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Abstract
In past decade parking and problems associated with it have at-
tracted the researchers attention towards it. Some of the well known
problems associated in the path of making parking smart are op-
timal parking resources usage, guaranteed parking reservation,
identification of available parking slots, efficient communication
protocols. This paper proposes a scheme, namely, Foggy-Park which
deals with dynamic pricing and allocation aspects of the smart on-
street parking system. While allocating the available parking slots,
Non-dominated Sorting Genetic Algorithm (NSGA) is used to ad-
dress the interests of both the parkers and parking authorities. The
parkers always desire to pay less parking fees. Whereas, the parking
authorities want to generate high revenue by renting out parking
slots. In order to compute dynamic prices for the available parking
slots, Seattle city parking and its prices data-sets are used. The
former one is used to train random forest model which is used
predict occupancy. Whereas, the later one is used to form base
prices. Foggy-Park scheme is implemented on different computing
paradigms, such as, cloud, fog, and edge using the concept of Zero
Trust Network Access (ZTNA). The scheme implemented on fog
computing paradigms shows its worth over others in terms of less
communication overhead. The obtained results prove that the pro-
posed Foggy-Park scheme minimizes the average parking prices,
maximizes the generated revenue, maximizes the accepted requests,
and maximizes the occupancy fairness by around 4%, 23%, 6%, and
11.28% respectively.

CCS Concepts
• Networks → Network architectures; Network performance
analysis; • Computing methodologies → Modeling and simu-
lation.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ZTA-NextGen ’24, August 4–8, 2024, Sydney, NSW, Australia
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0715-5/24/08
https://doi.org/10.1145/3672200.3673873

Keywords
Dynamic Pricing, Parking Pricing, Machine Learning, NSGA, Re-
source Allocation, Cloud Computing, Fog Computing, Edge Com-
puting, Intelligent Transportation System, Smart Cities.

ACM Reference Format:
Sandeep Saharan, Seema Bawa, Neeraj Kumar, and Rajkumar Buyya. 2024.
Foggy-Park: A Dynamic Pricing and NSGA based Allocation Scheme for
On-Street Parking System. In SIGCOMMWorkshop on Zero Trust Architecture
for Next Generation Communications (ZTA-NextGen ’24), August 4–8, 2024,
Sydney, NSW, Australia. ACM, New York, NY, USA, 6 pages. https://doi.org/
10.1145/3672200.3673873

1 Introduction
Zero Trust Smart Parking (ZTSP), which employs effective algo-
rithms, protocols, and cutting-edge hardware and software to meet
the demands of drivers and parking authority, is urgently needed
where no one trust anyone. Various issues with conventional park-
ing systems are eliminated by the smart parking systems. These
issues include load balancing, traffic congestion brought on by cruis-
ing while looking for parking, pollution brought on by cruising,
effective pricing (less for drivers and more for parking authori-
ties), optimal use of parking resources, automatic identification of
available parking spaces, effective communication between various
parking system entities, and others. The aforementioned problems
have thus far been addressed using a variety of methods. One pop-
ular method effectively addresses the majority of these issues. That
typical method is Dynamic Pricing (DP) [11]. Change in the cost
or pricing of products or services, respectively, is referred to as DP
[3]. The majority of people are motivated by money. Thus, DP can
be a highly promising solution to the majority of issues that arise
in the path to smart parking systems provided the system learns to
modify rates correctly. So far, DP has been used in the Intelligent
Transportation System (ITS) in a variety of locations, including
fair pricing, electric vehicle (EV) charging and discharging pricing,
parking pricing, congestion pricing, and more [11]. Various alloca-
tion procedures have been employed up to this point in order to
better distribute the available parking spaces. One of them is the
use of machine learning techniques. Machine learning is mostly
used to forecast how full various parking lots will be and to provide
directions to drivers so they can choose where to park. To determine
the projected occupancy or cost of the available parking spaces,
several machine learning algorithms are used. These models include
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deep neural networks, Long Short Term Memory (LSTM), neural
networks, decision trees, random forests, and linear regression [14]
[12] [13]. To assign parking places to the drivers, predicted parking
occupancy driven fees can also be employed. On a parking data
set of the Seattle city, this allocation is examined [13]. Despite its
intended purpose, predictive parking allocation can occasionally
make matters worse. This is mostly because such solutions only
take past data into account and ignore actual circumstances. Po-
tential remedies include adaptive pricing and virtual voting, the
former of which can increase parking authority’ revenue and the
latter of which, when combined with the hash-graph consensus
technique, can aid in the real distribution of parking spaces [6].
Other methods, including game theory, optimization, auction the-
ory, and mixed integer linear programming (MILP), are also used
to better distribute the parking spaces that are available. A multi-
agent auction that takes into account the preferences of both drivers
and parking authority can be used to distribute parking spaces [10].
Such a systemmay look for available parking spaces, negotiate rates
with both parties, and allow drivers to reserve a space. In most of
the cases, the private parking spaces are inefficiently managed by
their owners and can be managed efficiently by renting them out
to the public authorities. Public authorities can use cloud platform
to present every information for the use of public. Vickrey-Clarke-
Groves auction can be used to rent out such private parking spaces
[7]. The same private parking sharing problem can also be modeled
as social welfare maximization problem. By using mixed integer
non-linear programming, the distance between the allotted parking
space and the parker’s destination may be reduced for the winners
of the auction for these private parking spaces [4]. The usage of
parked cars is one way to get around the Road Side Units’ intrinsic
constraint in the vehicular networks, which is that they cannot be
employed extensively. Energy efficiency may be one of the prob-
lems in such a circumstance that may be resolved by creating an
appropriate optimization problem. Reverse auction theory may be
used to choose the best vehicle for the RSU, and then nonlinear
fractional programming can be used to solve the joint resource allo-
cation problem and maximize the transmission power [9]. Parkers
require assured parking reservations at the most affordable pricing
in the present smart parking system. Parkers want to spend less
time looking for open parking spaces. The parking authority, on
the other hand, desire increased income and the best possible use of
their resources. These objectives can be created and resolved using
mixed-integer linear programming [8]. The best distribution of
parking spaces may be represented as a driver’s cost function that
includes pricing and distance to destination as variables [5]. MILP
may be used to solve this sort of model. Today, the relationship be-
tween parking lots and EVs’ charging and discharging capabilities
is crucial. This connection aids in determining how customers park
and charge or discharge their electric vehicles, which has an impact
on parking authorities’ planning [15]. The smart parking system
in the context of the vehicular fog computing environment may
also benefit from the help of parked cars, and in exchange for this
support, the parked cars receive incentives [16]. These services are
referred to as delay-sensitive computer support. The use of sensors,
communication protocols, and hardware-software interfaces are
examples of existing technologies that may have drawbacks and
require modification when newer technology develops. However,

the DP is such a strong solution that may needs an update due to
inclusion of newer parameters otherwise it is robust [3].

1.1 Motivation
Compared to all other types of parking facilities available across the
world, on-street parking has a particular significance. It offers sev-
eral benefits, such as being often utilized for shorter periods of time
and being close to the user’s destination. On the other side, it has a
lot of drawbacks as well when managed ineffectively. These include
increased traffic cruising for parking, increased pollution from ve-
hicles cruising, and heavy traffic during peak hours. As a result,
the administration of the on-street parking system needs a special
consideration. In addition, although parking service providers want
to make a lot of money by renting out available parking spaces,
parkers always prefer to pay less. Most people quickly check for
open spots in any on-street parking lot. Therefore, the booking
procedure must move quickly enough. The cited literature does
not adequately and comprehensively address the aforementioned
issues.

1.2 Contributions
The main contributions of this work are as follows.

(i) This study develops a dynamic distributed pricing mecha-
nism that takes into account both actual and anticipated
parking lot occupancy. The random forest approach is used
to forecast occupancy.

(ii) A Non-dominated Sorting Genetic Algorithm (NSGA) is
utilised to distribute the available parking places to the in-
coming requests. Both parking users and authorities are
taken care of by this system. It gives parking customers a
slot so they may pay less. On the other side, it guarantees
the parking authority greater profit.

(iii) In order to verify communication overhead, the developed
scheme “Foggy-Park" is implemented in a variety of com-
puting environments, including cloud, fog, and edge. This
paper formulates three distinct variations of fog computing
environments.

(iv) Design, simulation, and testing of efficient algorithms are
done in the parking environment of Seattle. In order to cal-
culate the dynamically distributed prices for the parking lots,
Seattle city prices data [2] is used as a base price and Seattle
city parking data [1] is used to predict occupancy. Because
of this scheme, parking authority will make more money
while charging less from the parkers. The effectiveness of
the implemented scheme is evaluated in comparison to other
cutting-edge schemes.

1.3 Organization
The rest of the paper is organized as follows. Section 2 defines the
system model and presents the problem solved in this work. Then,
Section 3 presents the proposed Foggy-Park scheme. Thereafter,
Section 4 evaluates the performance of the proposed Foggy-Park
scheme. Finally, Section 5 concludes this paper.
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Figure 1: Seattle city multifurcation tree

2 System Model and Problem Formulation
The multi-furcation of the Seattle is given in Fig. 1. Let the single
central server is located at topmost position in the hierarchy. One
area have multiple sub-areas, one sub-area have many block-faces
and similarly one block-face may have one or many side of the
streets. The parking slots are present on the side of the streets. The
slots located at one side of the street belongs to one parking lot. The
users send their requests using internet applications which are then
captured by the nearest receiver located on the side of streets only
after validation of parking user. Then, the requests are forwarded
to the nearest linked computing device for its processing after due
validation as per the concept of ZTA. Thereafter, the decision on
requests are notified back to the users by validating the identities
of all the devices in same way.

Let the set of elements is denoted by using uppercase letter.
Whereas, the elements are depicted using same small case letters.
The subset of any set is denoted same uppercase letter followed by
a digit. Let 𝐴𝑅, 𝑆𝐴, 𝐵𝐹 , 𝑆𝑆 , 𝑃𝑈 , 𝑃𝐿, 𝑃𝑆 , 𝑇𝑆 , 𝐼𝐷 , 𝑁𝑁 , 𝑅𝑅 are the set
of areas, sub-areas, block-faces, side of streets, parking users, park-
ing lots, slots, timestamps, unique IDs, natural, and real numbers
respectively. Let ‘𝐷’ denotes the set of Computing Devices (CD)
present at each sub-area of the city and ‘𝑄𝑑 ’ is the ready/waiting
queue of arrived request at CD ‘𝑑’. Let 𝑅𝑄𝑑 depicts the details of
requests arrived at CD ‘𝑑’. Each ‘𝑟𝑞𝑑 ’ is of type (𝑖𝑑, 𝑡𝑠, 𝑝𝑢, 𝑝𝑙, 𝑡𝑠, 𝑛𝑛)
where ‘𝑖𝑑’ is the unique id given to the request. ‘𝑡𝑠’ is the request
arrival timestamp. ‘𝑝𝑢’ is the parking user of the request. ‘𝑝𝑙 ’ is
the lot where slot is requested. ‘𝑡𝑠’ is the vehicle arrival timestamp.
and ‘𝑛𝑛’ is the requested parking duration in seconds. Let 𝑅𝐴𝑑 de-
picts the details of allocation done at CD ‘𝑑’. Each ‘𝑟𝑎𝑑 ’ is of type
(𝑖𝑑, 𝑡𝑠, 𝑛𝑛, 𝑝𝑙, 𝑝𝑠, 𝑟𝑟 ) where ‘𝑖𝑑’ is the unique id of the request. ‘𝑡𝑠’ is
the allocation timestamp. ‘𝑛𝑛’ depicts request decision. Its value is 0,
1 or 2 if the request is undecided, rejected and accepted respectively.
‘𝑝𝑙 ’ and ‘𝑝𝑠’ are the allocated parking lot and slot respectively. ‘𝑟𝑟 ’
is the parking prices charged per hour. Let the functions be denoted
by ‘𝐹𝑛’. 𝐹𝑛1 (𝑝𝑙) → (𝑎𝑟, 𝑠𝑎, 𝑏 𝑓 , 𝑠𝑠) depicts the location of the given
parking lot. 𝐹𝑛2 (𝑠𝑎) → 𝑃𝐿1 depicts the subset of parking lots that
belongs to the given sub-area. 𝐹𝑛3 (𝑝𝑙, 𝑡𝑠1, 𝑡𝑠2) → (𝑛𝑛1, 𝑛𝑛2) de-
notes the maximum of real and predicted occupied slots of parking
lot between two given timestamps. 𝐹𝑛4 (𝑝𝑙, 𝑡𝑠) → 𝑟𝑟 depicts the
prices that are charged at present by the Seattle Transport Depart-
ment (STD)[2]. 𝐹𝑛5 (𝑝𝑙) → 𝑃𝑆1 depicts the subset of parking slots

that belongs to the given parking lot. 𝐹𝑛6 (𝑑) → 𝑅𝑄𝑑 depicts the
set of requests received at CD ‘𝑑’. 𝐹𝑛7 (𝑑) → 𝑅𝐴𝑑 depicts the set
of allocation done at CD ‘𝑑’. 𝐹𝑛8 (𝑝𝑠) → 𝑝𝑙 depicts the parking lot
of given slot. 𝐹𝑛9 (𝑝𝑠, 𝑡𝑠1, 𝑡𝑠2) → 𝑏𝑏 depicts whether given slot is
occupied (if ‘𝑏𝑏’ = 1) between given timestamps or not.

2.1 Dynamic Pricing Model
This model computes dynamic prices (𝑝𝑑 ) to be charged for the slot
in given parking lot ‘𝑝𝑙 ’ at time ‘𝑡𝑠1’. The formula to compute ‘𝑝𝑑 ’
is given in Eq. 3.

2.2 Average Parking Prices Calculation
The average parking prices charged at each CD ‘𝑑’ is calculated
using Eq. 1 when Eq. 2 is satisfied.

𝑃𝑎 =

∑ |𝐹𝑛7 (𝑑 ) |
𝑖=1 ((𝐹𝑛7 (𝑑))𝑖 )6∑ |𝐹𝑛7 (𝑑 ) |

𝑖=1 1
(1)

((𝐹𝑛7 (𝑑))𝑖 )2 ∈ [𝑡𝑠 𝑗 , 𝑡𝑠𝑘 ] ∧ ((𝐹𝑛7 (𝑑))𝑖 )3 = 1 (2)

2.3 Generated Revenue Calculation
The revenue generated at each CD ‘𝑑’ is calculated using Eq. 4.

𝑝𝑑 = 𝐹𝑛4 (𝑝𝑙, 𝑡𝑠1)
(
1 + 1

| 𝐹𝑛5 (𝑝𝑙) |
∗ (((𝐹𝑛3 (𝑝𝑙, 𝑡𝑠1, 𝑡𝑠2))1 >

(𝐹𝑛3 (𝑝𝑙, 𝑡𝑠1, 𝑡𝑠2))2)?(𝐹𝑛3 (𝑝𝑙, 𝑡𝑠1, 𝑡𝑠2))1 : (𝐹𝑛3 (𝑝𝑙, 𝑡𝑠1, 𝑡𝑠2))2)

+1 −
( 1+ | 𝐹𝑛5 (𝑝𝑙) |

2
)) (3)

𝑅𝑡 =

|𝐹𝑛7 (𝑑 ) |∑︁
𝑖=1

((𝐹𝑛7 (𝑑))𝑖 )6 ×
⌈
((𝐹𝑛6 (𝑑))𝑛)6

3600

⌉
| ( (𝐹𝑛7 (𝑑))𝑖 )2

∈ [𝑡𝑠 𝑗 , 𝑡𝑠𝑘 ] ∧ ((𝐹𝑛7 (𝑑))𝑖 )1 = ((𝐹𝑛6 (𝑑))𝑛)1∧
((𝐹𝑛7 (𝑑))𝑖 )3 = 1 ∧ 𝑛 ∈ [1, | 𝐹𝑛6 (𝑑) |]

(4)

2.4 Average Occupancy Calculation
The average occupancy ‘𝑂𝑎𝑣𝑔’ at all parking lots between two
timestamps is calculated using Eq. 5.

𝑂𝑎𝑣𝑔 =

( 𝑡𝑠𝑘∑︁
𝑡𝑠=𝑡𝑠 𝑗

|𝑃𝐿 |∑︁
𝑖=1

𝐹𝑛3 (𝑝𝑙𝑖 , 𝑡𝑠, 𝑡𝑠)
| 𝐹𝑛5 (𝑝𝑙𝑖 ) |

)
× 100 (5)

2.5 Problem Formulation
The objective functions that are solved in this work are given in
Eqs. 6 and 7.

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑃𝑎 (6)

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑅𝑡 (7)
subject to constraints:

𝐶1 : ((𝐹𝑛7 (𝑑))𝑖 )3 = 2 (8)

𝐶2 : 𝑖 ∈ [1, | 𝐹𝑛7 (𝑑) |], 𝑑 ∈ [(𝐷)1, (𝐷) |𝐷 | ] (9)

𝐶3 : 𝑡𝑠 𝑗 = 𝑡𝑠𝑘 ∈ [1, (𝑇𝑆) |𝑇𝑆 | ] (10)
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The constraint ‘C1’ depicts the request must be accepted in order
to reduce prices and generate revenue out of it. The constraint
‘C2’ defines the boundaries of the variable ‘i’ and ‘d’. Whereas, the
constraint ‘C3’ defines the boundaries of various timestamps used
in order to computes values of the objectives given in Eqs. 6 and 7.

3 Foggy-Park: The Proposed Scheme
This section provides the details of the proposed scheme, i.e., ‘Foggy-
Park’.

3.1 Solution Representation and Initial
Population

Each sub-area have its own ‘CD’ that run the Foggy-Park scheme
on the requests it have in its waiting queue denoted by Qd. The
front and rear pointers of the queue ‘Qd’ are denoted using ‘FQd ’ and
‘RQd ’ respectively. Let the initial population of random solutions be
denoted using Sd, where individual single solution is represented
using sd. One potential ‘ps’ is a random solution for each ‘id’
present in the ‘Qd’. Thus, random ‘sd’ is a collection of ‘ps’(s) where
| sd | is equal to | Qd |. Further, the ‘𝑝𝑠’ must not be already allocated
for the requested period of time and should belongs to the sub-area
of requested parking lot. In a single solution two ‘𝑝𝑠’(s) should not
be same. Further, definition of the feasible solution is provided in
Eq. 11.

𝑆𝑑 = {𝑠𝑑 | (𝑠𝑑 )𝑖 = 𝑝𝑠 𝑗 | | − 1 ∧ 𝑖 ∈ [1, | 𝑠𝑑 |] ∧ 𝑗 ∈ [1, | 𝑃𝑆 |]∧
| 𝑠𝑑 |=| 𝑄𝑑 | ∧𝐹𝑛8 ((𝑠𝑑 )𝑖 ) ∈ 𝐹𝑛2 ((𝐹𝑛1 ((𝐹𝑛6 ((𝑄𝑑 )𝑖 ))3))2)∧

(𝑠𝑑 )𝑖 ≠ (𝑠𝑑 )𝑘 ∧ 𝑖 ≠ 𝑘 ∧ ∀𝑖 (𝐹𝑛9 ((𝑠𝑑 )𝑖 , (𝐹𝑛6 ((𝑄𝑑 )𝑖 ))5,
(𝐹𝑛6 ((𝑄𝑑 )𝑖 ))5 + (𝐹𝑛6 ((𝑄𝑑 )𝑖 ))6) = 0)}

(11)

3.2 Fitness of Objective Functions
The fitness of any random solution with respect to the first objective
can be calculated using Eqs. 12, 13 and 14. In this average parking
prices is calculated for the slots that are given in solution.

𝑉𝑝 =

{
𝑟𝑟𝑎𝑝 𝑖 𝑓 ∃𝑖 | (𝑠𝑑 )𝑖 ≠ −1
𝛽 𝑒𝑙𝑠𝑒

(12)
𝑟𝑟𝑎𝑝 =

∑ |𝑠𝑑 |
𝑖=1 𝑟𝑟𝑝∑ |𝑠𝑑 |
𝑖=1 𝑏𝑏

(13)

(𝑟𝑟𝑝 , 𝑏𝑏) = (𝑝𝑑 (𝐹𝑛8 ((𝑠𝑑 )𝑖 ), (𝐹𝑛6 ((𝑄𝑑 )𝑖 ))5,
(𝐹𝑛6 ((𝑄𝑑 )𝑖 ))5 + (𝐹𝑛6 ((𝑄𝑑 )𝑖 ))6), 1)

(14)

The fitness of any random solution with respect to the second
objective can be calculated using Eqs. 15, 16 and 17. In this the
expected revenue is calculated that would be generated by renting
out the slots that are given in solution.

𝑉𝑟 =

{
𝑟𝑟𝑟 𝑖 𝑓 ∃𝑖 | (𝑠𝑑 )𝑖 ≠ −1
𝛾 𝑒𝑙𝑠𝑒

(15)
𝑟𝑟𝑟 =

|𝑠𝑑 |∑︁
𝑖=1

𝑟𝑟𝑝 ×
⌈ 𝑛𝑛

3600

⌉
(16)

(𝑟𝑟𝑝 , 𝑛𝑛) = (𝑝𝑑 (𝐹𝑛8 ((𝑠𝑑 )𝑖 ), (𝐹𝑛6 ((𝑄𝑑 )𝑖 ))5,
(𝐹𝑛6 ((𝑄𝑑 )𝑖 ))5 + (𝐹𝑛6 ((𝑄𝑑 )𝑖 ))6), (𝐹𝑛6 ((𝑄𝑑 )𝑖 ))5)

(17)

3.3 Crossover and Mutation
The uniform crossover technique is used in this work as depicted in
Fig. 2. In order to mutate the solutions, random mutation technique

Figure 2: Uniform crossover

is followed in which particular ‘𝑝𝑠’ is replaced by the other ‘𝑝𝑠’.
This replacement is carried out in such a way that the mutated
solution satisfies the definition of feasible solution given in the Eq.
11.

3.4 Parking Allocation
The algorithm 1 executes on each ‘CD’ located at different sub-areas
of the city. Each ‘CD’ is ready with its best solution for the requests
it have in its waiting queue after the execution of above mentioned
schemes. Then, the ‘CD’ will look for the lock if it have at-least one
pending request. The locks are granted randomly. Once the lock
is granted, then that ‘CD’ allocates the slots according to its best
solution. Before allocation, every ‘CD’ checks whether the slot to
be allocated is free or not for the desired amount of time. Although
it has been already checked before generating ‘𝑆𝑑 ’, but still there
may be a case where any other ‘CD’ acquired the lock first and
granted the said slot. This case is possible because the request may
get decided by the ‘CD’ under which the requested parking lot is
not present. Further, there is a compulsory time duration (‘Δ𝑡𝑐𝑚𝑝 ’)
up-to which request can be present in the waiting queue if not
accepted. After this, the request gets rejected if it is not accepted.
Moreover, the advance requests are also allowed in this work where
the ‘CD’ defers its decision (up-to 𝑟𝑟𝑎𝑑𝑣% of advance time) on such
request if it doesn’t find match with the requested parking lot. After
such deferred period, ‘CD’ can allocate any parking lot under the
common sub-area during time duration equals to ‘Δ𝑡𝑐𝑚𝑝 ’.

4 Performance Evaluation
In this section, the performance of the proposed Foggy-Park scheme
is evaluated with respect to various state of the art schemes.

4.1 Simulation Parameters
In the present simulation, the Seattle city parking environment is
created using realistic parameters and tested. The Seattle parking
data-set [1] and prices data-set [2] are used in the simulation. The
values used for various parameters, such as, 𝑛𝑛𝑝𝑜𝑝 , | Sd |, Δ𝑡𝑐𝑚𝑝 ,
𝑟𝑟𝑎𝑑𝑣 , 𝑛𝑛𝑖𝑡𝑒𝑟 , 𝑟𝑟𝑐 , 𝑟𝑟𝑚 , 𝛼 , 𝛽 , and 𝛾 are | Sd |, | Qd | ×10, 5 seconds,
70, 100, 1, 0.05, 5555555555, 1000, and 0 respectively.

4.2 Results and Discussion
The compared schemes are as follows. STD Pricing and Allocation
Scheme (PAS) which mimics the scheme implemented by the STD.
Further, Spatial1 and Spatial2 PAS have same average prices for
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Algorithm 1 Foggy-Park scheme
Input: AR, SA, BF, SS, PU, PL, PS, TS, ID, NN, RR, D, Q,
RQ, Fn1, Fn2, Fn3, Fn4, Fn5, Fn6, Fn7, Fn8, Fn9
Output: 𝑆𝑑
1: 𝐶 = {},𝐶𝐷 = {},𝐶𝑛 = {},𝐶𝐷𝑛 = {}, 𝐹𝑃 = {}, 𝐹𝑅 = {}, 𝐹𝑃𝑛 = {}, 𝐹𝑅𝑛 = {},

𝑖𝑡𝑒𝑟 = 1;
2: while ∃ 𝑟𝑞𝑛𝑒𝑤 do
3: 𝐹𝑛6 (𝑑 ) = 𝐹𝑛6 (𝑑 ) ∪ 𝑟𝑞𝑛𝑒𝑤 ;
4: 𝐹𝑛7 (𝑑 ) = 𝐹𝑛7 (𝑑 ) ∪ { ( (𝐹𝑛6 (𝑑 ) ) |𝐹𝑛6 (𝑑 ) | )1, 0, 0, 0, 0, 0};
5: 𝑄𝑑 = 𝑄𝑑 ∪ { ( (𝐹𝑛6 (𝑑 ) ) |𝐹𝑛6 (𝑑 ) | )1};
6: end while
7: generate 𝑆𝑑 where | 𝑆𝑑 | = 𝑛𝑛𝑝𝑜𝑝

8: while 𝑖𝑡𝑒𝑟 < 𝑛𝑛𝑖𝑡𝑒𝑟 do
9: for (i = 1; i ≤ 𝑛𝑛𝑝𝑜𝑝 ; i++) do
10: (𝐹𝑃 )𝑖 = calculate fitness of (𝑆𝑑 )𝑖 using Eqs. 12, 13, and 14.
11: (𝐹𝑅)𝑖 = calculate fitness of (𝑆𝑑 )𝑖 using Eqs. 15, 16, and 17.
12: end for
13: 𝐶 = non_dominated_sort(𝐹𝑃 , 𝐹𝑅)
14: for (i = 1; i ≤ | 𝐶 |; i++) do
15: 𝐶𝐷 =𝐶𝐷 ∪ {crowding_distance(𝐹𝑃 , 𝐹𝑅, (𝐶 )𝑖 )}
16: end for
17: 𝑆𝑛

𝑑
= 𝑆𝑑 ;

18: while | 𝑆𝑛
𝑑

|≠ 2 × 𝑛𝑛𝑝𝑜𝑝 do
19: (j,k) = (rand_int(1,𝑛𝑛𝑝𝑜𝑝 ), rand_int(1,𝑛𝑛𝑝𝑜𝑝 ))
20: 𝑆𝑛

𝑑
= 𝑆𝑛

𝑑
∪ crossover_mutation((𝑆𝑑 ) 𝑗 , (𝑆𝑑 )𝑘 , 𝑟𝑟𝑐 , 𝑟𝑟𝑚 )

21: end while
22: for (i = 1; i ≤ 2 × 𝑛𝑛𝑝𝑜𝑝 ; i++) do
23: (𝐹𝑃𝑛 )𝑖 = calculate fitness of (𝑆𝑛

𝑑
)𝑖 using Eqs. 12, 13, and 14.

24: (𝐹𝑅𝑛 )𝑖 = calculate fitness of (𝑆𝑛
𝑑
)𝑖 using Eqs. 15, 16, and 17.

25: end for
26: 𝐶𝑛 = non_dominated_sort(𝐹𝑃𝑛 , 𝐹𝑅𝑛 )
27: for (i = 1; i ≤ | 𝐶𝑛 |; i++) do
28: 𝐶𝐷𝑛 =𝐶𝐷𝑛 ∪ {crowding_distance(𝐹𝑃𝑛 , 𝐹𝑅𝑛 , (𝐶𝑛 )𝑖 )}
29: end for
30: 𝑋 = {};
31: for (i = 1; i ≤ | 𝐶𝑛 |; i++) do
32: for (j = 1; j ≤ | (𝐶𝑛 )𝑖 |; j++) do
33: 𝐶𝑛𝑛 =𝐶𝑛𝑛 ∪ {𝑖𝑛𝑑𝑒𝑥_𝑜 𝑓 ( ( (𝐶𝑛 )𝑖 ) 𝑗 , (𝐶𝑛 )𝑖 ) };
34: end for
35: 𝐹𝑛 = sort_by_values(𝐶𝑛𝑛 , (𝐶𝐷𝑛 )𝑖 );
36: for (j = 1; j ≤ | (𝐶𝑛 )𝑖 |; j++) do
37: 𝐹 = 𝐹 ∪ { ( (𝐶𝑛 )𝑖 ) (𝐹𝑛 ) 𝑗 };
38: end for
39: 𝐹 = reverse(𝐹 );
40: for (j = 1; j ≤ | 𝐹 |; j++) do
41: 𝑋 = 𝑋 ∪ {(𝐹 ) 𝑗 }
42: if | 𝑋 | == 𝑛𝑛𝑝𝑜𝑝 then
43: break;
44: end if
45: end for
46: if | 𝑋 | == 𝑛𝑛𝑝𝑜𝑝 then
47: break;
48: end if
49: end for
50: 𝑆𝑑 = {};
51: for (i = 1; i ≤ | 𝑋 |; i++) do
52: 𝑆𝑑 = 𝑆𝑑 ∪ { (𝑆𝑛

𝑑
) (𝑋 )𝑖 };

53: end for
54: end while

Table 1: Comparison between different computing paradigms

Parameter→ Communication cost (Transferred data in MBs)
Links ↓ 𝐶𝑆 𝐴𝑅 Foggy-Park 𝐵𝐹 𝑆𝑆

cs↔ ar 7.19 1.25 1.16 1.33 1.35
ar ↔ sa 7.19 7.72 2.32 2.66 2.69
sa↔ bf 7.19 7.72 7.22 5.16 5.22
bf↔ ss 7.19 7.72 7.22 8.25 8.41
ss↔ pu 5.01 5.36 5.04 5.72 5.79
Total 33.77 29.77 22.96 23.12 23.46

each area and sub-area respectively. Lastly, Occupancy PAS is based
on research work [13].

Fig. 3(a) depicts the number of requests accepted and rejected
during different hours of the day. It clearly depicts that more num-
ber of requests are accepted during different hours of the day when
‘Foggy-Park’ scheme is used in comparison to other schemes. Fig.
3(b) shows average parking prices paid by the travelers during
different hours of the day where ‘Foggy-Park’ comes out as a bet-
ter scheme than others. The less average prices charged by the
proposed scheme compared with Occupancy PAS is due to the allo-
cation of parking not at desired parking lot but at nearby parking
lots where occupancy is less and hence, prices. Fig. 3(c) represents
revenue collected by renting out the parking slots during different
hours of the day. Here also, the ‘Foggy-Park’ scheme outperforms
other compared schemes by generating more revenue. The ‘Foggy-
Park’ balances occupancy among different sub-areas due to which
more requests are accepted and hence, more revenue is generated.
Fig. 4(a) presents occupancy fairness among sub-areas during dif-
ferent hours of the day. This is calculated using Jain’s fairness index
using Eq. 18.

JF(o1, o2, ..., on) =
( ∑n

i=1 oi
)2

n × ∑n
i=1 o

2
i

(18)

Here, oi is the average occupancy of ith sub-area during particular
hour of the day. There are total ‘n’ = 33 sub-areas considered in this
study. The plot shows that ‘Foggy-Park’ scheme is more fair than
other schemes in balancing occupancy of the parking lots. Table
1 presents the communication cost in terms of data transferred
between different links present in the considered system model. It
is evident from the results that less data is transferred under ‘Foggy-
Park’ scheme when compared with other computing paradigms
implementation of the proposed scheme. Fig. 4(b) depicts the total
number of hops passed by the messages exchanged between entities
during different hours of the day. Whereas, the Fig. 4(c) shows total
hops passed by the messages generated due to requests received
for different parking lots. Both the figures proved efficacy of the
‘Foggy-Park’ scheme as the less number of hops are passed in it.
The notations, such as, ‘𝐶𝑆’, ‘𝐴𝑅’, ‘𝑆𝐴’, ‘𝐵𝐹 ’, and ‘𝑆𝑆’ used in Fig.
4(b), Fig. 4(c), and Table 1 depicts the places where CDs are placed.

5 Conclusion
In this work, ZTSP allocation problem is formulated in terms of
minimization of parking prices for the travelers and maximization
of revenue generated by renting out the parking spaces. The dy-
namic parking prices are computed using base prices (used by STD)
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Figure 3: (a) Requests decision vs hour of the day (b) Average parking prices vs hour of the day (c) Revenue generated vs hour
of the day
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Figure 4: (a) Occupancy fairness vs hours of the day (b) Hops count vs hour of the day (c) Hops count vs parking lots

and random forest model of machine learning. The dynamic prices
are fair in sense that it increases or decreases with increase or de-
crease in parking lot occupancy. The formulated multi-objective
optimization problem. then solved by using NSGA-II algorithm.
The obtained results prove that the proposed Foggy-Park scheme
minimizes the average parking prices, maximizes the generated
revenue, maximizes the accepted requests, and maximizes the oc-
cupancy fairness by around 4%, 23%, 6%, and 11.28% respectively.
Further, the Foggy-Park scheme proved its worth over other com-
puting paradigms by sending less amount of data over the network
and passing less number of hops. In future, parameters such as
parkers’ type (paid or restricted), satisfaction, willingness to pay
can be added while solving for the framed objectives.
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