
An Effective Resource Discovery Strategy for
Fog Computing Driven by Computational
Capabilities and Behavioral Characteristics

Joao Bachiega Jr.1, Breno Costa1 Leonardo R. Carvalho1, Aleteia Araujo1,2,
and Rajkumar Buyya2

1 University of Brasilia, Brazil
2 The University of Melbourne, Australia

{joao.bachiega.jr, brenogcosta, leouesb}@gmail.com, aleteia@unb.br,

rbuyya@unimelb.edu.au

Abstract. The fog computing paradigm allows for the distribution of
computing resources and services at the edge of the network, close to
end users, complementing cloud computing. Due to the dynamicity of
fog computing environments, resource discovery is a key process that
aims to find new computational resources that are available to integrate
into it. These resources compose fog nodes, devices considering compu-
tational capabilities (such as CPU, memory, and disk) and behavioral
characteristics (such as availability, scalability, and mobility). Perform-
ing an optimized resource discovery with all those attributes is still a
challenge. This article proposes an efficient approach to resource discov-
ery in fog computing that considers the computational capability and
behavioral characteristics to select fog nodes. The results show that it is
at least 33% more efficient than a similar solution found in the literature.

Keywords: resource discovery, fog computing, behavioral characteris-
tics, computational capability

1 Introduction

Fog Computing has emerged as a promising solution to meet the growing de-
mand to expand the capacity of computational, network, and storage resources
closer to end users, compensating for some limitations of cloud Computing [17].
Among the current challenges, the effective discovery of computational resources
is crucial. It occurs because in a fog computing environment characterized by
the prevalence of dynamic contexts, such as the Internet of Things (IoT), and by
competition for allocated computing resources, unpredictable events can arise,
such as unavailability of services and devices, long response times, high latency,
and reduced reliability [26]. To increase the challenge, applying resource dis-
covery strategies from other consolidated computing paradigms, such as cloud
computing, may present additional obstacles, as fog has computational resource
constraints and more significant heterogeneity between devices. These points



2 Bachiega et al.

highlight the urgency of developing new approaches and strategies to address
the challenges in resource discovery, specifically in fog computing environments.

A fundamental concept in the fog computing environment is the fog node,
defined as any device with software and hardware resources added to the high
communication capability [3]. However, with a deeper understanding of the fog
node, it is possible to observe that this node comprises computational capabili-
ties, such as CPU, storage, memory, and any other hardware attributes that can
be measured. In addition, reflecting the dynamicity and unpredictability of fog
computing, the fog node is also made up of some behavioral characteristics, such
as availability, interoperability, location awareness, and mobility [23].

Resource discovery refers to the search for available computational resources
in a fog computing environment [4]. However, unlike other recent solutions in
the literature [14,25], this work presents a novel proposal for resource discovery
that considers computational capabilities and behavioral characteristics in the
discovery process. The strength of the proposed solution is that it consumes few
computational resources in the discovery process. It will select and register only
devices that meet all defined input criteria in the Resource Catalog. In addition,
there is no need to install an agent previously on the fog node for discovery. With
this, concern about computational resource limitations in the fog environment
is fully addressed.

The remainder of the paper is organized as follows. Section 2 presents the
main concepts of fog computing and contextualizes the discovery process as a
part of the resource management process, highlighting its goals and challenges.
The resource discovery proposal for fog, considering computational capabilities
and behavioral characteristics, is presented in Section 3. A comparison with the
main related works presented in the literature is made in Section 4. The config-
uration of the real environment used to conduct the experiments and the results
obtained are presented in Section 5. Finally, Section 6 presents the conclusion
of this work and the directions for future work.

2 Resource Management in Fog Computing

Fog computing is a computational paradigm that aims to extend the cloud com-
puting model to be closer to the end devices, just as in nature, where fog occurs
when a cloud approaches the ground. Therefore, it is characterized as a highly
distributed computational model, enabling data processing at the edge of the
network, but maintaining some integration with cloud computing. According to
the National Institute of Standards and Technology (NIST) [11], the essential
characteristics of fog computing are low latency, high geographical distribution,
heterogeneity, interoperability, and scalability.

It is also important to note that fog computing is often confused with similar
computational paradigms, like Edge, Mobile Cloud, Mist, or Dew Computing. In
[5], a comparative analysis between fog computing and these related paradigms
is presented. Therefore, according to [6], the fog computing concept is broader



Resource Discovery Fog Computing 3

and more complete and can be considered an umbrella that encompasses all
these similar paradigms.

A key aspect of the fog computing architecture revolves around the fog
node [11]. These nodes, whether physical elements or virtual components, es-
tablish a significant connection with end devices, providing computing resources.
Unlike more mature computing paradigms, such as cloud computing, where com-
putational instances are more homogeneous, located in specific datacenters, and
controlled by a service provider, fog nodes are heterogeneous, have more limited
computational capacity and network connections, and may be in movement.
These different aspects should be considered to better utilize the fog nodes.
Therefore, we assume that a fog node is composed of its computational capacity
(i.e., CPU, memory, storage) and behavioral characteristics such as availability,
security, and mobility. An in-depth computational analysis of a fog node can be
found in [3].

In terms of architecture, a three-tier option is widely adopted to represent
the fog computing infrastructure [18, 19]. The IoT layer represents the consoli-
dation of all connected IoT devices at the edge of the network. End users can
control these devices or autonomously collect environmental information to be
forwarded for processing and storage in the Fog or Cloud layers. The Fog layer
comprises fog nodes, and requests that do not require substantial computational
resources can be served directly by this layer. Furthermore, the Fog layer plays a
fundamental intermediary role between the IoT and Cloud layers, providing the
necessary computational power to perform tasks such as filtering and aggregating
data before forwarding them to the Cloud layer whenever there are insufficient
resources available in the Fog layer [2]. On the other hand, the Cloud layer is
characterized by more robust computational resources, and it is responsible for
processing requests that could not be fully addressed by the Fog layer [2].

The fog nodes are managed by a process called resource management, which
consists of five distinct steps [4] briefly explained below:

1. Discovery: aims to find new resources in the dynamic fog environment,
making them available for use after updating the Resource Catalog [4];

2. Estimation: is the calculation of the amount of computing resources and
time that are needed to perform a set of tasks [4];

3. Allocation: aims to select the best-cataloged resources to execute a work-
load in the fog environment, according to the users’ criteria [4];

4. Monitoring: collects status data about fog nodes, their resources, and com-
munication links, maintaining updated the Resource Catalog, and providing
relevant information to the orchestrator for decision making [7, 9];

5. Orchestration: is a management function responsible for the service life
cycle that provides requested services to the user and assures the Service
Level Agreement (SLA) [8].

Each step plays a specific role in optimizing the use of available resources
in the fog infrastructure, contributing to the efficient and reliable performance
of the applications and services offered in this environment. Once the discovery



4 Bachiega et al.

process has successfully registered the fog node in the catalog, its subsequent
monitoring occurs in the monitoring and orchestration steps. Therefore, the re-
source discovery solution must be closely aligned with other resource manage-
ment processes, ensuring that the entry criteria are met and expected results are
generated, thus contributing to effective management [8].

In this context, the resource discovery procedure plays an essential role in
fog computing resource management, allowing the identification and selection
of new computational resources for future task submissions. This process may
involve creating a list of resources for subsequent selection [24]. At its core,
resource discovery encompasses activities related to locating and disseminating
information about resources, making it essential to fully exploit all distributed
resources in the fog environment [27].

Furthermore, it is important to note that resource discovery specifically for
a fog computing environment has some requirements and challenges that must
be addressed properly. Among them, the following are worth highlighting:

1. Location: the solution should be situated near the resources, ensuring effi-
ciency in resource allocation [7];

2. Availability of Resources: it is essential to account for the intermittent
availability of fog nodes and the potential for them to be powered off at
specific times [21];

3. Fault Tolerance: the creation of fault-tolerant solutions is vital because
services are distributed across multiple nodes [7];

4. Asynchronous Notification: it is a key strategy to address information
synchronization issues and communication failures [15];

5. Different Communication Protocols and Resource Types: need for
flexibility regarding identification schemes, enabling discovery regardless of
the communication technologies and protocols adopted by the fog nodes, as
well as their heterogeneity in terms of resource types [15];

6. Lightness: to mitigate substantial performance impacts, the solution should
be lightweight, aligning with the limited resources of fog nodes [21].

Effectively addressing fog computing’s unique characteristics compels re-
source discovery solutions to fulfill novel requirements that differ from those
in established computational paradigms. This underscores the need for specific
approaches, such as the one presented in the next section.

3 Resource Discovery Proposal

In resource discovery in a fog computing environment, the central objective is
to identify and map the resources available in the environment efficiently and
dynamically. This step is essential to ensure that applications can access the
necessary resources in a timely and optimized manner.



Resource Discovery Fog Computing 5

3.1 Problem Definition

In a fog computing environment, there is a set of fog nodes, where each fi ∈
F = {f1, f2, ..., fF }. The attributes of computational capabilities (C) represent
minimal computational requirements for task execution, such as the number of
CPUs, the amount of memory, disk, etc. They are represented by the vector
C = {c1, c2, ..., cC}, where C is the cardinality of the set. In contrast, behavioral
characteristics (B) can significantly impact user experience and application per-
formance but do not impede task execution. Security, mobility, scalability, and
reliability are examples of behavioral characteristics. They are represented by
B = {b1, b2, ..., bB}, where B is the cardinality of the set. Taking into account
both types of attributes (computational and behavioral), each fog node is deter-
mined as a tuple fi = {Ci∪Bi}; i.e., fi = {ci1, ..ciC , bi1, ..., biB} | i ∈ {1, 2, ..., F}.

With this, considering that each column represents an attribute (a, either
computational or behavioral), the Resource Catalog can be denoted by an at-
tribute matrix (A), where {ain ∈ A | 0 < i ≤ F ; 0 < n ≤ C +B}. Therefore, the
Resource Catalog can be represented as:

A =

∣∣∣∣∣∣∣
c11 c12 ... c1C b11 b12 ... b1B
...

...
...

...
...

...
...

...
cF1 cF2 ... cFC bF1 bF2 ... bFB

∣∣∣∣∣∣∣
The goal of resource discovery in fog computing is to find new available fog

nodes in the environment and record their computational capabilities (C) and
behavior characteristics (B) in the Resource Catalog (A).

Finally, a vector V = {v1, v2, ..., vC+B} brings the minimum values required
for each of the attributes. It is used to effectively select and register only fog nodes
that meet the computational and behavioral criteria in the Resource Catalog.
Therefore, the objective function can be defined as presented in Equation 1, for
each fi ∈ F :

Oi =
∑C+B

n=1 (ain ≥ vn) (1)

In other words, for each fog node found, the variable O increases with each
criterion met (an attribute equal to or greater than its defined minimum value),
and the registration in the Resource Catalog will only occur if the attributes
respect the defined baseline V. Therefore, the restrictions for this problem are
that all needed computational capabilities (C) and behavior characteristics (B)
must be provided by the fog node being evaluated after discovery. The total value
of O for each fog node must be the sum of the number of attributes indicated
by Equation 2.

Oi = C +B (2)



6 Bachiega et al.

3.2 Proposal

Considering the essential characteristics of fog computing and the resource dis-
covery process (Section 2), this section presents a novel proposal for discovery
that brings into focus computational capabilities and behavioral characteristics
when selecting fog nodes. In this context, the following parameters were used:

1. CPU: the number of CPU cores available to be exclusively used must be
equal to or greater than the number of the CPU requested by the user;

2. CPU Clock: the frequency at which a processor’s clock can generate pulses,
which are used to synchronize the operations of its components. It is impor-
tant to define the processor´s speed, and it´s measured in Megahertz (Mhz);

3. Memory: the minimum requirement for RAM (in GB) available for exclu-
sive use in the fog node is the amount of RAM asked for by the user;

4. Storage: the amount of free storage (in GB) available for exclusive use in
the fog node must be at least the amount of free storage asked for by the
user;

5. Latency: the delay (in milliseconds) for a request to be transferred must be
equal to or less than the amount of delay asked for by the user;

6. Number of hops: define the locality and estimate the distance between the
fog node and the server, making it easier to find, for example, the nearest
fog nodes;

7. Availability: considering historical behavior, how much of the resource is
available for allocation. Using the AWS SLA3 as a point of comparison,
when the fog node availability is higher than 99%, it has the value 5. For
availability lower than 95%, the value 1 is assigned;

8. Scalability: the ability of the fog node to handle an increasing workload,
considering both historical behavior and the amount of free resources. The
value 5 is assigned to resources capable of expanding their computing power
by up to 10 times. The value 4 is assigned to those with 8 times, and suc-
cessively until value 1;

9. Reliability: the level at which the fog node is trusted to complete task
execution, considering historical behavior. The value 1 is assigned to the
fog nodes that always abort an execution. On the other side, the value 5 is
assigned to the fog nodes that, in at least the last 10 times, have not aborted
an execution;

10. Mobility: how mobile the fog node is. It is a proportionally inverse metric,
where the more static a fog node is, the higher the mobility value. In [1], a
scale to classify the device´s mobility is presented, assigning different values
to large mobile devices (such as tablets and laptops), small mobile devices
(i.e., smartphones), and also static devices (i.e., desktops). This scale was
adapted to determine the values between 1 and 5 to be assigned in this
attribute.

The input parameters are the range of IPs to be searched and the computa-
tional and behavioral criteria. The process is initiated on a centralized server by

3 https://aws.amazon.com/compute/sla/



Resource Discovery Fog Computing 7

searching for the hosts in the network indicated in the entry using the NMAP
protocol [20]. This protocol was chosen for this task because it can already pro-
vide relevant information for other algorithm decisions, such as latency and the
MAC Address of the fog node found. The fog node found is compared with the
records in the Resource Catalog through the MAC Address. If it is an unknown
fog node, the process continues to collect information about the computational
parameters. To obtain this, the host is accessed via the SSH protocol.

Once the values of the computational capabilities and behavioral character-
istics have been obtained, validation is performed. Only if all attributes meet
the requested criteria are recorded in the Resource Catalog, which will be avail-
able for use by other resource management processes, such as allocation and
monitoring. For the proposal, the Resource Catalog is a file in JSON format,
as it is understood that this type of file favors the exchange of messages and is
commonly used in different applications.

A recurrence time is provided to restart the process to guarantee the dy-
namicity required in a fog environment. However, changing its bootstrapping
method from proactive to reactive is possible with only a small adjustment to
the algorithm that supports the proposal. As a result, scanning for new hosts
would only occur when requested, allowing the discovery server’s network and
computational resource consumption overhead to be further reduced.

One of the novelties of this proposal is that it allows one to filter the fog nodes
of interest by computational and behavioral criteria. If a fog node does not meet
the minimum criteria provided right after it has been discovered, it is ignored
and not registered in the Resource Catalog. Another point worth highlighting
about this proposal is that it does not require the previous installation of an
agent on the fog node. This is important because the computational resources of
a fog environment tend to have a low capacity, and the installation of an agent
could have a negative impact.

4 Related Work

Although the literature on resource discovery contains some solutions, no article
explicitly related to fog computing provided an analysis of both computational
capabilities and behavioral characteristics in the discovery process. Few arti-
cles detailed all the experiments, and fewer were tested in real fog computing
environments. This section presents the most important work in this area.

In the study provided by Jin and Kim [13], a RESTful API modeling language
is used to articulate resources, and an Open Communication Foundation (OCF)
specification model protocol is used to facilitate communication between fog
nodes. A Resource Catalog was used on the Resource Discovery server to store
information, which can be later queried during subsequent resource management
processes. The experiments were conducted in a real environment using only
two devices. There is no analysis or comparison of the solution proposed by the
authors with other similar articles.



8 Bachiega et al.

In the paper by Sattari et al. [22], a distributed resource discovery solution
for mist computing platforms is suggested, adopting the Constrained RESTful
Environments (CoRE) Resource Directory. Evaluations include simulated and
real-world scenarios in an environment with two Raspberry Pis as fog devices
and an undefined number of ESP8266 embedded devices as Mist devices. Be-
cause the experiments carried out by the authors focused on latency and power
consumption, there is no possibility of comparing the results obtained in our
work with those they presented.

In [16], the Named Data Networking (NDN) protocol highlights its suitability
for resource discovery in IoT and fog computing environments. This protocol
provides information about the resource, eliminating the need to overload the
architecture to obtain these data and, consequently, reducing the time required
to locate the most appropriate node. The experiments were performed based
on four metrics: acceptance ratio, overhead, number of hops, and routing cost,
which cannot be used to compare with our work.

To support a specific healthcare scenario, the authors of [12] employ a heuris-
tic algorithm to achieve locally optimal results in resource discovery, considering
latency as a crucial quality of service requirement. The centralized architecture is
distributed between the cloud, fog, and IoT layers, and the proposal is based on
a reactive search that requires an agent across the fog nodes. There is no analysis
or comparison of the solution proposed by the authors with other similar articles.
The matching function’s performance evaluation and resource efficiency were as-
sessed by comparing the containerized and non-containerized implementations
developed by the authors.

Finally, the paper [25] characterizes resources through WSDL, along with a
metaheuristic algorithm that searches for fog nodes, considering response time,
fitness function, and cost criteria. The paper was the only one in this section
that compared the results with other solutions (Grey Wolf Optimizer and Ge-
netic Algorithm). However, comparing our metrics with those in their article is
impossible once they consider different metrics and approaches.

Table 1. Analysis of related work.

Paper Year Environment Computational Behavioral Catalog Experiments Devices Comparison

[13] 2018 IoT Yes No Yes Real 2 No

[22] 2020 Mist Yes No No Real 2 No

[16] 2021 Edge Yes No No Simulation – No

[12] 2021 Edge Yes No No Real 7 No

[25] 2022 Edge Yes No No Simulation – Yes

This work 2024 Fog Yes Yes Yes Real 32 Yes

Table 1 summarizes the related work analyzed in this section. It is possible
to identify that none of the works presented gave resource discovery solutions
specifically for fog computing, although Edge and Mist computing are also dis-
tributed paradigms. Identifying a deficiency in performing experiments in real
environments is also possible. The ones that evaluated their works on real-world



Resource Discovery Fog Computing 9

testbeds [12,13,22] have used several devices much lower than those used in this
work. It is also possible to observe the absence of proposals considering com-
putational capabilities and behavioral characteristics and register the result in
a Resource Catalog. Another highlight of this study is that it is one of the few
studies that compare the results obtained with any other work available in the
literature.

5 Performance Evaluation

A real experiment environment is set up to support the evaluation of the pro-
posal, simulating the expected parameters and behaviors. This environment con-
sisted of different types of IoT devices with four Raspberry Pi units, each with
4GB of RAM, 2GB of disk size, and 4 CPUs; and four virtual machines with 8GB
of RAM, 4GB of disk size, and 2 vCPUs were also added to the environment to
carry out the experiments. The server was a 16GB RAM quad-core device. In
total, the real experiment environment consisted of 32 devices. The IoT devices
and the server were in the same network range, based on a wireless connection.
The number of hops between the server and the fog nodes was the same for
all experiments performed to ensure fair execution and the proximity and low
latency expected from a fog computing environment.

For the scope of this work, the proposed algorithm can bring information from
fog nodes that use the Linux operating system. A previous bootstrap process
was required on each host, providing the security credentials needed to execute
the Linux commands by the discovery application and improving security and
privacy. In this way, the operating system is also considered a criterion of the
computational capacity to be met. Still, with the same objective of increasing
security, the default port of the SSH service was changed. As all commands are
considered native, installing additional host packages was unnecessary. On the
server side, it was necessary to install the NMAP package4.

5.1 Experiments and Results

This section presents the experiments and results obtained by the algorithm
proposed for resource discovery in a real fog computing environment.

Experiment 1 - Completeness of the Search

The first experiment concerned the algorithm’s ability to find all available and
eligible fog nodes in the environment. For this experiment, the computational
and behavioral criteria were configured lower than the existing capabilities of the
testbed’s devices to allow discovery, and the required operating system was set
to Linux. All fog nodes were turned on to do this, and the discovery algorithm
started. The algorithm could discover all fog nodes that met the requirements
and bring all the data discovered to the Resource Catalog.

4 https://NMAP.org/download#linux-rpm



10 Bachiega et al.

It is important to note that after all fog nodes are found in the first run, the
next runs will not bring new results until other new fog nodes become available in
the network. Another possibility is that one or more fog nodes be removed from
the Resource Catalog (i.e., by monitoring process due to timeouts on heartbeat
messages). This shows that the algorithm can compare the fog nodes found with
those already registered in the Resource Catalog and avoid duplication of records,
data inconsistency, and computational effort for the unnecessary registration of
a fog node that was already registered. To guarantee this, the fog node’s MAC
address is considered the primary key.

This experiment was also carried out by starting the discovery algorithm
without any fog nodes connected and connecting them one by one, with intervals
of 2 minutes between them, still with the computational and behavioral criteria
lower than those existing on the hosts. For this step, the algorithm recurrence
time was set to 1 minute. After the execution of the experiment, it was possible
to confirm that the fog nodes are discovered on the network as soon as they are
connected.

Experiment 2 - Computational Capability Constraints
To continue testing, the memory criterion was adjusted to 3000 MB, filtering

the discovery only to fog nodes with free memory greater than that number. Ta-
ble 2 presents the free memory value for each of the fog nodes that are Raspberry
Pis and Virtual Machines at the time of the experiments.

Table 2. Free memory values.

Fog Node FN01 FN02 FN03 FN04 FN05 FN06 FN07 FN08

Free Memory (MB) 3569 3123 2681 2983 6852 6230 5877 6541

In the first run, only two fog nodes would not meet the selection criteria,
and only fog nodes FN03 and FN04 were not found. In a second execution,
the criterion was adjusted to 3500 MB, and again, the algorithm was assertive,
resulting in the additional exclusion of FN02.

This functionality of the algorithm is also novel, and it is considered im-
portant to guarantee the search for fog nodes that are viable for the use case,
avoiding unnecessary registrations in the Resource Catalog, and optimizing the
registration time for the discovery and search process for other stages of resource
management that will use the Resource Catalog.

Experiment 3 - Runtime
Another experiment was carried out to measure the execution time concern-

ing the number of fog nodes to be discovered. However, with the execution of
experiments, it was realized that a factor that impacts the algorithm’s execu-
tion time is the range of network IPs being searched. The network range is a
parameter defined as input to the algorithm, as indicated in Section 3. When con-
sidering the range 192.168.2.0/28 as input, for example, 13 IPs will be verified,
from 192.168.2.2 to 192.168.2.14, since 3 IPs are used for network (192.168.2.0),



Resource Discovery Fog Computing 11

gateway (192.168.2.1), and broadcast (192.168.2.15). With this, in the range
192.168.2.0/28, 1021 IPs will be verified.

However, the growth is not linear with the number of IPs verified. While
a range /28 is verified in 3 seconds, a /22 needs 38 seconds. This is a point
to note, as a fog computing environment is expected to have many different
networks and, consequently, an extensive range of IPs to be checked. One way
to solve this situation was to run the algorithm in parallel, limiting the IP range
to a reasonable time for the solution.

To this end, the IPs of some devices were adjusted to be on four different
subnets. The script that contains the parallelized calls to the algorithm had an
average execution time of 22 seconds and, in the end, was able to find all existing
fog nodes. For this experiment, the network range parameter was set to /24 in
4 tasks, each searching in a subnet.

Suppose this action of parallelization executions in limited network ranges
had not been done. The average time required to discover the fog nodes in 4
different subnets would have been 41 seconds, almost twice as long. In that case,
a /22 range in the model without changes to the algorithm would have taken
almost twice as long.

Another situation that had an even more significant impact on execution time
occurred. To simulate a fog computing environment with high heterogeneity of
resources even more accurately, several devices not eligible or not choosing to
participate in the fog environment were registered on the same WiFi network
and the same subnet. These devices include personal cell phones, routers, smart
TVs, etc. In this scenario, it was possible to identify that after the NMAP scan
finds any device, an attempt is made to connect to it to extract its computational
information using the ssh Linux command. This process requires time until the
destination host denies the connection, causing slower execution on network
ranges with many devices not eligible as fog nodes.

To solve this situation, the NMAP command search process was improved
to return only devices with a specific open port. This port is configured on the
fog node during the bootstrapping process. Therefore, the list of hosts found is
limited to potential candidates belonging to the fog computing environment.

Table 3 presents the execution time of the algorithm before and after the
implementation of the improvement. The number of devices available in the IP
range and how many were eligible to belong to the fog environment are also
shown. By analyzing Table 3, it is possible to observe a significant reduction in
algorithm execution time in the first two IP ranges, in which some devices were
not fog nodes eligible for discovery. For the last two IP ranges, there was no
change in execution time as no devices were available. With this, it was possible
to identify that the change made to the NMAP search parameter was sufficient
to improve the performance of the algorithm’s execution time.

Experiment 4 - Network Consumption

Finally, the network consumption of the discovery algorithm was considered.
This concern is relevant in a fog environment potentially connected by unstable
connections caused by multiple technologies and device mobility. For this mea-



12 Bachiega et al.

Table 3. Runtime in testbed environment.

IP Range
Total

Devices
Possible

Fog Nodes
Old Runtime
(seconds)

New Runtime
(seconds)

192.168.0.1-64 29 8 1032 43

192.168.0.65-128 3 0 364 12

192.168.0.129-192 0 0 3 3

192.168.0.193-254 0 0 3 3

sure, the execution of the command ifstat -t was used on the server, which
shows the incoming and outgoing packets over time5.

Both input and output flows have similar behavior. Network consumption
increases when the first fog node starts reporting on the network, remaining
constant even with new fog nodes added over time. Thus, network consumption
is unaffected by the number of fog nodes discovered and available.

Throughout the 716-second collection window, the maximum input consump-
tion was 11.36 KB/s, with an average of 2.55 KB/s of consumption. Regarding
output, the peak was 7.91 KB/s, and the average was 1.94 KB/s, demonstrating
that the proposed algorithm demands little network packet output on the server
side.

6 Conclusions and Future Work

The discovery of resources in a fog computing environment requires proposing
solutions capable of dealing with the heterogeneity and high geographic distribu-
tion that this new computational paradigm presents as essential characteristics.
In addition, solutions must be lightweight to not burden either the computational
capacity of its components or the network.

This paper proposed a novel computational capabilities and behavioral char-
acteristics resource discovery algorithm for fog computing. It is based on a
network-wide search for devices eligible to be fog nodes, and these are added
to a Resource Catalog only if they meet the defined computational and behav-
ioral criteria.

Through experiments in a real environment, it was possible to identify that
the proposed solution efficiently finds fog nodes available in the environment and
registers them in the Resource Catalog with little computational effort and low
network consumption.

The use of the real environment for experiments stands out, as it was possi-
ble to detect several improvements in the algorithm. These improvements, such
as optimizing information exchange between protocols and network equipment,
including fog nodes with other operating systems and architectures, and experi-
ments with more devices, will be treated as future work. Furthermore, we plan to
implement the proposed discovery algorithm in fog computing software frame-
works such as FogBus2 [10] for end-to-end evaluation in a real fog computing

5 https://linux.die.net/man/1/ifstat



Resource Discovery Fog Computing 13

environment for different classes of IoT applications. We also plan to explore
application security and trust issues in the fog environment, which is critical for
sensitive IoT applications.

Acknowledgments

This study was partially financed by the Coordenação de Aperfeiçoamento de
Pessoal de Nı́vel Superior (CAPES) - Brasil - Finance Code 001. Gratitude also
goes to the BioCloud2 project, approved under CNPq/AWS Call No. 064/2022,
CNPq process No. 421828/2022-6.

References

1. Aazam, M., Huh, E.N.: Fog computing micro datacenter based dynamic resource
estimation and pricing model for IoT. Proceedings - International Conference on
Advanced Information Networking and Applications, AINA 2015-April(March),
687–694 (2015)

2. Al-Doghman, F., Chaczko, Z., Ajayan, A.R., Klempous, R.: A review on fog com-
puting technology. In: 2016 IEEE International Conference on Systems, Man, and
Cybernetics (SMC). pp. 001525–001530 (Oct 2016)

3. Bachiega, J., da Costa, B.G.S., Araujo, A.P.F.: Computational perspective of the
fog node. 22nd International Conference on Internet Computing and IoT (2021)

4. Bachiega Jr, J., Costa, B., Carvalho, L.R., Rosa, M.J., Araujo, A.: Computational
resource allocation in fog computing: A comprehensive survey. ACM Computing
Surveys 55(14s), 1–31 (2023)

5. Bachiega Jr., J., Costa, B., Carvalho, L., Oliveira, V.H., Santos, W., de Castro,
M.C.S., Araujo, A.: From the sky to the ground: Comparing fog computing with
related distributed paradigms. In: Proceedings of the 12th International Conference
on Cloud Computing and Services Science (CLOSER 2022). pp. 158–169 (2022)

6. Chiang, M., Ha, S., Risso, F., Zhang, T., Chih-Lin, I.: Clarifying fog computing
and networking: 10 questions and answers. IEEE Communications Magazine 55(4),
18–20 (2017)

7. Costa, B., Bachiega Jr, J., Carvalho, L.R., Rosa, M., Araujo, A.: Monitoring fog
computing: A review, taxonomy and open challenges. Computer Networks 215,
109189 (2022)

8. Costa, B., Bachiega Jr, J., De Carvalho, L.R., Araujo, A.P.: Orchestration in fog
computing: A comprehensive survey. ACM Computing Surveys (CSUR) 55(2), 1–
34 (2022)

9. Costa, B., Banerjee, A., Jayaraman, P.P., Carvalho, L.R., Bachiega, J., Araujo, A.:
Achieving Observability on Fog Computing with the Use of Open-Source Tools.
Springer Nature Switzerland pp. 319 – 340 (2024)

10. Deng, Q., Goudarzi, M., Buyya, R.: Fogbus2: a lightweight and distributed
container-based framework for integration of iot-enabled systems with edge and
cloud computing. In: Proceedings of the International Workshop on Big Data in
Emergent Distributed Environments. pp. 1–8 (2021)

11. Iorga, M., Feldman, L., Barton, R., Martin, M., Goren, N., Mahmoudi, C.: The
NIST definition of fog computing. Tech. rep., National Institute of Standards and
Technology (2018)



14 Bachiega et al.

12. Islam, J., Kumar, T., Kovacevic, I., Harjula, E.: Resource-aware dynamic service
deployment for local IoT edge computing: Healthcare use case. IEEE Access 9,
115868–115884 (2021)

13. Jin, W., Kim, D.: Consistent registration and discovery scheme for devices and
web service providers based on RAML using embedded RD in OCF IoT network.
Sustainability 10(12), 4706 (2018)

14. Karagiannis, V., Desai, N., Schulte, S., Punnekkat, S.: Addressing the node dis-
covery problem in fog computing. In: 2nd Workshop on Fog Computing and the
IoT (Fog-IoT 2020). Schloss-Dagstuhl-Leibniz Zentrum für Informatik (2020)

15. Khalil, K., Elgazzar, K., Seliem, M., Bayoumi, M.: Resource discovery techniques
in the internet of things: a review. Internet of Things 12, 100293 (2020)

16. Kondo, D., Ansquer, T., Tanigawa, Y., Tode, H.: Resource discovery for edge com-
puting over named data networking. In: 2021 IEEE 45th Annual Computers, Soft-
ware, and Applications Conference (COMPSAC). pp. 552–559. IEEE (2021)

17. Laghari, A.A., Jumani, A.K., Laghari, R.A.: Review and state of art of fog comput-
ing. Archives of Computational Methods in Engineering 28(5), 3631–3643 (2021)

18. Mahmud, M., Buyya, R.: Fog computing: A taxonomy, survey and future direc-
tions. Internet of Everything - Algorithms, Methodologies, Technologies and Per-
spectives (2016)

19. Mouradian, C., Naboulsi, D., Yangui, S., Glitho, R.H., Morrow, M.J., Polakos,
P.A.: A Comprehensive Survey on Fog Computing: State-of-the-Art and Research
Challenges. IEEE Communications Surveys and Tutorials 20(1), 416–464 (2018)

20. Orebaugh, A., Pinkard, B.: NMAP in the enterprise: your guide to network scan-
ning. Elsevier (2011)

21. Pourghebleh, B., Hayyolalam, V., Aghaei Anvigh, A.: Service discovery in the inter-
net of things: review of current trends and research challenges. Wireless Networks
26(7), 5371–5391 (2020)

22. Sattari, A., Ehsani, R., Leppänen, T., Pirttikangas, S., Riekki, J.: Edge-supported
microservice-based resource discovery for mist computing. In: 2020 IEEE Intl Conf
on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelli-
gence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on
Cyber Science and Technology Congress. pp. 462–468. IEEE (2020)

23. Sengupta, S., Garcia, J., Masip-Bruin, X.: Essentiality of resource and service-task
characterization in the coordinated fog-to-cloud paradigm. In: 2018 International
Conference on Smart Communications in Network Technologies (SaCoNeT). pp.
249–254. IEEE (2018)

24. Singh, S., Chana, I.: Cloud resource provisioning: survey, status and future research
directions. Knowledge and Information Systems 49(3), 1005–1069 (2016)

25. Wang, R., Lu, J.: QoS-aware service discovery and selection management for cloud-
edge computing using a hybrid meta-heuristic algorithm in IoT. Wireless Personal
Communications 126(3), 2269–2282 (2022)

26. Wang, Z., Goudarzi, M., Gong, M., Buyya, R.: Deep reinforcement learning-based
scheduling for optimizing system load and response time in edge and fog computing
environments. Future Generation Computer Systems 152, 55–69 (2024)

27. Zarrin, J., Aguiar, R.L., Barraca, J.P.: Resource discovery for distributed comput-
ing systems: A comprehensive survey. Journal of parallel and distributed computing
113, 127–166 (2018)


