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Abstract—Fog computing paradigm allows allocating compu-
tational resources and services at the edge of the network, closer
to the end devices and users, complementing Cloud computing.
Fog nodes comprise computational capabilities (such as CPU,
memory, and disk) and behavioral characteristics (such as avail-
ability, scalability, and mobility). It should also be considered
that while the end-user’s goal is to obtain the best available
resources, the service provider’s concern is meeting user requests
using minimal resources. Furthermore, it is crucial to consider
the financial cost of each resource in both scenarios. Taking
all of this into account, obtaining a cost-effective optimized
resource allocation is viewed as a challenge. In this article, we
propose an efficient algorithm for resource allocation, considering
both the provider’s and the end-user’s perspectives, exploiting
computational capabilities, behavioral characteristics, and the
financial cost. The tests were carried out in both real and
simulated environments and demonstrated that our proposal
complies with the resource allocation needs for Fog computing
and has a better performance compared to a similar solution.

Index Terms—Fog computing, resource allocation, provider’s
perspective, end-user’s perspective, cost-efficiency

I. INTRODUCTION

Fog computing has emerged as a promising solution for
Cloud computing bottlenecks with regard to high latency
and response time [1]. To address these bottlenecks, Fog
computing is designed as a highly geographically distributed
and heterogeneous network composed of low computational
capacity devices with different setups closer to end-users. The
devices can remotely process the workloads initially meant
for the Cloud with smaller response time and latency. This
network has been used in dynamic contexts, with devices shar-
ing and competing for computational resources, such as the
Internet of Things (IoT). This competition creates uncertainty
for resource management in Fog computing environments,
leading to possible overloaded or underused nodes, causing
unnecessary power consumption, service unavailability, high
response time, and decreased reliability [2]. In such a scenario,
resource allocation to determine suitable resources that satisfy
a required workload remains a challenge [3].

A relevant concept in a Fog computing environment is
the Fog node, defined as any computational device with

system and hardware resources added to high communication
capability [4]. A fog node has computational capabilities, such
as CPU, storage, memory, and other hardware attributes that
can be measured. In addition, reflecting the dynamicity and
unpredictability of Fog computing, the Fog node is also made
up of some behavioral characteristics, such as availability,
interoperability, and mobility [5].

The end-user and service provider perspectives must be
considered when implementing Fog computing management.
On the one hand, end-users always want to obtain the best
resources available, those with greater computational power
and higher values for behavioral characteristics. On the other
hand, service and infrastructure providers are interested in
delivering minimal resources to avoid unnecessary costs or
situations where resources are unavailable to other users [6].
Although it is desirable to consider the behavioral character-
istics, their degradation is not an obstacle to the execution of
the application. In this sense, most Fog computing resource
allocation solutions focus exclusively on hardware attributes
without considering behavioral characteristics [7] [8]. De-
spite this trend, some publications consider only the user’s
perspective [9] [10]. To the best of our knowledge, considering
both perspectives, i.e., balancing the needs of end-users and
providers with the computational capabilities and behavioral
characteristics of the Fog node, is a matter of investigation [6].

This work presents an algorithm for resource allocation in
Fog computing, considering hardware attributes and behavioral
characteristics. Thus, the main contributions of this work are:

• A Fog node cost-efficient decision-making algorithm that
considers both hardware attributes and behavioral charac-
teristics of available nodes, considering the perspectives
of end-users and providers. This model allows parameters
to be weighted and balanced to create a ranking of
available Fog nodes that comply with the user’s request;

• A prototype of a system that efficiently uses the proposed
algorithm, being scalable in terms of the number of nodes
in the environment and adherent to the Fog aspects;

• An analysis of the proposed algorithm efficiency per-
formed in a real test environment, validating the system



model to solve the problem of resource allocation in a
Fog computing environment;

• An extensive experimental analysis of the prototype in
a simulated scenario, validating the proposed algorithm
performance in a high number of devices scenario;

• A comparison of the proposed algorithm with another
resource allocation algorithm from the literature.

The rest of the paper is organized as follows. The system
model is presented in Section II. Section III defines the re-
source allocation problem. An algorithm for efficient resource
allocation is proposed in Section IV. In Section V, a motivating
scenario is used to explain the usage of the algorithm. The
performance evaluation of the proposal is presented in Section
VI. Section VII presents some related work. Finally, Section
VIII gives the conclusion and opportunities for future work.

II. SYSTEM MODEL

This section presents the system model and further defi-
nitions for the resource allocation method discussed in this
work. In a Fog environment, there is a set of Fog nodes, where
each fi ∈ F = {f1, f2, ..., fF }. Computational capabilities (C)
represent minimal computational requirements for task execu-
tion, such as CPU, memory, disk, etc. They are represented by
the vector C = {c1, c2, ..., cC}, where C is the set cardinal.
In contrast, behavioral characteristics (B) are characteristics
the user wants but is not required to operate. Not meeting
the behavioral characteristics does not prevent the application
from being executed, but can significantly reduce the user’s
experience. Security, mobility, scalability, and reliability are
examples of behavioral characteristics. They are represented
by B = {b1, b2, ..., bB}, where B is the cardinal of the set.

Taking into account both types of attributes, each Fog
node is determined as a tuple fi = {Ci ∪ Bi}; i.e., fi =
{ci1, ..., ciC , bi1, ..., biB} | i ∈ {1, 2, ..., F}. The total number
of attributes (capabilities and behavioral characteristics) of
each Fog node is represented by N = C + B. Considering
that each column represents an attribute, a Fog node matrix
can be denoted by {amn ∈ A | 1 ≤ m < F ; 1 ≤ n < N}.
Therefore, Matrix A can be represented as:

A =

∣∣∣∣∣∣∣
c11 c12 ... c1C b11 b12 ... b1B

...
...

...
...

...
...

...
...

cF1 cF2 ... cFC bF1 bF2 ... bFB

∣∣∣∣∣∣∣
Also, the Matrix A can be contracted to:

A =

∣∣∣∣∣∣∣∣∣
C1 ∪ B1
C2 ∪ B2
...

...
...

CF ∪ BF

∣∣∣∣∣∣∣∣∣
And, finally:

A =

∣∣∣∣∣∣∣∣∣
f1
f2
...
fF

∣∣∣∣∣∣∣∣∣

Since each attribute in (C) and in (B) can have different units
and scales, it is necessary to normalize the Matrix A to allow
comparisons and operations between its elements. First, using
an adapted vector normalization technique [11], the factor (Υ)
value for each attribute is calculated by the Equation 1:

Υn =

√(∑F
m=1(amn)

2

)
(1)

Furthermore, each Fog node must have an assigned financial
cost (Q). For this, another matrix is constructed:

Cost =

∣∣∣∣∣∣∣∣∣
qf1
qf2

...
qfF

∣∣∣∣∣∣∣∣∣
On the requester side, values (V) are used to indicate the

required amount of resources for each attribute (e.g., the value
“8” is required for vCPUs), and weights (W) are used to
represent the importance that the requester has defined for each
attribute in percentile form, such as “15%” for Memory and
“30%” for Storage. A Mean Opinion Score (MOS) [12] from
1 to 5 indicates the value of the behavioral characteristics, in
which 1 represents the lowest importance and 5 is the highest
importance. When requesting a resource, the user informs the
desired values (V) and the weights (W) of the computational
capabilities and behavioral characteristics, as well as the max-
imum cost he or she is willing to pay for resource allocation
(price). The quantity of necessary Fog nodes is also informed,
represented by r. Consequently, the user request is defined as
R = V ∪ W ∪ price ∪ r where V = {v1, v2, ..., vN}, and
W = {w1, w2, ..., wN}, price brings the maximum acceptable
cost of the resource and r indicates the number of Fog nodes
needed. Similar to what happens in Cloud computing, for this
proposal, it was considered that once the resource is allocated,
it remains available to the requester until the requester releases
it. Finally, as a data property, it is essential to ensure that the
sum of all weights informed equals 100%, so

∑
W = 1.

Taking into account the values (V) and the weights (W)
informed by the requester, and using the normalization factor
Υ presented in Equation 1, the normalization of each attribute
in Matrix A is executed, generating a value P , as calculated
in Equation 2.

Pmn =
(

amn−vn
Υn wn

)
(2)

The sum of the normalized values obtained with Equation
2 for C creates a variable called Ω, presented in Equation 3:

Ωm =
∑C

n=1 Pmn (3)

The sum of the normalized values obtained with Equation
2 for B creates a variable called Ψ, obtained with Equation 4:

Ψm =
∑N

n=C+1 Pmn (4)



Since the normalized values Υ of B can be negative, to
estimate the distance to the user’s informed value, the sum of
the module of normalized values obtained with Equation 2 for
B creates a variable called ζ, presented in Equation 5:

ζm =
∑N

n=C+1 |Pmn| (5)

At this point, two perspectives can be developed. The first,
called USR Solution, considers the user’s perspective, in which
the best Fog node is sought, that is, the one that has the
maximum values of each attribute and that has the lowest
cost, ensuring that the cost is lower than the cost informed by
the user. The provider’s perspective is the second, called PRV
Solution. That is, the selected Fog node is the one that, while
meeting the user’s request, has the minimum available values
for its attributes and, in addition, has the highest cost under
the limit informed by the user. The provider aims to achieve
the highest possible profit, meeting all user requirements.

III. PROBLEM DEFINITION

Resource allocation is a step in resource management that
seeks the best available computing resources necessary to run
an application in the Fog computing environment, aiming to
meet Quality of Service (QoS) [13]. In this work, the resource
is a Fog node (f ), and it is composed of computational
capabilities (C) and behavioral characteristics (B), as well
as financial cost (Q). When a user makes a request, it is
expected that at least one Fog node (f ) meets the minimum
computational capability requirements (v1..vC), in addition to
being cheaper than the cost limit. It is acceptable for the
(f ) available to be as close as possible to meeting all the
behavioral characteristics required (vC+1..vN ) even if it does
not fully meet them. Therefore, it was considered that meeting
the requirements for computational capabilities (v1..vC) and
respecting the informed cost limit (price) are essential to
run an application. However, meeting the requirements for
behavioral characteristics (vC+1..vN ) is only desirable.

With this, the objective is to find, among all Fog nodes
available in the Matrix A, those that meet all capabilities
requirements, the cost limit, and, within this subset, the
Fog node that comes closest to meeting the requirements of
behavioral characteristics, considering the weights informed
for each attribute.

Therefore, the restrictions for this problem are that all
attributes of capabilities (C) must meet the user requirements,
as indicated by Equation 6. To model this selection, xm is a
binary variable that will obtain the value 1 when the Fog node
m is selected and the value 0 otherwise.

xm ← fmn ≥ Vn (6)
1 ≤ n ≤ C; 1 ≤ m ≤ F

When a capability attribute must be lower than the value
requested by the user (for example, latency is considered better
when it is at the lowest value), the inverse of Equation 6 is
executed.

Furthermore, the financial cost (Q) must also be equal to or
lower than that requested by the user, as indicated in Equation
7:

qfm ≤ price (7)
1 ≤ m ≤ F

Another restriction is that the number of Fog nodes selected
cannot be greater than the quantity requested, as indicated by
Equation 8:

∑F
m=1 xm = r (8)

xm = {0,m} | ∀m ∈ F .

A. Objective Function

As mentioned, one of the differences of this proposal is
that it has two distinct solutions for user and provider per-
spectives, called USR Solution and PRV Solution, respectively.
Considering that the user always intends to obtain the best
available resource and that has the best cost-benefit ratio, the
USR Solution is defined as indicated in Equation 9:

min
∑F

m=1(
(Ωm+ζm)xm

qm
) (9)

s.t. (6), (8)

On the provider side, the objective is to find the Fog node
that delivers all requested values but considers a minimum
set of resources, avoiding waste. Thus, the PRV Solution is
defined as shown in Equation 10:

max
∑F

m=1(
(Ωm+ζm)xm

qm
) (10)

s.t. (6), (8)

In Equation 9, which represents the user’s perspective,
the resource to be selected will be the one with the lowest
cost-benefit ratio, whose capabilities attributes meet all user
requirements, and whose behavioral characteristics are the
most appropriate possible, with maximum values for each,
given the weights informed by the user. On the other hand, in
Equation 10, which represents the provider’s perspective, the
resource to be selected will be the one with the highest cost-
benefit ratio, whose capabilities attributes meet all the user
requirements and also whose behavioral characteristics are as
appropriate as possible, given the weights assigned by the user,
with minimum values for each attribute. Likewise, the fairest
choice is guaranteed: the resource with the shortest distance
from the user’s request among all available Fog nodes.

IV. PROPOSED ALGORITHM

When requesting a Fog node f in a Fog computing en-
vironment, the user informs the values (V) he needs for
computational capabilities (C) and behavioral characteristics
(B), as well as the maximum value he is willing to pay for



the resource (price). The desired number of Fog nodes (r) is
also informed as input. At this point, weights (W) must be
assigned to each attribute. The function of weight precisely
directs the choice toward the most relevant attribute from the
user’s perspective.

In our proposal, the user’s perspective aims to select the
best available resource with the most substantial computational
power and lowest cost. From the provider’s perspective, the
resource to be delivered must be as close as possible to
the requested values, with minimum values for each attribute
among the available resources and a higher cost.

Therefore, a solution based on the Multiple-Criteria
Decision-Making (MCDM) method, Algorithm 1, is proposed.
It chooses the best Fog node among all available that meet
the user requirements, considering the end-user and service
provider’s perspectives.

Algorithm 1: USR Solution and PRV Solution for Fog
node selection

Data: C, B, Υ, Matrix A, Matrix Cost, V , W , price, r
Result: fu, fp

1 X ← TRUE
2 for i ← 1 to F do
3 for j ← 1 to (C + B) do
4 P [i][j]← (A[i][j]− V[j])/(Υ[j] ∗W[j]);
5 if A[i][j] < V [j] AND j ≤ C then
6 X[i]← FALSE
7 end
8 end
9 if Cost[i] > price then

10 X[i]← FALSE
11 end
12 end
13 calculate Ω;
14 calculate ζ;
15 for i ← 1 to F do
16 if X[i] AND fu ≤ r then
17 fu ← min((Ω[i] + ζ[i])/Cost[i]);
18 end
19 if X[i] AND fp ≤ r then
20 fp ← max((Ω[i] + ζ[i])/Cost[i]);
21 end
22 end

The algorithm receives C, B, Υ, Matrices A and Cost,
V , W , price, and r as inputs. As the normalization factor
vector depends solely on attribute values from Matrix A, it is
pre-calculated (and updated when needed) before any request.
Initially, the algorithm sets the X vector to TRUE, meaning
that all the Fog nodes could attend the request, but this binary
variable will be set to FALSE in the case of any attribute not
meeting the user’s request (lines 5-7) or if Fog node’s cost is
higher than requested (lines 9-11). The normalized attribute
values P are calculated (line 4), as defined in Equation 2.

After that, the values of Ω and ζ are also calculated (lines
13-14), allowing the assessment of the cost-benefit ratio. So,
the next step is to determine the best Fog nodes for the USR
Solution (fu, in line 17) and for the PRV Solution (fp, in line
20) within the limit of Fog nodes requested by the end-user
(r).

Finally, considering that one of the challenges of Fog
computing, when compared with other more consolidated
computing paradigms such as Cloud computing, is the high
geographic distribution that requires a resource allocation
solution capable of handling many requests in a short time
interval [13], our proposed system architecture was built based
on a messaging system, such as Apache Kafka [14].

V. MOTIVATING SCENARIO

Fog computing is employed to supply use cases in which
Cloud computing is insufficient, such as healthcare, smart
buildings, vehicular networks, and data stream processing [15].
Here, a scenario involving a Fog environment supporting a
smart home application is presented for demonstration pur-
poses. In this instance, the system must select a Fog node
to perform a task related to processing safety circuit images.
The capabilities attributes are CPU, memory, storage, and
latency. Availability, scalability, reliability, and mobility are
used as behavioral characteristics. They were randomly chosen
to achieve performance tandem. We encourage the reader to
look at other attribute references, such as those presented in
[5], to further test this proposal.

Considering that pricing in Fog computing is still an issue
under discussion in academia [16], two scenarios must be
considered. In the first scenario, the cost of the Fog node is
proportional to the amount of resources (CPU and Memory)
available. That is, the greater the computational power, the
higher the cost. Another possibility would be a single price
for all Fog nodes, regardless of their configuration.

Table I details the needs of a potential requester. Therefore,
they are considered input data in the presented proposal. In this
case, the weights are distributed equally among the attributes.
Table II presents hypothetical values with proportional values
for all Fog nodes available in this smart home example. It is
considered the Matrix A for analyzing the proposal.

When running the algorithm with the values presented in
Table II, for USR Solution, we found FN12 with a calculated
cost-benefit value of 0.68. When we analyze this Fog node,
we see that it meets all the requirements requested and has a
value well below the others, favoring decision-making based
on cost-benefit. Likewise, when choosing the PRV Solution,
FN18 is pondered, with a cost-benefit value of 3.28 and a
cost of 0.43.

If all Fog nodes have the same cost, the efficiency of
the proposed algorithm becomes even more evident. For this
second scenario, it was considered that all Fog nodes have
a single value of 1.00. All other values in Table II were
maintained. After executing the algorithm, the Fog node FN08
was chosen for the USR Solution, which has the best attribute
values. For PRV Solution, FN14 was selected as the Fog node



TABLE I
INPUT VALUES.

Capabilities attributes Behavioral characteristics
CPU Memory Storage Latency Availability Scalability Reliability Mobility

Values 4 16 2000 4000 5 2 1 3
Weights 12.5% 12.5% 12.5% 12.5% 12.5% 12.5% 12.5% 12.5%

Price 1,50

with the slightest difference between what was requested and
what is being delivered in all attributes.

Another difference in using a methodology based on
multiple-choice criteria is the possibility of changing the
weights between variables, favoring the choice of Fog nodes
with more resources in a given attribute. Unlike the previ-
ous example, where the weights were distributed equally, if
the requester needs to distribute them differently among the
attributes, the proposed algorithm can handle it.

To illustrate this, the same Matrix A will be used, the
same requester attribute values will be used, and the requester
attribute weights will be changed to 47% for CPU and 1% for
memory, storage, and latency. The behavioral characteristics
were maintained at 12.5% each. The scenario of all Fog
nodes having the exact price will be kept to demonstrate
the algorithm’s efficiency. In this case, the Fog node selected
in USR Solution is FN08, the Fog node with the maximum
value for CPU in Matrix A. In PRV Solution, the Fog node
selected is FN07, with five CPUs delivered, just one CPU more
than requested. FN07 is the Fog node in Matrix A with the
lowest value for the CPU attribute. The differences between
the choices with the weight variation are shown in Figure 1.

Fig. 1. CPU values with different weights.

VI. PERFORMANCE EVALUATION

We evaluated this proposal’s performance for resource allo-
cation in Fog computing in real and simulated environments.

A. Real Test Environment

A real test environment was built to support the evaluation
of the proposal. This environment consisted of different IoT
devices, such as Smart TVs, smartphones, notebooks, WiFi

mesh, virtual assistants, etc. In addition, Fog nodes comprised
four Raspberry Pi units and four virtual machines. The server
was a Quad-core 16GB RAM. In total, the real test envi-
ronment consisted of 27 devices. The IoT devices, the Fog
nodes, and the server were in the same network range based
on a wireless connection. Table III presents the computational
capabilities and the behavioral characteristics of each Fog
node in the environment. The costs of each Fog node were
calculated in proportion to their computational capabilities.

To perform the tests, the nodes listed in Table III were reg-
istered in a Resource Catalog, a file external to the algorithm.
To allow the allocation to be carried out with the algorithm’s
output, a script was created on the server that read the IPs
indicated as selected by the application and made a connection
via the SSH command to the indicated Fog nodes.

The values presented in Table IV were used in the tests
performed. When running the tests with the input parameters,
considering that practically all parameters are the same, includ-
ing the cost, the node chosen for the USR solution was FN08
since it meets all requirements and has the lowest cost. As for
the PRV solution, the node chosen was FN05, that delivers the
requirements very close to what was requested and also has a
good cost, which is more favorable for the provider.

B. Simulated Environment

We believe that testing in a real environment is essential,
but limitations in the number of resources can influence the
analysis of the performance of the proposed algorithm. Thus,
another test scenario was designed in a simulated environment
using iFogSim [17], which was used to generate Fog nodes.
The main objective of testing in the simulated environment is
to estimate the algorithm’s performance as the number of Fog
nodes in the resource catalog varies. That is the time required
to find the one that should be allocated to the requester among
all the Fog nodes in the catalog.

To allow a comparison of our proposal with others in
the literature for the resource allocation problem, the same
environment and variables were submitted for execution using
another algorithm. TOPSIS [18] was selected since it has
been used in many related works and is used mainly to solve
MCDM problems. This comparison is presented in Figure 2.

When analyzing Figure 2 it is possible to observe that the
proposed algorithm varies according to the number of Fog
nodes available in the Resource Catalog. However, it proves
to be suitable for Fog computing because it can always find a
viable solution among the available options. This means that



TABLE II
MATRIX A.

Fog node (f ) Capabilities attributes (C) Behavioral characteristics (B) Cost (q)
CPU Memory Storage Latency Availability Scalability Reliability Mobility

FN01 32 204 4438 941 4 3 2 3 0.24
FN02 32 331 1251 403 3 3 4 4 0.36
FN03 38 357 2730 114 1 5 1 3 0.29
FN04 36 454 2922 367 4 2 1 1 0.49
FN05 25 249 8270 3257 1 2 3 1 0.27
FN06 42 245 7648 930 5 1 2 4 0.28
FN07 5 233 3858 631 5 2 1 2 0.23
FN08 46 223 8184 903 4 1 1 1 0.27
FN09 10 376 4099 490 1 2 3 4 0.39
FN10 12 268 3737 624 1 3 3 1 0.28
FN11 14 434 7298 1775 4 3 1 2 0.44
FN12 33 58 8408 261 4 2 2 1 0.09
FN13 40 86 5071 3148 5 1 3 4 0.12
FN14 22 172 3406 2604 4 2 2 4 0.19
FN15 42 371 6057 1418 5 2 1 2 0.41
FN16 31 100 2567 689 4 5 2 3 0.13
FN17 48 119 7237 2619 5 2 4 1 0.16
FN18 32 403 5540 3856 4 4 3 3 0.43
FN19 35 225 7043 4725 5 3 3 4 0.25
FN20 20 447 1369 427 2 2 4 5 0.47

TABLE III
REAL TEST ENVIRONMENT FOG NODES MATRIX.

Fog node (f ) Capabilities attributes (C) Behavioral characteristics (B) Cost (q)
CPU Memory Storage Latency Availability Scalability Reliability Mobility

FN01 4 4 2048 510 3 4 5 4 0.08
FN02 4 4 2048 563 3 4 5 4 0.08
FN03 4 4 2048 423 3 4 5 4 0.08
FN04 4 4 2048 601 3 4 5 4 0.08
FN05 2 8 1024 300 5 4 5 4 0.10
FN06 4 4 2048 230 5 4 5 4 0.08
FN07 4 8 4096 213 5 4 5 4 0.12
FN08 2 2 2048 360 5 4 5 4 0.04

TABLE IV
INPUT VALUES FOR REAL ENVIRONMENT.

Capabilities attributes Behavioral characteristics
CPU Memory Storage Latency Availability Scalability Reliability Mobility

Values 2 2 1000 600 5 5 5 5
Weights 12.5% 12.5% 12.5% 12.5% 12.5% 12.5% 12.5% 12.5%

Price 0.50

our algorithm has guaranteed to find the solution in 100% of
requests.

Although TOPSIS performance was better for scenarios
with few Fog nodes (less than 3,000 Fog nodes), our algorithm
proved to be better regarding time consistency concerning
the growth in the number of Fog nodes in the environment.
This is important because a Fog computing environment is
expected to be populated with many devices, and therefore
having adequate performance for a larger volume of Fog nodes
is essential to ensure good execution of the resource allocation
application. This shows that our algorithm is scalable, as it

maintains a very low variation in the time to find the viable
solution in Fog computing with up to 6,000 Fog nodes.

Another essential comparison with this other algorithm is
the cost-benefit for the provider and the user. Specifically,
TOPSIS does not use criteria to offer two different solutions,
as the main objective of the algorithm is to find only the best
solution, the one with the highest values. To illustrate this, let
us consider that in this simulated environment, we will run an
application for 1, 5, 10, and 60 minutes. To do so, let’s assume
that we have available the Fog nodes presented in Table II and
the demand input are those given in Table I. In this case, the



Fig. 2. Execution time with compared algorithms.

USR Solution selected the FN12, which has a cost of 0,09
per minute; to the PRV Solution, the FN18 was chosen with a
cost of 0,43; otherwise, using TOPSIS, the selected fog node
was FN03, which has a cost of 0,29 per minute.

The results of the algorithm executions are presented in
Figure 3. Note that even though TOPSIS has a shorter ex-
ecution time for scenarios with few Fog nodes, it does not
select the most suitable Fog node for the user or the provider
when considering the cost-benefit ratio. This becomes even
more evident when the application execution time increases,
showing that TOPSIS always remains in the middle line
between the best cost-benefit for the user and the best cost-
benefit for the provider. Thus, the efficiency of our algorithm
in maximizing the results for the providers or, at the same
time, delivering the best options for users, reducing resource
usage costs, becomes evident.

Fig. 3. Comparison of algorithm costs.

VII. RELATED WORK

A summary of related work on resource allocation for Fog
computing environments based on computational capabilities
or behavioral characteristics is shown in Table V. As there is
no consensus in the literature on the scope of Fog and Edge
computing [19], both paradigms were considered.

From the summary in Table V, we observe that most works
focus on finding the best Fog node based only on one attribute
type (e.g., capabilities attributes and behavioral characteris-
tics) and without guaranteeing that minimum computational
requirements will be met. Furthermore, no paper addresses
capabilities attributes and behavioral characteristics differently,
i.e., the same method is used to treat both attributes. This
can lead to mistakes and failure to meet users’ requirements.
Furthermore, no paper presents a solution that considers both
user’s and provider’s perspectives in depth. This means that
computational resources may be wasted by becoming under-
used or overused, which is not prudent in a Fog computing
environment.

VIII. CONCLUSIONS AND FUTURE WORK

We proposed an efficient algorithm for resource allocation
in a Fog computing environment, considering hardware ca-
pacities and desirable features and behaviors. It covers the
perspectives of both users and service providers. The user
wants the best resource, and the provider seeks to find the
fairest Fog node, which meets the user’s needs but with mini-
mum values. To reconcile these different goals, two solutions
were presented, namely USR Solution and PRV Solution. Our
experimental results show that the proposed approach is able
to offer the best Fog node to the user and ensure the lowest
resource consumption from provider perspective.

As part of future work, we will extend the proposed method
to support the distribution of computational requirements
between several Fog nodes and Cloud virtual machines or
even migrate running services when current Fog nodes become
unavailable. We aim to implement the resource allocation
process to the Fog node selected in the scheduling step.
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