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Abstract—Deep learning (DL) clusters allow machine learning
practitioners to submit their computation-intensive tasks, with
GPUs accelerating their execution process. However, GPUs in
current deep learning clusters are often under-utilized, which
hampers the job performance and overall cluster throughput.
It is urgent to improve GPU utilization, but existing works
lack research on fine-grained allocation for GPU resources, as it
typically allocates GPUs as indivisible units. Serverless computing
reveals an opportunity to optimize utilization with fine-grained
resource allocation methods, but it requires addressing three
main challenges: co-location performance degradation, service
level objectives guarantee of serverless functions, and cold
start overhead. We propose SMORE, a framework based on
serverless computing to optimize GPU resource utilization of DL
clusters. SMORE dynamically predicts the possible co-location
performance degradation and leverages a degradation-aware
scheduling algorithm to ensure that the co-location decisions do
not impact workload performance. It also dynamically preloads
or offloads DL models by predicting the request numbers of the
subsequent period to address the cold start issue. Through actual
trace testing on the prototype of SMORE, we find that the average
GPU utilization can be increased by 34% with degradation being
controlled effectively.

Index Terms—serverless computing, GPU cluster, workload co-
location, cold start

I. INTRODUCTION

Deep learning (DL) has deeply involved in daily applica-
tions in recent years [1] and achieved significant performance
breakthroughs in several real-world application domains, such
as natural language processing [2], speech recognition [3],
and recommendation systems [4]. To meet the computational
requirements of deep learning models, large research orga-
nizations and enterprises set up GPU clusters to deploy deep
learning workloads [5], [6]. GPU clusters promote the effective
processing of large-scale data sets and the training of complex
models by significantly improving computing efficiency. Scal-
ing up GPU cluster deployment is an inevitable trend in the
future development of deep learning. As clusters grow larger,
service providers encounter escalating costs.
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However, existing multi-tenant DL clusters suffer from low
GPU utilization, which hampers overall system performance
and diminishes the throughput of deep learning models [7].
Based on existing works [5], [6], [8] and open-source GPU
traces [9], [10], we attribute the low GPU utilization in DL
clusters to two aspects, the allocation methodology of GPU
resources and the resource utilization characteristics of dis-
tributed DL tasks. From the perspective of the GPU allocation
method, most deep learning tasks fail to fully saturate the GPU
Streaming Multiprocessors (SM), and approximately 90% of
the GPUs exhibit GPU utilization rates below 80% [8]. In
production clusters, GPUs do not natively support sharing
and are typically treated as indivisible units [6], [11], leading
to under-utilization and wasted computational capacity. Al-
though current technologies offer partitionable GPU instances,
like MIG, the granularity of this partitioning is inherently
coarse. In addition, from the perspective of resource utilization
characteristics of distributed DL tasks, communication and
synchronization overhead inherent in distributed training can
create bottlenecks in GPU usage. Typically, around 90% of
the time is wasted waiting on the network during cloud-based
training [12]. Moreover, certain inefficient task-scheduling
strategies such as gang scheduling [6] also contribute to GPU
under-utilization. Thus, inefficient GPU allocation methods
and distributed DL task training schemes lead to low utilization
of cluster resources.

Existing works have made efforts to address the problem of
GPU under-utilization. Some works are from a task-oriented
perspective. Gandiva [13] proposes time-slicing, migration,
and packing methods to allow GPU sharing. To address the
fairness problem of time partitioning for workloads of multiple
scales and sizes, Gandivays,;. [14] proposes an automated
trading mechanism. AntMan [8] introduces opportunistic DL
workloads as low-priority tasks to maximize the utilization of
GPU cycles. Others are from a cluster-oriented perspective.
AlloX [15] formulates the scheduling problem as a minimum-
cost two-point matching problem to schedule DL. workloads
among exchangeable resources. However, all of these works
either consider GPUs as indivisible units [14], [15] or only
support certain types of workloads [8], [13], such as training
or inference workloads.

We recognize that serverless computing has advantages in
fine-grained resource allocation and are the first to propose
its adoption in optimizing GPU resource utilization in DL
clusters. Serverless computing is a popular cloud computing



paradigm where developers focus on the application’s logic,
leaving server configuration, maintenance, and scalability to
the provider [16]. It allows users to submit tasks, known as
functions, which are executed by the cloud provider on its
servers [17]. It can dynamically allocate resources on demand
and scale up or down to meet workload requirements. Given
the diverse properties of serverless computing and the mul-
titasking capabilities offered by GPUs, deploying serverless
function services on under-utilized DL clusters provides an
opportunity to improve resource utilization.

Existing works [9], [18]-[20] have attempted to harvest
CPU and memory resources with serverless computing. How-
ever, these methods fail to harvest GPU resources. The gap
arises from immature isolation mechanisms for GPUs. We
conduct experiments and identify the challenges of optimizing
GPU cluster resource utilization by co-locating serverless and
serverful workloads. The first challenge is that different work-
loads compete for GPU and other computing resources, lead-
ing to workload performance degradation. Our experiments
in §II find that unreasonably co-locating serverless functions
and serverful workloads results in over 10% performance
degradation. As the number of co-located workloads increases,
performance degradation will rapidly escalate. The second
challenge is meeting the Service Level Objectives (SLOs) of
serverless functions under workload co-location. Serverless
functions are subject to finite deadlines, and performance
degradation may result in their inability to complete execution
before their deadlines. The third challenge comes from cold
start issues, and cold start times exceed the function execution
time, significantly increasing the overall latency of serverless
functions. Our experiments find that some tasks exhibit cold
start overheads nearly 100 times greater than their warm start
overheads.

Therefore, we propose SMORE to optimize GPU resource
utilization of DL clusters by allowing serverless functions
to utilize idle GPU resources. SMORE is designed with the
objective of enabling the selective co-location of appropriate
serverless function workloads within an ongoing serverful
workload DL cluster to improve GPU resource utilization,
while also striving to meet SLO requirements and minimize
performance impact. It can make admission decisions for
incoming serverless function requests on clusters with server-
ful tasks, predicting their potential degradation to control
workload degradation. Besides, it can effectively address cold
start issues, balancing cold start rates and resource wastage
time.

To be specific, we first construct a performance degrada-
tion predictor to better quantify the performance degradation
caused by co-location. The predictor comprises pair-wise and
multi-way sub-predictors, divided into offline training and
online update phases. In the offline phase, we effectively
gather training samples. After training and evaluating multiple
distinct regression models, the most accurate regression model
is selected as the core model of the pair-wise sub-predictor.
The multi-way sub-predictor integrates the results of the pair-
wise predictor to handle scenarios where multiple functions
are co-located. In the online phase, we track the real execution
results and update the dataset to retrain the predictor.

Secondly, we design a degradation-aware scheduler to allo-
cate resources and execute serverless functions with the goal of
managing performance degradation and maximizing the num-
ber of function executions meeting their SLOs. The scheduler
assesses incoming serverless function requests based on the
predicted performance degradation and the current workload
status obtained from real-time monitoring of clusters. If this
function can be executed, the scheduler will determine the
most suitable GPU for its execution, aiming to increase GPU
utilization while managing performance degradation.

Furthermore, we present a prewarmer module that dynam-
ically preloads the DL model to alleviate cold starts and
offloads the DL model to reduce resource wastage in idle
containers. Its core is a Long-Short LSTM (LS-LSTM) model
to predict the number of requests in the next period, effectively
capturing the patterns of requests in both the long term and
short term. By observing the patterns of long and short cycles
of past request arrivals, the prewarmer can effectively predict
the patterns of incoming requests. Based on the prediction
results, the prewarmer can preload functions in advance to
reduce the cold start overhead or terminate function execution
to reduce resource waste.

We implement a prototype of SMORE in 3000+ LOC of
Python. We conduct experiments on our self-built GPU cluster
relying on the function traces provided by Azure [9]. We
analyze the performance loss, GPU utilization, and function
request reception. The results indicate that our system can
increase GPU utilization by up to 34% while controlling
degradation within a certain range.

Our contribution can be summarized as follows.

« We propose SMORE, the first serverless-based framework
to optimize the GPU utilization of DL clusters.

« We construct a predictor for performance degradation due
to workload co-location, and it can achieve high-accuracy
results with a small amount of training data.

e« We design a dynamically-aware scheduling algorithm to
improve resource utilization and control the degree of
performance degradation.

e We present a novel Long-Short LSTM to predict the
situation of upcoming function requests and control the
start of function instances ahead of time.

« We implement a system prototype of SMORE. Experi-
ments on real clusters show that our approach improves
the GPU utilization of clusters by up to 34%.

II. WORKLOAD CO-LOCATION CHARACTERIZATION

Co-location testing, where multiple workloads share the
same hardware resources, is a critical aspect of resource man-
agement and performance analysis. In CPU-based systems,
resource isolation is a mature field, with established techniques
like virtualization and containerization providing relatively
strong isolation between co-located workloads. However, GPU
colocation presents inherent challenges regarding isolation.
Despite the introduction of technologies like NVIDIA Multi-
Process Service (MPS) and Multi-Instance GPU (MIG) aimed
at improving GPU sharing and isolation, the level of isolation
achieved is generally weaker compared to CPUs.



TABLE I: Typical deep learning workloads.

[ Model [ Type | Dataset |
VGG-16 [26] CvV CIFARI100 [27]
MobileNet [28] CvV CIFAR100
DeepViT [29] (Y% ImageNet [30]
ResNet-50 [29] (Y% ImageNet
BERT [31] NLP CSL [32]
RoBERTa NLP SQuAD [33]
DeepFM [34] Ad. Criteo
SegNet (MAN) [35] | MTL NYUV2 [36]

In this section, we study the performance impact of co-
locating DL training workloads with DL inference functions.
To enhance our comprehension of co-location impacts and
guide future design decisions, this study primarily concentrates
on the influence of potential resource interference on GPU uti-
lization and workload performance. While previous work has
studied characteristics of individual GPU workloads, it lacks
profiling for the co-location of different types of workloads.
We divide existing works into two types. One is profiling for
single-type workloads, which only considers training [8], [21]
or inference workloads [22], [23]. The other focuses solely
on co-locating single-type workloads, either for training tasks
[24] or inference tasks [25]. Compared to existing work, our
characterization includes co-location profiling of these two
kinds of workloads, making it more comprehensive.

A. Characterization Setup

a) Methodology: Our characterization is divided into
the following three steps. We first execute each workload
exclusively and then select three training workloads repre-
senting distinct utilization levels (low, moderate, and high)
to comprehensively analyze co-location effects. Finally, we
co-locate different inference functions with these training
workloads to observe their impacts on workload performance.
We collect relevant data during workload execution for further
analysis, including inference function latency, average training
workload consumption time, and GPU utilization.

b) Models: For better reproducibility and reliability, we
select five common deep learning models with open datasets,
as shown in TABLE 1. To improve the applicability of the
analyzed results, these models cover three common research
fields, including computer vision (CV), natural language pro-
cessing (NLP), advertisement (Ad.), and multi-task learning
(MTL).

c) Metrics: We select both system and workload metrics
as the basis for our profiling. System metrics include resource
utilization, primarily GPU SM utilization. Workload metrics
refer to performance indicators related to the workload. We
choose the 99th percentile (P99) latency for the inference
functions and the average time an epoch consumes as a bench-
mark for training workloads. The performance degradation of
both training and inference workloads can be computed from

their exclusive and co-location execution.
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Fig. 1: GPU utilization of different models under solo-run.

the workloads in the co-location case and the solo-run case,
respectively.

d) Environment: All evaluations are implemented and
deployed on Ubuntu 20.04 with Nvidia RTX 3090 GPUs. To
improve the reliability of experimental results, we run each
co-location and solo-run experiment for one minute. Both
workloads run directly on bare metal. After that, we record the
average P99 latency degradation for inference functions and
the average execution time degradation for training workloads.

B. Observations

TestCasel: Exclusive execution. To understand the utilization
patterns of different workloads, we first examine the GPU SM
usage of each model exclusively running on a single GPU, as
depicted in Fig. 1. DeepViT, ResNet-50, BERT, and RoBERTa
exhibit high computational intensity during training, reaching
peak SM usage of over 70%. GPU utilization of DeepFM and
MobileNet is relatively low, mostly below 30%. For inference
tasks, BERT maintains around 70% SM utilization, while other
models are mostly below 40%. The GPU usage patterns of
various workloads fluctuate over time, but the fluctuations are
generally within 20%.

Observation I

DL models exhibit diverse resource requirements, yet SM
utilization of the same model remains within a specific range
during execution.

TestCase2: Co-located execution. We employ the P99 latency
as our performance metric for inference functions and average
epoch consumption time for training applications. We select
DeepFM (low), VGG (moderate), and RoBERTa (high) to
represent distinct utilization levels and investigate the impact
of co-location on their performance. We visualize the co-
location degradation level in Fig. 2. x-axis label indicates the
different inference functions that are co-located with these
training applications. Co-locating with these eight inference
functions does not result in a significant slowdown (0.4%-
18.4%) on average epoch time for the DeepFM training
application. Inference workloads such as MobileNet, DeepFM,
RoBERTa, and DeepViT a minimal impact (less than 10%) on
the training workloads of VGG and RoBERTa. The increase
in P99 latency for the co-located functions in approximately
half of the cases is also within an acceptable range. Therefore,
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Fig. 2: Performance degradation caused by co-location.

TABLE II: Cold start latency of different inference functions.

[ Model | Warm-start (ms) | Cold-start (s) |
VGG-16 3 1.2
MobileNet 9 1.0
DeepViT 11 2.4
ResNet-50 13 1.5

BERT 37 2.6
RoBERTa 10 5.2
DeepFM 8 0.6

SegNet (MAN) 50 1.6

this presents opportunities for co-locating different workloads
without significant performance degradation.

Observation 11

The extent of performance degradation varies with differ-
ent inference function co-locations.

TestCase3: Variable request numbers To further investigate
co-location, we select DeepFM/MobileNet, VGG/DeepViT,
and RoBERTa/VGG combinations for training and infer-
ence workloads. We then observe the impact of increas-
ing inference requests on the performance degradation of
both workloads. As illustrated in Fig. 3, different combi-
nations exhibit different levels of performance degradation.
For the DeepFM/MobileNet combination, training degrada-
tion increases steadily, with a surge from 7 to 8 requests,
and inference degradation remains acceptably low, staying
below 10%. For both the VGG/DeepViT and RoBERTa/VGG
combinations, degradation in training and inference workloads
increases with the number of concurrent requests. Further-
more, in some instances, the performance degradation exceeds
100%, which is unacceptable in practical scheduling. The
upward trend observed in these data suggests the potential
for modeling degradation growth using various regression
techniques, which can provide a basis for scheduling.

Observation II1

There exists the possibility of predicting the performance
impact of co-locating multiple inference functions.
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Fig. 3: Co-location evaluation with different request numbers.

TestCase4: Cold start time. To understand the cold start
overhead that GPU inference functions incur, we evaluate the
initialization time required for several functions from scratch.
This includes GPU context initialization, PyTorch framework
initialization, and model loading, constituting the cold start
time. Additionally, we assess the execution time of these
functions after initialization, representing the warm start time.
As shown in TABLE II, the cold start time for RoBERTa
exceeds 5 seconds, while BERT and DeepViT also exhibit
cold start times surpassing 2 seconds. However, the typical
execution time for these functions is less than 100 millisec-
onds. Consequently, the initialization overhead associated with
cold starts is substantial. Notably, even though DeepFM has a
relatively short cold start time of 0.6 seconds, this is still nearly
two orders of magnitude greater than its inference time.

Observation IV

Cold starts significantly increase the execution latency of
functions, potentially preventing serverless functions from
completing their execution before their deadlines.

C. Implications

To better design a serverless-based GPU cluster utilization
optimization scheme, we obtain some inspirations based on
the above characterization experiments. Observation I and
Observation II imply our scheme should select reasonable
workload co-location combinations to control performance
degradation within a certain range. Observation III shows
when considering the co-location of multiple inference func-
tions, it is possible to estimate their degradation. Observa-
tion IV indicates our scheme needs to address cold start issues
as much as possible to reduce function execution latency. In
summary, we progress our design by addressing the following
challenges: (1) performance degradation caused by co-location
should be controlled; (2) SLOs for serverless functions should
be met; (3) considerable overhead from cold starts should be
avoided.
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III. DESIGN

Serverless-based optimization requires a clear distinction
between serverful and serverless workloads. Because inference
functions have short execution times and moderate resource
usage, we deploy them as serverless functions, ensuring they
meet deadlines and SLO requirements. Conversely, due to the
lengthy execution times of training workloads, we classify
them as serverful workloads.

Based on this setup, we propose SMORE, a serverless-
based framework to optimize the GPU utilization of DL
clusters. In response to the first challenge of potential perfor-
mance degradation under workload co-location, we propose
a performance degradation predictor to predict performance
degradation levels of co-locating workloads, which can help
the scheduler make admission control decisions involving
accepting or rejecting submitted function requests. To address
the second challenge of meeting SLOs of more serverless
functions, we then design a degradation-aware scheduler with
hybrid scheduling policies to handle low and high load condi-
tions. The scheduler dynamically selects and admits serverless
functions to co-locate with serverful DL training workloads
while guaranteeing SLOs of admitted serverless functions
and managing performance degradation within an acceptable
range. Finally, to tackle the third challenge of cold starts,
we apply a prewarmer with LS-LSTM to predict the number
of requests in the next period and make decisions regarding
preloading or offloading to alleviate cold start issues and
reduce resource wastage.

Fig. 4 shows the overall workflow of SMORE. SMORE com-
prises two phases, an offline profiling phase and an online
serving phase. In the offline phase, we collect profiles con-
taining workload performance metrics under exclusive execu-
tion condition@)). Then, we randomly select some co-location
conditions@ to generate samples to train€) an initial model
for pair-wise co-location. After obtaining the initial model
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Fig. 5: The workflow of the predictor. The predictor will first
predict the degradation generated by pair-wise co-location and
then predict the multi-way co-location based on the previous
results.

of performance degradation, we predict@ the performance
degradation generated by the remaining co-location combina-
tions to generate a complete degradation table for later quick
querying. We also utilize actual traces to train€) the initial LS-
LSTM in the prewarmer module. In the online phase, the user
sends@ a request to the scheduler, and the scheduler judges
if the request can be admitted and determines which GPU
to co-locate it with. The prewarmer module collects actual
requests and periodically updates@ the LS-LSTM with a
certain interval. The prewarmer predicts incoming requests for
the next period and preloads models in advance. The scheduler
gathers resource usage and task execution status through the
monitor and periodically updates the cluster status@) at fixed
time intervals. The scheduler queries the predictor module to
obtain the predicted performance degradation result of co-
location@), then performs scheduling and allocates@ GPU
resources to admitted functions based on the obtained informa-
tion. After the functions are executed in the cluster, the monitor
would track the real performance degradation and update the
dataset@ to retrain the predictor.

IV. CO-LOCATION DEGRADATION PREDICTION
A. Design Overview

We propose a prediction module for co-location perfor-
mance degradation. The core of the predictor module includes
a pair-wise predictor and a multi-way predictor for co-location
performance degradation. We combine offline training and
online updating. After offline training, we can obtain an initial
model developed using a limited dataset. Since the initial
model may not be accurate enough, we employ incremental
learning to gather online data and continuously enhance the
model for improved accuracy during the online phase.

The workflow of the predictor module is shown in Fig. 5.
Assume we want to predict the possible performance degra-
dation of one serverful workload co-located with N serverless
functions. We combine N serverless functions one by one
with the serverful workload to form inputs and obtain N
pair-wise co-location performance degradation through the
pair-wise predictor. Next, we input these N pair-wise co-
location prediction results into the multi-way predictor and
get the final output, representing performance degradation of
workload caused by co-location of N functions.

B. Pair-wise Co-location Profiling

We first consider performance degradation in pair-wise co-
location, where one serverful workload is co-located with



TABLE III: Selected DL model features.

[ Features | Description |
FLOPS Number of floating-point operations
Params Number of Parameters
Memory GPU Memory used by model

Activations Number of activation functions
Num. Conv Number of convolution layers
Num. Linear Number of linear layers
Batch Size Size of mini-batch

Num. Norm Number of Normalization layers
Num. ReLU Number of ReLU layers
Num. Embed Number of Embedding layers
Num. Pool Number of Pooling layers
Num. Drop Number of Dropout layers

one serverless function. While the DL training workload is
performed on a GPU, we try to locate different serverless
DL inference functions on the same GPU and monitor per-
formance degradation. Since the cold start time of serverless
GPU function instances is relatively long, we temporarily
disregard its impact on workload co-location. In §VI, we
extensively consider the impact of reducing cold start on
function execution efficiency.

We consider representative feature selection at both the

system and task levels. At the system level, we choose GPU
SM utilization and GPU memory utilization as metrics because
they best reflect the utilization of GPU resources by the
workload. At the task level, we choose the features as shown
in TABLE III because they effectively and comprehensively
represent the characteristics of a DL model structure. Although
FLOPS and Memory can be computed based on the data
shape of each layer and other parameters, diverse hardware
platforms and libraries might exhibit variations in the cal-
culation methodology of FLOPS for certain operations. It is
straightforward to execute one iteration to obtain accurate
FLOPS with corresponding tools and GPU memory usage
with GPU monitoring tools. The profiling segment can use this
method to extract features from different DL models shown
in TABLE 1. Then, we utilize these features as inputs and
the level of performance degradation as the target to construct
a prediction model for workload pair-wise co-locations. This
is equivalent to a regression problem with an input vector
dimension of 24, as the feature dimensions for serverful and
serverless workloads are both 12, summing up to 24. We
employ classical machine learning models in our study, and
among them, the Random Forest model demonstrates the best
performance through comparative analysis.
Model evaluation. We evaluate model accuracy using Root
Mean Square Log Error (RMSLE). RMSLE is a metric used to
assess the performance of regression models and is often used
to assess situations where there is a large bias in the prediction
results. RMSLE can be seen as an extension of Mean Squared
Error (MSE) and can help minimize overfitting. In Equation 2,
y; denotes the model predicted value, and y; denotes the true
value.

n

1
o > (og(y +1) = log(i + 1)) (2)
S i=1

RMSLE =

C. Multi-way Co-location Prediction

Multi-way co-location represents the situation where one
serverful workload is co-located with multiple serverless func-
tions. Multi-way co-location sample space can be much larger
than pair-wise co-location, and naive sampling is unfeasible
due to the high cost. Multi-way co-location can be divided into
multiple pair-wise co-locations. Specifically, co-locating one
training workload with IV serverless functions can be viewed
as a superposition of N sets of training workloads and server-
less functions executing one by one, producing performance
degradation somehow. Therefore, we design a linear weighted
sum of N co-location degradation to predict the performance
of multiple workloads co-location. Mathematically, our model
has the form for training workload degradation under the co-
location of k& workloads.

Deg; = Z +*(M;, My) Deg;, 3)
JESL;

In Equation 3, SL; is the set of co-located serverless func-
tions with serverful workload i, v¥(M;, M;) is the weight
for the training workload ¢ and serverless function j which
is only related to the model name M; and M; shown in
TABLE I, Deg;; is the degree of performance degradation
when workload ¢ is co-located with j only. The degree of
degradation of the serverless functions in the multi-way co-
location scenario is similar as shown in Equation 4, where
o and (3 represent weights and Deg;; means degradation for
the serverless function j under pair-wise co-location with the
training workload 1.

Deg; = o*(M;, M;)Degji+ Y B*(M;, M) Degjm (4)
weSL;

The higher the weighting, the greater the performance impact
generated by the workload.
Updating the weights of the multi-way predictor. In the
beginning, we initialize all weight values to one, and the
predictor is equivalent to a linear sum of performance impacts
from other workloads. After the system goes live, we record
actual execution results and use the error between the actual
values and the predicted values, multiplied by a coefficient, to
update the weights.

V. DEGRADATION-AWARE SCHEDULING

The predictor module provides the foundation for later
scheduling, effectively forecasting the performance degrada-
tion that occurs during the co-location of serverless func-
tions and serverful workloads. To guarantee SLOs of ad-
mitted serverless functions when co-locating with serverful
workloads, in this section, we introduce a degradation-aware
scheduling strategy. The core target of our degradation-aware
scheduling is improving GPU cluster resource utilization by
admitting more functions to meet their SLOs and managing
performance degradation within an acceptable range.

A. Degradation-aware Function Scheduling

To manage the performance degradation of workloads due
to co-location, we use degradation-aware function scheduling
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to select the proper placement for admitted serverless func-
tions. We define performance loss boundary judgment as P99
latency < 10% [37].

Priority queue. It is crucial to determine which function to
prioritize for resource allocation and scheduling. From the
offline profiling results and online execution history, we gather
data regarding the co-location scenario for a function and
compute its average values to depict a potential increase in
GPU usage and performance degradation. Then, we perform
a prioritization calculation shown in Equation 5 to reorder the
arriving requests.

Potential increase in usage
Potential increase in degradation

P func = (5)
After that, we take out the highest priority requests from the
queue in order to further determine the most suitable GPUs. In
general, requests for functions with a high potential increase
in GPU usage and a low potential increase generate more
utilization improvements, and we prioritize the satisfaction of
these requests.

Hybrid scheduling policies. To deal with high and low loads
for request arrival patterns, we will prioritize implementing
degradation minimization at low loads and finding a feasible
placement position at high loads. Because at low loads, the
upper bound on degradation is basically never reached, and
there is enough time to find an optimal position for each
request. Under high load conditions with numerous requests,
our primary focus should be on finding suitable placement
positions for a greater number of requests. The complexity of
processing all GPUs in the cluster at once is O(N), where
N is the number of GPUs in the DL cluster. To reduce the
search overhead of finding the most suitable GPUs under
high load conditions, we start by randomly selecting d GPUs
from a resource pool of N GPUs. This approach can reduce
scheduling overhead and enable the processing of a higher
volume of functions within a timestamp. In the following part,
we present the scheduling algorithm for the low load case as
an example, which is similar to the high load case.
Scheduling algorithm. SMORE’s GPU resource management
logic, which runs when the function request queue is not empty
and accepts the highest-priority function from the queue, is
shown in Algorithm 1. We randomly select the d most likely
GPUs from the GPU resource pool. All memory and comput-
ing kernels on a GPU not allocated to DL training workloads
are reserved for serverless and referred to as exclusive GPU
resources. We need to ensure that the exclusive GPU SM
and memory resources are enough for serverless inference

Algorithm 1: Serverless Function Resource Allocation

Input: Req: submitted serverless function request;
P: GPU resource pool; f: fast processing
Output: Target GPU gi4rget
1 Function ResourceAllocation (req, p, s, f):

2 gpu_set < RandomGPUSelection (p, d)

3 degs + {}

4 for g in gpu_set do

5 if not GPUResourceSatisfy (g, req) then
6 | continue

7 end

8 deg +— ComputeDegradation (g, req)

9 if DegradationAcceptable (g, deg) then
10 if f then

1 | return g

12 end

13 degs.add({g,deg})

14 end

15 end

16 if degs is not empty then

17 Jtarget < LeastDegradation (degs)

18 return gy, get

19 else

20 return null
21 end

22 End Function

requests. For a specific workload, its GPU memory footprint
is fixed and easily extrapolated, while SM utilization rises
in the co-location case compared to the exclusive running
case. When SM utilization approaches 100%, continuing to
co-locate workloads incurs very large delays. If the remaining
resources of a GPU can satisfy the function’s demand, we then
utilize a predictor to get the performance impact generated
by co-locating the function. After processing all the selected
GPUs, if none of the GPUs meets the demand for the function,
then it is returned to the function queue, awaiting the next
round of scheduling. If more than one GPU meets the demand,
then the GPU with the least performance impact is selected
for function placement.

Fig. 6 shows an example of how to make placement
decisions. When functions arrive, we put them into a pending
queue and compute their priority. Assuming F4 is the highest
priority, we take it out of the queue for processing. From
the previous profiling, we can extract certain relevant features



of the function model and use the predictor to forecast the
potential degradation that might occur when co-locating with
existing workloads of 4 GPUs to be selected. Since GPU 4
generates the least performance impact, F'4 will be allocated
to GPU 4. Next, we pop out Fip and calculate the degradation
that may occur when placing it on four GPUs. Ultimately,
we choose GPU 3 to place Fp because it produces the
least degradation. Finally, we pop out F» and find that the
degradation it produces exceeds the limit. Therefore, we put
it back into the queue and await the next scheduling round.

VI. PREWARMER

A. Managing Cold Starts with Hybrid LSTM

For serverless DL inference functions, cold start includes the
time cost of resource allocation and initialization, loading large
libraries and frameworks (such as TensorFlow or PyTorch),
GPU context initialization, and model loading. Cold starts
incur considerable startup overhead and are even much higher
than the actual execution time. It is urgent to avoid cold starts
to guarantee SLOs for serverless functions.

To alleviate the considerable resource waste and handle

the sudden spike condition, we propose a Long-Short LSTM
policy to determine when to prewarm the function runtime
and when to terminate the function runtime. We track both
the long-term and short-term request number per minute and
idle time. LSTM can simultaneously consider the long-term
and short-term characteristics of data to predict future events
and is suitable for the long-term regularity and short-term
fluctuations of serverless functions.
Input features of LSTM. We choose the number of requests
per minute in the previous n minutes as the input, which is
an n-dimensional vector. The LSTM will output the number
of requests that will arrive in the next minute. Based on the
past trace data, we train the long-term and short-term LSTM
models to predict the request number of the next time period.
To improve the prediction accuracy, we retrain the model
with the newly gained data in a fixed time interval. After
getting the predicted request number for the next period, we
use the request number per second to prewarm corresponding
containers to provide services for more than one concurrent
request.

The main purpose of solving the cold start problem is to
reduce the cold start rate and resource waste rate. The lower
the value of both metrics, the better the optimization effect.
The time for resource loading but function not executing is a
waste of resource time denoted as 7T,,s:. and the total time is
denoted as T;,+q;. We derive the resource waste rate R, as

Twaqfe
Ry =— (6)
" Ttotal
The number of functions experiencing cold start is denoted as
N.s and the total number of functions is denoted as Nyyiqi-
We derive the cold start rate R.s as

Nes

Rcs =
Ntotal

(7

B. Workflow of Prewarmer

Data preprocessing. Our prewarmer module tracks the arrival
time, execution time, and end time of functions. Then it
calculates the number of function arrivals per minute as input
data for LSTM model training.

Long and Short term setting. To accurately capture request
arrival patterns, we use the last short (e.g., 1 hour) and long
durations (e.g., 1 day), respectively for two LSTM model
training. After training two LSTM models, the models will
output Lygpnym and Spgnum based on the request conditions
of the previous n minutes. Here, rqnumy and rgnumg
respectively denote the prediction results of the long-term
model and the short-term model for the number of requests
expected to arrive in the next minute. We derive the request
number of next minute rgnum using their weighted sum.

rgnum = « - rqnump, + (1 — «) - rgnumg (8)

Where « is a configurable weight between 0 and 1; by default,
we set a = 0.5.

Control prewarming. At the beginning of a minute, we can
get rqnum, the number of incoming requests for this minute,
through LS-LSTM as depicted in Equation 8. If rgnum > 0,
we will preload the DL model in advance, ensuring incoming
requests can be serviced efficiently. When the number of
requests in this minute reaches rqnum, the container will be
closed. The advantage of our solution is that it can reduce
resource wastage during idle times and after the completion
of requests.

VII. IMPLEMENTATION

SMORE comprises a performance monitor, GPU manager
on each node, and a cluster-level scheduler, predictor, and
prewarmer. The performance monitor on each node tracks
GPU utilization and communicates this information to the
scheduler to update cluster status information. The GPU
manager on each node handles the actual GPU allocations for
functions and communicates with the scheduler. The sched-
uler makes admission decisions for incoming requests based
on collected information and, upon admission, determines
the most suitable GPU for their execution. Additionally, the
scheduler interacts with both the prewarmer and predictor.
The predictor receives potential co-location combinations and
returns estimated degradation to the scheduler for decision-
making. During serving serverless requests, the prewarmer
predicts the next request and preloads the model in advance.

We implement a prototype of SMORE in 3000+ LOC of
Python. We use the PyTorch framework [38] to implement
the corresponding DL workloads and predictors. We use Flask
to implement the instances for executing serverless function
requests and gRPC to exchange control messages between the
scheduler and nodes.

VIII. EVALUATION
A. Evaluation Methodology

Experimental setup. We evaluate SMORE on a machine of
eight GPUs. TABLE IV summarizes the configurations of the
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TABLE IV: Experimental testbed configuration.

[ Component [ Specification |
CPU device Intel Xeon Gold 6248R
Shared LLC Size 71.5MB
Number of sockets 2
Memory Capacity 512GB
Processor BaseFreq. 3.00 GHz

Operating System Ubuntu 20.04LTS

Threads 192 (96 physical cores)
SSD Capacity 11TB
GPU device Nvidia RTX 3090
GPU Memory 24GB DGDDR6
GPU SM cores 10496
Number of GPUs 8

machine. To focus our results on the impact of interference,
we co-locate serverful and serverless workloads on these
GPUs. The invocations of serverless workloads are hosted on
the same machine. We make invocations of functions to the
scheduler according to the provided trace, the scheduler will
make admission control to decide which GPU to locate the
function to minimize performance degradation.

Workloads. The serverful workloads we use for evaluation are
listed in TABLE 1. For the co-location degradation predictor,
only 20% of the task combinations of model name and batch
size are used for training. These serverful workloads have a
wide variety of GPU utilization ranges, allowing us to com-
prehensively evaluate our solution under different utilization
conditions. The models used by serverless functions are also
shown in TABLE 1. Their batch sizes are set to < 32. The
invocation patterns of these serverless functions are simulated
using the production trace from Azure Function [10], which
includes 14-day request statistics with different arrival pat-
terns. We classify functions based on their execution time
and map them from large to small to the actual functions in
Azure Function. Due to the sparse distribution of invocations
in Azure Functions, which hinders achieving high requests
per second (RPS), we first statistically analyze the distribution
of different functions over one-minute intervals. Subsequently,
this distribution is converted to a per-second basis and scaled
by a corresponding factor to generate test scenarios with the
desired RPS. Their latency SLOs are randomly set to values
between 1 to 4 times their P99 latencies.
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location execution.

Fig. 9: Admitted ratio of
different function types by
SMORE over time.

B. Real Testbed Experiments with a Single Application

We first consider a co-location with a single serverful DL
training application running on one GPU to understand the im-
pact on a single training task under co-location circumstances.
We choose MobileNet with relatively uniform utilization as the
serverful application. We generated a trace of approximately
390 requests lasting 20 seconds using Azure Functions.

a) Performance degradation: To measure the degrada-
tion, we monitor the average iteration time of serverful work-
loads and the execution latency of serverless functions. Fig. 7
displays the distribution of latency degradation for functions
admitted in the trace under co-location conditions. It can
be observed that almost all functions experience degradation
less than 100%, with over half of the functions experiencing
degradation below 10%. This indicates that SMORE effectively
manages the degradation of co-located serverless functions.

b) Request admission status: Scheduling algorithm ef-
fectiveness can be measured by the ratio of functions admitted
that can meet their deadlines. Fig. 8 shows the number of
submitted and admitted functions during execution on the
testbed. From the figure, it can be observed that in most cases
when there are many incoming requests, SMORE successfully
handles the majority of requests, with only rare instances
where it processes a small portion of them. This indicates
that SMORE strives to accept as many tasks as possible, thus
maximizing utilization.

¢) Request admission preference: To further understand
the SMORE’s tendency in selecting admitted task types, we
conduct an analysis of the proportion of admitted function
types, as shown in Fig. 9. From this, it can be observed that the
proportion of admitted tasks is high for MobileNet, DeepFM,
and RoBERTa, and moderate for VGG, DeepViT and BERT.
This indicates that SMORE tends to prioritize functions that
exhibit lower performance degradation and potentially lead to
higher GPU utilization.

d) GPU utilization: Our objective is to improve GPU uti-
lization while minimizing the performance impact on serverful
workloads. Hence, we also prioritize improvements in average
utilization as a key metric. Fig. 10 illustrates the changes in
GPU utilization over time between exclusive and co-location
cases. It can be observed that at each time point when
serverless functions arrive, there is a significant increase in
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GPU utilization. The magnitude of this increase is dependent
on the type of serverless functions and batch size used for
co-location. This indicates that adopting co-location indeed
increases GPU utilization.

C. Real Testbed Experiments with Multiple Applications

After evaluations on a single application, we now consider
the scenario where multiple serverful DL training applications
are hosted on one node and expand the evaluation based on
eight GPUs. We select three different models with varying
utilization rates, ranging from low to high, and configure them
with two settings: the same batch size and different batch
sizes. This results in a total of six configurations representing
different serverful utilization rates. For the same batch size, we
opted for a moderate value. We select four varying values from
small to large for different batch sizes. We generate traces of
approximately 12000 requests per minute scaled from Azure
Functions.

a) Performance degradation: Subsequently, we compare
the performance degradation of both serverful and server-
less workloads under different settings to assess whether
SMORE can control degradation within a certain range. Fig. 11
displays the average latency degradation of admitted functions
under co-location conditions, as well as the degradation level
of the serverful workload. From this, it can be observed that
the average degradation of functions is controlled to be below
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Fig. 12: Number of submitted and admitted functions by
SMORE over time.

50%, while the execution performance of the serverful work-
loads is hardly affected. This indicates that SMORE maintains
control over degradation.

b) Request admission status: The reception of requests
can provide insights into the performance of the schedul-
ing algorithm. Fig. 12 shows the number of submitted and
admitted functions during execution on multiple GPUs co-
located with MobileNet. From this, it can be seen that in
the case of multiple GPUs, almost all functions in the trace
can be admitted and executed. This indicates that co-locating
serverless functions in a GPU cluster has advantages.

c¢) GPU utilization: Similarly, we finally focus on the
change in utilization before and after implementing the
SMORE scheme. Fig. 13 shows the average GPU utilization
under different configurations. From this, it can be observed
that under almost all configurations, the average GPU utiliza-
tion has increased by 3%—34%. For the scenario of ROBERTa-
mix, due to its inherently high utilization, resulting in relatively
significant degradation of co-located tasks, the proportion of
admitted tasks is low, leading to only a minor increase in
utilization.

D. Baseline Comparison

To further demonstrate the effectiveness of our system in
controlling degradation and enhancing utilization, we imple-
ment different allocation method based on the co-execution
configuration of TGS [39] as the baseline. TGS is a system
designed to provide transparent GPU sharing for deep learning
workloads in container clouds.

Baselines. We compare SMORE with three scheduling meth-
ods listed as follow.

« Random: All tasks are executed on the GPUs within
the current cluster following a First-Come, First-Served
(FCFES) principle, with random assignment and without
considering potential performance degradation.

e EDF-util: Earliest Deadline First (EDF) is a classic
scheduling algorithm that prioritizes incoming serverless
function requests based on their deadlines, serving the
task with the earliest deadline first. We integrate this
approach with utilization-based admission control: an
incoming function is admitted if the sum of its utilization
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and the current serverful utilization is below a predefined
threshold.

o ElasticFlow: ElasticFlow [40], building upon EDF, ini-
tially sorts serverless functions by their deadlines. Subse-
quently, it employs a greedy approach to minimize single-
GPU throughput degradation when allocating multiple
GPUs to a single function. Integrating ElasticFlow’s
scheduling with our admission control method allows for
a greedy minimization of performance degradation when
placing individual functions onto the cluster.

To better demonstrate the differences between SMORE and
the baselines, we increase the number of requests per minute
to 16000. Fig. 14 illustrates the differences among these
methods across various metrics, including deadline satisfactory
ratio (DSR), GPU utilization improvement (GUI), serveful
workload degradation (SFD), and serverless function degrada-
tion (SLD). It is evident that the degradation-aware approach
(ElasticFlow and SMORE) significantly improves the deadline
satisfaction ratio compared to methods unaware of potential
degradation (Random and EDF-util). Furthermore, admitted
serverless functions exhibit lower degradation, and the degra-
dation of serverful workloads remains within acceptable limits.
Comparing our method with ElasticFlow reveals that our
approach achieves a higher GUI, a lower SFD, and a lower
SLD. This indicates that our method effectively controls the
degree of degradation, thereby enhancing resource utilization
while maximizing the satisfaction of a greater number of
serverless functions.

E. Component Evaluation

a) Performance degradation predictor evaluation: We
set different batch sizes for different models and combine
two different workloads, resulting in a total of 1024 samples.
The prediction model is trained in an offline mode based
on the collected 1024 samples. We select o x 1024 samples
to train the model and the left samples are used to test the
model accuracy. o ranges from O to 1. After trying different
values of «, we find that when o = 0.2, we can get RMSLE
of approximately 0.3. This indicates that we can efficiently
train a model with sufficient accuracy using a small sampling
space. We compare the results of training and testing different
machine learning models, as shown in Table V. Among them,
the Random Forest model performs the best, achieving the
best performance in both RMSLE and MAE metrics.
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TABLE V: RMSLE and MAE for co-location degradation

prediction.

[ Metric | Random Forest | Bagging | Linear |
RMSLE 0.305 0.314 0.870
MAE 0.473 0.494 0.721

b) Prewarmer evaluation: We conduct evaluations on the
prewarmer module targeting to solve cold starts. For cold start
problems, we compare LS-LSTM with the Long-Short Term
Histogram (LSTH) [22] and hybrid histogram policy (HHP)
[10] to evaluate our method’s effectiveness. LSTH collects
long-term and short-term interval time (IT) graphs of requests
to infer pre-warm and keep-alive values for early container
startup. HHP only collects a configurable duration of idle
times. The corresponding metrics are the cold start rate of
serverless functions and resource waste time when the model
is loaded, but no requests arrive. We select actual functions
from Azure Functions as training samples.

Fig. 15 shows LS-LSTM prediction result on one function.
It can be observed that LS-LSTM can almost accurately
predict whether functions will arrive within the minute.

We evaluate the cold start rate and resource waste rate
for two functions with varying spike counts, noting that the
second function has more spikes. The final results are shown
in Fig. 16. We can observe that for Function 1, our approach
reduced the cold start rate by 15% while increasing resource
wastage by 10%. For Function 2, our approach almost main-
tained the same cold start rate while reducing resource wastage
from 75% to 32%, nearly halving the resource wastage.
Compared with LSTH and HHP, our LS-LSTM policy can
solve cold start rate problem in more common conditions.
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experiments.

c) Scheduling overheads: For a scheduling space with
8 GPUs, the time overhead required for a single scheduling
operation is 0.01 ms. It accounts for nearly less than 1%
of the execution time of serverless functions and supports
the scalability of the system. To validate the effectiveness of
our scheduling system on a larger-scale cluster, we conduct
simulation experiments to evaluate scheduling overhead under
both high-load and low-load conditions. The core scheduling
logic and algorithms in the simulations are consistent with the
implementation of the testbed. The results of the simulations
are presented in Fig. 17. It is evident that even with a cluster
size of 1024 GPUs, the scheduling overhead per request
remains below one millisecond. Under high load conditions,
our scheduling system allocates functions to the first suitable
GPU it encounters. With 1024 GPUs, the scheduling latency
per request is approximately 0.1 ms, which is significantly less
than the function execution time. This large-scale simulation
demonstrates the favorable scalability of our system.

F. Further Evaluation on MIG-enabled GPUs

Multi-Instance GPU (MIG) is a feature offered by NVIDIA’s
latest data center GPUs that enables the dynamic partitioning
of GPU resources. For instance, an A100 GPU with 7 GPCs
can be dynamically divided into 5 distinct slice configurations.
Building upon MIG, MISO [41] dynamically adjusts the
optimal number of GPCs allocated to workloads based on
their resource utilization. To validate the applicability of our
method to MIG-enabled GPUs, we first employ MISO on
an A100 40GB GPU to assign various MIG configurations
to different serverful workloads. Subsequently, we generate
a request trace with 4500 requests per minute scaled from
Azure FUnctions. The evaluation results across different MIG
partition combinations are illustrated in Fig. 18. The results
indicate that SMORE can accommodate 30% of serverless
functions while maintaining the degradation of both serverful
and serverless workloads within acceptable limits compared
with the original MISO.

G. Discussion and Future Work
GPU types. In production clusters, the majority of devices are

relatively low-caliber GPUs. This work can help improve the
utilization rate of this type of GPU and our implementation
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Fig. 18: Comprasion results of different workload groups on
MIG-enabled GPUs.

can be easily extended on this type of GPU. For high-calibre
GPUs, we consider them as future work considerations.
Other resources. This work mainly focuses on the utiliza-
tion rate of GPUs. Even without analyzing other computing
resources, good results can still be achieved. However, if a
more detailed analysis of other resources can be conducted,
the interpretability of the method can be better improved. We
consider this as future work.

Large models. The increasingly popular large language mod-
els (LLMs) demand substantial GPU memory, occasionally
exceeding the capacity of a single GPU. As a result, they
need to be carefully distributed across multiple GPUs to
achieve efficient model parallelism and pipeline [42]. It is
possible to consider deploying large model workloads as
serverful tasks while concurrently deploying serverless tasks
to improve cluster utilization during idle periods. However,
deploying large model workloads and conducting experiments
with them require significant computational power. We will
attempt this in the future if conditions permit. Furthermore,
if large language models are to be employed as serverful
workloads, the GPU memory resources may constrain the
deployment of serverless functions. To address this challenge,
more efficient model switching and memory management
mechanisms need to be established. We consider this as a topic
for future research.

IX. RELATED WORK

a) Workload analysis: Distributed training is essential
for large deep learning workloads but faces challenges like re-
duced average GPU computation throughput [40], idle waiting
during group scheduling, and significant communication and
I/O overhead [43]. An early description of a machine learning
training task in Alibaba’s PAI [44] suggested replacing the PS-
Worker architecture with Ring AllReduce to utilize the high-
speed NVLink between GPUs better. Some deep learning clus-
ter schedulers [45], [46] have investigated training efficiency
under different network bandwidths and proposed solutions to
mitigate the communication overheads to accelerate training.
These works mainly focus on distributed training, while our
characterization focuses on general DL workloads.

b) Workload scheduling: Deep learning training work-
loads in current multi-tenant production clusters are man-
aged by infrastructures such as Kubernetes or YARN, where



the workloads exclusively occupy the allocated GPU re-
sources, leading to a general under-utilization problem [6].
Several related works have made efforts to address the prob-
lem. Gandiva [13] has proposed time-slicing, migration, and
packing methods to allow GPU sharing. Themis [47] and
Gandivayg;, [14] focus on addressing fairness among different
workloads. AlloX [15] models the scheduling problem as a
minimum-cost two-point matching problem to efficiently and
fairly schedule deep learning workloads among exchangeable
resources. AntMan [8] introduces opportunistic deep learning
workloads as low-priority jobs to maximize the utilization
of GPU cycles. Orion [48] intercepts GPU kernel launches
to design an operator scheduling algorithm to improve GPU
utilization. Compared with existing works, SMORE targets
workloads of different types and optimizes cluster utilization
based on serverless computing.

c) Serverless-based optimization: Some existing work
has leveraged serverless computing to optimize cluster
resource utilization or improve system throughput. Un-
FaaSener [18] designs optimal offloading decisions to harvest
non-serverless compute resources of serverless users to reduce
their bills. Libra [19] takes dynamic profiling resource status
to harvest idle resources for accelerating function invocations.
Zhang et al. [9] harvests idle resources to create new containers
for executing additional functions. ServerMore [20] proposes
opportunistic executing serverless functions alongside tradi-
tional serverful applications, imposing constraints on CPU,
bandwidth, and PCle to manage performance degradation.
Gsight [49] enhances the number of function services and
ensures QoS through incremental learning predictions. INF-
less [22] combines built-in batching and non-uniform scaling
mechanisms to improve system throughput. Compared with
these works, SMORE leverages serverless computing to co-
locate different types of workloads in order to enhance cluster
GPU utilization.

d) Cold start optimization: Cold start time is a common
source of latency in serverless frameworks. SSC [50] and
faaShark [51] take a gradient-based algorithm for pre-warming
containers but are not suitable for GPU serverless functions.
The hybrid histogram policy (HHP) [10] tracks the idle times
of a configurable duration and derives two parameters, the pre-
warming window and keep-alive window, to control waiting
time and keep-alive time after the last execution. Additionally,
INFless [22] proposes a Long-Short Term Histogram (LSTH)
policy, which tracks the idle time of both long and short
duration and draws the histogram to derive the two param-
eters Further reducing cold start rates and resource waste.
Compared to HHP and LSTH, SMORE can better reduce
resource wastage and decrease cold start rates. FaaSwap [52]
leverages model swapping to reduce the cold start time of
model inference, which is orthogonal to SMORE.

X. CONCLUSION

In this paper, we propose SMORE, a framework based on
serverless computing to optimize the efficiency of GPU cluster
resource utilization for deep learning tasks. SMORE pre-
dicts potential degradation for incoming serverless func-
tion requests. Based on these predictions, we design a

degradation-aware scheduling strategy to increase GPU uti-
lization while controlling degradation to a certain extent. Ad-
ditionally, SMORE utilizes LS-LSTM to establish prewarmers
to address the cold start issue. Through prototype testing,
SMORE demonstrates a 34% improvement in GPU utilization
compared to exclusive execution condition, without significant
degradation.
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