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Abstract

In Grids, users may require assurance for completing their jobs on shared resources. Such guarantees
can only be provided by reserving resources in advance. However, if many reservation requests arrive at
a resource simultaneously, the overhead of providing such service due to adding, deleting, and searching,
will be significant. An efficient data structure for managing these reservations plays an important role in
order to minimize the time required for searching available resources, adding, and deleting reservations.
In this paper, we present new approaches to advance reservation in order to deal with the limitations
of the existing data structures, such as Segment Tree and Calendar Queue in similar problems. We
propose a Grid advanced reservation Queue (GarQ), which is a new data structure that improves some
weaknesses of the aforementioned data structures. We demonstrate the superiority of the proposed
structure by conducting a detailed performance evaluation on real workload traces.

Keywords: data structure, advance reservation, segment tree, calendar queue, and grid computing.

1 Introduction

Grids [11] and peer-to-peer (P2P) [15] network technologies enable the aggregation of distributed re-
sources for solving large-scale and computationally-intensive applications. These technologies are well-
suited for Bag-of-Tasks (BoT) applications [8], wherein each application consists of independent tasks
or jobs [1]. Some projects such as Nimrod-G [6], Gridbus Broker [20] and SETI@home [2] utilize these
technologies to schedule compute-intensive parameter-sweep applications on available resources [17].

Managing various resources and applications scheduling in highly dynamic Grid environments is
a complex and challenging process. Resource management is not only about scheduling large and
compute-intensive applications, but also the manner in which resources are allocated, assigned, and
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accessed. In most systems, submitted jobs are initially placed into a queue if there are no available re-
sources. Therefore, there is no guarantee as to when these jobs will be executed. This causes problems
in time-critical or parallel applications, such as task graph, where jobs may have interdependencies.

Advance Reservation (AR) is the process of requesting resources for use at specific times in the
future [16]. Common resources that can be reserved are compute nodes and network bandwidth. AR in
a scheduling system solves the above problem by allowing users to gain simultaneous and concurrent
access to adequate resources for the execution of such applications [19]. Currently, several Grid systems
are able to provide AR functionalities, such as GARA [12], and ICENI [14].

In order to reserve the available resources in such AR systems, a user must first submit a request by
specifying a series of parameters such as number of compute nodes needed, and start time and duration of
his/her jobs [13]. Then, the AR system checks for the feasibility of this request. If there are no available
nodes for this requested time period, the request is rejected. Consequently, the user may resubmit a
new request with a different start time and/or duration until available nodes can be found. Given this
scenario, the choice of efficient data structure can significantly minimize the time complexity needed
to search available compute nodes, add new requests, and delete existing reservations. Moreover, a
well-designed data structure provides the flexibility and easiness in implementing various algorithms.

Some data structures are tailored to specific applications. For example, a tree-based data structure
is commonly used for admission control in network bandwidth reservation [3, 21, 23]. Each tree node
contains a time interval and the amount of reserved bandwidth in its subtree. Therefore, a leaf node has
the smallest time interval compared to its ancestor nodes. Hence, the number of bandwidth required for
a single reservation is stored into one or more fitting nodes. In general, a tree-based structure has a time
complexity of O(log n) for searching the available bandwidth, where n is the number of tree nodes.
This approach is considered to be better than using a sorted Linked-List data structure [22], which has
a sequential searching method leading to O(totAR) time complexity, where totAR is the total number
of reservations. This is because the List does not partition each reservation into a fixed time interval
like a tree-based structure. Contrarily, a study done by Burchard [5] found that arrays provide better
performance than a tree-based structure, such as a Segment Tree [3], for processing new requests and
searching larger time intervals. The study was conducted to measure the admission speed of a bandwidth
broker using each structure in a multilink admission control environment.

The previous studies are primarily focused on finding out the search time of the aforementioned data
structures. However, these studies do not explicitly consider add and delete operations for adding new
requests and deleting existing reservations respectively, for these data structures. This is because, for
reserving network bandwidth, each tree node and index in Segment Tree and Array respectively, only
stores information regarding the allocated reserved bandwidth. Hence, the performance of addition and
deletion can be neglected. In contrast, a data structure needs to keep additional information for reserving
compute nodes in Grid systems, such as user’s jobs for executing on the reserved nodes, and their status
for monitoring purposes. In addition, most of these studies, except done by [5], do not consider an
interval search operation, where the data structure finds an alternative time for a rejected request. This
operation helps users who requests got rejected in negotiating a suitable reservation time. Therefore, the
performance of this operation also needs to be considered when choosing the appropriate data structure.

The contributions of this paper are as follows. We first describe modified versions of Linked List and
Segment Tree data structures to support add, delete, and search, as well as the interval search operation
capable of dealing with advance reservations in computational Grids. For this, we had to specifically
develop an algorithm for finding closest interval to a requested reservation for Segment Tree. Second,
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Figure 1. An overview of the Grid model.
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Figure 2. Overall resource model that supports
reservation.

we introduce and adapt Calendar Queue [4] data structure for managing reservations as well. Calendar
Queue is a priority queue for future event set (FES) problems in discrete event simulation. FES shares
similar characteristics to advance reservations in Grids, where it records future events, and schedules
them in chronological order. Next, we propose a new data structure that is tailored to handle the above
operations efficiently. The new data structure is called Grid advanced reservation Queue (GarQ), which
is a combination of Calendar Queue and Segment Tree, for administering reservations efficiently for the
above operations. We demonstrate this by doing a comprehensive performance evaluation using several
real-world workload traces from the Parallel Workload Archive [10]. The results show that GarQ has
a better performance time on average when dealing with reservation operations compared to other data
structures.

The rest of this paper is organized as follows. Section 2 describes the overall model, whereas Sec-
tion 3 describes each modified data structure. Section 4 explains our proposed structure, and Section 5
evaluates each data structure’s effectiveness on real workload traces. Finally, Section 6 concludes the
paper and presents future work.

2 Description of the Model

In our model, as depicted in Figure 1, each resource has a Reservation System (RS), which is re-
sponsible for handling reservation queries and requests. Also in the model, a Grid consists of a Grid
Information Service (GIS), resources and users. The interaction among these components are men-
tioned as follows. Each resource advertises its availability to a GIS (step 1). A user queries a list of
available resources to the GIS (step 2). In order to reserve one or more compute nodes (CNs), a user
needs to submit a reservation request to a resource (step 3). In this paper, the request is defined as
reserv(ts, te, numCN), where ts denotes the reservation starting time, te denotes the reservation end-
ing time, and numCN indicates the number of compute nodes to be reserved respectively. When a
resource receives the request, it checks for availability (step 4). More specifically, the RS asks the data
structure for this request, as shown in Figure 2. Then, the resource replies back to the user whether it
can accept the request or not (step 5). If the request has been accepted, then the user sends his/her jobs
(step 6) or goes back to (step 3) with a new reservation request with a different time interval.

Figure 2 also shows the open queueing network model of a resource applied to our work. In this model,
there are two queues: one is reserved for AR jobs while the other one is for parallel and independent
jobs. Each queue has a finite buffer with size S to store objects waiting to be processed by one of
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Figure 4. A representation of storing reserva-
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P independent CNs. All CNs are connected by a high-speed network. The CNs in the resource can
be homogeneous or heterogeneous. In this paper, we assume that a resource has homogeneous CNs,
each having the same processing power, memory and harddisk. Therefore, the primary role of the data
structure is to store and to update the information about CNs’ availability as time progresses. Then, a
resource scheduler is responsible for managing incoming jobs and assigning them to available CNs.

The reservation model, as shown in Figure 1, uses a two-phase commit and gives the user a chance
to negotiate with the RS if the request gets rejected [13]. Hence, in order to support this reservation
scenario, a data structure needs to perform the following basic operations:

• search: checking for availability of CNs in a given time interval. This operation is defined as
searchReserv(ts, te, numCN).

• add: inserting a new reservation request into the data structure. This operation is performed only
when the previous search phase succeeded. For addition, the new reservation is represented as
addReserv(ts, te, numCN, user), where user is an object storing the user’s jobs and other
relevant information.

• delete: removing the existing reservation from the data structure. This operation is conducted only
when the add phase succeeds and the reservation’s finish time has passed. It is described as
deleteReserv(ts, te, numCN).

In addition to the above basic operations, an interval search operation is required for searching for
the next available start time within a given time interval. Therefore, if a request is rejected, the RS can
suggest an alternative starting time. This operation is represented as suggestInterval(ts, te, numCN).

Figure 3 shows an example of existing reservations represented in a time-space diagram. When a new
request from User5 arrives, the RS checks for any available compute nodes. In this case, the required
number of nodes is 2. However, only one node is available, hence, this request will be rejected. By
performing suggestInterval(11, 13, 2) on this request, the RS manages to find the next available time,
which is from time 13 to time 15.

4



3 Adapting Existing Data Structures

In general, a data structure that deals with a resource reservation can be categorized into two types,
i.e. a time-slotted structure and a continuous one. A time-slotted data structure divides the reservation
time into slots based on a fixed time interval. For example, 1 slot may represent 1 second or 5 minutes
or 1 hour of a CN’s computation time. Hence, the start time and duration time of a reservation will be
partitioned, compared with the existing ones and placed to the appropriate slots (if accepted). Examples
of this type of data structure are Segment Tree and Calendar Queue, and they will be discussed next.
In contrast, a continuous data structure, such as Linked List [22] is more flexible. Therefore, it allows
a reservation to start or finish at arbitrary times. Moreover, it obviates the need to have a minimum
duration time for each reservation as compared to a time-slotted structure.

3.1 Segment Tree

Segment Tree, as shown in Figure 4, is a binary tree where each node represents a semi-open time
interval (X, Y ]. The left sibling of the node represents the interval

(

X, X+Y

2

]

, and the right sibling
represents the interval

(

X+Y

2
, Y

]

. Each node has also the following information:

• rv: the number of reserved CNs over the entire interval. When a reservation which spans the entire
interval (X, Y ] is added, rv is increased by the number of CNs required by this reservation. No
further descent into the child nodes is needed.

• mv: the maximum number of reserved CNs in the child nodes. In the leaf nodes, the mv value is
0. The total number of reserved CNs in the interval of a leaf node is the sum of all rv of nodes on
the path from the root node to the leaf node.

Note that the complete tree in Figure 4 is not drawn here due to lack of space. However, the height of
Segment Tree can be computed as:

height = log2

(

interval length

slot length

)

(1)

where interval length is the length of the whole interval we want to cover, and slot length is the
length of the smallest time slot. In our implementation, interval length is one month (30 days), and
the leaves of this tree represent slot length of 5 minutes. To deal with reservations for an arbitrary
time T , we first compute a new time which fits into this interval. In order not to overlap reservation
from different months, we assume that no reservations are made more than one month in advance. This
assumption is also valid for other data structures. As a result, the whole tree can be reused for the next
month interval. Hence, the tree is only going to be built once in the beginning.

All operations on Segment Tree are performed recursively. Before giving a brief description of the
operations, we define some common notations that will be used, as follows:

• N is the node the recursion is currently in with Nl is the left sibling and Nr is the right sibling.

• (lN , rN ] is the interval of the node N .

• (l, r, numCN) is the input to all the operations.
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• maxCN is the maximum number of available CNs in the system.

For the search operation, if a reservation request covers the entire interval of the current node, such
that (l, r] == (lN , rN ] && (rv + mv + numCN) ≤ maxCN , then we have found enough free CNs
and can terminate the recursion, as shown in Figure 4. Hence, Segment Tree is able to search quickly
without having to go down to the leaf nodes for a larger interval.

Likewise, for the add operation, if (l, r] == (lN , rN ], then we increase rv by numCN and return
(rv + mv) to the parent node. Figure 4 shows how the reservations are added into the tree. By using
Figure 3 as an example, User1 is stored into node (a), User2 to node (b) and (d), User3 to node (c) and
(e), and User4 to node (g). Moreover, the values of rv and mv on each node are updated accordingly.
Removing a reservation is very similar to adding one, so the description can be omitted from this paper.

Algorithm 1: suggestInterval(l, r, numCN) in Segment Tree
if numCN > NavailableCN then return −1;1

if (l, r] == (lN , rN ] then return lN ;2

else3

if N is a leaf node then return l;4

if l ∈ (lNl
, rNl

] and r ∈ (lNr
, rNr

] then5

leftS ← Nl.suggestInterval(l, lNl
, numCN);6

if leftS == l then7

rightS ← Nr.suggestInterval(lNr
, lNr

+ ∆− (l − lNr
), numCN);8

if rightS == lNr
then return l;9

else return rightS;10

else return N.suggestInterval(leftS, leftS + ∆, numCN);11

else if r 6∈ (lNr
, rNr

] then12

leftS ← Nl.suggestInterval(l, lNl
, numCN);13

if leftS == l then return l;14

else return N.suggestInterval(leftS, leftS + ∆, numCN);15

else return Nr.suggestInterval(l, r, numCN);16

end17

Searching for a free slot. Brodnik et. al. [3] do not describe the operation of finding a new free inter-
val, closest to the proposed reservation reserv(l, r, numCN), so we give a more detailed description
of the implementation of this function. We have to point out that the operation described below finds
the closest interval later than the current proposed interval. The description is given in pseudocode in
Algorithm 1, and uses the common symbols defined as:

• NavailableCN is number of available CNs in the whole interval of the node N ;

• leftS, rightS are temporary variables, that store the suggested starting time from the left and
right subtree respectively; and

• ∆ is the length of the reservation interval, so simply ∆ = r − l.
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The function recursively searches for a suitable interval. In the case where the reservation interval
covers the whole interval of the current node N , it examines the number of available CNs in this interval
(lines 1–2). If there are enough CNs, the function returns the leftmost point of the interval lN , and
the rightmost point rN , otherwise. When the searched interval does not cover the entire interval of the
current node (lines 3–17), the function deals with four different possibilities:

1. Current node is a leaf (line 4). This is the boundary condition where the interval is a candidate for
the free slot.

2. The interval (l, r] covers the intervals of both the node Nl and Nr (lines 5–11). First it finds
a candidate interval in the left sibling (leftS). If the suggested interval is equal to the original
interval (starting at l) we can check if there is enough space in the right subtree as well. Otherwise
we re-check the interval (lN , rN ] with a new proposed interval (leftS, leftS + ∆].

3. The interval (l, r] covers only the interval of the node Nl (lines 12–15). Similarly to the approach
in the first case (above), the procedure searches the left subtree. If the suggested interval is the
same as the proposed one, we return it, otherwise we re-check the interval (lN , rN ].

4. The interval (l, r] covers only the interval of the node Nr (line 16). In this case we recursively
search for a free slot only in the right subtree.

In the case where there is no free interval in Segment Tree, the function returns -1.

3.2 Calendar Queue

Calendar Queue (CalendarQ) was introduced by Brown [4], as a priority queue for future event set
problems in discrete event simulation. It is modeled after a desk calendar, where each day or page
contains sorted events to be scheduled on that period of time. Hence, CalendarQ is represented as one
or more pages or “bucket” with a fixed time interval or width δ. Then, each bucket contains a sorted
linked list storing future events. Figure 5 shows how reservations are stored in CalendarQ with δ = 4
time interval, by using the example described in Figure 3. If a reservation requires more than δ, this
reservation will also be duplicated into the next buckets. This approach makes the search operation
easier since it only searches for a list inside each bucket.
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In our implementation, we opted for a static CalendarQ where the number of buckets M and δ are
fixed. Hence, these parameters do not need to be adjusted periodically as the queue grows and shrinks.
Therefore, by choosing the proper settings for M and δ, CalendarQ performs constant expected time per
event processed [9]. In addition, with the static approach, the whole CalendarQ can be reused for the
next time period, similar to Segment Tree.

Overall, CalendarQ has a complexity of O(k) for adding reservations, where k is the number of reser-
vations in the list for each bucket. Deleting reservations require a fast O(1) because they are sorted in the
list, and CalendarQ only removes the reservations in the current bucket as time progresses. Searching
for available CNs require O(k msub), where msub is the number of buckets within a subinterval.

3.3 Linked List

Linked List is the simplest and most flexible data structure of all, because accepted reservations
will be inserted into the list based on their starting time. In Linked List, each node contains a tuple
〈ts, te, numCN, user〉. Figure 6 shows how these reservations are stored by using the example as
described in Figure 3.

Searching for available CNs. For a search operation, the implementation in Linked List is as follows.
First, the List needs to find out which nodes have already reserved CNs within [ts, te] of the new request.
By using the example as shown in Figure 3, we find that only User2 and User3 reserve these CNs within
the time interval of User5. Second, it creates a temporary array for storing the number of CNs used
within each time slot, including the new request as shown in Figure 7. Finally, it checks each time slot for
sufficient member of available CNs. Therefore, for the search operation, Linked List has O(totAR msub),
where totAR is the total number of reservations, and msub is the number of slots in the subinterval. The
same approach also applied to the interval search operation, but shifting the time interval to [ts+λ, te+λ]
instead, where λ is the length of busy period found from the previous search operation. The interval
search operation ends when it reaches the tail of the List and/or (te + λ) > (ts + MAX LIMIT ),
where MAX LIMIT denotes the maximum time needed for searching.
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Adding and Deleting a reservation. These operations can be performed easily in Linked List by
iterating through the list from the root node, and comparing each existing node based on its ts. If the
correct position or node has been found, then addition or deletion can be done respectively. Overall,
List has O(totAR) complexity for add and delete operations. However, Linked List can become very
inefficient for running these operations on many short reservations, because it needs to find the correct
position or node starting from the root node.

4 The Proposed Data Structure: Grid Advanced Reservation Queue (GarQ)

After analyzing the characteristics of the modified Segment Tree and Calendar Queue data structures
in the previous section, we propose an array-based structure for managing reservations in Grid comput-
ing. The idea behind this data structure was partially inspired by Calendar Queue and Segment Tree. By
combining Calendar Queue and Segment Tree into this structure, we gained the following advantages:

• ability to add new reservations directly into a particular bucket. Hence, it has a fast O(1) access to
the bucket;

• ability to reuse these buckets for the next time period;

• built only once in the beginning;

• easy to search and compare by using iteration;

• easy to implement in comparison to Segment Tree and Calendar Queue; and

• flexibility in handling resource availability. In Grids, CNs can be added or removed periodically.
This issue can be addressed by a reservation system or a resource scheduler by setting the amount
of available CNs on that resource appropriately. Moreover, existing reservations can be relocated
to other CNs through the add and delete operations.

The proposed data structure has buckets with a fixed δ, which represents the smallest slot duration,
as with the Calendar Queue. Each bucket contains rv (the number of already reserved CNs in this
bucket) and a linked list (sorted or unsorted), containing the reservations which start in this time bucket.
Figure 8 shows how reservations are stored in “GarQ with Sorted Queue” with a δ = 1 time interval, by
using the example described in Figure 3. For enabling a fast O(1) access to a particular bucket, we use
the following formula:

i =

⌈

t

δ

⌉

mod M (2)

where i is the bucket index, t is the request time (in minutes), and M is the number of buckets in the
data structure.

In what follows, we give a detailed description of the four operations: searching for available CNs,
adding a reservation, deleting a reservation and searching for the closest free interval. Throughout
the description of these operations, a common input for all of them is the tuple 〈ts, te, numCN〉.
Moreover, they use start bucket and end bucket, which denote the index of the start and end bucket
in the reservation interval respectively. To determine the exact index, get bucket index() function uses
equation 2. We also use maxCN to indicate the maximum number of CNs available in the system.
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Algorithm 2: searchReserv(ts, te, numCN ) in GarQ
start bucket← get bucket index(ts); /* get the starting index */1

end bucket← get bucket index(te); /* get the ending index */2

for i = start bucket to end bucket do3

if i == M then i ← 0; /* wrapping the array */4

if bucket[i].rv + numCN > maxCN then return false; /* slot is full */5

end6

return true;7

Searching for available CNs. With GarQ, searching for available CNs is done by iterating through
the entire interval and checking each bucket for free CNs, as shown in Algorithm 2. When i points to
the end of the array or M , then it needs to search from the beginning of the array (line 4). Overall, the
complexity of GarQ for searching is O(msub), where msub is the number of buckets within a subinterval.

Algorithm 3: addReserv(ts, te, numCN, user) in GarQ
start bucket← get bucket index(ts); /* get the starting index */1

end bucket← get bucket index(te); /* get the ending index */2

bucket[start bucket].addInfo(user); /* store user’s jobs & other details */3

for i = start bucket to end bucket do4

if i == M then i ← 0; /* wrapping the array */5

bucket[i].rv ← bucket[i].rv + numCN ; /* increase rv */6

end7

Adding a reservation. We assume there are enough CNs to add this reservation, i.e. a search has
been done beforehand. Adding a new reservation is very similar to searching, and it is described in
Algorithm 3. Hence, the complexity of our structure for addition is O(msub) or O(k +msub) when using
unsorted and sorted queue respectively, where k is the number of reservations in a bucket list.

Deleting a reservation. Deleting an existing reservation applies to the same principle as adding a new
one. It can be done by removing the reservation from the starting bucket and decrementing rv through
out the relevant bucket interval.

Searching for a free slot. Searching for the closest interval is also straightforward in GarQ, as shown
in Algorithm 4. This algorithm is similar to Algorithm 2, but the search interval is now expanded
by MAX LIMIT . This constant variable denotes the maximum time needed for the interval search
operation, hence, it prevents the algorithm from searching the array infinitely. During the searching, a
temporary counter count indicates how many buckets still need to be searched (and have enough free
CNs) before the operation can finish (line 9–13). At the end of the operation, the index of a new start
bucket, new start, is converted into the new starting time by using convert index() function.

After describing these data structures, a summary of each of them is given in Table 1, including our
proposed data structure, namely GarQ with either Unsorted or Sorted Queue. In the next section, we
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Algorithm 4: suggestInterval(ts, te, numCN ) in GarQ
start bucket← get bucket index(ts); /* get the starting index */1

end bucket← get bucket index(te); /* get the ending index */2

tot req ← 1 + end bucket − start bucket; /* total slots required */3

new start← start bucket; /* the new starting index */4

count← 0; /* count number of slots available so far */5

finish← get bucket index(ts + MAX LIMIT ); /* the last bucket to search */6

for i = start bucket to finish do7

if i == M then i ← 0; /* wrapping the array */8

if bucket[i].rv + numCN > maxCN then9

new start← i + 1; /* points to the next bucket */10

count← 0; /* reset the counter to zero */11

else count ← count + 1;12

if count >= tot req then break; /* exit loop if found enough slots */13

end14

if count < tot req then new start← (−1); /* all slots do not have enough CNs */15

new time ← convert index(new start); /* convert bucket index into start time */16

return new time;17

evaluate the performance of our data structure with the existing ones. We conduct the evaluation using
real workload traces.

5 Performance Evaluation

In order to evaluate the performance of our proposed data structure, i.e. GarQ with Unsorted Queue
(GarQ-U) and GarQ with Sorted Queue (GarQ-S), we compare them to Linked List (List), Segment Tree
(Tree) with slot length = 5 minutes, and static Calendar Queue (SCQ) with δ = 1 hour. For SCQ to be
optimal, we choose the value of δ based on the jobs’ average duration time as stated in Table 2. For
GarQ-U and GarQ-S, we set each slot to be a 5-minute interval. All, except List, have a fixed interval

Table 1. Summary of the data structures, where n is the number of tree nodes, k is the number of
reservations in the list for each bucket, msub is the number of buckets or slots within a subinterval,
and totAR is the total number of reservations.

Name Time Complexity
Add Delete Search

Segment Tree O(log n) O(log n) O(log n)
Calendar Queue O(k) O(1) O(k msub)

Linked List O(totAR) O(totAR) O(totAR msub)
GarQ with Unsorted Queue O(msub) O(k + msub) O(msub)

GarQ with Sorted Queue O(k + msub) O(msub) O(msub)
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Table 2. Workload traces used in this experiment.
Trace Name Location # Jobs Mean Job Time From To
DAS2 fs0 Vrije Univ., Amsterdam 225,711 11.74 minutes Jan 2003 Dec 2003

LPC EGEE Clermont-Ferrand, France 242,695 52.07 minutes Aug 2004 May 2005
SDSC BLUE San Diego, USA 243,314 69.34 minutes Apr 2000 Jan 2003

length of 30 days, as mentioned previously.
For the evaluation, we are investigating: (i) the total number of nodes or slots accessed throughout for

each of the operations, including temporary ones for List and SCQ; (ii) the average runtime for using
the above operations; and (iii) the average memory consumption for these data structures. Note that
we conduct the experiment this way because we want to get a clear picture on how each data structure
performs, without the interference of scheduling issues such as deadline, backfilling and job preemption.
However, we will consider the affects of these issues when integrating the data structures with a resource
scheduler as part of the future work.

We carried out the performance evaluation of these data structures by using simulation, because we
need to conduct repeatable and controlled experiments that would otherwise be difficult to perform in
real Grid testbeds. Therefore, we use GridSim toolkit [7, 18] in these experiments by simulating a cluster
of 64 compute nodes, i.e. maxCN = 64.

5.1 Experimental Setup

We selected three workload traces from the Parallel Workload Archive [10] for our experiment, as
summarized in Table 2. These traces were chosen because they represent a large number of jobs and
contain a mixture of single and parallel jobs. In addition, the LPC trace was based on recorded activities
from the EGEE (Enabling Grids for E-science in Europe) project, hence it is very suitable in conducting
the evaluation. Moreover, as shown in Table 2, the average job duration time varies from 11 to 70
minutes. Hence, we can analyze in more detail the performance of each data structure for jobs with a
short, medium and long duration time.

Although these traces were taken from the real production systems, the jobs’ starting times were
logged in increasing order. Hence, it might not be suitable for testing out the interval search operation.
Therefore, we shuffled or randomized the starting time order of jobs for every 2-week period of each
trace. Overall, we have 6 traces in this experiment: the 3 original ones and 3 shuffled ones. Several
modifications have also been made to these traces, as mentioned below:

• If a job requires more than the total CNs of a resource, we set this job to maxCN .

• A request’s starting time is rounding up to the nearest time interval. For example, if a job requests
to start at time 01:03:05 (hh:mm:ss), then it will be moved to time 01:05:00.

• A job duration time is within [5 minutes, 28 days]. We limit the maximum duration time to prevent
overlapping reservations from different months. Hence, each structure, except for Linked List, can
be reused and built only once.
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Figure 9. Total number of nodes accessed during add and delete operation using original traces
(shorter bars are better).
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Figure 10. Total number of nodes accessed during add and delete operation using shuffled traces
(shorter bars are better).

5.2 Experimental Results

5.2.1 Adding and Deleting Reservations

Figure 9 and 10 shows the total number of nodes accessed when inserting and removing reservations
using the original and the shuffled traces respectively. Note that the results for List in Figure 10 are
much greater than the rest, hence they are being omitted. As expected, GarQ-U and GarQ-S perform
much better than other structures for the add operation. The only exception is when adding large jobs
sequentially, as shown in Figure 9 for the SDSC Blue trace. In this case, SCQ and List perform better
than GarQ-U and GarQ-S because new requests are coming in a sequential order. In addition, they are
mostly being appended to the end. However, when it comes to adding new reservations when the starting
time is randomized, GarQ-U performs much better overall.

Theoretically, when it comes to deleting existing reservations, SCQ with the O(1) time complexity
should have the best performance overall, because it only deletes the nodes in a particular array bucket.
However, for the randomized traces, the performance of GarQ-U and GarQ-S for the delete operation is
shown to be on par with SCQ. Note that SCQ performs badly on the shuffled LPC trace compare to other
structures because the incoming reservations are sorted based on their starting time. Unfortunately, some
reservations located in front of the list have a longer duration. Hence, in the worst case, SCQ needs to
iterate through the list to delete reservations with shorter duration time.
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Figure 11. Total number of nodes accessed during search operations using original traces (shorter
bars are better).

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

Basic Search With Interval Search

T
ot

al
 N

um
be

r o
f A

cc
es

s 
(x

 1
e5

)

Type of Operation

DAS2 fs0 Trace (shuffled)

SCQ
Tree

GarQ-U
GarQ-S

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

Basic Search With Interval Search

T
ot

al
 N

um
be

r o
f A

cc
es

s 
(x

 1
e5

)

Type of Operation

LPC EGEE Trace (shuffled)

SCQ
Tree

GarQ-U
GarQ-S

 0

 20

 40

 60

 80

 100

 120

 140

 160

Basic Search With Interval Search

T
ot

al
 N

um
be

r o
f A

cc
es

s 
(x

 1
e5

)

Type of Operation

SDSC Blue Trace (shuffled)

SCQ
Tree

GarQ-U
GarQ-S

Figure 12. Total number of nodes accessed during search operations using shuffled traces (shorter
bars are better).

5.2.2 Searching for Available Slots

Figures 11 and 12 shows the total number of nodes accessed when searching for empty slots using
the original and the shuffled traces respectively. Note that for the interval search operation, we set
the maximum time limit or MAX LIMIT to be 12 hours from the request’s initial starting time. In
addition, the results for List in Figure 12 are much greater than the rest, hence they are being omitted.

These figures show that List performs the worst of all. This is because for searching, List has to start
from the beginning and iterate through the effected nodes to find out the resource availability. Worse
performance also incurred by SCQ compare to Tree, GarQ-U and GarQ-S, because it applies the same
principle as List.

When dealing with the search operation, GarQ-U and GarQ-S perform the best overall, because they
perform a sequential comparison. However, Tree has an advantage in the interval search operation, since
it can find out the CNs’ availability at a larger time interval. This scenario is clearly shown for the SDSC
Blue trace of Figure 11 and 12.

5.2.3 Average Runtime Performance

To measure the average runtime performance of each data structure, we run the experiments several times
on a 2 Ghz Opteron machine with 4 GB of RAM. We take into account the time required to perform
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Figure 13. Average runtime using original traces (shorter bars are better).
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Figure 14. Average runtime using shuffled traces (shorter bars are better).

“basic operations”, i.e. conducting the add, delete and search operation as a whole, and to run these
operations with the interval search one. Figure 13 and 14 show the average runtime using the original
and the shuffled traces respectively. Note that the results for List in Figure 14 are much greater than the
rest, hence they are being omitted.

From Figure 13 shows that GarQ-U and GarQ-S perform the best overall. For the basic operations,
SCQ performs the worst since the δ value of 60 minutes is not optimal for executing small and medium
jobs of DAS2 and LPC trace respectively. For operations that include the interval search one, List and
SCQ perform badly than the rest as expected. However, Tree took the longest time for running large jobs
of the SDSC trace, partly due to the overhead of using recursive functions.

From Figure 14, for the randomized DAS2 trace, GarQ-U and GarQ-S do not perform too well com-
pare to Tree because this trace contains many small jobs. SCQ is also take a big performance hit for
these jobs. An improvement to GarQ can be done by imposing a minimum duration limit by the resource
and/or grouping small jobs as one big batch before requesting a reservation. With this approach, GarQ
will be able to perform more efficiently since this scenario will be similar to reserve large jobs, as shown
in the SDSC Blue trace of Figure 14. On another note, the overhead cost of using the interval search
operation in GarQ-U and GarQ-S is minimal compare to others. This is a very encouraging result since
the array-based implementation is also easy to implement.

5.2.4 Average Memory Consumption

For measuring the average memory consumption of each data structure, we run the experiments on the
same testbed as previously mentioned, on a 2 Ghz Opteron machine with 4 GB of RAM. We measure the
memory consumption based on the measurement before and after the experiment. Moreover, in order to
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Figure 15. Average memory consumption using original traces (shorter bars are better).
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Figure 16. Average memory consumption using shuffled traces (shorter bars are better).

improve accuracy, we run the experiment several times.
From Figure 15 and 16, List and SCQ are very efficient in all of the traces, followed by GarQ-U and

GarQ-S. However, SCQ requires more memory than List due to the cost of having fixed M buckets and
duplicating reservations that take longer than δ across several buckets. Tree consumed more memory
because the complete tree needs to be built for the whole interval length. Note that in these experiments,
all data structures require less than 5 KB of RAM in a machine with a total memory of 4 GB. Therefore,
the trade-off between space and time complexity can be neglected.

There is a big trade-off between low memory consumption and runtime performance. Even though
both List and SCQ consume the least amount of memory, their runtime performance were the worst, as
mentioned previously. Overall, GarQ-U and GarQ-S have a better ratio in all the traces.

6 Conclusion and Further Work

Advance Reservation (AR) in Grid computing is an important research area as it allows users to gain
concurrent access to resources by allowing their applications to be executed in parallel. It also provides
guarantees on the availability of resources at the specified times in the future. An efficient data structure
is significant in minimizing the time complexity needed to perform AR operations. In this paper, we
have presented a new data structure, we named it GarQ, to efficiently search for available compute
nodes, to add new requests, and to delete existing reservations. We have also introduced a new operation
called interval search for finding a free interval closest to the requested reservation, if it was previously
rejected. This operation is important because it helps users in negotiating a suitable reservation time.

GarQ is an array-based data structure inspired by Calendar Queue and Segment Tree. According to
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the performance evaluation, whose input is taken from real workload traces such as DAS2 fs0 from
Vrije University in Amsterdam, GarQ manages to perform much better on average than Linked List,
Segment Tree and Calendar Queue for the above reservation operations. However, for small jobs in
the randomized DAS2 fs0 trace, Segment Tree proves to have a better average runtime performance
of all. We shuffled or randomized the starting time of jobs from these traces because they are logged
in increasing order. Overall, GarQ has a better ratio between low memory consumption and runtime
performance compare to these data structures. Hence, the results are encouraging because our data
structure is also easy to implement and can be reused for the next time interval. Therefore, it only needs
to be built once in the beginning.

An extension to this work is to consider imposing a minimum duration limit by a resource and/or
grouping small jobs as one big batch before requesting a reservation. With this approach, GarQ will be
able to perform more efficiently since this scenario will be similar to reserve large jobs. Moreover, we
are thinking of comparing the performance and effectiveness of GarQ and other data structures when
dealing with the affects of scheduling issues, such as deadline, backfilling and job preemption. Finally,
different types of traces and applications need to be considered in the performance evaluation.
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