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ABSTRACT

Cloud computing provides on-demand access to computing resources for users across the world. It 
offers services on a pay-as-you-go model through data center sites that are scattered across diverse 
geographies. However, cloud data centers consume huge amount of electricity and leave high amount of 
carbon footprint in the ecosystem. This makes data centers responsible for 2% of the global CO2 emis-
sion. Therefore, having energy and carbon-efficient techniques for resource management in distributed 
cloud data centers is inevitable. This chapter presents a taxonomy and classifies the existing research 
works based on their target system, objective, and the technique they use for resource management in 
achieving a green cloud computing environment. Finally, it discusses how each work addresses the issue 
of energy and carbon-efficiency and also provides an insight into future directions.

INTRODUCTION

In recent years the use of services that utilize cloud computing systems has increased greatly. The tech-
nology used in cloud is not new and its main goal is to deliver computing as a utility to users. Cloud 
computing consists of virtualized computing resources inter-connected through a network, including 
private networks and the Internet. Over the years since its formation, different definitions for cloud 
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computing have been proposed. According to the definition by the National Institute of Standards and 
Technology (NIST) (Mell and Grance, 2011): “Cloud computing is a model for enabling ubiquitous, 
convenient, on-demand network access to a shared pool of configurable computing resources (e.g., 
networks, servers, storage, applications, and services) that can be rapidly provisioned and released with 
minimal management effort or service provider interaction. This cloud model is composed of five es-
sential characteristics, three service models, and four deployment models”. The three service models 
provided by the cloud providers are Infrastructure, Platform, and Software as a Service.

Cloud computing delivers service, platform, and infrastructure services to users through virtual 
machines deployed on the physical servers. Virtualization technology maximizes the use of hardware 
infrastructure and physical resources. Hardware resources are the servers located within the data centers. 
Data centers are distributed across the world to provide on-demand access for different businesses. Due 
to the distributed nature of cloud data centers, many enterprises are able to deploy their applications, 
such as different services, storage, and database, in cloud environments. By the increase of demand for 
different services, the number of data centers increases as well; which results in significant increase 
in energy consumption. According to Koomey (2008) energy usage by data centers increased by 16% 
from the year 2000 to year 2005. Energy consumption of data centers almost doubled during these five 
years, 0.5% and 1% of total world energy consumption in 2000 and 2005, respectively. Hence, during 
the recent years there has been a great work on reducing power and energy consumption of data centers 
and cloud computing systems. Recently, considering data centers carbon-efficiency and techniques that 
investigate cloud data centers energy sources, carbon footprint rate, and energy ratings have attracted 
lots of attention as well. The main reasons for considering carbon-efficient techniques are increase in 
global CO2 and keeping the global temperature rise below 2°C before the year 2020 (Baer, 2008).

In the rest of the chapter, the authors provide an in-depth analysis of the works on energy and carbon-
efficient resource management approaches in cloud data centers, based on the taxonomy showed in 
Figure 1. The authors explore each category and survey the works that have been done in these areas. A 
summary of all the works is given in Table 1.

Figure 1. Taxonomy of energy and carbon-efficient cloud computing data centers
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Table 1. Summary of various techniques for energy and carbon-efficient resource management in cloud 
data centers

Project Name Goal Architecture           Technique Carbon-
Aware

Dynamic right-sizing on-line 
algorithm, Lin. et al. (2011)

Minimize energy 
consumption and total 
cost

Single data center Online prediction algorithms for the number 
of required servers for the incoming workload

No

Green open cloud framework, 
Lefevre et al. (2010)

Minimize energy 
consumption

Single data center Predict the number of switched-on servers 
through providing in-advance reservation for 
users

No

Prediction-based Algorithms, 
Aksanli et al. (2011)

Maximize renewable 
energy usage and 
minimize number of job 
cancellation

Single data center Use prediction-based algorithms to run the 
tasks (mainly batch jobs) in the presence of 
renewable energies

Yes

GreenSlot scheduler, Goiri et al. 
(2011)

Maximize renewable 
energy usage and 
minimize cost of using 
brown energies

Single data center Prediction-based algorithms for the availability 
of solar energy and suspending the batch jobs 
in the absence of green energy

Yes

Multi-dimensional energy-efficient 
resource allocation (MERA) 
algorithm, Goudarzi et al. (2012)

Minimize energy 
consumption and 
maximize servers’ 
utilization

Single data center VM placement heuristic to split the VMs and 
place them on a server with the least energy 
consumption

No

Multi-objective VM placement, Xu 
et al. (2010)

Minimize power 
consumption, resource 
wastage, and the 
maximum temperature on 
the servers

Single data center Data center global controller places the VMs 
based on a multi-objective algorithm to 
provide balance between power consumption 
and temperature

No

Green SLA service class, Haque et 
al. (2013)

Explicit SLA to guarantee 
a minimum renewable 
energy usage to run the 
workload

Single data center Power distribution infrastructure to support 
the service and optimization based policies 
to maximize cloud provider’s profit while 
meeting user’s green SLA requirements

Yes

Cost-aware VM placement problem 
(CAVP), Chen et al. (2013)

Minimize the operating 
cost

Distributed data 
centers

VM Placement using meta-heuristic 
algorithms, considering different electricity 
prices and WAN communication cost

No

Energy model for request mapping, 
Qureshi et al. (2009)

Minimize electricity cost Distributed data 
centers

Request routing to data centers with lower 
energy price using geographical and temporal 
variations

No

Free Lunch architecture, Akoush et 
al. (2011)

Maximize renewable 
energy consumption

Distributed data 
centers

VM migration and execution between data 
center sites considering renewable energy 
availability

Yes

Energy and carbon-efficient cloud 
architecture, Khosravi et al. (2013)

Minimize carbon footprint 
and energy consumption

Distributed data 
centers

VM placement heuristics to place the VM on 
the data center/cluster with the least carbon 
footprint and energy consumption and on 
the server with the least increase in power 
consumption

Yes

Framework for load distribution 
across data centers, Le et al. (2009)

Minimize brown energy 
consumption and cost

Distributed data 
centers

User request is submitted to the data center 
with access to the green energy source and 
least electricity price

Yes

Geographical load balancing (GLB) 
algorithm, Liu et al. (2011)

Minimize brown energy 
consumption

Distributed data 
centers

Use the optimal mix of renewable energies 
(solar/wind) and energy storage in data centers 
to eliminate brown energy consumption

Yes

Online global load balancing 
algorithms, Lin et al. (2012)

Minimize brown energy 
consumption and cost

Distributed data 
centers

Route requests to the data centers with 
available renewable energy using online 
algorithms

Yes

GreenWare middleware, Zhang et 
al. (2011)

Maximize renewable 
energy usage

Distributed data 
centers

Submit the requests to the data center site with 
available renewable energy, while meeting 
provider’s budget cost constraint

Yes

continued on following page
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ENERGY EFFICIENCY IN SERVERS

Servers are the physical machines that run the services requested by users on a network. Servers are 
placed in a rack and any number of racks can be used to build a data center. Servers along with cooling 
systems and other electrical devices in the data centers consume 1.1-1.5% of the global electricity usage 
(Koomey, 2007). Hence, power and energy management of servers by the increase in users’ demand 
for computing resources is irrefutable. Figure 2 shows a classification of techniques that are used in 

Project Name Goal Architecture           Technique Carbon-
Aware

Environment-conscious meta-
scheduler, Garg et al. (2011)

Minimize carbon 
emission and maximize 
cloud provider profit

Distributed data 
centers

Near-optimal scheduling policies to send 
HPC applications to the data center with the 
least carbon emission and maximum profit, 
considering application deadline

Yes

Carbon-aware green cloud 
architecture, Garg et al. (2011)

Minimize energy 
consumption and carbon 
footprint

Distributed data 
centers

Submit the user requests to the data center 
with the least carbon footprint, considering 
user deadline

Yes

MinBrown workload scheduling 
algorithm, Chen et al. (2012)

Minimize brown energy 
consumption

Distributed data 
centers

Copy the data in all the data centers, then 
based on the request deadline and the data 
center with least brown energy consumption 
executes the request

Yes

Federated CLEVER-based cloud 
environment, Celesti et al. (2013)

Minimize brown energy 
consumption and cost

Distributed data 
centers

Allocate the VM request to the cloud data 
center with the highest amount of photovoltaic 
energy and lowest cost

Yes

Temperature-aware workload 
management, Xu et al. (2013)

Minimize cooling energy 
and energy cost

Distributed data 
centers

Joint optimization of reducing cooling energy 
by routing requests to the site with lower 
ambient temperature and dynamic resource 
allocation of batch workloads due to their 
elastic nature

No

Provably-efficient on-line algorithm 
(GreFar), Ren et al. (2012)

Minimize energy cost Distributed data 
centers

Use servers’ energy efficiency information and 
places with low electricity prices to schedule 
batch jobs and if necessary suspending the 
jobs

No

Optimization-based framework, Le 
et al. (2010)

Minimize cost and brown 
energy consumption

Distributed data 
centers

Distribute the Internet services to the data 
centers considering different electricity prices, 
data center location with different time zones, 
and access to green energy sources

No

Dynamic load distribution policies 
and cooling strategies, Le et al. 
(2011)

Minimize cost Distributed data 
centers

Intelligent placement of the VM requests 
to the data centers considering data centers 
geographical location, time zone, energy 
price, peak power charges, and cooling system 
energy consumption

No

Online job-migration, Buchbinder 
et al. (2011)

Minimize cost Distributed data 
centers

On-line migration of running jobs to the 
data center with lowest energy price, while 
considering transport network costs

No

Spatio-temporal load balancing, 
Luo et al. (2015)

Minimize cost Distributed data 
centers

Route the incoming requests to the data 
centers considering spatial and temporal 
variation of electricity price

No

Data centers’ intelligent placement, 
Goiri et al. (2011)

Minimize cost, energy 
consumption, and carbon 
footprint

Distributed data 
centers

Find the best location for data center, 
considering location dependent and data 
center characteristics data

Yes

GreenNebula, a prototype for 
VM placement that follows-the-
renewables, Berral et al. (2014)

Minimizing data center 
and renewable power 
plant building costs

Distributed data 
centers

Find the best geographical location to build 
data centers and renewable power plants and 
migrate the VMs, whenever necessary, to use a 
certain amount of renewables (solar or wind)

Yes

Table 1. Continued
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data center servers to reduce energy consumption. Virtualization and consolidation are two well-known 
strategies that make the data center servers energy-aware. These are two powerful tools that are applied 
in cloud data center servers in order to reduce energy consumption and accordingly carbon footprint.

Virtualization

Virtualization technology is the main feature of data center servers that leads to less energy consumption 
(Brey & Lamers, 2009). By having virtualized servers and resources, and using virtualization technol-
ogy several virtual machines (VMs) can be built on one physical resource. Three types of virtualization 
that are widely used in data centers are hardware, software, and operating system virtual machines. The 
VMs run on the servers share the hardware components, that helps the operators to maximize server’s 
utilization and benefit from the unused capacity. By maximizing server’s utilization, huge savings in 
cost and energy consumption of data centers will be made. Decrease in data centers costs and energy 
consumption is not the only advantage of using virtualization technology. As the average life expectancy 
of a server is between three to five years, data and applications need to be consolidated and migrated to 
another server. Virtualization helps these two techniques to be done faster and with less cost and energy.

Consolidation

Server consolidation technique benefits from emerging of multi-core CPUs and virtualization technol-
ogy. It’s aim is to make efficient usage of computing resources to reduce data centers cost and energy 
consumption (Srikantaiah, Kansal, & Zhao, 2008). Consolidation is used when the utilization of serv-
ers is less than the cost associated to run the workloads (energy cost to run servers and cooling cost for 
data center servers). By using consolidation, servers can combine several number of running VMs and 
workloads from different servers and allocate them on a certain number of physical servers. Therefore, 
they can power-off or change the performance-level of the rest of physical servers and reduce the energy 
consumption, cost, and carbon footprint.

Figure 2. Server level energy and carbon-efficient techniques
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ENERGY EFFICIENCY IN DATA CENTERS

This section gives an overview of the researches that have been done at data center level to improve carbon 
and energy-efficiency of cloud data centers. An extensive taxonomy and survey of these techniques is 
done by Beloglazov, Buyya, Lee, and Zomaya (2011). Most of the works within a data center focuses on 
reducing energy consumption, which can indirectly result in carbon footprint reduction as well. Figure 3 
classifies different approaches that have been taken for single data center. Some approaches use server 
level techniques (virtualization and consolidation) to migrate the current workload (user applications or 
virtual machines) and turn-off unused servers. Moreover, a provider could use the incoming workload 
pattern to place user request in the best suited cluster and server (and virtual machine for user applica-
tions) with less increase in energy consumption and carbon footprint.

Migration

Using virtualization, data center workloads migrate between servers. VM migration is the process of 
moving a running virtual machine from its current physical machine to another physical machine. Mi-
gration should be done in a way that all the changes be transparent to the user and the only change that 
user may encounter is a small increase in latency for the running VM or application.

Migration allows a virtual machine to be moved to another physical server so that the source physical 
server could be switched off or be moved to a power saving mode in order to reduce the energy con-
sumption. VM migration in cloud data centers could be done off-line or live (Harney, Goasguen, Martin, 
Murphy, & Westall, 2007). There has been a great amount of work done in this area try to identify the 
VMs on the servers with low utilization that could be migrated, so that the provider can put the unused 
servers in idle or power-off state.

Figure 3. Data center level energy and carbon-efficient techniques
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Power-On and Off Servers

When in an idle state data centers consume around half the power of their peak utilization and power 
state (Barroso & Holzle, 2007). There are technologies that try to design data center servers so that they 
just consume power in the presence of load, otherwise they go to a power saving mode. Work that is 
done by Lin, Wierman, Andrew, and Thereska (2011) uses a dynamic right-sizing on-line algorithm to 
predict the number of active servers that is needed by the arriving workload to the data center. Based on 
the experiments that are done in Lin et al. (2011) dynamic right-sizing algorithm can achieve significant 
energy savings in the data center. We should consider that this requires servers to have different power 
modes and be able to transit to different states while still keeping the previous state. Moving the system 
to different power consumption modes is a challenging problem and requires dynamic on-line policies 
for resource management.

Green Open Cloud (GOC) is an architecture which is proposed by Lefèvre and Orgerie (2010) on 
top of the current resource management strategies. The aim of this architecture is to switch-off unused 
servers, predict the incoming requests, and then switch-on required servers on the arrival of new requests. 
GOC proposes green policies to customers in the way that they can have advance resource reservation 
and based on this knowledge cloud provider could estimate how many servers, and when they should 
be switched-on. Using this framework and strategy, they were able to save a considerable amount of 
energy on cloud severs.

Prediction-Based Algorithms

Aksanli, Venkatesh, Zhang, and Rosing (2012) used the data from solar and wind power installations in 
San Diego (MYPVDATA) and National Renewable Energy Laboratory (NREL), respectively to develop 
a prediction-based scheduling algorithm to serve two different types of workloads, web-services and 
batch-jobs. The main goal of this model was to increase the efficiency of the green energy usage in data 
centers. Based on the experiments of the proposed model, the number of tasks that were done by the 
green energy resources increased and the number of works that were terminated because of the lack of 
enough green energy resources decreased. This model uses a single queue per server for web services 
which are time sensitive applications, and for the batch-jobs it uses the Hadoop which is the general 
form of Map-Reduce framework.

GreenSlot scheduler (Goiri t al., 2011) also proposes a scheduling and prediction mechanism to ef-
ficiently use the green energy sources. Goiri et al. (2011) consider solar as the main source of energy and 
smart grid, known as brown energy, as the backup power source for the data center. The main objective 
of GreenSlot is to predict the availability of solar energy two days in advance so that it can maximize 
the use of green energy and reduce the costs associated with using brown energy. GreenSlot uses the 
suspension mechanism when there is not enough green energy available and based on the availability 
of enough solar energy it resumes the jobs. According to the experimental results that are presented in 
comparison with other conventional scheduling mechanisms, like backfilling scheduler (Mu’alem & 
Feitelson, 2001), GreenSlot scheduler can significantly increase the use of green energy for running 
batch-jobs and decrease the brown energy costs, which leads to less carbon footprint and moving towards 
a sustainable environment. Unlike web-service jobs which are time-sensitive batch-jobs are compute 
intensive and the deadline is not critical as web-service jobs, so the suspension will not affect the user 
quality of service (QoS) parameters.
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VM Placement

Users send their requests to the cloud Infrastructure as a Service (IaaS) providers in the form of VMs. 
Goudarzi and Pedram (2012) presented a VM placement heuristic algorithm to place the VMs in physical 
servers in a way to reduce data centers energy consumption. The algorithm receives the VM requests 
and splits each VM into several copies and places them on servers. Each copy of VM gets the same 
amount of physical memory but with different CPUs. The total summation of assigned CPUs for copies 
of a VM request will be equal to the required CPU by the VM at the time of arrival to the data center. 
The proposed algorithm, which is known as MERA (Multi-dimensional Energy-efficient Resource Al-
location), receives the VM requests and after a certain time epoch places the VMs on the servers and 
calculates the consumed energy. Then, it splits the VMs and places the copies on servers and recalculates 
the energy consumption. Based on the calculated energies the algorithm makes decision whether to split 
and replicate VMs or not. This algorithm tries to increase the servers’ utilization while decreasing the 
energy consumption without considering the physical characteristics and energy related parameters of 
servers and data centers. Moreover, it does not perform the VM placement dynamically. The algorithm 
receives a group of VMs and after a certain time epoch performs VM placement. In addition, inter-
communication between replicated VMs could lead to bottleneck and high energy consumption. Finally, 
in the placement all VMs are treated the same. As all the replicated VMs get the same amount of physical 
memory, whilst for memory-intensive VMs this could result to shortage in resources and it is better to 
make balance between CPU intensive and memory intensive VM requests.

The work done by Xu and Fortes (2010) addresses the problem of data centers VM placement with 
the objective to simultaneously minimize resource wastage, power consumption, and maximum tempera-
ture of the servers. They used a genetic algorithm on the global controller of the data center to perform 
the VM placement. The global controller receives the VM requests and then based on a multi-objective 
VM placement algorithm assigns each VM to a server. This algorithm, same as the previously discussed 
work, performs VM placement after receiving all the VM requests, which is not in a dynamic manner. 
Moreover, the algorithm makes balance between power consumption and temperature. Therefore, it uses 
more servers to distribute the load and avoid hotspots in the data center. This might cause more carbon 
footprint as more servers will be used and more electricity will be consumed.

Green SLA Aware

Due to the high energy consumption by cloud data centers and climate concerns, cloud providers do 
not just rely on the electricity coming from brown energy sources. They have their own on-site green 
energy sources or draw it from a nearby power plant. Moreover, enterprises and individuals demand for 
quantifiable green cloud services. Haque, Le, Goiri, Bianchini, and Nguyen (2013) propose a new class of 
cloud services that provides a specific service level agreement for users to meet the required percentage 
of green energy used to run their workloads. They undertake a new power infrastructure in which each 
rack can be powered from brown or green energy sources. The optimization policies have the objective 
of increasing the provider’s profit by admitting the incoming jobs, with Green SLA requirements. If 
cloud provider cannot meet the requested percentage of green energy to run the job should pay penalty 
to the user, which means decrease in the total gained profit of running jobs. The type of green energy 
used by Haque et al. (2013) in the data center is solar energy and they predict the availability and amount 
of solar energy based on the method proposed in Goiri et al. (2012). The experiments carried in their 
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work are based on comparison with greedy heuristics, and they show that optimization based policies 
outperform the greedy ones. Furthermore, among optimization based policies cloud provider can decide 
whether wants to increase the number of admitted jobs or violate less Green SLAs.

In the calculated total cost to run the admitted jobs in the work by Haque et al. (2013), it is not clear 
that whether it is the cost to run the servers or the total cost in the data center, including overhead energy 
cost as well. This is important because overhead energy is dependent on the data center power usage 
effectiveness (PUE) and this varies by the change in the data center total utilization and ambient tempera-
ture (Rasmussen, 2007; Goiri, Le, Guitart, Torres, & Bianchini, 2011). Therefore, the calculated value 
for profit in the optimization based policies would vary based on the two aforementioned parameters for 
different jobs with different configuration requirements and also time of the day.

ENERGY EFFICIENCY IN GEOGRAPHICALLY DISTRIBUTED DATA CENTERS

Applying different policies to switch-off and on servers and placing user requests within a data center 
could lead to reduce in energy consumption. But still these are not enough to solve the problem of high 
energy consumption and carbon footprint by cloud data centers.

By increasing the use of cloud computing services that leads to increase in energy consumption and 
carbon footprint in the environment, some cloud providers decided to use green energy as a secondary 
power plant. Therefore, the need to have a scheduling policy to select the data center site to run the user 
request based on the energy source is necessary. Moreover, data center selection based on considering 
different data centers energy efficiency, as it has a direct effect on total carbon footprint, reduces energy 
consumption and carbon dioxide in the ecosystem. This section explores different energy and carbon-
efficient approaches have been taken across distributed cloud data centers. Some of the applied tech-
niques are the same as single data center level, but with considering factors to select the data center site 
before cluster and server selection. Figure 4 shows the taxonomy of different approaches taken at multi 
data center level with different optimization objectives, such as minimizing cost, energy consumption, 
carbon emission, and maximizing renewable energy consumption.

Figure 4. Multi data center level energy and carbon-efficient techniques
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VM Placement and Migration

Research works in this area consider initial placement of a VM and further monitoring of the running 
VM to meet the optimization objective. Virtual machine (VM) placement in a geographically distributed 
data center environment requires selection of a data center and a server within the data center based on 
the optimization objective and data centers characteristics. Moreover, after the VM placement consider-
ing the future state of the host data center and other data centers, cloud provider can perform VM live 
migration to move the VM to another data center with preferable parameters. There are a few research 
works that consider these two techniques.

Chen, Xu, Xi, and Chao (2013) developed a model for optimal VM placement considering a cloud 
provider with distributed data center sites connected through leased/dedicated lines. They introduce 
a cost-aware VM placement problem with the objective of reducing operational cost as a function of 
electricity costs to run the VMs and inter-data center communication costs. For this purpose, they take 
advantage of variable electricity costs at multiple locations and wide-area network (WAN) communica-
tion cost to place the VMs using a meta-heuristic algorithm. Similarly, Qureshi, Weber, Balakrishnan, 
Guttag, and Maggs (2009) try to minimize electricity cost of running the VMs by initially placing the 
VMs into data centers with low spot market prices. They take advantage of spatial and temporal varia-
tions of electricity price at different locations.

Akoush, Sohan, Rice, Moore, and Hopper (2011) propose an architecture known as Free Lunch to 
maximize renewable energy consumption. They consider having data center sites in different geographi-
cal locations in such a way to complement each other in terms of access to renewable energy (solar and 
wind) by being located in different hemisphere and time zone. The architecture considers pausing VMs 
execution in the absence of renewable energy or migrating the VMs to another data center site with ex-
cess renewable energy. The proposed architecture provides a good insight to harness renewable energy 
by having geo-distributed data center sites with dedicated network. However, this model has technical 
challenges and limitations dealing with VM availability, storage synchronization, VM placement and 
migration that have been pointed out in their work.

Work done by Khosravi, Garg, and Buyya (2013) addresses the problem of energy consumption and 
carbon footprint of distributed cloud data centers by proposing a novel framework and algorithm for VM 
placement. This system model uses a component known as Cloud Information Service (CIS) in order 
to get the data centers’ information and updates to perform the scheduling algorithm. The information 
a data center sends to the CIS consists of data center’s available resources, energy and carbon related 
parameters, such as power usage effectiveness, carbon footprint rate/s (a data center might use more 
than one energy source), and servers’ proportional power as a metric related to the CPU frequency and 
utilization. The cloud broker, as the interface between users and cloud provider, uses this information 
to perform a dynamic two-level scheduling algorithm. The algorithm places the VM in the data center/
cluster with the least carbon footprint and energy consumption (first level), and in the server with the 
least increase in the power consumption (second-level), while meeting the users’ quality of service in 
terms of number of rejected VMs. The proposed algorithm reduces the carbon footprint and energy 
consumption considerable in comparison to other competing algorithms.



37

Energy and Carbon Footprint-Aware Management of Geo-Distributed Cloud Data Centers
﻿

Workload Placement and Distribution

A large body of literature recently focused on reducing energy consumption and energy costs by load 
placement and distribution across geographically distributed data centers.

Le, Bianchini, Martonosi, and Nguyen (2009) proposed a framework to reduce cost and brown energy 
consumption of cloud computing systems by distributing user requests across data center sites. This is 
the first research that considers load distribution across data center sites with respect to their energy 
source and cost. The framework is composed of a front-end that receives user requests and based on a 
distribution policy forwards the requests to the data center site with less cost and more available green 
energy sources. The request distribution policy sorts the data center sites based on the percent of the 
load that could be completed within a time period and minimum cost to run the requests. The evaluation 
results show that by knowing data centers’ electricity price (constant price, dynamic, or on/off-peak 
prices) and base/idle energy consumption of the servers’, significant improvements in cost reduction 
will be made. Moreover, being aware of the energy sources (green or brown) in the data centers could 
lead to less brown energy usage with a slight increase in the total cost.

Zhang, Wang, and Wang (2011) use the idea of distributing the load among a network of geographi-
cally distributed data centers to maximize renewable energy usage. They proposed a novel middleware, 
known as GreenWare, that dynamically conducts user requests to a network of data centers with the 
objective of maximizing the percentage of renewable energy usage, subject to the cloud service provider 
cost budget. Experiment results show GreenWare could significantly increase the usage of renewable 
energies, solar and wind with intermittent nature, whilst still meeting the cost budget limitation of the 
cloud provider.

Following the idea of reducing brown energy consumption in data center sites, Liu, Lin, Wierman, 
Low, and Andrew (2011) proposed the geographical load balancing (GLB) algorithm. The algorithm 
takes advantage of diversity of data center sites to route requests to the places with access to renewable, 
solar and wind, energy sources. Considering the unpredictable nature of renewable energy, specially 
wind, GLB algorithm finds the optimal percentage of wind/solar energies to reduce the brown energy 
consumption and carbon footprint. Moreover, the authors consider the role of storage of renewable ener-
gies, when they are not available in data centers in reducing brown energy usage. Based on the experi-
ments, by using even small-scale storage in the data centers, the need for brown energy will decrease 
and in some cases even will be eliminated. A question that might rise with Liu et al. (2011) work is the 
carbon footprint caused by the batteries in a long-term period, since renewable energy storage in the 
data center sites is done through reserving them in the form of batteries. Lin, Liu, Wierman, and Andrew 
(2012) extended the GLB algorithm to reduce the total cost along with reducing the total brown energy 
consumption for geographically distributed data centers. They compared their proposed algorithm with 
two prediction-based algorithms with a look-ahead window, known as receding horizon control (RHC) 
a classical control policy and an extension of RHC known as averaging fixed horizon control (AFHC) 
(Kwon & Pearson, 1977). The analytical modelling and the simulations carried, based on real work-
load traces, show that GLB algorithm can reduce the energy cost by slightly increase in network delay. 
Moreover, it can eliminate the use of brown energy sources by routing user requests to the sites where 
wind/solar energy is available.

Garg, Yeo, Anandasivam, and Buyya (2011) proposed an environment-conscious meta-scheduler for 
high performance computing (HPC) applications in a distributed cloud data center system. The meta-
scheduler consists of two phases, mapping the applications to the data center and scheduling within 
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a data center. They treat the mapping and scheduling of applications as an NP-hard problem with the 
objective to reduce carbon emission and increase the cloud provider profit at the same time. They run 
different experiments in order to find the near optimal solution for this dual objective problem. The 
parameters taken into account in the simulations and scheduling algorithms are data centers’ carbon 
footprint rate, electricity price, and data center’s efficiency. The simulations carried for high urgent 
applications (with short deadlines) and different job arrival rates help the cloud providers to decide for 
each application which scheduling algorithms should be used in order to meet the objective of reducing 
the carbon emission or maximizing the profit. Moreover, they proposed a lower bound and an upper 
bound for the carbon emission and profit, respectively. Another work done by Garg, Yeo, and Buyya 
(2011) addresses the issue of energy efficiency of ICT industry, specially data centers. The main focus 
of this work is to reduce the carbon footprint of running workloads on data centers by proposing a novel 
carbon-aware green cloud architecture. This architecture consists of two directories, which imposes the 
use of green energy by data centers while meeting users and providers’ requirements. In this framework, 
cloud providers should register their offered services in the aforementioned directories, and the users 
should submit their requests to the data centers through the Green Broker. The scheduling mechanism 
used in the broker, Carbon Efficient Green Policy (CEGP), chooses the cloud provider based on the 
least carbon footprint while considering users QoS parameters. The performance evaluation results of 
the proposed framework and policy in comparison with a traditional scheduling approach shows that 
CEGP can achieve a considerable reduction in energy consumption and carbon footprint in the ecosystem. 
However, this algorithm does not work dynamically. It receives all the job requests and based on the 
jobs deadline assigns them to the data center with the least carbon footprint. Moreover, it only considers 
high performance computing applications (non-interactive workloads) with predefined deadlines at the 
time of submission.

Chen, He, and Tang (2012) use the idea of geographically distributed data centers to increase usage of 
green energy and reduce brown energy consumption in data centers. They proposed a workload schedul-
ing algorithm, called MinBrown, that considers green energy availability in different data centers with 
different time zones, cooling energy consumption for data centers based on outside temperature and data 
center utilization, incoming workload changes during time, and deadline of the jobs. The workload used 
to run the simulation is HPC jobs with sufficient slack time to allow advanced scheduling. The algorithm 
copies all the data in all the data centers and based on the least consumed brown energy executes the 
task. Based on the simulation results, the MinBrown algorithm reduces brown energy consumption in 
comparison to other competitive algorithms. The idea of replicated data in distributed data center sites 
itself results to high energy consumption that is not considered in Chen et al. (2012) work. Moreover, 
assignment of the jobs and tasks are based on the availability of green energy, that does not consider 
communication between tasks of the same job and jobs of the same workload. Finally, the scheduler 
does not consider an efficient resource assignment within a data center in a way to reduce the need for 
future consolidation of the running jobs.

The idea of federation of cloud providers can be useful for relocation of computational workload 
among different providers in a way to increase the use of sustainable energy. Celesti, Puliafito, Tusa, 
and Villari (2013) take advantage of a federated cloud scenario to reduce energy costs and CO2 emis-
sions. They consider cloud providers’ data centers are partially powered by renewable energies along 
with getting the required electrical energy from electrical grids. The main contribution of their work 
is based on the approach of moving the workload towards the cloud data center with most available 
sustainable energy. This is inspired by the fact that if a provider generates more green energy than its 
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need, it would be difficult to store the exceeded amount in batteries or put it in public grids; therefore, 
the easiest way is to relocate the workload to the site with the excess renewable energy. The architecture 
is based on an Energy Manager, that is known as CLoud-Enabled Virtual Environment (CLEVER). By 
applying CLEVER-based scenario, the VM allocation would be based on the energy and temperature 
driven policies. The energy manager in the architecture receives different data centers’ information, such 
as temperature, sun radiation, energy grid fare, photovoltaic energy, cost, and data centers’ PUE and 
number of available slots or physical resources, and based on this data assigns VMs to the site with the 
most sustainable energy and least cost.

Celesti et al. (2013) work increases the use of sustainable energies and it is based on the availability 
of the photovoltaic (PV) energy. When a site has a high value for the PV energy, the outside temperature 
would be higher and this will increase the need for more energy for the cooling, and as a result higher PUE 
value. Relying only on the amount of used PV in the system is not enough for a green and sustainable 
system. Cloud providers should consider the whole picture and take into account all the parameters that 
affect the total CO2 emission. Moreover, Celesti et al. (2013) assume that each new VM request would 
be replicated in all the federated providers. Considering the consumed energy for this replication and 
the effect of network distance are also important that should be considered by the time of system design.

Xu, Feng, and Li (2013) take advantage of diversity in data centers location to route the incoming 
workload with the objective of reducing the energy consumption and cost. They studied the effect of 
ambient temperature on the total energy consumed by cooling system, which is 30% to 50% of the total 
energy consumption of data centers (Pelley, Meisner, Wenisch, & VanGilder, 2009; Zhou et al., 2012). 
Energy consumption often is modelled as a constant factor, which is an over-simplification of what is 
happening in reality. Xu et al. (2013) considered partial PUE (power usage effectiveness) to participate 
cooling systems’ energy along with the servers’ total energy consumption. Through using partial PUE 
data centers can route the workload to the sites that use outside air cooling and reduce considerable 
amount of energy consumption. Moreover, they took advantage of having two types of incoming re-
quests to manage the resources and reduce the energy consumption. The proposed model does not only 
depend on the energy consumed by interactive workload form users, instead it reduces energy costs by 
allocating capacity to the batch workloads, which are delay tolerant and can be run at the back-end of 
the data centers. The proposed joint optimization approach could reduce cooling energy and overall 
energy cost of data centers.

However, the proposed partial PUE only considers the energy consumed by cooling system as the 
total overhead energy in the data center. Based on the introduced definition by Xu et al. (2013), PUE is 
mainly dependent on the ambient temperature, while IT load of the data center is the second important 
factor affecting the PUE (Rasmussen, 2007). Finally, source of the energy used to generate the electric-
ity and its carbon footprint is not considered. This is important because as mentioned earlier reducing 
energy cost does not necessarily lead to reduce in the carbon footprint in the environment.

Economy-Based, Cost-Aware

Cost associated with energy usage in large data centers is a major concern for the cloud providers. Large 
data centers consume megawatts of electricity, which leads to huge operational costs. Work done by Ren, 
He, and Xu (2012) takes advantage of different electricity prices in different geographical locations and 
over time to schedule batch jobs on the servers in scattered data centers. Their proposed online optimal 
algorithm, known as GreFar, uses servers’ energy efficiency information and locations with low elec-
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tricity prices to schedule the arrived batch jobs from different organizations. GreFar’s key objective is 
to reduce energy cost, while assuring fairness considerations and delay constraints. The scheduling is 
based on a provably-efficient online algorithm, that schedules the jobs according to the current job queue 
lengths. Based on the simulation results, GreFar online algorithm can reduce system cost, in terms of a 
combination of energy cost and fairness, in comparison to the offline algorithm that has knowledge of 
system’s future state. The algorithm’s main contribution is to serve the jobs when the electricity price 
is low or there are energy-efficient servers in the system. To accomplish this objective, it queues jobs 
and suspends low priority jobs whenever the electricity price goes up or there are not enough efficient 
servers in the system. This approach is not applicable for interactive jobs and web requests that are time 
sensitive and need to be served immediately from the queue and also cannot be suspended. Moreover, 
the cloud provider does not consider the cost of the transmission network and its energy consumption 
at the time of data center selection to submit the job request.

Le, Bianchini, Nguyen, Bilgir, and Martonosi (2010) take advantage of capping the brown energy 
consumption to reduce the cost of serving Internet services in data centers. They proposed an optimization-
based framework to distribute requests among distributed data centers, with the objective to reduce costs, 
while meeting users’ service level agreement (SLA). The main parameters that affect the site selection by 
the framework are different electricity prices (on-peak and off-peak loads), different data centers location 
with different time zones, data centers with access to green energy sources, which enables the data center 
to have a mixture of brown and green energy. The front-end of the framework performs the site selec-
tion and optimization problem for the arrived requests periodically, in contrast to heuristic algorithms, 
which are greedy and select the best destination for each request that arrives (Qureshi et al., 2009). The 
optimization framework uses load prediction by Auto-Regressive Integrated Moving Average (ARIMA) 
modeling (Box, Jenkins, Reinsel, & Ljung, 2015) and simulated annealing (SA) (Brooks & Morgan, 
1995) to predict the load for the next epoch (one week) and schedule the requests. This approach helps 
the front-end to decide about the power mixes at each data center for the next week, unless a significant 
change occurs in the system and predictions. Le et al. (2010) use simulation and real system experiments 
with real traces to evaluate their proposed framework and optimization policy. The evaluation results 
show that by taking optimization policy and using workload prediction, diversity in electricity price, 
taking benefit of brown energy caps, and use of green energy sources significant savings in cost related 
to the execution of Internet services in distributed data centers would be made. The framework assumes 
that all the received requests from the users are homogeneous. While in the real systems this is not the 
case and having heterogeneous requests and distributing them in a way to reduce resource wastage is 
very difficult and itself results to huge energy consumption and accordingly high costs. Moreover, it 
focuses on the electricity prices in different locations without considering the carbon footprint rate of 
the sources. Since some brown energy sources, which are cheap and lead to reducing the system overall 
cost, may lead to huge amount of carbon dioxide in the ecosystem.

The other work by Le et al. (2011) investigates different parameters that affect the electricity costs 
for geographically distributed data centers with the focus on IaaS services that run HPC workloads. 
According to their proposed cost computation framework for the data centers, there are two important 
parameters that affect the total cost, energy consumed to run the service and the cost for the peak power 
demand. The provider can reduce the consumed energy by selecting the sites with off-peak period elec-
tricity prices, lower outside temperature, and lower data center load, so that the energy used for cooling 
would be low. Because as the data center temperature rises, the provider needs to use chillers to reduce 
temperature, which increases the energy consumption dramatically. In order to show this relation, they 
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used a simulation model for the data center cooling system. Based on the simulation model, increase in 
the outside temperature and data center load forces the providers to use the chillers in order to keep the 
data center cool. This simulation has been carried with real workload traces from the Feitelson (2007), 
Parallel Workloads Archive. Le et al. (2011) compared their two proposed algorithms, cost-aware and 
cost-aware with migration, with baseline policies. Based on the results, considering above mentioned 
factors can reduce the energy cost of data centers. Moreover, predicting the need to use the chillers for 
system cooling and considering the transient cooling prevents the data center from overheating and 
would not let spikes in the temperature.

Le et al. (2011) conducted sensitivity analysis to investigate the effect of parameters, such as predict-
ing the run-time of the jobs, the time to migrate the jobs, outside temperature, price of the energy in a 
region, and size of the data center on the total cost of the data center. According to the simulation results, 
in order to maximize the cost-saving all the electricity-related parameters should be considered in job 
placement in the system. One of the shortcomings of this work, similar to the previously discussed work, 
is not considering the source of electricity. As some brown energy sources with high carbon footprint 
might be cheaper and more desirable to run the services. Moreover, as the temperature changes during 
the day and the consumed energy for cooling changes consequently; PUE should be modelled as a dy-
namic parameter instead of having a constant value per data center. Considering network distance and 
the energy consumption of intra and inter-data centers will also affect the total cost.

Work by Buchbinder, Jain, and Menache (2011) has also the objective of reducing energy cost for a 
cloud provider with multi data center sites but with a different approach. They perform on-line migration 
of running batch jobs among data center sites, taking advantage of dynamic energy pricing and power 
availability at different locations, while considering the network bandwidth costs among data centers 
and future changes in electricity price. The total cost in their model, is the cost of energy to run the jobs 
at the destined data center plus the bandwidth cost to migrate the data. To attain an optimal algorithm 
with lower complexity comparing the optimal off-line solution, Buchbinder et al. (2011) proposed an 
efficient on-line algorithm (EOA) with higher performance comparing to the greedy heuristics that ignore 
the future outcomes. The calculated cost in their work is based on the data centers’ operational cost, 
which focuses on the energy consumption by servers and transport network. However, a considerable 
part of the energy consumed by a data center is related to the overhead energy, such as cooling systems. 
Moreover, the objective of reducing the energy cost and routing the jobs to the data center with lowest 
cost without considering the energy source might lead to increase in the carbon footprint in the environ-
ment. The migration of running jobs in this work is in the context of batch jobs, which are delay tolerant 
in comparison to user interactive requests such as web requests that are delay sensitive. Therefore, the 
applicability of this algorithm should be investigated for other workloads and user requests in a cloud 
computing environment. Similarly, work by Luo, Rao, and Liu (2015) leverages both the spatial and 
temporal variation of electricity price to route the incoming requests between geographically distributed 
data centers targeting energy cost minimization.

Data Center Characteristics (Location and Configuration-Aware)

There are several works try to make data centers energy and carbon-efficient by reducing the number of 
active servers or run the virtual machines and applications on the physical machines with the least energy 
consumption and carbon footprint rate. However, geographical location of the data center has a direct 
impact on the amount of consumed energy that leads to CO2 emission in the ecosystem. Work done by 
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Goiri et al. (2011) considers intelligent placement of data centers for Internet services. Their goal is to 
find the best location for data center site to minimize the overall cost and respect users’ response time, 
consistency, and availability. They classified the parameters that affect data centers overall cost into 
location dependent and data center characteristics data.

The location dependent data specifies the data center’s distance to the network backbones, power 
plants, and the CO2 emission of the power plant. Moreover, it includes the electricity, land, and water price. 
The last and one of the most important factors related to the location is the outside temperature. Since, 
when the temperature goes high the need for cooling increases as well. Cooling system is an important 
parameter in the data centers, which its energy consumption increases as outside temperature increases. 
Indeed, high temperature leads to need for more chillers and more chillers increases data center’s total 
energy consumption. This situation eventually leads to higher PUE and energy consumption, which 
indirectly increases carbon footprint. Goiri et al. (2011) propose a framework to find the most optimum 
location for the data center to minimize the total costs. Explicit decrease in data center’s cost, leads to 
indirect decrease in energy consumption and carbon footprint.

In order to increase the use of renewable energies, Berral et al. (2014) propose a framework to find 
the best location to site the data centers and renewable power plants, solar and wind in their work. In 
the meantime, their objective is reducing total cost for building these infrastructures to support cloud 
HPC services with different amounts of renewable usage. Berral et al. (2014) divided the costs of 
building green cloud services into capital (CAPEX) and operational (OPEX) costs and CAPEX itself 
is divided to costs dependent and the costs that are independent to the number of servers to be hosted. 
Independent CAPEX costs are cost of bringing brown energy to the data center and connecting to the 
backbone network. Land cost, building green power plants, cooling infrastructure, batteries, networking 
equipment, and servers are part of the dependent CAPEX costs. Costs incurred during the life cycle of 
the data center, such as network bandwidth and amount of brown energy usage are part of the OPEX. 
Brown energy consumption is the total energy needed by the servers and overhead parts, such as cooling 
and networking, minus energy derived from renewables. To calculate the overhead energy, Berral et al. 
(2014) use PUE as a parameter related to the location temperature. It should be noted that temperature 
is not the only parameter that affects PUE, data center load is also an important parameter that changes 
PUE value (Rasmussen, 2007).

In order to take the most of the generated renewable energy in different data centers, Berral et al. (2014) 
compare different approaches such as net metering, which is directing the excess renewable energy into 
the grid and mix it with brown energy, using batteries and having storage for renewables or not having 
any storage and migrating the load to the sites with available solar or wind. One of the shortcomings of 
their work is neglecting the network delay and amount of energy consumed due to VM migration, as the

data centers are scattered at different geographical locations. Moreover, all the data in this system are 
replicated at all the sites, which itself imposes overhead and increases energy consumption.

CONCLUSION AND FUTURE DIRECTIONS

In this chapter, the authors studied the research works in the area of energy and carbon footprint-aware 
resource management in cloud data centers. They first had an overview on the existing techniques in green 
cloud resource management with the focus on a single server and a single data center and the limitations 
facing these techniques, specially not being able to harvest renewable energy sources at different locations. 
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The authors then focused more specifically on the works considering geo-distributed cloud data centers, 
as nowadays most of the big cloud providers have data centers in different geographical locations for 
disaster recovery management, higher availability, and providing better quality of experience to users.

A large body of literature in the context of distributed data centers considers assigning resources to 
the arrived requests in such a way to minimize brown energy consumption. They use different techniques 
such as applying VM placement heuristics, workload scheduling, and targeting data centers with the 
most available renewable energy. These works explicitly consider access to renewable energy sources 
to minimize brown energy consumption and carbon footprint. However, some of the research works 
achieve energy efficient resource management through minimizing cost and the cost of brown energy 
usage, which indirectly could lead to less carbon footprint in the ecosystem.

Research in the area of energy and carbon-efficient resource management in data centers is still an 
important field of work. Apart from the surveyed techniques in this chapter, there are still areas that can 
be pursued by researchers. VM migration across data center sites to harvest the renewable energy sources 
is still at its early stages. First of all, it is important to study the effect of minimizing brown energy usage 
and carbon cost versus network cost and delay imposed due the data transfer over the network. Select-
ing the VMs to migrate depending on the application running on top of the VM with respect to users’ 
service level agreement is also another area of future study.

There are studies that consider storing excess renewable energy in batteries to use at times of the day 
that renewable sources are not available. Since main cloud providers started to build their own on-site 
renewable energy sources and having large scale renewable energy power plants, studying the cost-
effectiveness of storing the renewable energy for future usage and contributing to the electrical grid is 
an important area for future study.
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