
26
THE GRIDBUS MIDDLEWARE FOR
MARKET-ORIENTED COMPUTING

RAJKUMAR BUYYA, SRIKUMAR VENUGOPAL, RAJIV RANJAN,
AND CHEE SHIN YEO

26.1 INTRODUCTION

Grids aim at exploiting synergies that result from the cooperation of autonomous

distributed entities. The synergies that result fromGrid cooperation include the sharing,

exchange, selection, and aggregation of geographically distributed resources such as

computers, databases, software, and scientific instruments for solving large-scale

problems in science, engineering, and commerce. For this cooperation tobe sustainable,

participants need to have economic incentives. Therefore, “incentive” mechanisms

should be considered as one of the key design parameters for designing and developing

end-to-end Grid architectures. Although several studies have investigated market-

oriented management of Grids, they were limited mostly to specific aspects of the

system design such as service pricing or price-aware scheduling. This chapter presents

architectural models, mechanisms, algorithms, and middleware services developed by

the Gridbus project for end-to-end realization of market-oriented Grid computing.

Grid technologies such as Globus provide capabilities and services required for the

seamless and secure execution of a job on heterogeneous resources. However, to

achieve the complete vision of Grid as a utility computing environment, a number of

challenges need to be addressed. They include designing Grid services capable of

distributed application composition, resource brokering methodologies, policies and

strategies for scheduling different Grid application models, Grid economy for data

and resource management, application service specification, and accounting of

Market-Oriented Grid and Utility Computing Edited by Rajkumar Buyya and Kris Bubendorfer
Copyright � 2010 John Wiley & Sons, Inc.

589

resource consumption. The application development and deployment services need to

scale from desktop environments to global Grids and support both scientific and

business applications.

The Gridbus project is engaged in the design and development of service-oriented

cluster and Grid middleware technologies to support e-science and e-business applica-

tions. It extensively leverages related software technologies and provides an abstraction

layer to hide idiosyncrasies of heterogeneous resources and low-level middleware

technologies from application developers. In addition, it extensively focuses on the

realization of the utility computingmodel scaling fromclusters toGrids and to the peer-

to-peer computing systems. It uses economic models that aids in the efficient manage-

ment of shared resources and promotes commoditization of their services. Thus, it

enhances the tradability of Grid services according to their supply and demand in the

system. Gridbus supports the commoditization of Grid services at various levels:

. Raw resource level (e.g., selling CPU cycles and storage resources)

. Application level (e.g., molecular docking operations for drug design

application)

. Aggregated services (e.g., brokering and reselling of services across multiple

domains)

The computational economy methodology helps in creating a service-oriented

computing architecture where service providers offer paid services associated with

a particular application and users, on the basis of their requirements, would optimize

by selecting the services that they require and can affordwithin their budgets. Gridbus

hence emphasizes the end-to-end quality of services driven by computational

economy at various levels—clusters, peer-to-peer (P2P) networks, and the Grid—

for the management of distributed computational, data, and application services.

Gridbus provides software technologies that spread across the following

categories:

. Enterprise grid middleware with service-level agreement (SLA)-based resource

allocation (Aneka)

. Grid economy and virtual enterprises (Grid Market Directory)

. Grid trading and accounting services (GridBank)

. Grid resource brokering and scheduling (Gridbus Broker)

. Grid workflow management (Gridbus Workflow Engine)

. Grid application development tools (Visual Parametric Modeller)

. Grid portals (Gridscape)

26.2 ARCHITECTURE

The Gridbus project aims to develop software frameworks and algorithms to realize a

market-driven Grid computing environment, an example of which is illustrated in

590 THE GRIDBUS MIDDLEWARE FOR MARKET-ORIENTED COMPUTING

Figure 26.1. The resource providers offer various resources, and are driven by the twin

motivations of maximizing their profit and resource utilization. The requirement of

the user is to execute her application given her requirements, such as accessing

specific datasets for processing and/or a deadline for its completion. The user is

constrained by her budget for accessing resources, and possibly by other factors such

as access restrictions on certain storage resources and computing environments that

can execute her application. The user operates through a Grid resource broker that,

given user requirements and constraints, discovers appropriate resources, negotiates

with them for access, executes the application, and returns the results to the user. The

interface between the broker and the providers is enabled through the market

infrastructure that provides functionalities such as directory of providers, and

accounting and banking. In the following paragraphs, wewill look at each participant

and the related Gridbus components.

A layered view of its realization within the Gridbus middleware is shown in

Figure 26.2. The Gridbus software stack is primarily divided into five layers: Grid

applications layer, user-level middleware layer, core Grid middleware layer, Grid

fabric software layer, andGrid fabric hardware layer. The notion of Grid economics is

prevalent at each of these layers. At the Grid applications layer, the Gridbus project

contributes through its monitoring and application composition Grid portals. These

Grid portals have the capability to seamlessly interact with services running at the

Resource Management
and Accounting

Negotiation
Module

Task
Submission

Compute Provider NCompute Provider 1

Bank

Market
Directory

Market
Maker

Market Infrastructure

Resource Management
and Accounting

Negotiation
Module

Task
Submission

Grid Information
Services

Grid Data Catalogs

Storage Management
and Accounting

Negotiation
Module

GridFTP
Interface

Storage Provider 1

Negotiation
Module

Execution/
Monitoring

Discovery and
Scheduling

APIs/User Interface

Grid Resource Broker

Discovery/Query

Publish/Update
Coordination
Mechanism

Application

Workflow

……
……

Bind/Consume

Utility Transaction

Figure 26.1 Architectural elements of market-based Grid computing.

ARCHITECTURE 591

user-level middleware layer, including the Gridbus resource broker and workflow

engine. At the core Grid middleware layer, Gridbus has developed software services

for enterprise desktop Grid integration (Aneka), accounting (GridBank), cooperative

resource management (Grid-Federation), and resource discovery (Grid Market

Directory). The Libra system, which operates at the Grid fabric software layer,

supports market-based allocation of cluster computing resources.

The Grid fabric hardware layer includes different kinds of computing, data, and

storage facilities that belong to different Grid resource-sharing domains. There can

be different types of providers offering different kinds of services to users. In

Figure 26.1, we have depicted compute and storage providers, as these are the two

basic resources required by any application. A compute provider leases highly

capable computational resources such as supercomputers or clusters to the Grid

environment. Such resources are generally managed by a queue-based scheduling

system that allocates jobs to processors or nodes. However, most cluster manage-

ment systems aim to improve system-centric metrics such as utilization. In contrast,

Libra is an economy-based cluster scheduler that focuses on improving the quality of

service (QoS) on a per-user basis. In addition, the resource may provide the ability to

reserve nodes or processors in advance. The advance reservation is conducted

through the negotiation interface that also enables the provider to participate in the

market. These capabilities are provided in Aneka [10], a .NET-based enterprise Grid

framework, in addition to the traditional cluster resource manager functions such as

job submission and management. While the description so far relates to a compute

provider, a storage provider would have similar components, except that the

resource management would be replaced by storage management functions. Pro-

viders also track resource usage through accounting mechanisms to bill the users for

their execution.

Figure 26.2 Gridbus software stack. Gridbus components are shown in colored background.

592 THE GRIDBUS MIDDLEWARE FOR MARKET-ORIENTED COMPUTING

The Gridbus Grid resource broker [5] functions as a user agent in the market-

oriented environment shown in Figure 26.1. The broker uses the user’s requirements

to discover appropriate Grid resources by querying Grid information services such as

Globus’ Grid information indexing service (GIIS) [12]. Market information such as

prices and offers are queried from the market directory. Using this information, the

broker identifies suitable providers and either carries out one-to-one negotiations or

participates in auctions for resource shares. It then schedules user jobs over the

acquired resource shares such that the deadline requirements of the user are met.

The primary components of the current market infrastructure are the Grid Market

Directory (GMD) [6] andGridBank [7]. TheGMDenables providers to advertise their

services to the users through a registry service. Brokers can query the GMD to locate

required services and query their attributes such as service addresses, pricing, and

inputmethods. Other information services such as GIIS can also be considered as part

of themarket infrastructure as they allow the broker to discover capabilities and status

of services, which, in turn, determine their value. GridBank is a accounting and

micropayment service that provides an infrastructure for secure payments between

the users and providers. GridBank can also be used as an accounting and authorization

mechanism wherein only users with requisite credit in their accounts can enter into

contracts with providers. It is important to note that there may be more than one

instance of these components present in a Grid. As the scale of providers, brokers, and

market components increases, it becomes necessary to connect these entities on the

basis of a decentralized and scalable network model. Furthermore, these entities need

to coordinate their activities in a scalable manner to achieve the desired systemwide

objective functions. One such mechanism is the Compute Power Market [14], built

using the JXTA infrastructure from Sun Microsystems, which allows the trading of

computational power over peer-to-peer networks. Another more recent advance-

ment with respect to coordinated Grid resource management has been the Grid-

Federation [18] model, which encapsulates decentralized protocols and algorithms

for efficient discovery and coordinated provisioning of resources in federated Grid

and peer-to-peer systems.

26.3 GRID RESOURCE BROKER

The Gridbus broker is an advanced service-oriented metascheduler for compute and

data Grids, with support for a wide range of Grid middleware and services. It

accommodates many functions that Grid applications require, including discovering

the right resources for a particular user application, scheduling jobs in order to meet

deadlines, and handling faults that may occur during execution. In particular, the

broker provides capabilities such as resource selection, job scheduling, job manage-

ment, and data access to any application that requires distributed Grid resources for

execution. The broker handles communication with the resources running different

Grid middleware, job failures, varying resource availability, and different user

objectives such as meeting a deadline for execution or limiting execution within a

certain budget.

GRID RESOURCE BROKER 593

26.3.1 Architecture

The design of theGridbus broker follows a layered architecture consisting of interface,

core, and execution layers that together provide the capabilities shown for the market-

oriented broker inFigure 26.1.The interface layer consists of application programming

interfaces (APIs) and parsers for the input files through which external programs and

users communicate with the broker, respectively. Resource discovery and negotiation,

scheduling, and job monitoring are carried out in the core layer. The job execution is

carried out through the execution layers in which middleware-specific adapters

communicate with the target resources.

26.3.2 Input

There aremanyways to specify the user requirements to the broker. Figure 26.3 shows

a user application specified using the broker’s own XPML (Extended Parametric

Modeling Language) format. The qos tags enclose the user’s QoS requirements,

which, in the example, specify the deadline bywhich the jobmust be executed and the

budget available for execution. The user wants the execution completed with the least

Figure 26.3 User requirement specification using XPML.

<xpml>
<qos>

<deadline value="2007-ll-10T19 :30 :" />
<budget value="l0000.0" />
<optimisation value="COST" />

</qos>
<parametar name="X" type=" integer" domain=

"range" >
<range from="1" to="10" interval="l" />

</parameter>
<parameter name="time_value" type="integer"

domain=" single">
<single value="3000" />

</parameter>
<job-requirements>

<property name="estimatedTime"
value="60.00" />

</job-requirements>
<task>

<execute>
<command value="calc" />
<arg valuer=" $X " />
<arg value=" $time_value "/>

</execute>
</tasK>

</xpml>

594 THE GRIDBUS MIDDLEWARE FOR MARKET-ORIENTED COMPUTING

expense, which is indicated by the optimization value. XPML is used for specifying

parameter sweep applications inwhich a single application is executed over a range of

parameters. The parameter tags indicate the parameters, and the task tags

specify the application to be executed.

Of interest to amarket-orientedGrid is theQoS section. Thevalues provided by the

user in this section form the basis for the broker’s resource discovery and scheduling

mechanisms. While the only parameters recognized by the broker at present are the

deadline, budget, and optimization values, the number of such inputs is limited only

by the capabilities of the schedulers in the broker.

26.3.3 Discovery, Negotiation, and Scheduling

The broker queries resources for their capabilities and availability. Information about

the resource costs is queried from the Grid Market Directory (GMD). Once the

resources are identified, the broker may carry out one-to-one negotiations with them.

TheGridbus broker has the ability to conduct bilateral negotiations with the resources

by using the Alternate Offers Protocol [1]. The negotiation consists of the broker

exchanging proposals with counter-proposals from the resource until both of them

converge on an acceptable agreement, or one of them quits the process.

Figure 26.4 shows an extensible Markup Language (XML)-based negotiation

proposal for reserving nodes in advance on a resource (with the values shown in bold).

The broker creates this proposal according to the requirements given by the user. The

reward field indicates the provider’s gain for supplying the required number of

Figure 26.4 Negotiation proposal format.

<xml - fragment xmlns: ws =" http: // www.gridbua.org/
negotiation/ws">
<ws : Reward>200.0</ws: Reward>
<ws : Penalty>50.0</ws: Penalty>
<ws: Requirements>

<ws:ReservationRecordType>
<ws:ReservationStartTime>
2008-04-01T18:22:00.437+11:00
</ws:ReservationStartTime>

<ws:Duration>750000.0</ws:Duration>
<ws:NodeRequirement>
<ws:Count>4</ws:Count>

</ws:NodeRequirement>
<ws:CpuRequirement>
<ws: Measure>Ghz</ws :Measure>
<ws: Speed>2.5</ws:Speed>

<ws:CpuRequirement>
</ws:ReservationRecordType>

</ws:Requirements>
</xml-fragment>

GRID RESOURCE BROKER 595

resources. The penalty field denotes the penalty to be paid if the provider accepted the

proposal but did not supply the required resources.

The requirements section here asks for four nodes with a minimum CPU speed of

2.5GHz each for duration of 750 s starting from 6:22 p.m. on April 1, 2008. The

provider (or resource) can, in turn, create a counterproposal by modifying sections of

the broker’s proposal and send that as a reply. The offers and counteroffers continue

until one of the parties accepts the current proposal, or rejects it altogether. At present,

the broker can negotiate only with Aneka [10], the resource management system

covered in Section 26.6.

The broker enables different types of scheduling depending on the objectives of the

user and type of resources. At present, the broker can accommodate compute, storage,

network, and information resources with prices based on time (1 Grid dollar for 1

second), or capacity (1Grid dollar for 1MB). It can also accommodate user objectives

such as the fastest computation within the budget (time optimization), or the cheapest

computation within the deadline (cost optimization) for both compute and data-

intensive applications. The compute-intensive algorithms are based on those devel-

oped previously in Nimrod/G [2]. A cost–time-minimizing algorithm for data-

intensive applications is described in the following paragraphs. This algorithm was

published and evaluated previously [3].

A distributed data-intensive computing environment consists of applications that

involve mainly accessing, processing and transferring data of the order of gigabytes

(GB) and upward. These operations are conducted over resources that are geogra-

phically distributed, and shared between different users. Therefore, the impact of data

access and transfer operations on the execution time of the application and resource

usage is equal to, if not more than, that of the compute-intensive processing

operations. Transferring large volumes of data through the network can be very

costly, and so can be processing it at an expensive compute resource. Therefore, the

total cost can be defined as the sum of the processing cost, the data transfer (network)

cost, and the storage cost. Likewise, the total time for execution is the sum of the job

completion time and the data transfer time. A simple scheduling heuristic to reduce

the total execution cost of the application can be expressed as follows:

1. Repeat for every scheduling interval while there are unprocessed jobs.

2. For every job, find the data file(s) that it is dependent on and locate the data hosts

for those files.

3. Find a data-compute set (a set consisting of one compute resource for the

execution and one data host for each file involved) that guarantees theminimum

cost for that job.

4. Sort the jobs in order of increasing cost.

5. Assign jobs from the sorted list starting with the least expensive job until either

all the jobs are allocated or all the compute resources have been allocated their

maximum jobs.

Although this list shows only cost minimization, the same heuristic was followed in

the case of time minimization except that the criterion in step 2 was changed to the

minimum execution time required.

596 THE GRIDBUS MIDDLEWARE FOR MARKET-ORIENTED COMPUTING

This scheduling algorithm was evaluated on resources distributed around

Australia, listed in Table 26.1. The network connections between the compute

resources were assigned artificial costs as given in Table 26.2. We used a synthetic

application that transferred and processed large data files. These files were evenly

distributed on the resources and were registered in a replica catalog [4]. The

broker located the files by querying the catalog. For this experiment, we had

100 files, each 30 MB in size. Each job depended on one of the files, thus creating

100 jobs.

TABLE 26.1 Resources Used for Evaluation of Cost-Based Data-Intensive Scheduling

Total Jobs

Executed

Organizationa Machine Details Role

Cost [G$/

(CPU�s)] Time Cost

Dept. Computer

Science, Univ.

Melbourne

(UniMelb CS)

belle.cs.mu.oz.

au; IBM

eServer, 4 CPU,

2 GB RAM, 70

GB HD, Linux

Broker host,

data host,

NWS server

NA (not used

as a compute

resource)

— —

School of

Physics, Univ.

Melbourne

(UniMelb

Physics)

fleagle.ph.unimelb.

edu.au; PC, 1

CPU, 512 MB

RAM, 70 GB

HD, Linux

Replica catalog

host, data

host, computer

resource,

NWS sensor

2 3 94

Dept. Computer

Science, Univ.

Adelaide

(Adelaide CS)

belle.cs.adelaide.

edu.au; IBM

eServer, 4 CPU

(only 1 available),

2 GB RAM, 70

GB HD, Linux

Data host, NWS

sensor

NA (not used

as a compute

resource)

— —

Australian

National Univ.,

Canberra

(ANU)

belle.anu.edu.au;

IBM eServer,

4 CPU, 2 GB

RAM, 70GBHD,

Linux

Data host,

computer

resource,

NWS sensor

4 2 2

Dept. Physics,

Univ. Sydney

(Sydney

Physics)

belle.physics.usyd.

edu.au; IBM

eServer, 4 CPU

(only 1 available),

2 GB RAM, 70

GB HD, Linux

Data host,

compute

resource,

NWS sensor

4 72 2

Victorian

Partnership for

Advanced

Computing,

Melbourne

(VPAC)

brecca-2.vpac.org;

180-node cluster

(only head node

used), Linux

Compute

resource,

NWS sensor

6 23 2

aThis column lists abbreviations used in Table 26.2.

GRID RESOURCE BROKER 597

Table 26.3 summarizes the results that were obtained. As is expected, cost

minimization scheduling producesminimumcomputation and data transfer expenses,

whereas timeminimization completes the experiments in the least time. The graphs in

Figures 26.5 and 26.6 show the number of jobs completed against time for the two

TABLE 26.2 Network Costs between Data Hosts and Compute Resources (in G$/MB)a

Data Node Compute Node ANU UniMelb Physics Sydney Physics VPAC

ANU 0 34.0 31.0 38.0

Adelaide CS 34.0 36.0 31.0 33.0

UniMelb Physics 40.0 0 32.0 39.0

UniMelb CS 36.0 30.0 33.0 37.0

Sydney Physics 35.0 33.0 0 37.0

aSee Table 26.1, “Organization” column, for abbreviations used in this table.

TABLE 26.3 Summary of Evaluation Results

Scheduling Strategy

Total Time

Taken (min)

Compute

Cost (G$)

Data

Cost (G$)

Total

Cost (G$)

Cost minimization 71.07 26,865 7560 34,425

Time minimization 48.5 50,938 7452 58,390

0

10

20

30

40

50

60

70

80

424140393837363534333231302928272625242322212019181716151413121110987654321

Time (in mins.)

N
u

m
b

er
 o

f
jo

b
s

in
 e

xe
cu

ti
o

n

fleagle.ph.unimelb.edu.au belle.anu.edu.au belle.physics.usyd.edu.au brecca-2.vpac.org

Figure 26.5 Cumulative number of jobs completed versus time for time minimization

scheduling in data Grids.

598 THE GRIDBUS MIDDLEWARE FOR MARKET-ORIENTED COMPUTING

0

10

20

30

40

50

60

70

80

90

100

63615957555351494745434139373533312927252321191715131197531

Time(in mins.)

N
um

be
r o

f j
ob

s
in

 e
xe

cu
tio

n
fleagle.ph.unimelb.edu.au belle.anu.edu.au belle.physics.usyd.edu.au brecca-2.vpac.org

Figure 26.6 Cumulative number of jobs completed versus time for cost minimization

scheduling in data Grids.

scheduling strategies. It can be seen that thesemirror the trends for similar evaluations

conducted with computational Grids [2]; that is, time minimization used the more

expensive but faster resources to execute jobs, whereas cost minimization used the

cheaper resource most to ensure a lower overall expense.

26.4 GRID MARKET DIRECTORY (GMD)

It has been envisioned that Grids enable the creation of virtual organizations

(VOs) [11] and virtual enterprises (VEs) [13] or computing marketplaces [14]. In

a typical marketbased model VO/VE, Grid service providers (GSPs) publish their

offerings in a market directory (or a catalog), and Grid service consumers (GSCs)

employ a Grid resource broker (GRB) that identifies GSPs through the market

directory and utilize the services of suitable resources that meet their QoS require-

ments (see Fig. 26.7).

To realize this vision, Grids need to support diverse infrastructure/services [11],

including an infrastructure that allows (1) the creation of one or more Grid market

place (GMP) registries, (2) the contributors to register themselves as GSPs along

with their resources/application services that they wish to provide, (3) GSPs to

publish themselves in one or more GMPs along with service prices, and (4) Grid

GRID MARKET DIRECTORY (GMD) 599

resource brokers to discover resources/services and their attributes (e.g., access

price and usage constraints) that meet user QoS requirements. In this section, we

describe a software framework called the Grid Market Directory (GMD) that

supports these requirements.

The GMD [6] serves as a registry for high-level service publication and discovery

in virtual organizations. It enables service providers to publish the services that they

provide alongwith the costs associated with those services. Next, it allows consumers

to browse theGMD for finding the services thatmeet their QoS requirements. The key

components (refer to Fig. 26.7) of the GMD are

. GMD portal manager (GPM), which facilitates service publication, manage-

ment, and browsing. It allows service providers and consumers to use a Web

browser as a simple graphical client to access the GMD.

. GMD query Web service (GQWS), which enables applications (e.g., resource

broker) to query the GMD to find a suitable service that meets the job execution

requirements (e.g., budget).

Both components receive client requests through a HTTP server. Additionally, a

database (GMD repository) is configured for recording the information of Grid

services and service providers.

The GMD is built over standard Web service technologies such as Simple Object

Access Protocol (SOAP) and XML. Therefore, it can be queried by programs

GMD Query
Webservice

Grid Market Directory (GMD)

GMD Portal
Manager

Provider (Web Client)

Publish/Manage Query(SOAP+XML)

Grid Node

Browse

Consumer (Grid Resource Broker)

Grid Node
Grid Node

Job
submission

GMD Query
Webservice

Grid Service Repository (RDBMS)

Web Server (Tomcat)

GMD Query
Webservice

Consumer (Web Client)

GMD Portal
Manager

Publish/Manage

GMD Portal
Manager

Query(SOAP+XML)
Browse

Job
submission

Figure 26.7 Grid Market Directory (GMD) architecture.

600 THE GRIDBUS MIDDLEWARE FOR MARKET-ORIENTED COMPUTING

irrespective of their operating environment (platform independent) and software

libraries (language-independent). To providewith an additional layer of transparency,

a client API has been provided to enable programs to query the GMD directly, so that

the developers need not concern themselves with SOAP details. TheGridbus resource

broker interacts with the GMD to discover the testbed resources and their high-level

attributes such as access price.

26.5 GridBank

The early efforts in Grid computing and usage scenarios were mostly academic or

exploratory in nature and did not enforce the Grid economy mechanisms. With

the more recent move toward a multiinstitutional production-scale Grid infra-

structure such as the TeraGrid facility [8], the need for Grid economy and

accounting is being increasingly felt. In order to enable the sharing of resources

across multiple administrative domains, the accounting infrastructure needs to

support unambiguous recording of user identities against resource usage. In the

context of the Gridbus project, an infrastructure providing such a service is called

the GridBank [7].

GridBank is a secure Grid-wide accounting and (micro)payment handling system.

Itmaintains the users’ (consumers and providers) accounts and resource usage records

in the database. It supports protocols that enable its interaction with the resource

brokers of GSCs and the resource traders of GSPs. It has been envisioned to provide

services primarily for enabling Grid economy. However, we also envision its usage in

e-commerce applications. TheGridBank services can be used in both cooperative and

competitive distributed computing environments.

GridBank can be regarded as a Web service for Grid accounting and payment.

GridBank uses SOAP over Globus toolkit’s sockets, which are optimized for security.

Clients use the same user proxy/component to access GridBank as they use to access

other resources on the Grid. A user proxy is a certificate signed by the user that is later

used to repeatedly authenticate the user to resources. This preserves the Grid’s single-

signin policy and avoids the need to repeatedly enter the user password.Using existing

payment systems for the Grid would not satisfy this policy.

The interaction between the GridBank server and various components of Grid is

shown in Figure 26.8. GSPs andGSCs first open an account with GridBank. Then, the

user submits the application processing requirements along with the QoS require-

ments (e.g., deadline and budget) to the GRB. The GRB interacts with GSP’s Grid

Trading Service (GTS) or Grid Market Directory (GMD) to establish the cost of

services and then selects a suitable GSP. It then submits user jobs to the GSP for

processing along with details of its chargeable account ID in the GridBank or

GridCheque purchased from the GridBank. The GSP provides the service by

executing the user job, and the GSP’s Grid resource meter measures the amount of

resources consumed while processing the user job. The GSP’s charging module

contacts the GridBank with a request to charge the user account. It also passes

information related to the reason for charging (resource usage record).

GridBank 601

26.6 ANEKA: SLA-BASED RESOURCE PROVISIONING

This section describes how a service-oriented enterprise Grid platform called Aneka

can implement SLA-based resource provisioning for an enterprise Grid using

advanced reservations. An enterprise Grid [9] harnesses unused computing resources

of desktop computers connected over an internal network or the Internet within an

enterprise without affecting the productivity of their users. Hence, it increases the

amount of computing resources available within an enterprise to accelerate applica-

tion performance.

26.6.1 Design of Aneka

Aneka [10] is a .NET-based service-oriented platform for constructing enterprise

Grids. It is designed to support multiple application models, persistence and security

solutions, and communication protocols such that the preferred selection can be

changed at any time without affecting an existing Aneka ecosystem. To create

an enterprise Grid, the resource provider only needs to start an instance of the

configurable Aneka container hosting required services on each selected desktop

node. The purpose of theAneka container is to initialize services, and to act as a single

point for interaction with the rest of the enterprise Grid.

Figure 26.9 shows the design of the Aneka container on a single desktop node. To

support scalability, the Aneka container is designed to be lightweight by providing the

bare minimum functionality needed for an enterprise Grid node. It provides the base

infrastructure that consists of services for persistence, security (authorization,

Grid Service Consumer (GSC)

A
pp

li
ca

ti
on

s

Grid
Resource
Broker
(GRB)

Grid Service Provider (GSP)

Grid Trade Server

Grid Agent Grid
Resource

Meter

GridBank
Charging
Module

R1 R2 R3 R4

Establish Service Cost

Deploy Agent and Submit Jobs

Resource
Usage

Usage Agreement

GridBank
Payment
Module

GridBank Server

GridCheque

GridCheque

GridCheque +
Resource Usage
(GSC Account Charge)

1) GRB negotiates service cost per time unit (e.g., $ per hour)
2) GridBank Payment Module requests GridCheque for the GSP whose service GSC wants to use. GridBank issues GridCheque provided

GSC has sufficient funds.
3) GridBank payment module forwards GridCheque to GridBank Charging Module.
4) GRB deploys Grid Agent and submits jobs for execution on the resource.
5) Grid resource meter gathers resource usage records from all resources used to provide the service, optionally aggregates individual

records into one resource usage record and forwards it to the GridBank charging module. Grid resource meter optionally performs
usage check with grid agent.

6) GridBank charging module contacts GridBank and redeems all outstanding payments. It can do so in batches rather than after each
transaction.

User

Figure 26.8 GridBank.

602 THE GRIDBUS MIDDLEWARE FOR MARKET-ORIENTED COMPUTING

authentication, and auditing), and communication (message handling and dispatch-

ing). Every communication between Aneka services is treated as a message, handled

and dispatched through the message handler/dispatcher that acts as a frontend

controller. The Aneka container hosts a compulsory membership catalog service,

which maintains the resource discovery indices (such as a .NET remoting address) of

services currently active in the system.

TheAneka container can host any number of optional services that can be added to

augment the capabilities of an enterpriseGrid node. Examples of optional services are

indexing, scheduling, execution, and storage services. This provides a single, flexible,

and extensible framework for orchestrating different kinds of Grid application

models.

To support reliability and flexibility, services are designed to be independent of

each other in a container. A service can interact with other services only on the local

node or other nodes through known interfaces. This means that a malfunctioning

service will not affect other working services and/or the container. Therefore, the

resource provider can seamlessly configure andmanage existing services or introduce

new ones into a container.

Aneka thus provides the flexibility for the resource provider to implement any

network architecture for an enterprise Grid. The implemented network architecture

depends on the interaction of services among enterprise Grid nodes since each Aneka

container on a node can directly interact with other Aneka containers reachable on the

Figure 26.9 Design of Aneka container.

ANEKA: SLA-BASED RESOURCE PROVISIONING 603

network. An enterprise Grid can have a decentralized network architecture peering

individual desktop nodes directly, a hierarchical network architecture peering nodes

in the hierarchy, or a centralized network architecture peering nodes through a single

controller.

26.6.2 Resource Management Architecture

Figure 26.10 shows the interaction between the user/broker, the master node, and

execution nodes in an enterprise Grid with centralized network architecture.

Centralized network architecture means that there is a single master node con-

necting tomultiple execution nodes. To use the enterprise Grid, the resource user (or

broker acting on its behalf) has to first make advanced reservations for resources

required at a designated time in the future.

During the request reservation phase, the user/broker submits reservation requests

through the reservation service at the master node. The reservation service discovers

available execution nodes in the enterprise Grid by interacting with the allocation

service on them. The allocation service at each execution node keeps track of all

reservations that have been confirmed for the node and can thus check whether a new

request can be satisfied.

By allocating reservations at each execution node instead of at the master node,

computation overheads that arise from making allocation decisions are distributed

acrossmultiple nodes and thusminimized, as compared to overhead accumulation at a

single master node. The reservation service then selects the required number of

execution nodes and informs their allocation services to temporarily lock the reserved

timeslots. After all the required reservations on the execution nodes have been

temporarily locked, the reservation service feeds back the reservation outcome and its

price (if successful) to the user/broker.

The user/broker may confirm or reject the reservations during the confirm

reservation phase. The reservation service then notifies the allocation service of

selected execution nodes to lock or remove temporarily locked timeslots accordingly.

Request Available ConfirmedAccepted

Available
Temp.
Locked

Confirmed

Reservation
Service

Allocation
Service

Submit Confirmed

Lock

Confirm

Scheduling
Service

Submit

Dispatch Executed

Executed

Execution
Service

Executed

Execution
Nodes

Master
Node

User/
Broker

Confirm Reservation PhaseRequest Reservation Phase Execution Phase

Figure 26.10 Interaction of enterprise Grid nodes.

604 THE GRIDBUS MIDDLEWARE FOR MARKET-ORIENTED COMPUTING

We assume that a payment service is in place to ensure that the user/broker has

sufficient funds and can successfully deduct the required payment before the

reservation service proceeds with the final confirmation.

During the execution phasewhen the reserved time arrives, the user/broker submits

applications to be executed to the scheduling service at the master node. The

scheduling service determines whether any of the reserved execution nodes are

available before dispatching applications to them for execution; otherwise applica-

tions are queued towait for the next available reserved execution nodes. The execution

service at each execution node starts executing an application after receiving it from

the scheduling service and updates the scheduling service of changes in execution

status. Hence, the scheduling service can monitor executions for an application and

notify the user/broker on completion.

26.6.3 Allocating Advanced Reservations

Figure 26.11 shows that the process of allocating advanced reservations occurs in two

levels: the allocation service at each execution node and the reservation service at the

master node. Both services are designed to support pluggable policies so that the

resource provider has the flexibility to easily customize and replace existing policies

for different levels and/or nodes without interfering with the overall resource

management architecture.

The allocation service determines how to schedule a new reservation at the

execution node. For simplicity, the allocation service at each execution node can

User/Broker

Reservation
Store

Task
Store

Node
Selection

Policy

Pricing
PolicyMembership

Store

Execution Node

Task
Store

Reservation
Store

Time Slot
Selection

Policy

Execution
Service

Membership
Service

Scheduling
Service

Reservation Service

Allocation Service

Master Node

Enterprise Grid

Execution
Node

Execution
Node

Figure 26.11 Interaction of services in enterprise Grid.

ANEKA: SLA-BASED RESOURCE PROVISIONING 605

implement the same timeslot selection policy. The allocation service allocates the

requested timeslot if the slot is available. Otherwise, it assigns the next available

timeslot after the requested start time that can meet the required duration.

The reservation service performs node selection by choosing the required number

of available timeslots from execution nodes and administers admission control by

accepting or rejecting a reservation request. It also calculates the price for a confirmed

reservation on the basis of the implemented pricing policy. Various pricing policies

may be implemented. Available timeslots are selected with respect to the application

requirement of the user.

The application requirement considered is the task parallelism to execute an

application. A sequential application has a single task and thus needs a single

processor to run, while a parallel application needs a required number of processors

to concurrently run at the same time.

For a sequential application, the selected time slots need not have the same start

and end times. Hence, available timeslots with the lowest prices are selected first. If

there are multiple available timeslots with the same price, then those with the

earliest start time are selected first. This ensures that the cheapest requested

timeslot is allocated first if it is available. Selecting available timeslots with the

lowest prices first is fair and realistic. In reality, reservations that are confirmed

earlier enjoy the privilege of cheaper prices, as compared to reservation requests

that arrive later.

However, for a parallel application, all the selected timeslots must have the same

start and end times.Again, the earliest timeslots (with the same start and end times) are

allocated first to ensure that the requested time slot is allocated first if available. If

there aremore available timeslots (with the same start and end times) than the required

number of timeslots, then those with the lowest prices are selected first.

The admission control operates according to the service requirement of the user.

The service requirements examined are the deadline and budget to complete an

application. We assume that both deadline and budget are hard constraints. Hence, a

confirmed reservation must not end after the deadline and cost more than the budget.

Therefore, a reservation request is not accepted if there is an insufficient number of

available timeslots on execution nodes that end within the deadline and if the total

price of the reservation costs more than the budget.

26.6.4 Performance Evaluation

Figure 26.12 shows the enterprise Grid setup used for performance evaluation. The

enterprise Grid contains 33 personal computers (PCs) with 1 master node and 32

execution nodes located across three student computer laboratories in the Department

of Computer Science and Software Engineering, The University of Melbourne.

Synthetic workloads are created by utilizing trace data. The experiments utilize

238 reservation requests in the last 7 days of the SDSC SP2 trace (April 1998–April

2000) version 2.2 from Feitelson’s Parallel Workloads Archive [15]. The SDSC SP2

trace from the San Diego Supercomputer Center (SDSC) (USA) is chosen because it

606 THE GRIDBUS MIDDLEWARE FOR MARKET-ORIENTED COMPUTING

has the highest resource utilization (83.2%) among available traces to ideally model a

heavy-workload scenario.

The trace only provides the interarrival times of reservation requests, the number of

processors to be reserved as shown in Figure 26.13a (downscaled from amaximum of

128 nodes in the trace to a maximum of 32 nodes), and the duration to be reserved as

shown in Figure 26.13b. However, service requirements are not available from this

trace. Hence, we adopt a similar methodology [16] to synthetically assign service

requirements through two request classes: (1) low-urgency and (2) high-urgency.

Figures 26.13b and 26.13c show the synthetic values of deadline and budget for the

238 requests, respectively.

A reservation request i in the low-urgency class has a deadline of high deadlinei /

durationivalue and budget of low budgeti /f (durationi) value. f (durationi) is a function

representing theminimum budget required on the basis of durationi. Conversely, each

request in the high-urgency class has a deadline of low deadlinei /durationi value and

budget of high budgeti /f (durationi) value. This is realistic since a user who submits a

more urgent request to be met within a shorter deadline offers a higher budget for the

short notice. Values are normally distributed within each of the deadline and budget

parameters.

We evaluate the performance of seven pricing mechanisms as listed in

Table 26.4 for high-urgency reservation requests (with short deadline and high

budget) from sequential applications (requiring one processor to execute) in the

enterprise Grid. The enterprise Grid charges users only for utilizing the computing

Figure 26.12 Configuration of Aneka enterprise Grid.

ANEKA: SLA-BASED RESOURCE PROVISIONING 607

resource type on the basis of usage per processor (CPU) per hour (h). Thus, users

are not charged for using other resource types such as memory, storage, and

bandwidth. In addition, every user/broker can definitely accept another reservation

timeslot proposed by the enterprise Grid if the requested one is not possible,

(a)

(b)

(c)

 0

 5

 10

 15

 20

 25

 30

0 1 2 3 4 5 6 7

N
um

be
r

of
 P

ro
ce

ss
or

s

Day

Processor

 0

 50

 100

 150

 200

 250

 300

 350

0 1 2 3 4 5 6 7

T
im

e
(H

r)

Day

Low Urgency Deadline
High Urgency Deadline

Duration

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

0 1 2 3 4 5 6 7

B
ud

ge
t (

$/
C

P
U

/H
r)

Day

High Urgency Budget
Low Urgency Budget

Figure 26.13 Last 7 days of SDSC SP2 trace with 238 requests: (a) number of processors

(from trace); (b) duration (from trace) and deadline (synthetic); (c) budget (synthetic).

608 THE GRIDBUS MIDDLEWARE FOR MARKET-ORIENTED COMPUTING

provided that the proposed timeslot still satisfies both application and service

requirements of the user.

The seven pricing mechanisms listed in Table 26.4 represent three basic types of

pricingmechanism: (1)Fixed, (2)FixedTime, and (3)Libraþ $.Table 26.4 lists

the maximum and minimum types of each pricing mechanism, which are configured

accordingly to highlight the performance range of the pricingmechanism.TheFixed

mechanism charges a fixed price at all times. The FixedTimemechanism charges a

fixedpricefordifferent timeperiodsofresourceusagewherealowerpriceischargedfor

off-peak (12 a.m.–12 p.m.) and a higher price for peak (12 p.m.–12 a.m.).

Libraþ $ [17] uses a more fine-grained pricing function that satisfies four

essential requirements for pricing of resources to prevent workload overload:

(1) flexibility, (2) fairness, (3) being dynamic, and (4) being adaptive. The price Pij

for per unit of resource utilized by reservation request i at compute node j is computed

as Pij¼ (a � PBasej) þ (b � PUtilij). The base price PBasej is a static pricing

component for utilizing a resource at node j that can be used by the resource

provider to charge the minimum price so as to recover the operational cost. The

utilization price PUtilij is a dynamic pricing component that is computed as a

factor of PBasej based on the utilization of the resource at node j for the required

deadline of request i:PUtilij¼RESMaxj/RESFreeij
� PBasej.RESMaxj and

RESFreeij are the maximum units and remaining free units of the resource at node j

for the deadline duration of request i, respectively. Thus, RESFreeij has been

deducted units of resource committed for other confirmed reservations and request i

for its deadline duration.

The factors a and b for the static and dynamic components of Libraþ $,

respectively, provides the flexibility for the resource provider to easily configure

and modify the weightage of the static and dynamic components on the overall price

Pij. Libraþ $ is fair since requests are priced according to the amount of different

resources utilized. It is also dynamic because the overall price of a request varies

depending on the availability of resources for the required deadline. Finally, it is

adaptive as the overall price is adjusted depending on the current supply and demand

of resources to either encourage or discourage request submission.

TABLE 26.4 Pricing Mechanisms

Name Configured Pricing Parameters

FixedMax $3/(CPU�h)
FixedMin $1/(CPU�h)
FixedTimeMax $1/(CPU�h) (12 a.m.–12 p.m.)

$3/(CPU�h) (12 p.m.–12 a.m.)

FixedTimeMin $1/(CPU�h) (12 a.m.–12 p.m.)

$2/(CPU�h) (12 p.m.–12 a.m.)

Libraþ $Max $1/(CPU�h) (PBasej), a¼ 1, b¼ 3

Libraþ $Min $1/(CPU�h) (PBasej), a¼ 1, b¼ 1

Libraþ $Auto Same as Libraþ $Min

ANEKA: SLA-BASED RESOURCE PROVISIONING 609

However, these threemechanisms rely on static pricing parameters that are difficult

to be accurately derived by the resource provider to produce the best performance

where necessary. Hence, we propose Libraþ $Auto, an autonomic Libraþ $

that automatically adjusts b per the availability of compute nodes. Libraþ $Auto

thus considers the pricing of resources across nodes, unlike Libraþ $, which

considers pricing of resources only at each node j via Pij.

Figure 26.14 shows the performance results for the seven pricingmechanisms in an

enterprise Grid for high-urgency requests from sequential applications over a 7-day

time period that have been normalized to produce standardized values within the

range of 0–1 for easier comparison. The performance metrics being measured are the

price for a confirmed reservation [in $/(CPU�h)] and the accumulated revenue for

confirmed reservations (in $). The revenue of a confirmed reservation is calculated

using the assigned price (depending on the specific pricing mechanism) and reserved

duration at each reserved node for all its reserved nodes. Then, the price of a confirmed

reservation can be computed to reflect the average price across all its reserved nodes.

Of the four fixed pricing mechanisms listed in Table 26.4, FixedMax

provides the highest revenue (maximum bound), followed by FixedTimeMax,

FixedTimeMin, and FixedMin with the lowest revenue (minimum bound).

Nevertheless, FixedTime mechanisms is easier to derive and more reliable than

Fixed mechanisms since it supports a range of prices across various time

periods of resource usage. However, all four mechanisms do not consider service

requirements of users such as deadline and budget.

On the other hand, Libraþ $ charges a lower price for a request with longer

deadline as an incentive to encourage users to submit requests with longer deadlines

that are more likely to be accommodated than shorter deadlines. For a request with

short deadline, Libraþ $Max and Libraþ $Min charge a higher price relative to

Libra+$Max Libra+$Min Libra+$Auto

 0

 0.5

 1

 1.5

 2

 0 1 2 3 4 5 6 7

-1

-0.5

 0

 0.5

 1

N
or

m
al

iz
ed

 P
ric

e
($

/C
P

U
/H

r)

N
or

m
al

iz
ed

 R
ev

en
ue

 (
$)

Day

FixedMax FixedMin FixedTimeMax FixedTimeMin

Figure 26.14 Price/revenue ratio of high-urgency requests.

610 THE GRIDBUS MIDDLEWARE FOR MARKET-ORIENTED COMPUTING

their b in Table 26.4. Libraþ $Max provides higher revenue than Libraþ $Min

because of a higher value of b.
Both Libraþ $Auto and Libraþ $Max are able to provide a significantly

higher revenue than other pricing mechanisms through higher prices for shorter

deadlines. Figure 26.14 shows that Libraþ $Auto continues increasing prices to

higher than that of Libraþ $Max and other pricing mechanisms when demand is

high such as during the latter half of days 1, 2, 3, and 5. But when demand is low, such

as during the early half of days 2, 3, 5, and 6, Libraþ $Auto continues to reduce

prices to lower than that of Libraþ $Max to accept requests that are not willing to

pay more. Hence, Libraþ $Auto is able to exploit budget limits to achieve the

highest revenue by automatically adjusting to a higher b to increase prices when the

availability of nodes is low and to a lower b to reduce prices when there are more

unused nodes that will otherwise be wasted.

26.7 GRID-FEDERATION

As enterprise Grids grow to include a large number of resources (on the order of

thousands), the centralized model for managing the resource set does not prove to be

efficient as it requires the manager to coordinate a large number of components and

handle a large number of messages on its own. This means that the central

coordinator does not scale well, lacks fault tolerance, and warrants expensive server

hardware infrastructure. Since participants in a Grid can join and leave in a dynamic

fashion, it is also an impossible task to manage such a network centrally. Therefore,

there is a need for an efficient decentralized solution that can gracefully adapt and

scale to the changing conditions. This can be achieved by partitioning the resource

set into smaller installations that are then federated to create a single, cooperative,

distributed resource-sharing environment [18–20]. In a federated organization, an

enterprise domain can deal efficiently with bursty resource requests through policy-

based or opportunistic leasing of resources from the resource pool. This basically

relieves an enterprise domain from the responsibilities of maintaining and admin-

istering different kinds of resources and expertise within a single domain. This

section postulates how a Grid-Federation can be engineered, including its primary

components and how existing Gridbus middleware can be used to realize such an

environment.

26.7.1 Characteristics of a Grid-Federation

The unique challenges in efficiently managing a federated Grid computing environ-

ment include the following characteristics:

. Distributed ownership—every participant makes decisions independently.

. Open and dynamic—the participants can leave and join the system at will.

. Self-interested—each participant has distinct stakeholdings with different aims

and objective functions.

GRID-FEDERATION 611

. Large-scale—composed of distributed participants (e.g., services, applications,

users, providers) who combine together to form a massive environment.

. Resource contention—depending on resource demand pattern and lack of

cooperation among distributed users, a particular set of resources can be

swamped with excessive workload, which significantly reduces the amount of

useful utility that the system delivers.

We perceive that by designing appropriate scalable protocols for cooperation

among users, allowing users to express preferences for resources, and letting

providers decide their allocation policies, it is possible to overcome the problem of

resource contention, distributed ownership, large scale, and dynamism in a large-scale

federated Grid system. Therefore, our design of a Grid-Federation focuses on two

important aspects: a distributed resource discovery system [21,25] and a market-

based resource allocation system [26]. Grid-Federation allows cooperative sharing of

topologically and administratively distributedGrid resources. To enable policy-based

transparent resource sharing between resource domains, Grid-Federation instantiates

a newRMS, calledGrid-Federation agent (GFA).AGFAexports a resource site to the

federation and is responsible for undertaking activities related to resource sharing,

selection, and reporting. GFAs in the system interconnect using a distributed hash

table (DHT) overlay [22–24], which makes the system scalable and decentralized.

The Grid-Federation considers computational economy driven SLA negotiation

protocol for enforcing cooperation and establishing accountability among the dis-

tributed participants (e.g., providers, users, schedulers) in the system.

We are realizing the Grid-Federation resource sharing model within the Aneka

system by implementing a new software service, called Aneka Coordinator. The

Aneka Coordinator basically implements the resource management functionalities

and resource discovery protocol specifications defined by theGFA service. AnAneka-

Federation integrates numerous small-scale Aneka desktop Grid services and

resources that are distributed over multiple control and administrative domains as

part of a single coordinated resource leasing abstraction. The software design of the

Aneka-Federation system decouples the fundamental decentralized interaction of

participants from the resource allocation policies and the details of managing a

specific Aneka service.

26.7.2 Resource Discovery

The distributed resource discovery service in the Grid-Federation allows GFAs to

efficiently search for available resources that match the user’s expressed QoS

parameters. The resource discovery service [25] organizes the information by

maintaining a logical multidimensional publish/subscribe index over a DHT over-

lay [22–24] of GFAs (refer to Fig. 26.15). In general, a GFA service undertakes two

basic types of queries [21]: (1) a resource lookup query (RLQ)—a query issued by a

GFA service to locate resourcesmatching the user’s application QoS requirement and

(2) a resource update query (RUQ), which is an update query sent to a resource

discovery by a GFA (on behalf of the Grid site owner) about the underlying resource

612 THE GRIDBUS MIDDLEWARE FOR MARKET-ORIENTED COMPUTING

conditions. Since a Grid resource is identified by more than one attribute, a RLQ or

RUQ is always multidimensional.

Further, both these queries can specify different kinds of constraints on the

attribute values depending on whether the value is a point or range query. A point

search query specifies a fixed value for each resource attribute [e.g., cpu_type ¼
intel, processor_count ¼ 50, price ¼ 7 (Grid dollars/h)]. On the other

hand, a range search query specifies a range of values for attributes (e.g. cput_-

type ¼ intel or sparc, 50 < processor_count < 100, 5 < price <
10). Currently, the resource discovery allows users to search for resources based on

both point- and range-specifying RLQs. The providers can update the status

(e.g, resource utilization, price, queue size, completion rate) with the service through

point RUQs.

Because resources are dynamic, and can exhibit changing temporal character-

istics, the providers can periodically update their status with the resource discovery

service through RUQs. The mapping of RLQ and RUQ to the DHT-based overlay is

accomplished through a multidimensional publish/subscribe index. The index

Figure 26.15 Grid-Federation – GFAs and Grid sites over Chord overlay. Dark dots indicate

GFA services that are currently part of the Chord-based Grid network. Light dots represent the

RUQ and RLQ objects posted by GFAs in the system.

GRID-FEDERATION 613

builds a multidimensional Cartesian space based on the Grid resource attributes.

The logical index assigns regions of space [30] to GFAs in the resource discovery

system. If a GFA is assigned a region in the multidimensional space, then it is

responsible for handling all the activities related to RLQs and RUQs associated with

that region.

Further, we extend the functionality of the resource discovery service to support an

abstraction of peer-to-peer coordination/cooperation space [28], wherein the users,

providers, andmarketmakers cooperate their activities. The peer-to-peer coordination

space acts as a kind of blackboard system that can be concurrently and associatively

accessed by all participants in the federation.

In the context of the Aneka-Federation software system, the responsibility

for decentralized resource discovery and coordination is undertaken by the Aneka

peer service. The dynamic resource and scheduling information routing in Aneka-

Federation is facilitated by the FreePastry1 structured peer-to-peer routing substrate.

FreePastry offers a generic, scalable, and efficient peer-to-peer routing substrate for

development of decentralizedGrid services. The FreePastry routing substrate embeds

a logical publish/subscribe index for distributing the load of query processing and data

management among Aneka peers in the system.

26.7.3 Resource Market

Grid-Federation considers computational economy as the basis for enforcing dis-

tributed cooperation among the participants, who may have conflicting needs.

Computational economy promotes efficiency by allocating a resource to its best use,

giving incentives to resource providers for contributing their resources to the

federation, and promoting further long-term investments in new hardware and

software infrastructure by resource providers as a result of the economic gains that

they receive from the system.

Grid-Federation applies a decentralized commodity market model for efficiently

managing the resources and driving the QoS-based scheduling of applications. In the

commodity market model, every resource has a price, which is based on the demand,

supply, and value. A resource provider charges a unit of virtual or real currency, called

access cost, to the federation users for letting them use his/her resources. All

federation users express how much they are willing to pay, called a budget, and

required response time, called a deadline, on a per-job basis. The providers and users

maintain their virtual or real credits with accounting systems such as GridBank. The

Grid-Federation scheduling method considers the following optimizations with

respect to the economic efficiency of the system: (1) resource provider’s objective

function (e.g., incentive) and (2) user’s perceived QoS constraints (e.g., budget and

deadline).

Realizing a true cooperative resource-sharing mechanism between dynamic and

distributed participants warrants robust protocols for coordination and negotiations.

In decentralized and distributed federated Grid environments, these coordination

1See http://freepastry.rice.edu/FreePastry/.

614 THE GRIDBUS MIDDLEWARE FOR MARKET-ORIENTED COMPUTING

and negotiation protocols can be realized through dynamic resource information

exchanges between Grid brokers and site-specific resource managers (such as PBS,

Alchemi, and SGE). Grid-Federation utilizes one such SLA-based coordination and

negotiation protocol [27], which includes the exchange of QoS enquiry and QoS

guarantee messages between GFAs. These QoS constraints include the job response

time and budget spent. Inherently, the SLA is the guarantee given by a resource

provider to the remote site job scheduler (such as GFA and resource broker) for

completing the job within the specified deadline and agreed-on budget.

A SLA-based job scheduling approach has several significant advantages:

(1) promotes cooperation among participants; (2) it inhibits schedulers from swamp-

ing a particular set of resources; (3) once a SLA is finalized, users are certain that

agreedQoS shall be delivered by the system; (4) job queuing and processing delay are

significantly reduced, thus leading to enhanced QoS; and (5) it gives every site in the

system enhanced autonomy and control over local resource allocation decisions.

Our SLAmodel considers a collection of resource domains in the Grid-Federation

as a contract-net. As jobs arrive,GFAs undertake one-to-one contract negotiationwith

the other GFAs that match the resource configuration requirements of the submitted

job. Each GFA becomes either a manager or a contractor. The GFA to which a user

submits a job for processing is referred to as themanager GFA (scheduler GFA). The

manager GFA is responsible for successfully scheduling the job in the federated

contract-net. TheGFA,which accepts the job from themanagerGFAand overlooks its

execution, is referred to as the contractor GFA (allocator GFA). Individual GFAs are

assigned these roles in advance. The rolemay change dynamically over time as per the

resource management requirement, namely, scheduling or allocation. A GFA alter-

nates between these two roles or adheres to both over the processes of scheduling and

resource allocation.

The general Grid-Federation scheduling and resource allocation technique oper-

ates as follows. In Figure 26.15, a user who has membership to Grid site s submits her

application to its local GFA (see step 1 in Fig. 26.15). Following this, the GFA at site s

adheres to the role of manager GFA and submits a RLQ object to the Chord-based

resource discovery service (refer to step 2 in Fig. 26.15). Consequently, theGFAat site

p reports or updates its resource availability status by sending a RUQ object to the

discovery service (shown as step 3 in Fig. 26.15). As the posted RUQ object matches

the resource configuration currently searched by GFA at site s, the discovery service

notifies the GFA accordingly.

Following this, the GFA at site s undertakes one-to-one SLA negotiation (refer to

step 4 in Fig. 26.15) with the GFA at site p (contractor GFA) about possible allocation

of its job. If site p has too much load and cannot complete the job within the requested

SLA constraints (deadline), then a SLA fail message is sent back to the GFA at site s.

In this case, theGFAat site swaits for futurematch notifications.Alternatively, if GFA

at site p agrees to accept the requested SLA, then the manager GFA goes ahead and

deploys its job at site p (shown as step 5 in Fig. 26.15). The one-to-one SLA-based

negotiation protocol guarantees that (1) no resource in the federation would be

swamped with excessive load and (2) users obtain an acceptable or requested level of

QoS delivered for their jobs.

GRID-FEDERATION 615

26.7.4 Performance Evaluation

We present an evaluation of the Grid-Federation system through a set of simulated

experiments designed to test the performance of resource discovery and resource

market services with regards to efficiency, scalability, and usability. We realize the

simulation infrastructure by combining two discrete-event simulators: GridSim [31]

and PlanetSim [32]. GridSim offers a concrete base framework for simulation of

different kinds of heterogeneous resources, services, and application types. On the

other hand, PlanetSim is an event-based overlay network simulator that supports

routing of messages using well-known DHT methods, including Chord and Symph-

ony. Next, we describe the simulation environment setup, including peer-to-peer

network configuration, resource configuration, and workload.

The experiments run a Chord overlay with a 32-bit configuration, specifically, the

number of bits utilized to generate GFA and key (RLQ and RUQ object) IDs. The

Grid-Federation network includes 100 Grid resource domains. The Grid network

processes 500messages per second and can queue up to 10,000messages at any given

instance of time. GFAs inject RLQ and RUQ objects based on the exponential

interarrival time distribution. The value for RLQ interarrival delay is distributed over

[60,600] in steps of 120 s. GFAs update their host Grid site status after a fixed interval

of time. In this study, we configure the RUQ interarrival delay to be 120 and 140 s.

BothRLQandRUQobjects represent aGrid resource in afive-dimensional attribute

space. These attribute dimensions include the number of processors, their speed, their

architecture, operating system type, and resource access cost (price). The distributions

for these resource dimensions are obtained from the Top 500 supercomputer list.2 We

assume that the resource access cost does not change during the course of simulation.

Resource owners decide the access cost on the basis of a linear function whose slope is

determined by the access cost and processing speed of the fastest resource in the

federation. In other words, every resource owner charges a cost relative to the one

offered by the most efficient resource in the system. The fastest Grid owner in the

federation charges 6.3 Grid dollars/per hour for providing space for shared access to

his/her resources.Wegenerate theworkloaddistributions acrossGFAs according to the

model given by Lublin and Feitelson [29]. The processor count for a resource is fed to

theworkloadmodel based on the resource configuration obtained from theTop500 list.

26.7.5 Results and Discussion

Tomeasure the Grid-Federation system performance, we use metrics such as resource

discovery delay, response time on per-job basis, and total incentive earned by providers

as a result of executing local and remote jobs of the federation users. The response time

for a job summarizes the latencies for (1) a RLQobject to bemapped to the appropriate

peer in the network per the distributed indexing logic, (2) waiting time until a RLQ

object is hit by a RUQ object, (3) the SLA negotiation delay between the manager and

contractor GFA, and (4) the actual execution time on the remote site machine.

2See http://www.top500.org/.

616 THE GRIDBUS MIDDLEWARE FOR MARKET-ORIENTED COMPUTING

Figure 26.16 depicts the results of average resource discovery delay in secondswith

increasing mean RLQ interarrival delay for different resource status update intervals

(RUQ delay). The results show that at a higher RUQ update interval, with a large

number of competing requests (highRLQrate), the users have longerwaiting timewith

regard to discovering resources that can satisfy their QoS metrics. The main reason

behind this system behavior is that the RLQ objects for jobs have to wait for a longer

time before they are hit by RUQ objects, because of the large number of competing

requests in the system. Specifically, the distributed RLQ–RUQ match procedure also

accounts for the fact that the subsequent allocation of jobs to resources should not lead

to contention problems. Hence, with a large number of competing requests and

infrequent resource update events, jobs are expected to suffer longer delay.

In Figure 26.17, we show the total incentive (in Grid dollars) earned by all

providers in the federation. The providers earned almost similar incentive with

varying rates of RLQ and RUQ objects, which is expected as we consider a static

0

20

40

60

80

100

120

140

160

180

200

60048036024012060

RLQ Inter-arrival delay (secs)

D
is

co
ve

ry
 d

el
ay

 (
se

cs
)

RUQ = 240 Secs

RUQ = 480 Secs

Figure 26.16 Average RLQ interarrival delay (secs) versus discovery delay (in seconds).

$58,000

$58,500

$59,000

$59,500

$60,000

$60,500

$61,000

$61,500

$62,000

$62,500

$63,000

60048036024012060

RLQ Inter-arrival delay (secs)

T
o

ta
l

In
ce

n
ti

ve
 (

G
ri

d
 D

o
lla

rs
)

RUQ = 240 Secs

RUQ = 480 Secs

Figure 26.17 Average RLQ interarrival delay (in seconds) versus total incentive (in Grid

dollars).

GRID-FEDERATION 617

resource access cost for the entire simulation period. However, the providers can

dynamically vary their resource access cost with respect to the supply and demand in

the federation. We intend to investigate this aspect of the system as part of our future

work.

Figure 26.18 shows the average response time utility derived for federation users

according to the resources they request and receive. The result shows that growth in

the response time function for a user’s job is similar to that for the resource discovery

delay functions with varying RLQ and RUQ rates. For fixed RUQ rate, the result

shows that at high RLQ interarrival delay, the jobs in the system face comparatively

low resource discovery delay.

The main argument for this behavior is that under these settings, the RLQ objects

encounter less network traffic and competing requests, which lead to an overall

decrease in the discovery delay across the system.

26.8 CONCLUSION AND FUTURE DIRECTIONS

We have presented an overview of the Gridbus toolkit for service-oriented Grid and

utility computing based on computational economy. The Gridbus project is actively

pursuing the design and development of next-generation computing systems and

fundamental Grid technologies and algorithms driven by Grid economy for data and

utility Grid applications.

From a resource provider’s perspective, appropriate market-based Grid resource

management strategies that encompass both customer-driven service management

and computational risk management are required in order to maximize the

provider’s profitmaking ability. Supporting customer-driven service management

on the basis of customer profiles and requested service requirements is a critical

issue since customers generate the revenue for providers in a Grid service market

and have different needs. Many service quality factors can influence customer

satisfaction, such as providing personalized attention to customers and encouraging

300

350

400

450

500

550

60048036024012060

RLQ Inter-arrival delay (secs)

R
es

p
o

n
se

 t
im

e
(s

ec
s)

RUQ = 240 Secs

RUQ = 480 Secs

Figure 26.18 Average RLQ interarrival delay (in seconds) versus response time (in seconds).

618 THE GRIDBUS MIDDLEWARE FOR MARKET-ORIENTED COMPUTING

trust and confidence in customers. Therefore, a detailed understanding of all

possible customer characteristics is essential to address customer-driven service

management issues. In addition, defining computational risk management tactics

for the execution of applications with regard to service requirements and customer

needs is essential. Various elements of Grid resource management can be perceived

as risks, and hence risk management techniques can be adopted. However, the

entire risk management process consists of many steps and must be studied

thoroughly so as to fully apply its effectiveness in managing risks. The risk

management process consists of the following steps: (1) establish the context;

(2) identify the risks involved; (3) assess each of the identified risks; (4) identify

techniques to manage each risk; and (5) finally, create, implement, and review the

risk management plan. In the future, we expect to implement such a process into

Aneka’s resource management system so that it becomes more capable as a

resource provisioning system.

Within a market-oriented Grid, consumers have to locate providers that can satisfy

the application requirements within their budget constraints. They may prefer to

employ resource brokers that are optimized toward satisfying a particular set of

requirements (e.g., a time-constrained workflow execution) or a particular set of

constraints (e.g., the most cost-effectiveworkflow executions). In such cases, brokers

have to predict capacity requirements in advance and form agreements with resource

providers accordingly. The nature and form of Grid markets are still evolving, and

researchers are experimenting with new mechanisms and protocols. Brokers may

have to participate in different markets with different interaction protocols. Brokers

may also eventually have their own utility functions depending on which they will

accept user requests. Therefore, it can be said that future Grid brokers will require

capabilities for negotiation and decisionmaking that are far beyond what today’s

brokers can support. We expect to provide such capabilities in the Gridbus broker,

thereby enhancing it to function as an equal participant in future Gridmarkets. To this

end, we will also apply results from research carried out in the intelligent agent

community for these areas.

Markets strive for efficiency; therefore, it is imperative to have a communication

bus that is able to disseminate information rapidly without causingmessage overload.

It would be an interesting research topic to design and realize a completely

decentralized auction mechanism, that has the potential to deliver a scalable market

platform for dynamic interaction and negotiation among Grid participants. Such a

mechanism would use existing research performed on decentralization in peer-to-

peer networks. The auctioneers (resource owners) can advertise their items, auction

types, and pricing information, while the buyers (resource brokers) can subscribe for

the auctioned items. A resource provider can choose to hold the auctions locally or

may distribute the work to a Grid marketmaker, which is also part of the peer-to-peer

market system.We expect to extend our currentwork on peer-to-peerGrid-Federation

to satisfy these requirements.

Composing applications for market-based Grids is radically different; therefore,

we aim to investigate and develop algorithms, software framework, and middleware

CONCLUSION AND FUTURE DIRECTIONS 619

infrastructure to assist developers in exploiting the potential of such Grids. In

particular, we intend to develop Grid middleware services that have the abilities to

(1) coordinate resource usage across the system on the basis ofmarket protocols (self-

configuring); (2) interconnect participants (marketmakers, auctioneers, users) using

on a decentralized overlay, such as a peer-to-peer network (self-organizing); (3) scale

gracefully to a large number of participants; (4) make applications adapt to dynamic

market, resource, and network conditions (self-managing applications); (5) take into

account the application scheduling and resource allocation policy (pricing, supply,

and demand) heterogeneity (self-optimizing); and (6) gracefully and dynamically

adapt to the failure of resources and network conditions (self-healing). In this manner,

applications and systems are expected to be autonomic, that is, run with minimal

intervention from humans.

The Gridbus project is continuously enhancing and building on the various Grid

technologies presented in this chapter. The project is also actively investigating and

developing new Grid technologies such as the Grid Exchange, which enable the

creation of a Stock Exchange–like Grid computing environment. For detailed and up-

to-date information on Gridbus technologies and new initiatives, please visit the

project Website: http://www.gridbus.org.

ACKNOWLEDGMENTS

This project was partially funded by Australian Research Council (ARC) and the

Department of Innovation, Industry, Science and Research (DIISR) under Discovery

Project and International Science Linkage grants, respectively.Wewould like to thank

all members of the Gridbus project for their contributions. This chapter is partially

derived from earlier publications [3–7,25,26].

REFERENCES

1. A. Rubinstein, Perfect equilibrium in a bargaining model, Econometrica 50(1): 97–109

(1982).

2. R. Buyya, D. Abramson, and J. Giddy, A case for economy Grid architecture for service-

oriented Grid computing, Proc. 10th Heterogeneous Computing Workshop (HCW 2001):

15th International Parallel and Distributed Processing Symp. (IPDPS 2001), San

Francisco, CA, April 23–27, 2001.

3. R. Buyya, D. Abramson, and S. Venugopal, The Grid economy, Proceedings of the IEEE

93(3): 698–714 (2005).

4. B. Allcock, J. Bester, J. Bresnahan, A. Chervenak, I. Foster, C. Kesselman, S. Meder,

V. Nefedova, D. Quesnel, and S. Tuecke, Data management and transfer in high-

performance computational grid environments,ParallelComputing28(5): 749–771 (2002).

5. S. Venugopal, R. Buyya, and L. Winton, A Grid service broker for scheduling e-science

applications on global data Grids, Concurrency and Computation: Practice and

Experience 18(6): 685–699 (2006).

620 THE GRIDBUS MIDDLEWARE FOR MARKET-ORIENTED COMPUTING

6. J. Yu, S. Venugopal, and R. Buyya, A market-oriented Grid directory service for

publication and discovery of Grid service providers and their services, The Journal of

Supercomputing 36(1): 17–31 (2006).

7. A. Barmouta and R. Buyya, GridBank: A Grid accounting services architecture (GASA)

for distributed systems sharing and integration, Proc. 3rd Workshop on Internet

Computing and E-Commerce (ICEC 2003), 17th International Parallel and

Distributed Processing Symp. (IPDPS 2003), Nice, France, April 22–26, 2003.

8. D. A. Reed, Grids, the TeraGrid, and beyond, Computer 36(1): 62–68 (2003).

9. A.Chien, B. Calder, S. Elbert, andK.Bhatia, Entropia:Architecture and performance of an

enterprise desktop Grid system, Journal of Parallel and Distributed Computing 63(5):

597–610 (2003).

10. X. Chu, K. Nadiminti, C. Jin, S. Venugopal, and R. Buyya, Aneka: Next-generation

enterprise Grid platform for e-science and e-business applications, Proc. 3th IEEE

International Conf. e-Science and Grid Computing (e-Science 2007), Bangalore, India,

Dec. 10–13, 2007.

11. I. Foster, C. Kesselman, and S. Tuecke, The anatomy of the Grid: Enabling scalable virtual

organizations, International Journal of High-Performance Computing Applications

15(3): 200–222 (2001).

12. S. Fitzgerald, I. Foster, C. Kesselman, G. von Laszewski, W. Smith, and S. Tuecke, A

directory service for configuring high-performance distributed computations, Proc. 6th

IEEESymp.HighPerformanceDistributedComputing (HPDC1997), Portland,OR,Aug.

5–8, 1997.

13. L. Camarinha-Matos and H. Afsarmanesh, eds., Infrastructures for Virtual Enterprises:

Networking Industrial Enterprises, Kluwer Academic Press, 1999.

14. R. Buyya and S. Vazhkudai, Compute power market: Towards a market-oriented grid,

Proc. 1st IEEE/ACM International Symp. Cluster Computing and the Grid (CCGrid

2001), Brisbane, Australia, May 15–18, 2001.

15. Parallel Workloads Archive, http://www.cs.huji.ac.il/labs/parallel/workload/, May 23,

2008.

16. D. E. Irwin, L. E. Grit, and J. S. Chase, Balancing risk and reward in a market-based task

service, Proc. 13th IEEE International Symp. High Performance Distributed Computing

(HPDC 2004), Honolulu, HI, June 4–6, 2004.

17. C. S. Yeo and R. Buyya, Pricing for utility-driven resource management and allocation in

clusters, International Journal of High-Performance Computing Applications 21(4):

405–418 (2007).

18. R. Ranjan,Coordinated Resource Provisioning in Federated Grids, PhD thesis, Univ.

Melbourne, Australia, July 2007.

19. N. Andrade, W. Cirne, F. Brasileiro, and P. Roisenberg, OurGrid: An approach to easily

assemble Grids with equitable resource sharing, Proc. 9th Workshop on Job Scheduling

Strategies for Parallel Processing (JSSPP 2003), LNCS 2862/2003, Seattle, WA, June 24,

2003.

20. D. Irwin, J. Chase, L. Grit, A. Yumerefendi, and D. Becker, Sharing networked resources

with brokered leases, Proc. 2006 Usenix Annual Technical Conf. (Usenix 2006), Boston,

MA, May 30–June 3, 2006.

21. R. Ranjan, A. Harwood, and R. Buyya, Peer-to-peer resource discovery in global Grids:

A tutorial, IEEE Communication Surveys and Tutorials 10(2): 6–33 (2008).

REFERENCES 621

22. I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan, Chord: A scalable

peer-to-peer lookup service for Internet applications, Proc. 2001 ACM SIGCOMM Conf.

Applications, Technologies, Architectures, and Protocols for Computer Communication

(SIGCOMM 2001), San Diego, CA, Aug. 27–31, 2001.

23. S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker, A scalable content-

addressable network, Proc. 2001 ACM SIGCOMM Conf. Applications, Technologies,

Architectures, and Protocols for Computer Communication, SanDiego, CA, Aug. 27–31,

2001.

24. A. Rowstron and P. Druschel, Pastry: Scalable, decentralized object location, and routing

for large scale peer-to-peer systems, Proc. 3rd IFIP/ACM International Conf. Distributed

Systems Platforms (Middleware 2001), Heidelberg, Germany, Nov. 12–16, 2001.

25. R. Ranjan, L. Chan, A. Harwood, S. Karunasekera, and R. Buyya, Decentralized resource

discovery service for large scale federated Grids, Proc. 3rd IEEE International Conf. e-

Science and Grid Computing (e-Science 2007), Bangalore, India, Dec. 10–13, 2007.

26. R. Ranjan, A. Harwood, and R. Buyya, A case for cooperative and incentive-based

federation of distributed clusters, Future Generation Computing Systems 24(4): 280–295

(2008).

27. R. Ranjan, A. Harwood, and R. Buyya, SLA-based coordinated superscheduling scheme

for computational Grids, Proc. 8th IEEE International Conf. Cluster Computing (Cluster

2006), Barcelona, Spain, Sept. 25–28, 2006.

28. R. Ranjan, A. Harwood, and R. Buyya,Coordinated Load Management in Peer-to-Peer

Coupled Federated Grid Systems, Technical Report GRIDS-TR-2008-2, Grid Computing

and Distributed Systems Laboratory, Univ. Melbourne, Australia, 2008.

29. U. Lublin and D. G. Feitelson, The workload on parallel supercomputers: Modeling the

characteristics of rigid jobs, Journal of Parallel and Distributed Computing 63(11):

1105–1122 (2003).

30. E. Tanin, A. Harwood, and H. Samet, Using a distributed quadtree index in peer-to-peer

networks, The VLDB Journal 16(2): 165–178 (2007).

31. R. Buyya and M. Murshed, GridSim: A toolkit for the modeling and simulation of

distributed resource management and scheduling for Grid computing, Concurrency and

Computation: Practice and Experience 14(13–15): 1175–1220 (Nov.–Dec. 2002).

32. P. Garc�ıa, C. Pairot, R. Mond�ejar, J. Pujol, H. Tejedor, and R. Rallo, PlanetSim: A new

overlay network simulation framework, Proc. 4th International Workshop on Software

Engineering and Middleware (SEM 2004), Lecture Notes in Computer Science 3437:

20–21 (Sept. 2004).

622 THE GRIDBUS MIDDLEWARE FOR MARKET-ORIENTED COMPUTING

