While conducting computing op-

rations, the seamless secured interactions of an FCN with oth-

rs are managed by the Executor Security Manager. The Credential

rchive of Repository service assist this component with required

ecurity attributes. Along with Credential Archive and Broker Se-

urity Manager, this component plays a significant role in verifying

he Blockchains. 

Resource Monitor : Both busy and idle status (for example: CPU

sage, memory occupation, network utilization, power consump-

ion, etc) of computing resources are monitored by this compo-

ent in association with the Application Executor. Based on these
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Fig. 4. Ensuring reliability in FogBus framework. 
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erceived information, Resource Manager provisions resources for

ifferent applications. It also tracks performance of allocated re-

ources in meeting QoS requirements of applications during run-

ime. Whenever the load on resources exceeds a threshold value

efined by service providers or uncertain failure occurs, this com-

onent immediately notifies Resource Manager. To deal with such

cenarios, Resource Manager can initiate some actions such as dy-

amic resource provisioning, application execution migration and

ntermediate data storage. However, in current version of FogBus,

hese actions are kept in abstract form so that FogBus users can

ustomize their resource management policy according to the sys-

em’s context. Nevertheless, this component conducts necessary

perations to achieve synchronization on the system. 

Application Executor : Based on the provisioning instructions is-

ued by the Resource Manager, this component allocates resources

or different applications on corresponding FCN. It also extends the

pplication executables from Application Catalogue for deployment

n allocated resources. Once the application deployment is con-

ucted, it begins to receive data forwarded by Data Manager for

rocessing. In addition, this component periodically informs the

tatus of resources to the Resource Monitor. When any anomaly

s detected or predicted, this component is asked by the Resource

anager to extract intermediate data from application execution

nd store them on Data Container to make the framework fault

olerant. 

.3. Network structure 

The software components of FogBus share numerous data and

nformation among themselves. To facilitate their interplay, persis-

ent and stable network communication among hardware instru-

ents of the framework is necessary. It is also required to ensure

hat hardware instruments do not become overwhelmed with the

ommunication burden. In addition, the FogBus networking should

e secured, scalable and fault tolerant. Taking cognizance of these

acts, we design the FogBus network structure as shown in Fig. 3 .

ifferent aspects of the network structure are described as follows.

Topology : The master-worker topology is applied in designing

he network structure for FogBus framework. Here, broker nodes

re the masters while other FCNs function as the workers . Be-

ng master, a broker node receives the data stream and user infor-

ation from the FGNs and discovers workers for processing and

toring them. During application runtime it manages functional-

ties of the workers and delivers the service result to FGNs de-

ived from application execution. In addition, it connects the Fog

nfrastructure of a FogBus enabled system with the Cloud infras-

ructure. To foster data sharing and reduce overhead from the mas-
Fig. 3. Network Structure of FogBus framework. 
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ers, worker nodes also communicate among themselves under the

xplicit supervision of the masters. The masters, workers and FGNs

f a FogBus-enabled system relate to a common wireless local area

etwork (WLAN) that is managed by one or multiple routers. 

Scalability : FogBus framework allows service providers to scale-

p the number of active Fog nodes according to context of the sys-

em. An FCN connected with the same WLAN can simply become

 worker by making itself accessible to the corresponding master.

ater, the master configures required software components on that

CN to conduct desired operations. The FogBus supports coexis-

ence of multiple masters in a WLAN so that FGNs can get diverse

ptions to dispatch the data streams for processing. The masters

lso share workers among themselves. In this case, the data in-

egrity and privacy are not affected since each master maintains

ts own chain of blocks and separate database on the workers. In

ddition, the software components running at the masters facilitate

og infrastructure to integrate with multiple Cloud datacenters si-

ultaneously. 

Reliability : The facility of running multiple masters implicitly

radicates the inherent single point failure limitation of master-

orker model within FogBus. Vector Clock-based synchronization

nd one-to-one interaction during application execution and data

anagement support explicit isolation and consistency of their in-

ividual operations on different worker nodes. The framework al-

ows each master to replicate its image over one of the worker

odes. During uncertain failure of that master, this replication

elps corresponding worker to get the master privileges and de-

end the collapse of communication network as shown in Fig. 4 .

ere, the platform-independent characteristic of FogBus software

omponents plays the key role. The masters also periodically check

tatus of its workers and store their intermediate data and configu-

ations including deployed applications in different places. When a

orker fails, the masters share the worker’s information with other

orkers so that residual data processing can start immediately. If

ll the workers of a master are overloaded, workers of other mas-

ers are considered. In this case, all the masters maintain an in-

ernal communication among themselves. Thus, the computation

acility remains always available within the framework. 

Security : The inclusion of FGNs and FCNs in FogBus provided

etwork require proper authentication. It is explicitly handled by

he routers managing the WLAN. The masters also apply network

evel access control and packet filtration techniques to resist the

etwork infrastructure from being compromised and eliminate the

alicious contents. In FogBus, multiple communication links also

xist to reach different Fog nodes. It eventually helps to read-

ust the routing path when any network anomaly is perceived.

loud provided network security policies are further used in Fog-

us framework while interacting with different Cloud infrastruc-

ures. 

Performance : FogBus framework utilizes the network band-

idth dedicatedly for a specific system. Since the network re-

ources are not shared with external entities, the overall perfor-

ance of the system from network perspective does not degrade.
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If the service providers intent to increase the number of FCNs in

the framework, requirements for additional network resources will

not be very high as well. In addition, it facilitates easy deploy-

ment of the Fog nodes and faster service delivery to the users. As

a localized network, its throughput also remains at an acceptable

level with the course of time. Additionally, FogBus supports peri-

odic adjustment of network resources so that it can deal with any

frequency and volume of incoming traffic. Moreover, the network

structure of FogBus does not depend much on external hardware

instruments for managing and configuring the network operations

that implicitly reduce the capital and the operational expenditure

for the service provider. 

4. Design and implementation 

The APIs, execution environment, scripting and programming

languages that are used in FogBus, can be supported by each hard-

ware of the integrated environment. It eventually helps FogBus

to function beyond their OS and P2P communication-level hetero-

geneity. The implementation of different FogBus elements are de-

scribed as follows. 

4.1. System services 

Each System Service (Broker service, Repository service and

Computing service) of FogBus is divided into Service Interface and

Management Activity . At masters, the Service Interface assists in

receiving data and user’s specifications from the gateway devices

and presents the service results. Service providers also notify

the workers IP addresses to masters through this interface. The

Management Activity within the master contains the resource

provisioning and load balancing policies, and updates the config-

uration files. Additionally, it generates and forwards commands

to the workers. The Service Interface at workers functions as a

receptor of the corresponding node and is responsible to decode

the output file of applications to masters. Based on the master’s

commands, the Management Activity at worker functions resource

allocation, monitoring and status sharing. It also stores data in

relational databases and creates input file for back-end program

of applications. Apart from Blockchain, Service Interface and Man-

agement Activity of different System Services jointly handle other

security aspects such as encryption and authentication for both

masters and workers in FogBus. 

In FogBus, Service Interface of each System Service is im-

plemented as web programs. They are developed on PHP, an

HTML-embedded server-side scripting language and use HTTP pro-

tocol based RESTful APIs to exchange data and share information

among different FCNs within the WLAN. PHP based web programs

can function in every operating system such as Unix, Windows,

Linux and NetWare. On the other hand, HTTP is an application

layer protocol that can be adapted to run with different transport

layer protocols such as TCP and UDP. Besides, most of the embed-

ded, networking and IoT devices are either designed with built-in

protocol stacks for HTTP communication or support their easy

installation. Thus, the Service Interface of a FogBus System Service

can run across different types of OSs and P2P communication

standards. In FogBus, an Apache server is also deployed in each

FCN to run the web programs of corresponding System Service.

Furthermore, in FogBus, the Management Activity of each System

Service is developed in Java programming language. Compiled

Java programs run on Java Virtual Machine (JVM), which can

be installed easily across various OSs. Hence, the Management

Activity of a FogBus System Service functions in wide range of

platforms. In addition, MySQL servers are installed in different

FCNs of FogBus to manage databases and their operations. 
.2. Blockchain 

Maintaining integrity of data and ensuring that data is not sent

y an unregistered source are very important for credibility of the

ystem. For data integrity and data prevention from tampering,

lockchain technology is recently adopted in many real-time sys-

ems Zyskind et al. (2015) . Theoretically, Blockchain is a set of dis-

ributed ledgers that can be programmed to record and track the

alue of anything. In Blockchain, whenever new data is received

y an entity of the distributed system, it forms the data into a

lock. This block possesses a hash value that is usually created

y using the corresponding data, index of the block in the chain,

he timestamp of the data reception and the hash of its previous

lock within the chain. Additionally, the node mines the block with

ther blocks of the chain to create a proof-of-work for that block

o that its hash follows a similar pattern with others. Later, the

ata, copy of the block is sent to other nodes for linking with their

ocal chains. In this operation, nodes mine the block to certify the

roof-of-work. Digital signature is also used to verify source of the

lock at the destination. However, if the data of any block is altered

n a node, the hash of that block will change and mismatch with

ts hash saved in the next block. As a consequence, the later part of

he chain will become invalid. To make the chain valid again, hash

f the invalid blocks is required to be recalculated. Besides, the

roof-of-work of each block requires to be generated again. Both

perations are time consuming and compute intensive. Moreover,

his fraudulent manipulation of data in a Blockchain will not be

uccessful unless 50% of its distributed copies are individually re-

ormed by following the same set of operations. Thus, it becomes

ery hard to alter any data in Blockchain within rigid time limit

 Swan, 2015 ). 

In FogBus, the masters create the blocks from received data

nd calculate the hash of each block based on the data, hash of

he previous block, timestamp and a nonce value using SHA256

lgorithm ( Brownworth, 2017 ). Masters also create random pub-

ic/private key pairs that help to generate unique signatures with

he original data. Later, they share Blockchain details, digital sig-

ature attributes and the data in Base64 encoding format with

orkers. With the received public key of the masters, the work-

rs can verify that the data is coming from a legitimate source.

f any other key is used, that data is rejected. The public-private

ey pair in this case is kept dynamic per block to prevent the gen-

ration of private key using brute force techniques. Additionally,

ach block and its hash are verified at the workers by mining the

once value that supports the proof-of-work. If any worker reports

rror in terms of Blockchain tampering or signature forgery, then

he Blockchain in majority of the network is copied to that node.

ogBus also offers users and providers to track the data/block flow

hrough the Service Interface running at masters by displaying the

atest hashes of the Blockchain copy at each worker. Thus, it helps

sers and providers to take necessary action on suspicious activity

ithin the FogBus network. In FogBus, the Blockchain is developed

n Java programming language and in different FCNs of FogBus, this

tility directly interacts with the corresponding System Service. 

.3. Cloud plugin 

In FogBus, the Service Interface running at master prompts the

ser to specify their intention regarding Cloud integration for data

rocessing. If users wish to extend Cloud resources for compu-

ation, only then the Cloud Plugin of FogBus which is deployed

n the master, becomes activated. For other operations such as

torage and distribution, the Management Activity at masters di-

ectly communicates with the Cloud. However, FogBus offers flex-

bility to providers for using different customized or third-party

loud Plugin services to integrate Cloud and Fog infrastructure for
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omputing purposes. In the case of running a third-party Cloud

lugin service, the master is configured according to the require-

ents of that plugin. However, to develop customized plugin, it

s preferable to use cross-platform programming languages. In the

urrent version of FogBus, Aneka, a third-party software is used for

loud integration to perform computational operations. 

Aneka is a PaaS framework for facilitating the management

f Cloud-based applications ( Calheiros et al., 2012b ). The Aneka

ramework functions in a service-oriented manner. It is equipped

ith a set of software components to configure, operate, and mon-

tor an Aneka-Cloud environment. The Aneka-Cloud can be formed

ith heterogeneous instances from either public or private, or hy-

rid Cloud. Aneka offers the developers diverse APIs for provi-

ioning and scheduling both physical and virtual resources in the

neka-Cloud. Developers formulate the logic of applications using

ifferent programming models and set the runtime environments

or their deployment and execution. Currently Aneka platform sup-

orts the Bag of tasks, Distributed threads, MapReduce and Param-

ter sweep model. In the Aneka-based Cloud plugin of FogBus, IP

ddresses of Cloud instances are specified by the providers. This

lugin can initiate both task and thread model in Aneka-Cloud to

onduct data processing on single and multiple Cloud instances re-

pectively ( Calheiros et al., 2012a ). 

According to the built-in resource provisioning policy of Fog-

us, at first Fog infrastructure is exploited to process data. If load

n Fog infrastructure increases up to a threshold value, the appli-

ation and its input data stream is referred to Cloud infrastructure.

or the second case in FogBus, the Management Activity at a mas-

er stores the data in a Cloud input file. The Aneka-based Cloud

lugin at the master parses this file in every 500 milliseconds of

olling period and checks for the pending data for processing. If

ny pending data exists, it forms either a task or threads; encap-

ulating the data at Aneka-Cloud and launches to one or multiple

loud instances. In this case, Blockchain is also applied to ensure

ata integrity. 

.4. Application 

FogBus supports execution and deployment of applications of

ifferent IoT-enabled systems. In FogBus these applications are di-

ided into front-end and back-end program. Although applications

re not the part of FogBus software components, FogBus offers de-

elopers some guidelines to build their front-end and back-end

rograms aligned with the features of FogBus framework. The re-

uired specifications of front-end and back-end program of appli-

ations are described as follows. 

.4.1. Front-end program 

The front-end program of applications runs in FGNs. The un-

erlying platform of most of the FGNs are Android, iOS, Win-

ows, Tizen, WebOS and RTOS. In this case, the programming lan-

uage for developing the front-end program should be supported

y these platforms. Moreover, for some applications, front-end pro-

ram requires to store data temporarily. On that note, the develop-

rs should use compatible database system and schema to these

latforms. Besides, the front-end program deals with the incoming

ata from IoT devices. The majority of IoT devices run Bluetooth

ow Energy network technology for communication as they are en-

rgy constraint. To handle this issue, the front-end program should

upport both general and low energy Bluetooth interactions. In

ogBus framework, front-end program is directly correlated with

he Service Interface running at the masters for forwarding IoT

ata and user information, and receiving the service outcome. For

implicity of these interactions, the user interface of front-end pro-

ram can be designed in such a way that easily parses the web

rograms of master’s Service Interface. 
.4.2. Back-end program 

In FogBus, the back-end program of applications is executed in

he FCNs. Since the FCNs are distributed, to fully leverage their

apabilities it is preferable to build the back-end program in dis-

ributed manner. In this case, modular development of back-end

rogram can be applied by the developers. In addition, the execu-

ion of back-end program should not be obstructed by the OS-level

eterogeneity of FCNs. To address this issue, developers can use

ross platform programming languages such as Java to develop the

ack-end program. While developing the back-end program some

pecific points within the script should be specified so that ap-

lication’s intermediate data on those points can be stored during

xecution. Furthermore, the back-end program should be able to

xtract the input file and update the output file at the workers. 

. A case study: sleep apnea analysis 

In this work, FogBus framework has been adopted for deploying

nd executing a real-world application named Sleep Apnea Analysis .

leep Apnea is a disease in which air stops flowing into the lungs

or 10 seconds or even longer period during sleep. Hence, it re-

uces oxygen level in blood of the patient, downs the heartbeat

ate and resembles that the patient has stopped breathing. It can

appen very frequently and create severe obstruction in sound-

leep of the patient. Furthermore, if oxygen saturation becomes

ignificantly low for aged and asthma patients, Sleep Apnea could

rovoke cardiac failure or brain stroke. However, Sleep Apnea is a

ery common disease although most of the people either ignore

r unaware of it. To determine the intensity of Sleep Apnea, it is

equired to monitor oxygen saturation rate in blood time to time.

f the intensity becomes higher than normal, it is recommended

o consult with the Doctor before it occurs other complications

 He et al., 1988 ). 

Usually, Sleep Apnea analysis is difficult and cumbersome since

t requires an overnight sleep study to grasp the necessary data. In

his procedure, pulse oximeter and Electrocardiogram (ECG) ma-

hines are hooked up with various parts of the patient’s body dur-

ng sleep time. Based on the received peripheral capillary oxygen

aturation, SpO2 and ECG data, the doctors determine Apnea Hy-

opnea Index (AHI) of the patients that presents the Sleep Apnea

ntensity in proportional manner. Currently, to conduct the Sleep

pnea analysis, hospital or laboratory-based machineries are re-

uired which are expensive to own by individuals. Besides, this

nalysis becomes very latency sensitive while critical patients are

eing monitored. Therefore, we develop a prototype for low cost

leep apnea analysis using FogBus framework that gathers both

pO2 and heart beat rate from a finger pulse oximeter ( Nigro et al.,

011 ) and harness local resources for their processing. It is afford-

ble for patients, easily configurable and provides faster results

ompared to Cloud-based processing. The detail of FogBus-enabled

leep Apnea analysis prototype is described as follows. 

.1. System configuration 

The system setup for FogBus-enabled Sleep Apnea analysis pro-

otype is presented in Fig. 5 . The configuration of different hard-

are instruments are given below. 

IoT Device : Jumper JPD-500F Finger Pulse Oximeter, 1.5V, Blue-

ooth Low Energy v4.2 (BLE), UTF-8 data encoding. 

Gateway : Smartphone, Oppo A73 CPH1725, Android 7.1.1. 

Broker/Master Node : Dell Latitude D630 Laptop, Intel(R)

ore(TM)2 Duo CPU E6550 @ 2.33GHz 2GB DDR2 RAM , 32-bit, Win-

ows 7, Apache HTTP Server 2.4.34, Java SE Runtime Environment

JRE) 1.6, MySQL 5.6,.net 3.5, Aneka 3.1. 

Other FCN/Worker Node : Raspberry Pi 3 B+, ARM Cortex-A53

uad-core SoC CPU @ 1.4GHz 1GB LPDDR2 SDRAM , IEEE 802.11,
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Fig. 5. FogBus framework enabled system model for Sleep Apnea analysis. 

Fig. 6. Real-world implementation of FogBus-based Sleep Apnea analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. (a) Home and (b) Session Screen of the android interface. 
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64-bit, Raspbian Stretch, Apache HTTP Server 2.4.34, JRE 1.6,

MySQL 5.6. 

Public Cloud : Microsoft Azure B1s Machine, 1vCPU, 1GB RAM,

2GB SSD, Windows Server 2016,.NET 3.5, Aneka 3.1. 

Fig. 6 depicts the real implementation of this system model. 

5.2. Installed package 

The developed prototype for Sleep Apnea analysis is mostly Fog

infrastructure centric. However, if Fog infrastructure is unable to

process the data, using built-in Aneka-based Cloud Plugin of Fog-

Bus, the data is sent to Azure VM. The application package for

Sleep Apnea analysis installed in the prototype consists of an an-

droid front-end and a data analytic back-end program. Description

of the installed package is given below. 

5.2.1. Android interface at smart phone gateway 

An android executable named HealthKeeper launches the an-

droid interface to the prototype operator. The executable installed

on the Smartphone allows the device to act as an mediator be-

tween the Pulse Oximeter and the Master. It is developed on MIT

App Inventor , an open source platform ( Lab, 2015 ). The interface

is divided into Home and Session screen ( Fig. 7 ). The Home screen
elps operator to pair the Oximeter with the Smartphone for re-

eiving patient data using Bluetooth and enter the master’s IP ad-

ress. The Session screen handles all interaction with the master

ncluding data transmission. In this case, rather than sending data

anually through the HTML form, the interface records and trans-

its data automatically. An empty data list is initialized and timer

s reset when recording starts. Each data value received from the

ximeter is appended to the list. When the recording is stopped,

he list is sent to the master for storage and distribution to the

orkers. This screen also extends the Service Interface running at

he master and displays the result to operators once they become

vailable to the master. 

.2.2. Data analytic at worker computing nodes 

The data analytic for Sleep Apnea analysis encapsulates two

pen source programs found in Manigadde (2018) and Initiative

2017) . These Java programs are stored in the repository worker

nd based on the command of master, they are forwarded to the

omputing workers for installation. The data analytic takes the in-

ut data as a file. From the input file the first, second and third

olumns are parsed as the timestamp, heart beat rate and blood

xygen level respectively. In the analytic, a Boolean variable tracks
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hether there is a dip in oxygen level or not. Whenever the oxy-

en level goes below 88, the dip Boolean variable turns to true

nd stays true till oxygen level is above 88. It is verified by the

ise of heart beat rate in nearby timestamps of the dip occurrence

n oxygen level. A counter variable in the analytic narrates how

any times the dip Boolean variable has been changed to true.

his count is known as the Apnea - Hypopnea Index, AHI that is

sed to determine the intensity of Sleep Apnea. AHI based cases

or Sleep Apnea analysis are given below. 

leep Apnea = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

No/Minimal , for AHI < 5 per hour 
Mild , for 5 ≥ AHI < 15 per hour 
Moderate , for 15 ≥ AHI < 30 per hour 
Severe , for AHI ≥ 30 per hour 

⎫ ⎪ ⎬ 

⎪ ⎭ 

. 

owever, as additional information, the data analytic stores the

inimum oxygen level for the given period. For the heart rate data,

inimum and maximum value are identified. The average heart

ate and average rise or fall of the heart rates are also determined.

n addition, heart beat pattern during the dips in oxygen level are

ltered and ECG is generated. After identifying these information

nd Sleep Apnea intensity, the analytic delivers the result in a file.

his file is later parsed by the master’s Service Interface to notify

he prototype operator. 

.3. Sequence of communication 

In the prototype of FogBus-enabled Sleep Apnea analysis, all

ardware instruments belongs to same WLAN. Their sequence of

ommunication is presented in Fig. 8 . This sequence initiates by

onfiguring the Pulse Oximeter with the Smartphone using re-

uired credentials of the operator. The Oximeter senses patient’s

pO2 and heart beat rate and forwards to the Smartphone through

luetooth communication. From Smartphone, these data are sent

o the master. The master later stores the data on repository

orker. After the storage operation acknowledgement is confirmed

rom the repository worker to the master. Since the Smartphone

xtends master’s Service Interface, this acknowledgement becomes

isible to the operator. After recording the data for a certain pe-

iod, the operator prompts a request to the master via Smartphone

or analyzing the stored data. Then, the master communicates with

 suitable computing worker and issues required privileges for data

nalysis to it. The computing worker requests the stored data and

nalytic executable from the repository worker. On reception of

hese elements, the computing worker starts the analysis opera-

ion. Once the analysis operation is finished, the result is sent back

o the master. The Smartphone pulls the result from the master

nd displays to the operator. 
Fig. 8. Sequence of communication during Sleep Apnea analysis. 
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. Framework characteristics evaluation 

.1. Experimental setup 

To evaluate the framework characteristics of FogBus, we im-

lement different features of Stack4Things ( Bruneo et al., 2016 ),

loudlet-based PaaS ( Yi et al., 2015a ) and Indie Fog ( Chang et al.,

017 ) framework by following the given guidelines and com-

are their performance with FogBus. During experiments, the

lockchain feature of FogBus is kept enabled and the framework

anages an integrated Fog-Cloud infrastructure. In experiments,

ata processing requests are launched sequentially to the frame-

orks with no interval. Here, the following framework characteris-

ics are evaluated. 

1. Load on resources : Computing processor and memory usage

f a framework can indicate towards its load on resources. Since

ost of the Fog nodes are not abundant in resources, execution

f heavyweight software systems can cause significant computing

verhead on them. Therefore, it is required to deploy lightweight

rameworks in Fog computing environments. The framework that

onsumes less computing processor and memory is considered

ighter than the other frameworks. 

2. QoS expectation miss rate : Due to management overhead and

imitations of resources, frameworks often failed to meet QoS ex-

ectations of users. The lower rate of QoS expectation miss rate

eflects higher efficiency of the framework in managing and har-

essing its computing resources. 

3. Time-based attributes : System initiation time and data re-

rieving time in vital for indicating performance of a framework.

equired time to interconnect and start all components within a

ramework is defined by the system initiation time. Data retrieving

ime refers how much time is required to access data through a

ramework. The lower value of these time-based attributes signi-

es higher responsiveness of the framework. 

.2. Result analysis 

.2.1. Lightness of frameworks 

Apart from FogBus, the other frameworks incorporate third-

arty software systems extensively. As a result, their load on com-

uting (CPU) and memory (RAM) resources of core/master/broker

og nodes are higher than FogBus ( Fig. 9 ). Moreover, in Cloudlet-

ased PaaS framework, system operations are not distributed

cross multiple Fog nodes that increases the CPU and RAM utiliza-

ion of core Fog node. Conversely, in Indie Fog and Stack4Things,

espite of operating Fog nodes collaboratively, the Indie Fog registry

nd virtual board running in core Fog node are given additional re-

ponsibilities like federated resource, repository and security man-

gement, service discovery, application service management etc. In

onsequence, the CPU and RAM load on the core Fog nodes of In-

ie Fog and Stack4Things framework increase. 

.2.2. Performance in managing resources 

FogBus framework is capable of harnessing both edge and

emote resources simultaneously. When Fog nodes become

verloaded, FogBus continues input processing through Cloud

atacenter-based resources. Hence, it provides a larger scope to

eet the QoS expectation of users in respect of processing their

ata. As a consequence, the QoS expectation miss rate in Fog-

us becomes comparatively lower than InDie Fog, where applica-

ion execution are solely managed by Fog node-based resources

 Fig. 10 ). In Cloudlet-based PaaS framework, excessive load on CPU

nd RAM force the core Fog node to slow down management op-

rations for input data streams that increases its QoS expectation

iss rate compared to the lightweight FogBus. Furthermore, due



32 S. Tuli, R. Mahmud and S. Tuli et al. / The Journal of Systems and Software 154 (2019) 22–36 

(a)

(b)

Fig. 9. (a) CPU and (b) RAM usage of core node in different frameworks. 

Fig. 10. QoS expectaion miss rate in different frameworks. 

 

 

 

 

(a)

(b)

Fig. 11. (a) Initiation and (b) Data retrieval time of different frameworks. 
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to managing the application service through a core Fog node de-

ployed in Cloudlet, the QoS expectation miss rate on Stack4Things

is slightly higher than FogBus. 

6.2.3. Responsiveness of frameworks 

Compared to other frameworks, the system initiation time of

FogBus is shorter ( Fig. 11 ). Less number of third-party software
ependencies, on-demand Cloud interaction, and more horizontal-

evel connections than vertical-level help FogBus in this case. Data

etrieval in FogBus also takes less time than others. FogBus stores

ata in local repository nodes in distributed manner rather than

ending them towards Cloud or any centralized data storages. Con-

equently, data can be easily accessed through FogBus during ap-

lication execution. 

. Application deployment evaluation 

FogBus supports implementation of various resource man-

gement and scheduling policies for executing IoT applications

omposed using concurrent programming models such as SPMD

Single Program and Multiple Data), workflow and stream. As an

xample illustrator, we selected a health care application devel-

ped using SPMD model for evaluating application deployment

cenarios in FogBus. 

.1. Experimental setup 

The prototype for Sleep Apnea analysis, discussed in Section 5 ,

s used to evaluate the impact of Blockchain and management

verhead of FogBus on various system parameters such as ser-

ice latency, energy consumption and network usage, while exe-

uting the application. For experiments, data from multiple oxime-

ers are recorded for a specific period, later the master sequentially
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Table 2 

Experiment parameters. 

Parameter Value 

Analysis Task: 

Interval between creating sequential data processing requests 5 seconds 

Data recording time per processing requests 3 minute 

Pulse Oximeter: 

Signal length 18 KB 

Sensing frequency 2 signal per second 

WLAN: 

Download Speed 7 Mbps 

Upload Speed 2 Mbps 

p  

t

7

7

 

d  

q  

O  

t  

i  
enerates processing request for each recorded data chunk to com-

uting workers. Each experiment scenario in FogBus is modelled

nder the following settings. 

1. With / Without Interval : In With Interval setting, master sends

he next data processing request to its computing worker after a

ertain interval of receiving the outcome for previous request. This

ime interval helps both master and computing worker to reduce

heir overhead. On the contrary, in Without Interval case, master

ends the next request to its computing worker as soon as the out-

ome of the previous request becomes available. It ensures that the

ogBus framework remains consistently active and there exists no

dle time on the nodes. 

2. With / Without Blockchain : FogBus offers flexibility to either

nable or disable its Blockchain security feature according to the

equirements of the users and service providers. The segments of

his experiment setting differ from each other based on the status

f Blockchain feature in FogBus. 

3. Fog / Cloud Only / Integrated : FogBus supports application

xecution across diverse computing infrastructures. This experi-

ent setting refers whether the application execution is solely

onducted on Fog or Cloud, or integrated infrastructure. During

he experiments, data parameters are recorded using Microsoft

erformance Monitor at the Master and the Azure VM whereas

t the Raspberry Pi circuits NMON Performance Monitor is used

 Microsoft, 2017; Splunkbase, 2018 ). Apart from the system model
(a)

(b)

Fig. 12. Number of requests (a) With and (b) Without Blockchain. 

W  
arameters specified in Section 5.1 , additional parameters used for

he experiments are given in Table 2 . 

.2. Result analysis 

.2.1. Number of requests 

Fig. 12 depicts the number of requests generated in FogBus on

ifferent experiment settings. It is observed that the number of re-

uests is higher in the Fog Only setting compared to the Cloud

nly and Integrated Fog-Cloud case. It happens since Fog infras-

ructure quickly delivers outcome of the previous request. Dur-

ng Without Interval setting, this value rises significantly than the

ith Interval setting since requests are generated continuously by
(a)

(b)

Fig. 13. Service latency (a) With and (b) Without Blockchain. 
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the master. It is also noticed that, if Blockchain feature of FogBus is

turned off, comparatively higher number of requests are generated.

In this case, as lower amount of additional data is shared and pro-

cessed over the infrastructure, it consequently improves the speed

of receiving outcome for the previous request. Based on these ob-

servations, it is understood that if there exists higher number of

requests to be handled with less security requirements, FogBus can

be set to Fog Only setting with disabled Blockchain feature. How-

ever, in such state the management and processing overhead of

the infrastructures will increase in proportion to the number of re-

quests and the size of data chunk for individual request. It can be

managed by tuning the interval between request creation. 

7.2.2. Service latency 

Fig. 13 presents the impact of different settings of FogBus on

service latency. Here service latency is modelled as the summa-

tion of network propagation delay and task completion or applica-

tion execution time. It is known that computational capability of

Fog infrastructure is not enriched but it resides closer to the data

source. As a consequence, network propagation delay is quite less

for Fog infrastructure. Furthermore, if the size of data chunk for a

request is not huge, its completion time will not differ significantly

whether the application is executed in Fog or Cloud. Since, in this

experiment, size of data chunk for a request is not huge, the ser-

vice delivery latency much depends on the network propagation

delay. As a result, in Fog Only setting of the FogBus, service deliv-

ery latency is minimal compared to Cloud Only and Integrated Fog-
(a)

(b)

Fig. 14. Network usage (a) With and (b) Without Blockchain. 
loud case. This latency becomes much lower on disabled state of

lockchain feature since its management add some more time to

omplete the processing requests. Moreover, the With Interval set-

ing reduces overhead from the infrastructure and network in this

ase; that also contributes to improve the service delivery latency.

herefore, it can be realized that these settings assist FogBus to

eal with the requests having stringent deadline. 

.2.3. Network usage 

Network usage in different settings of FogBus are presented

n Fig. 14 . In this experiment, Fog Only setting provides im-

roved performance than Cloud Only and Integrated Fog-Cloud

ase, since it solely utilizes the local networking resources. The dis-

bled Blockchain features also reduces the network usage as less

mount of security attributes are required to be transferred across

he infrastructures. However, network usage gets elevated when

ontinuously requests are generated and their associated data and

nformation are exchanged. In this case, tuning of subsequent re-

uest generation interval can reduce the network usage to a cer-

ain scale. Thus, these adjustments make FogBus operational even

hen less amount of network resources are allocated for an IoT-

nabled system. 

.2.4. Energy 

Fig. 15 presents how different settings of FogBus influence en-

rgy consumption of the infrastructure. In Cloud Only setting the

og nodes are used for networking and Cloud VMs conduct the
(a)

(b)

Fig. 15. Energy consumption (a) With and (b) Without Blockchain. 
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omputation whereas in Fog Only setting both the networking and

omputation are handled by Fog nodes. In Integrated Fog-Cloud

ase computational tasks are distributed to both the infrastructures

ccording to the context of the system. Since, Cloud VMs consume

uch more energy compared to the Fog nodes, in Fog Only setting

ess energy is required to conduct the operations. Besides, to man-

ge the Blockchain feature of the FogBus, additional energy is de-

oured. In this case, disabled Blockchain feature saves some energy

or FogBus. In addition, energy consumption of an infrastructure

uring busy time is higher compared to its idle time. Therefore, in-

erval between subsequent request creation assists to improve the

nergy usage of the infrastructure. However, it leads FogBus to pro-

ess a smaller number of requests which can be overcome by effi-

ient tuning of the interval time. These configurations help FogBus

o execute applications under energy constraints. 

. Conclusion and future work 

In this work, we propose FogBus framework that can inte-

rate different IoT-enabled systems to both Fog and Cloud in-

rastructures. The framework facilitates IoT application deploy-

ent, resource monitoring and management. System Services of

ogBus are developed in cross-platform programming languages

PHP and Java) and are used with extensible application layer

rotocol (HTTP) that help FogBus to overcome the OS and P2P

ommunication-level heterogeneity of different Fog nodes. Addi-

ionally, the FogBus framework functions as a Platform-as-a-Service

PaaS) model for integrated Fog Cloud environment that not only

ssists application developers to build different types of IoT ap-

lications but also supports users to customize the services, and

ervice providers to manage the resources according to the con-

ext of the system. Since some IoT-enabled systems such as health

onitoring and utility service metering deal with sensitive data,

ogBus applies authentication for data privacy and Blockchain for

ata integrity. To procure data transfer across less secure network,

ncryption techniques are applied in FogBus. Based on the prin-

iples of FogBus, a cost-efficient prototype for Sleep Apnea anal-

sis is also developed. Moreover, comparing with existing frame-

orks, it is realized that the software components of FogBus are

ightweight, adequately responsive and capable of harnessing both

dge and remote resources. Besides, different FogBUs settings can

fficiently deal with diversified situations while executing an appli-

ation. Although FogBus is able to enhance service quality across

iverse infrastructures, it can be still improved in a larger scope

nder the following aspects. 

Resource management policies: FogBus provides flexibility to

pply customized provisioning polices while allocating resources

or different applications. Dynamic resource management policies

n top of existing static management policy can be developed tar-

eting load balancing among the computing infrastructures and the

oS enhancement. 

Fog infrastructure virtualization: FogBus assists integration of

og and Cloud computing with IoT-enabled systems. Although

loud computing can be virtualized, in depth exploration is re-

uired to virtualize the Fog infrastructure in FogBus. 

Artificial Intelligence: Currently FogBus does not support any

rtificial intelligence techniques for controlling the operations in

ifferent infrastructure and improving the resilience of the system.

nclusion of Artificial Intelligence techniques can be a significant

ontribution towards FogBus. 

Application placement techniques: FogBus inherently supports

istributed application execution. While placing applications in

istributed manner, service latency, user expectations and deploy-

ent cost become predominant. In this case, different efficient ap-

lication placement techniques can be added to the software stack

f FogBus. Besides, some comparative performance studies on Fog-
us in dealing with different compute-intensive, network-intensive

nd storage-intensive applications can be conducted in future. 

Runtime application migration: Migration of applications dur-

ng runtime is very crucial if any anomaly is predicted. Different

untime application migration strategies for FogBus can be devel-

ped to handle such uncertain events. 

Lightweight security features: Existing security features of Fog-

us require comparatively higher computational assistance. This

onsequently affects the service delivery latency, energy and net-

ork usage. Therefore, lightweight but effective security features

an be helpful for further uplift of FogBus. 

Improvement of embedded Blcokchain feature: The embedded

lockchain feature of FogBus is generic. However, it offers abstrac-

ion so that it can play a vital role on future research of Blockchain

n reducing data retrieval time, managing smart contracts and im-

lementing chain of chains over integrated Fog-Cloud environment.

oftware Availability 

We released FogBus as open source software. Its source codes

long with users and developers manuals can be accessed from

ttps://github.com/Cloudslab/FogBus . 
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