
The Journal of Systems & Software 187 (2022) 111208

P

a
t
e
l
e
p
w
s
t
d
f
p
d

t
t
d

r

t

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

High-availability clusters: A taxonomy, survey, and future directions✩

remathas Somasekaram a,∗, Radu Calinescu a, Rajkumar Buyya b

a Department of Computer Science, University of York, Deramore Lane, York, YO10 5GH, UK
b Cloud Computing and Distributed Systems (CLOUDS) Lab, School of Computing and Information Systems, The University of Melbourne, Australia

a r t i c l e i n f o

Article history:
Received 20 August 2021
Received in revised form 9 November 2021
Accepted 22 December 2021
Available online 29 December 2021

Keywords:
Clustering
Dependability
Enterprise system
High availability
High availability clusters
Reliability

a b s t r a c t

The delivery of key services in domains ranging from finance and manufacturing to healthcare and
transportation is underpinned by a rapidly growing number of mission-critical enterprise applications.
Ensuring the continuity of these complex applications requires the use of software-managed infras-
tructures called high-availability clusters (HACs). HACs employ sophisticated techniques to monitor
the health of key enterprise application layers and of the resources they use, and to seamlessly
restart or relocate application components after failures. In this paper, we first describe the manifold
uses of HACs to protect essential layers of a critical application and present the architecture of high
availability clusters. We then propose a taxonomy that covers all key aspects of HACs—deployment
patterns, application areas, types of cluster, topology, cluster management, failure detection and
recovery, consistency and integrity, and data synchronisation; and we use this taxonomy to provide
a comprehensive survey of the end-to-end software solutions available for the HAC deployment of
enterprise applications. Finally, we discuss the limitations and challenges of existing HAC solutions,
and we identify opportunities for future research in the area.

© 2021 Elsevier Inc. All rights reserved.
t

1. Introduction

High-availability clusters (HACs), also called failover clusters,
re software-managed systems that support the reliable execu-
ion of complex enterprise applications (EAs) or of their key lay-
rs1 and components. They play a major role in ensuring the high
evels of availability required of today’s mission-critical EAs (Liu
t al., 2003; Schmidt, 2006; Marcus and Stern, 2003). They com-
rise physical servers, storage, communication and other hard-
are infrastructure, together with sophisticated HAC-managemen
oftware. This software is responsible for continuously moni-
oring the protected EA layers (e.g., the application server and
atabase layers), and for seamlessly mitigating EA component
ailures through failover or through automatically restarting, re-
airing or relocating failed components. As such, HACs enable the
elivery of essential EA services with minimal downtime.
A key requirement for HACs is to ensure the continued opera-

ion of the single-point of failure (SPOF) components of the pro-
ected EA layers. Such SPOF components may include databases,
istributed transaction coordinators, software load balancers, and

✩ Editor: J.C. Duenas.
∗ Corresponding author.

E-mail addresses: ps1142@york.ac.uk (P. Somasekaram),
adu.calinescu@york.ac.uk (R. Calinescu), rbuyya@unimelb.edu.au (R. Buyya).
1 We use the term layer for a logical component of an application, and the

erm tier to denote a physical structure, as recommended in Schmidt (2006).
https://doi.org/10.1016/j.jss.2021.111208
0164-1212/© 2021 Elsevier Inc. All rights reserved.
storage. Due to the diverse high availability (HA) needs of
mission-critical EAs, HACs must comply with a wide range of
additional requirements. These requirements differ significantly
from one EA to another. For example, enterprise resource plan-
ning (ERP) EAs facilitate transactions (e.g., online transaction
processing), and therefore must be deployed on HACs capable
of ensuring the atomicity, consistency, isolation and durabil-
ity (ACID) requirements associated with transaction processing
(Marcus and Stern, 2003; Critchley, 2014). In contrast, enterprise
analytics EAs (e.g., online analytical processing) do not have
these strict ACID requirements, since they tend to operate with
read-only data, while transactional EAs are typically read–write
intensive (Mansouri et al., 2018). Moreover, the focus of the
analytical EAs is to manage large data sets in multiple steps
(e.g., staging, transformation, processing, and reporting), and this
is typically reflected in the architectural layers and the compo-
nents that are part of such layers (Vercellis, 2011; Demchenko
et al., 2014; Hu et al., 2014). Hence, the SPOF components of
analytical EAs differ from those of transactional EAs. Therefore,
the HACs used to protect such solutions vary significantly.

Further HAC requirements arise from the need to monitor
and maintain the ‘‘health’’ of the cluster itself. An essential mon-
itor called a heartbeat (Ranade, 2003; Vogels et al., 1998) is
required to periodically check the health of individual cluster
nodes (i.e., servers) so that the appropriate failover procedure
can be initiated when node failures are detected. At cluster level,

a quorum system (Critchley, 2014; Birman, 2012) is needed for

https://doi.org/10.1016/j.jss.2021.111208
http://www.elsevier.com/locate/jss
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2021.111208&domain=pdf
mailto:ps1142@york.ac.uk
mailto:radu.calinescu@york.ac.uk
mailto:rbuyya@unimelb.edu.au
https://doi.org/10.1016/j.jss.2021.111208


P. Somasekaram, R. Calinescu and R. Buyya The Journal of Systems & Software 187 (2022) 111208

s
t
i
w
t
2
u
i

n
H
w
p
a
a
a
s
d
H
p
f
s

H
R
2
e
c
(
n
r
f
f
c
s
c
H
o

t
o
k
a
m
n
E
p
a
w

2

2

t
b
i
o
s
b

M
K

s

cenarios where the cluster ends up divided into cluster partitions
hat can no longer communicate with each other. In these scenar-
os, a voting protocol is enacted to select a single partition that
ill continue to run the EA. In this way, quorum systems prevent
he occurrence of a split-brain (Schmidt, 2006; Marcus and Stern,
003), i.e. a situation in which multiple partitions attempt to
se the EA resources at the same time, potentially corrupting
mportant EA data (Ranade, 2003).

This diversity in HAC uses and requirements has led to sig-
ificant research on the techniques underlying the operation of
ACs. At the same time, the ability of HACs to run critical EAs
ith minimal downtime prompted the development of multi-
le end-to-end HAC solutions. Our article provides a taxonomy
nd a survey of this large body of work. The taxonomy clarifies
nd formalises the often overlapping or conflicting terminology
nd classifications used by HAC researchers and developers. The
urvey comprises two parts. The former part, covered when we
efine the taxonomy, represents an extensive coverage of the
AC research landscape. This part offers insights into the ca-
abilities and limitations of the techniques used to achieve HA
or critical EAs. The latter part covers end-to-end HAC solutions,
upporting the developers and users of these solutions.
Addressing HAC limitations and extending the applicability of

ACs to new computing paradigms is an active field of research.
ecent advances in areas such as machine learning (Murphy,
012; Gu and Wang, 2009) and self-adaptive systems (Calinescu
t al., 2018) provide new avenues for addressing current HAC
hallenges, while recent technologies such as containerisation
Endo et al., 2016; Li et al., 2015) require the development of
ew types of HACs. A discussion of these new directions for HAC
esearch and solutions is also provided in the article. This is the
irst taxonomy and in-depth survey that focus on HACs. While a
ew previous studies proposed taxonomies for availability in the
loud (Nabi et al., 2016; Endo et al., 2016) and dependable and
ecure computing (Avizienis et al., 2004), these taxonomies are
omplementary to our work, as they do not consider essential
AC characteristics such as heartbeat, quorum, topology and type
f cluster.
The contributions of our article are organised as follows. Sec-

ion 2 explains how HACs are used to protect different layers
f critical EAs, and introduces a generic HAC architecture and
ey HAC terminology. Section 3 presents the HAC taxonomy
nd the techniques underpinning core HAC operations such as
onitoring, heartbeat, quorum, failure detection, and compo-
ent failover. Section 4 uses the taxonomy to survey end-to-end
A HAC solutions available commercially or from open-source
rojects. Section 5 discusses HAC limitations, open challenges,
nd research opportunities. Lastly, Section 6 concludes the article
ith a brief summary.

. Uses and architecture of high-availability clusters

.1. Key concepts and terminology

The ISO/IEC 25010 standard defines availability as the ‘degree
o which a system, product or component is operational and accessi-
le when required for use’ (ISO/IEC 25010:2011, 2011). Availability
s calculated as the ratio between the time when a system is
perational and the total time over which the system was ob-
erved. Equivalently, availability can be computed as the ratio
etween the mean time between failures, MTBF , and the sum of

the mean time between failures and the mean time to recover
after failures, i.e., the mean time to repair, MTTR : availability =

TBF/(MTBF + MTTR) (Koren and Krishna, 2007; O’Connor and
leyner, 2012).
Component failures lead to downtime (i.e., periods when the

ystem is not operational or accessible), and to a decrease in
2

availability. As such, HACs are responsible for reducing both the
frequency and the duration of failures, and thus their impact on
the availability of the protected EAs. Discharging the first respon-
sibility involves monitoring specific EA components, to identify
and resolve faults before they lead to errors, and errors before
they trigger failures, i.e., violations of requirements observable to
EA users (Koren and Krishna, 2007).

A fault can occur in any resource (i.e., atomic component) of
an EA, and the critical resources are usually combined into one or
several SPOFs (or SPOF groups). If such a resource fails irrecover-
ably, it will lead to the failure of its associated SPOF as well. When
an SPOF fails, it may bring down an entire application. Achieving
high availability requires that the SPOFs of an application are
entirely or partially eliminated, or masked. Consequently, HACs
discharge their second responsibility by relocating SPOF-related
resources to a secondary server after irrecoverable failures. In this
way, they mask the failures of resources, and thus of application
SPOFs.

In this context, HACs employ a threefold strategy for failure
management:

1. HACs avoid EA downtime, even in the presence of failures
of individual resources. To achieve this, HACs reinitialise or
restart resources after faults and errors (increasing MTBF)
and after failures (reducing MTTR).

2. HACs promote the failure management to a resource group
level if the failure at a resource level cannot be resolved
locally. This leads to a failover of the concerned resource
group to another node. A resource group can also be reini-
tialised on the same node if there are no available sec-
ondary nodes. A resource-group failover is faster than a
complete system failover. Therefore, the likely outcome is
that the failover does not cause downtime.

3. If there are dependencies between the resource groups and
after critical failures, a complete system failure may occur.
In this event, the complete system is failed over to another
node.

In the first scenario, components are restarted, whereas in the
other two scenarios components are first stopped and then
started, in a specific order determined by their interdependences.

2.2. Enterprise application layers

EAs such as ERPs are transaction-intensive and require stateful
communication. Moreover, data consistency and data integrity
are vital for such applications. Additionally, modern EAs are
highly integrated, which means that data corruption in one appli-
cation may lead to data corruption in other integrated systems.
Therefore, data corruption and data loss must be prevented even
when failures occur. To identify and achieve HA holistically for
an EA, it needs to be broken down into a set of essential building
blocks that are referred to as layers. Critchley (Critchley, 2014)
proposes a layered architecture in describing an IT environment.
Somasekaram (2017) suggests a similar approach of separating
the layers of an IT solution for outsourcing purposes.

When all the layers of an EA are identified, an appropriate so-
lution for ensuring the HA of each layer can be devised. Multiple
solutions are typically possible for each layer, including the use of
a HAC. As such, different EA critical layers can each be protected
by a separate HAC. Alternatively, a single HAC can be employed
to protect several critical layers of an EA. In either case, any EA
layer not protected by HAC(s) may require other types of HA
solutions (e.g., redundancy or fault tolerance). In the special case
of applications with only one critical layer (e.g., firewalls), HA can
be ensured through using a single-layer HAC (Ayuso et al., 2009;
Schmidt, 2006; Check Point Software Technologies Ltd, 2018).



P. Somasekaram, R. Calinescu and R. Buyya The Journal of Systems & Software 187 (2022) 111208

T
E

l
t
i
s
t

p
i
s
t

able 1
nterprise application (EA) layers with possible high availability (HA) solutions.
No Layer Typical role(s) within the EA Possible HA solution(s) HACa

1 Application server (e.g., web
servers Buyya et al., 1999; SAS
Institute Inc., 2017; Oracle
Corporation, 2013)

Key tier in multi-tier EAs, e.g.,
presentation layer

Use multiple instances with load balancing
(Ranade, 2003; Oracle Corporation, 2017a)

Optional

2 Application core (e.g., ERP central
Lyu et al., 2016; Oracle
Corporation, 2016a)

Coordination of distributed
transactions, application servers

Use application HAC (Oracle Corporation, 2016a;
Schmidt, 2006; Veritas Technologies LLC, 2017a)

Yes

3 Database (e.g., Oracle, DB2, HANA
Schmidt, 2006; Bartkowski et al.,
2012)

Databases to support the main
application

High-availability features provided by database,
such as replication and mirroring (Schmidt, 2006;
Minhas et al., 2013; Veritas Technologies LLC,
2017a) which can be used with application HAC

Yes

4 Operating system (e.g., Linux,
UNIX)

Operating environments Redundant server environment no

5 Virtual machine (VM) VM (e.g., virtualisation platform) VM cluster (Cully et al., 2008) (a HAC can be
combined with a VM cluster VMware Inc., 2015)

No

6 Server Server hardware Redundant servers and fault tolerance No

7 Network (e.g., private, public
networks)

Local area network (LAN), virtual
LAN (VLAN)

Redundant network devices, fault tolerance,
hardware HACs (e.g., for routers and load
balancers) (Barroso and Hölzle, 2009; Palo Alto
Networks Inc., 2018; Sheghdara and Hassine,
2020)

Only client resources

8 Storage (e.g., the different type of
storage systems)

Storage area network (SAN), NAS,
direct attached storage (DAS)
(Marcus and Stern, 2003)

Redundant devices, fault tolerance, storage HAC
(Marcus and Stern, 2003; Zhu et al., 2006; Saxena
and Pound, 2020)

Only client resources

9 Data centre (e.g., essential data
centre components)

Supporting utilities such as UPS,
power distribution unit (PDU)
(Zhang et al., 2021), cloud
operating systems (Heimovski
et al., 2020), and backup
infrastructure

Redundancy by multiple sites, and redundant data
centre equipment, such as UPS and fault tolerance
for components, HA for the individual data centre
components (Barroso and Hölzle, 2009; Rosendo
et al., 2020)

No

aHigh availability of layer can be ensured by an application HAC.
Based on the solutions that can ensure their availability
(Critchley, 2014; Somasekaram, 2017; Bajohr and Margaria, 2008;
Zhu et al., 2006; Santos et al., 2017; Fernandes et al., 2014;
Barroso and Hölzle, 2009; Dukaric and Juric, 2013; Amazon Web
Services Inc, 2016; Wang et al., 2004; Wen et al., 2020), the
components of an EA can be organised into the nine layers from
Table 1. For each layer, the table shows the typical role(s) that the
layer can play within an EA, the solutions available for ensuring
its availability, and whether an application HAC (i.e., a multi-
ayer HAC) is among these solutions—providing protection for
he whole layer or only for its client resources. As indicated
n this table, an application HAC can protect the application
erver, application core, and database layers of an EA, as well as
he client resources associated with the EA network and storage
layers.2 In contrast, a HAC is not typically used to protect the
operating system, and the virtual machine (VM) or server layers
of the EA (i.e., layers 4–6 from Table 1), as a failover always
involves relocating the application environment to a different VM
or server, respectively. The protection of the data centre layer is
also beyond the scope of a HAC. However, the HAC still needs
to monitor critical elements from layers 4–6 in order to identify
critical issues such unacceptably high levels of CPU utilisation for
a server.

A few research initiatives have addressed the challenges of
achieving HA solutions for multiple EA layers from Table 1.
Bajohr and Margaria (2008) have devised an HA framework for
Springer Verlag’s Online Conference Service. Their framework
combines different solutions for several layers of this multi-tier

2 The network and storage EA layers are part of the EA infrastructure, and
resent both a server view and a client view. As an example, a storage system
n itself is part of the server view, while its individual disks associated with a
erver or with a virtual machine become part of the client view, and thus need
o be protected by the application HAC.
3

applications, including an N+M HAC (the terms are explained
in the topology section of our taxonomy) for application servers
(layer 1), and a master–slave configuration for the database
(layer 3). Similarly, Sun et al. (2016) present an HA architec-
ture for a multi-tier application in which multiple HA solutions
are combined to enable HA for the application. However, most
research to date has focused on HACs for single EA layers. For
instance, Cheng et al. (2005) developed an application cluster
service (APCS) scheme comprising separate methods that sup-
port state recovery and failure management, respectively. APCS
assumes that the state of a shared-storage database layer does not
change, and therefore focuses on the protection of the application
layer of a three-tier architecture. In many other approaches, the
layer protected by different types of HA solutions is the database
layer (Xiong et al., 2016), as in the case of Riley et al.’s HA
cloud for research computing (Riley et al., 2017). Built using the
OpenNebula cloud computing platform, this solution employs an
active–active HA MariaDB cluster (layer 3) to support the storage
of cloud objects.

In summary, modern EAs require a combination of HA solu-
tions to achieve the required levels of end-to-end availability.
More often than not, the infrastructure components of EAs have
their own HA setups, and thus HACs typically focus on ensuring
the availability of the actual applications.

2.3. HAC architecture

Fig. 1 shows the high-level architecture of a generic HAC
operating on n ≥ 2 nodes distributed across one or multiple
locations (i.e., data centres). The HAC is responsible for the man-
agement of an EA whose resources are depicted organised into
m ≥ 1 resource groups, out of which only the resource groups
on the primary node 1 are active. The HAC uses three dedicated



P. Somasekaram, R. Calinescu and R. Buyya The Journal of Systems & Software 187 (2022) 111208

T
H

Fig. 1. Architecture of a high availability cluster (HAC) with n ≥ 2 nodes.
able 2
AC terminology.
Term Description

Resource A logical or physical component of an EA layer (e.g., an IP address used by a database, or an application component) that is managed
as an atomic entity by a HAC, and is either fully operational or unavailable. Resources have interdependencies that can be described
by a hierarchical map (Ranade, 2003; Vogels et al., 1998; Marcus and Stern, 2003).

Resource group A set of logically related resources that can be relocated to a secondary node as one entity. As such, each resource can only belong to
one resource group. An EA may comprise numerous resource groups, each of which may represent a significant part of the EA, such as
a database (Schmidt, 2006; Ranade, 2003; Vogels et al., 1998).

Split-brain A condition that occurs when a cluster ends up divided into partitions that perform conflicting operations on the same resources,
typically causing data corruption (Marcus and Stern, 2003; Birman et al., 2004).

Amnesia A condition that occurs when cluster nodes operate with different configurations, e.g., because nodes that are rebooted resume
operation with an older configuration. If such nodes are to become primary, a problem is created because they will run with an
out-of-date configuration (Oracle Corporation, 2014).

Switchover The manual migration of resources from one node to another (Critchley, 2014).

Shared storage HAC A HAC whose cluster members have access to the same storage. However, when it comes to EAs, typically only one node at a time
can allocate the shared storage resources, so that data integrity is not affected (Ranade, 2003).

Dependency Resources and resource groups have dependencies that must be taken into account during a failover and the subsequent restart of
services. These dependencies can be modelled using a acyclic directed graph termed a dependency configuration (Ranade, 2003).
private networks—a cluster network for its communication across
cluster nodes, a quorum network to connect all nodes to a quorum
device (i.e., a facilitator of the quorum service), and a heartbeat
network whose role is explained later in this section. To HAC
modules deployed on each cluster node (Ranade, 2003; Vogels
et al., 1998; Leangsuksun et al., 2004) are described below, using
the terminology summarised in Table 2.

I. Cluster management is the core HAC module, responsible for
overseeing the operation of the other modules, and including the
following sub-modules:

1. Cluster data, comprising the data stores managed by a
cluster, and shared by all nodes.

• Configuration data comprises static data (e.g., HAC
configuration parameters).

• Runtime data consists of dynamic data (e.g., current
status of the cluster components).

2. Communication, which manages the communication be-
tween the HAC modules on the same node and between
the cluster nodes, and the heartbeat communications.
4

• Cluster communication (also known as intra-cluster
or inter-node communication) deals with communi-
cation between cluster nodes.

• Heartbeat is an essential health monitor that checks
the health of member nodes, notifying the HAC when
the heartbeat of a particular node fails (Marcus and
Stern, 2003; Vogels et al., 1998). During such an event,
the HAC consults with a quorum to ensure that there
are enough votes to continue to run the cluster. If it
is the active node that has failed, this will result in a
failover, provided that the cluster can reach a quorum
(Ranade, 2003).

• Node communication (also known as intra-node com-
munication) manages communication within a node.

3. Resource management, responsible for managing two
main groups of EA resources:

• Base resources, which include key components such
as CPUs and disks.

• Application resources, which are resources specific to
the HAC-protected applications.



P. Somasekaram, R. Calinescu and R. Buyya The Journal of Systems & Software 187 (2022) 111208

d
t

Fig. 2. Top-level classes of the HAC taxonomy.
Fig. 3. Deployment patterns.
II. Failure detection and recovery is the HAC module responsible
for managing failovers and recoveries, and includes the following
sub-modules:

1. Monitoring, which monitors the EA resources and notifies
other HAC components (e.g., resource management) about
any problems.

2. Failover, which is responsible for moving resource groups
to a secondary node. Depending on the failure type, a
failover can be at resource group or system (i.e., complete
application) level. The latter involves moving all resource
groups that belong to an application (Marcus and Stern,
2003; Critchley, 2014).

3. Recovery, which decides whether failures need to be re-
solved at resource, resource group or node level by con-
sidering their criticality and resource dependencies. When
a failure cannot be resolved, the failover sub-module is
notified, so that failover can be initiated.

III. Consistency and integrity is the HAC module that ensures
consistency and integrity across all cluster nodes through the
following sub-modules:

1. Fencing, which is a protection mechanism that isolates
a resource or node that experienced failures, removing
its ability to connect to any of the critical EA resources
(Critchley, 2014; SUSE LLC, 2017).

2. Quorum, which is a voting system for determining which
partition is allowed to run a cluster when a split of the
cluster occurs (Critchley, 2014; Vogels et al., 1998; Quin-
tero et al., 2013). The partition that has the quorum is
considered quorate, and can be used to run the cluster
without causing a split-brain.

These terms are described in greater detail in the taxonomy
section below.

3. Taxonomy of high-availability clusters

Our taxonomy applies to single-layer HACs and multi-layer
HACs, which it organises into the eight top-level classes shown
in Fig. 2. The first four classes capture how HACs are deployed
(deployment patterns), which EA layers are protected by HACs
(application areas), how this protection is achieved (type of clus-
ter), and how the HAC nodes are structured and interconnected
(topology). The next two classes reflect how HACs manage the
resources of the protected EA (cluster management) and perform
detection of and recovery from failures of these resources (failure
etection and recovery). Finally, the last two classes indicate how
he HACs preserve the consistency of the EA data and the integrity
5

of the cluster (consistency and integrity), and how the EA data are
synchronised across cluster nodes (data synchronisation).

The taxonomy aims to achieve a balance between: (a) con-
sidering virtualized resources explicitly where their use makes
a significant difference in how a HAC aspect is implemented
or operates (e.g., shared-storage or network); and (b) keeping
taxonomy classes and subclasses non-prescriptive about the use
of virtualised or physical resources where this choice has limited
impact (e.g., for monitoring, fencing, heartbeat or quorum).

Given the significant industrial relevance of HACs, we devel-
oped the HAC taxonomy based not only on research papers but
also on a wide range of technical guidebooks (Schmidt, 2006;
Marcus and Stern, 2003; Critchley, 2014; Quintero et al., 2013;
Ranade, 2002; Toeroe and Tam, 2012; Snedaker, 2013), techni-
cal reports (IDC Corporation, 2016; Service Availability Forum,
2011), white papers (Veritas Technologies LLC, 2006; Red Hat,
Inc., 2014; Novell, Inc., 2014; SUSE LLC, 2012), HAC product
documentation (Oracle Corporation, 2016a, 2017b; Veritas Tech-
nologies LLC, 2017a,b; IBM Corporation, 2018a; Fujitsu Limited,
2017; Microsoft Corporation, 2011) and best practices (Oracle
Corporation, 2013; VMware Inc., 2015; Microsoft Corporation,
2020, 2017a).

3.1. A: Deployment pattern

The deployment pattern of a HAC represents the platform
where the HAC solution is deployed. As shown in Fig. 3, we
distinguish between the deployment environment—which case be
public cloud, or can be on-premise, fog or edge IT infrastructure
of the organisation using the HAC, and the type of host used for
the cluster—which can be physical, virtual or container.

The deployment pattern decides, along with business require-
ments and technical capabilities, what cluster type can be imple-
mented for an application area. Table 3 describes the relationship
between deployment patterns, application areas, and the rest of
the taxonomy. A cluster type, on the other hand, decides how
anapplication area can be protected and the subsequent topology
and related configuration. An example of this is as follows: if the
deployment pattern is a set of virtual servers in a single data
centre, it will not be possible to deploy topologies such as metro
or continental (described under Type of cluster). Thus each HAC
solution comes with deployment restrictions (e.g., whether it can
be deployed in a public cloud or not).

Cloud environments impose restrictions that can cause prob-
lems for a HAC because many of the infrastructure elements that
a HAC needs to monitor and manage may not be available for a
cloud deployment. However, a distinction needs to be made be-
tween private (i.e., on-premises) clouds and public clouds because
private clouds offer much more flexibility, and functionalities



P. Somasekaram, R. Calinescu and R. Buyya The Journal of Systems & Software 187 (2022) 111208

T
C
t

t
b
a
(
p
h
t
i
q
t
a
d
T
c
H
s
T
s

3

p
p
p
t
t

e
l
o
a
2
p
H
c
E
t
n
a
p
t

m
e
c
H
e
v
l
e
f
l
t
l

3

t
a
b
m
A
c
a
c
c
g
c
t
p
a
S
H
p
p
i
M
r

c
H
t
‘
m
i
t
c

able 3
onnection between deployment patterns, application areas and the rest of the
axonomy.

Deployment
patterns

Application areas Rest of the taxonomy

Objectives Where to deploy
the solution?

What application or
application components
need to be protected?

How should the
solution be set up to
meet the
requirements?

Examples Data centre
locations, public
cloud, virtual
server, container

Enterprise system, NAS,
network appliance (e.g.,
firewall), storage system

Cluster type,
topology, replication,
mirroring

Table 4
Roles and responsibilities for service models in a public cloud, and for
on-premises deployment.
No Layers On-premises IaaS PaaS SaaS

1 Application server C C C AP
2 Application core C C C AP
3 Database C C C AP
4 Operating system C C CP CP
5 Virtual machine C CP CP CP
6 Server C CP CP CP
7 Network C CP CP CP
8 Storage C CP CP CP
9 Data centre C CP CP CP

Key: IaaS — Infrastructure as a Service; PaaS — Platform as a Service; SaaS —
Software as a Service; C — Customer; AP — Application provider; CP — Cloud
provider (who may also be application provider for the SaaS service model SaaS).

may be identical to an on-premises physical environment. Fur-
thermore, the roles and responsibilities of different stakeholders
play an essential role when deploying a HAC in a cloud. Table 4
describes the roles and responsibilities of customers and cloud
providers for private clouds and for the service models available
in public clouds (Liu et al., 2011; Microsoft Corporation, 2017b;
Amazon Web Services Inc., 2018), showing that multiple stake-
holders may need to collaborate to support the different layers
of a HAC in a public cloud.

Both the fog and edge computing paradigms have the potential
o improve response times for EAs. However, ensuring HA could
e a challenge considering the limited infrastructure components
vailable; some of them are required for implementing HACs
e.g., shared storage) in these deployment environments (Yousef-
our et al., 2019; Qiu et al., 2020). Moreover, the deployment
osts can also change, such as using containers to host an applica-
ion, in which case a HAC must understand the implementation
n order to deliver the required HAC functionalities. A HAC re-
uires continuous monitoring for the protected application and
he operating environment to detect failures and resolve them
t a granular level. For example, suppose that an application is
eployed in a container using the deployment environment edge.
he HAC must then ensure that the key resources of the appli-
ation deployed in the container can be monitored and that the
AC can collaborate with the responsible container orchestration
ystem to ensure that failure mitigation actions can be performed.
his requires the HAC and orchestration system to collaborate and
upport each other. We discuss this in detail in Section 4.4.

.2. B: Application areas

Application areas are the different IT solutions that can be
rotected by HACs, and a list of typical applications areas is
resented in Fig. 4. Considering the application area has dual
urposes: (1) to identify if HACs can support the multiple layers
hat an application is composed of; and (2) to address all areas
hat are part of an IT solution, so that HA requirements for those
6

areas can be achieved. For instance, the application area enter-
prise system may require other related areas, such as application
server, database, server, network, and storage to be included to
nsure that the enterprise system is protected across all critical
ayers. Some layers can be protected by an application HAC while
thers may require a different set of options which may include
pplication area specific HACs (presented in Table 1) (Wen et al.,
020). Moreover, application areas with fewer layers may need to
rotect fewer components (Magnanini et al., 2021). For instance, a
AC in the context of a distributed system (e.g., high-performance
omputing—HPC) may need to protect fewer components than an
A HAC. In case of an HPC, a head node (principal node) is iden-
ified as a SPOF. Thus, a HAC can be deployed to protect the head
ode (Uhlemann et al., 2006). Therefore, the application areas of
solution are determined dynamically during an implementation
hase, and the numbers of protected resources will change with
he type of primary application to be protected.

Several recent projects have implemented HACs that support
ultiple application areas, as also discussed in Section 2.2. Xiong
t al. (2016) present a HAC for a relational database in a multi-
loud environment which supports the requirements of both
A and Disaster Recovery (DR). Engelmann et al. (2008) have
xperimented with a HAC to protect the head nodes of an HPC en-
ironment. Addressing complex systems that consist of multiple
ayers, hence also several application areas, is a challenge. Wang
t al. (2004) address the challenge by proposing an HA solution
or a comprehensive medical system which consisted of several
ayers hence also multiple application areas. The proposed solu-
ion used a multitude of HACs to enable HA across the different
ayers.

.3. C: Type of cluster

The type of cluster plays a vital role in selecting the right
opology and related configuration for a HAC. An important char-
cteristic is the distance between nodes, and therefore the num-
er of sites (e.g., data centres). The type could be chosen to
eet business requirements, such as business continuity or DR.
DR solution requires at least two data centres with a suffi-

ient distance between them and a related configuration. When
HAC solution is explicitly deployed to support DR, it has to

omply with restrictions (e.g., low network latency between data
entres). Moreover, supplementary mechanisms must be used to
uarantee data integrity during failovers. Therefore, the type of
luster should be treated as the starting point for HAC selec-
ion, along with the two top-level taxonomy classes presented
reviously. There are four types of clusters, as shown in Fig. 5
nd Table 5. Based on a rule of thumb derived from Marcus and
tern (2003), Schmidt (2006), Veritas Technologies LLC (2006),
ewlett Packard Enterprise Development (2011) and IBM Cor-
oration (2017a), we assumed a communication speed of 3 ms
er 160 km to calculate network latency. The distances described
n the table may differ due to the use of different technologies.
oreover, the different HAC solutions can also come with specific

ecommendations.
The limitations presented in Table 5 are due to the different

lasses of DR that can be supported for the different types of
AC (Schmidt, 2006; Snedaker, 2013), which in turn are related to
he distance between the data centres. For example, the DR class
‘data centre network failure’’ can be supported by the campus,
etro and continental cluster types. However, a DR class of flood-

ng in the area can only be supported by metro or continental. On
he other hand, the continental cluster type can support all DR
lasses, including the most severe ones, such as an earthquake



P. Somasekaram, R. Calinescu and R. Buyya The Journal of Systems & Software 187 (2022) 111208

T
T

c
s
f
t

C
d
t
e
C

Fig. 4. Application areas of HACs.
Fig. 5. Type of cluster.

able 5
ype of clusters and potential configurations.
Type of HAC Distance

(in km)
Network
latency (ms)

Data
centres

Storage
systems

Disaster recovery
support

Local ≤1 ≤1 ≥1 ≥1 No
Campus ≤30 <1 ≥1 ≥1 Limited due to

short distance
Metro ≥30 <5 ≥2 ≥2 Limited due to

distance
Continental ≥300 >5 ≥2 ≥2 Yes

in the region. Therefore, the most severe DR classes are only
supported by the continental cluster type.

C.1: Local. A local HAC is hosted in one data centre and uses one
storage system, usually shared. When there are two data centres,
the distance between data centres is often less than one km (SUSE
LLC, 2017). In such case, there exist two options. Option 1 is to
distribute the HAC nodes across two data centres, with all nodes
utilising shared storage from one of the data centres. Option 2,
on the other hand, uses two storage systems in the two data
centres, with the HAC becoming a shared-nothing cluster. How-
ever, because data integrity is crucial for EAs, either replication
or mirroring must be enabled to synchronise data between the
two data centres. The two-data centre setup with replication or
mirroring is also a feasible solution for other types of cluster.
Since there is usually one data centre associated with a local
cluster, the setup is not compliant with DR requirements.

C.2: Campus. A campus cluster is usually deployed across two
or more data centres, and the distance between the data centres
is less than 30 km (Shankar and Mishra, 2013; SUSE LLC, 2017).
Since a campus HAC has a redundant setup for data centres and
related components, it can comply with DR requirements (e.g., it
can handle DR scenarios such as a data centre failure). However,
the distance requirement between data centres means that busi-
nesses may opt for other types of HACs which are optimised
for longer distances. Nevertheless, campus clusters can support
longer distances when combined with other HAC types, becoming
hybrid clusters — for instance, multiple interconnected campus
lusters with one campus cluster functioning as the primary. This
etup enables failover locally for most incidents but will trigger a
ailover to a different site only when a DR scenario takes place at
he primary site.

.3: Metro. In a metro cluster, the nodes are distributed across a
istance of up to 300 km. Although there is no definite cut-off for
his distance, the restrictions come from the techniques that are
mployed to synchronise data (IBM Corporation, 2017a; Oracle
orporation, 2016b). For example, in some cases, the distance can
 c

7

be extended to 400 km by employing Wave Division Multiplexors
(WDM) (Oracle Corporation, 2010).

C.4: Continental. When cluster nodes are geographically dis-
persed, usually at a distance of more than 300 km, the cluster is
characterised as a continental cluster. Hewlett Packard Enterprise
Development (2012). A continental cluster can also be referred to
as a global cluster or geo-cluster.

3.4. D: Topology

The topology (or redundancy model (Kanso et al., 2014)) of a
HAC represents the way in which the HAC nodes are structured
and linked. The topology of a HAC (Fig. 6) depends on multiple
characteristics of its nodes, on the roles of these nodes (pri-
mary or secondary), and on its communication devices, networks,
storage systems, and supporting tools (e.g., quorum devices).

D.1: Symmetric. In a symmetric topology, all cluster nodes can be
utilised concurrently: there is no standby node.

D.1.1: Active–active. While symmetric active–active describes that
all nodes are utilised, there have been research efforts to im-
plement variations of the topology to address the specific needs
of distributed systems. Engelmann (2008) and He et al. (2009)
implemented a prototype with a symmetric active–active topol-
ogy that operated on more than two nodes to provide HA for
an HPC. The prototype employed two replication mechanisms,
internal and external, using reliable and totally ordered message
delivery. The internal replication provided synchronisation for the
HPC file system metadata service, while the external replication
supported the same for the HPC job and resource manager (He
et al., 2009). The evaluation of the prototype showed that the
availability could be improved significantly as more nodes were
added to the cluster. Therefore, depending on how applications
are hosted on such HACs, we distinguish between symmetric
application-based and symmetric server-based topologies.

D.1.1.1: Application-based. In a symmetric application-based
topology, an application is active on all available cluster nodes.
This topology requires application support because managing
transactions across multiple nodes is only possible by using
additional mechanisms, such as distributed lock management. A
component of an application, for instance, a database, may pro-
vide these mechanisms, which can then be combined with a HAC
solution (Oracle Corporation, 2017b). For example, IBM Purescale
supports parallel access to IBM DB2 databases (Bartkowski et al.,
2012), and Oracle provides active–active concurrent access sup-
port for Oracle databases using the Oracle Real Application Clus-
ters (Sun et al., 2016; Veritas Technologies LLC, 2017b; Oracle
Corporation, 2016c).

D.1.1.2: Server-based. A symmetric server-based topology is fre-
quently referred to as an active–active topology, and this implies
that multiple applications are hosted on all server nodes of a
cluster; hence, the servers are fully utilised (Veritas Technologies
LLC, 2017a). Since all servers are utilised, the topology is consid-
ered active–active. When a failover takes place for one or more
applications, they failover to one or more of the available servers,
implying that a standby node is not required.

D.1.2: N-to-N. In the symmetric N-to-N topology, multiple appli-

ations share the same set of N servers, like for the symmetric



P. Somasekaram, R. Calinescu and R. Buyya The Journal of Systems & Software 187 (2022) 111208

T
A

Fig. 6. HAC topology.
able 6
ctive–passive topology variants.
Standby
mode

Recovery
time

Data
synchronisation
method

Description

Active-
Cold

Hours Backup/restore A secondary node is installed and
configured but brought up only when
the primary node is down.
Subsequently, the related services are
started, as well (Levitin et al., 2014).

Active-
Warm

Minutes Mirroring, shared
storage

The secondary node is installed and
configured and is running. Related
application services are started upon
failure of the primary node.

Active-
Hot

Seconds Mirroring,
replication, shared
storage

The secondary node is fully installed
and configured, and services are also
started. The secondary node takes
over responsibilities immediately
upon failure of the primary node.

server-based topology. Upon failure of a primary node for an
application, the application is failed over to one of the predefined
member nodes of the cluster (Distefano et al., 2010). The new
server will then host both the application that has failed over,
and the previously running application (Veritas Technologies LLC,
2017a). The topology supports failing over multiple applications
to multiple nodes.

D.2: Asymmetric. An asymmetric topology is an active–passive
configuration in which one node is active while one or more
nodes are in a passive or a standby mode (Bouizem et al., 2020).

D.2.1: Active–passive. An active–passive topology is the typical
asymmetric topology consisting of a two-node cluster setup in
which one node is active while the other node is passive or
standby. This topology is sometimes referred to as 2N redun-
dancy (Service Availability Forum, 2011). Today’s HACs make
a distinction between the different layers of an application. In
protecting a layer 3 component (i.e., database), a HAC can either
manage it by employing a database-specific extension (agent) or
utilising replica or mirroring features that are offered natively
by the database (Magalhaes et al., 2021). Most database vendors
provide a replica or mirroring option to set up standby databases
of primary databases (Pohanka and Pechanec, 2020), and this
configuration can effectively be integrated with a HAC. The pre-
requisite in such a case is that the HAC has support for the specific
feature so that the HAC can recognise and support it as part of its
operations.

Several variants of the active–passive topology exist, depend-
ing on the set up for a standby database and for the secondary
node (Bartkowski et al., 2012; Critchley, 2014; Schmidt, 2006),
as shown in Table 6. While the standby modes from this table
are often used with databases, other application layers may also
employ a similar configuration. For example, a layer two compo-
nent (i.e., application core), employs the active-warm (or warm)

standby mode due to the limited need for data synchronisation.

8

However, a common setup by a HAC is to employ either active-
hot (or hot) standby or active-warm because otherwise failover
time and MTTR will increase and, as a consequence, availability
will go down. The primary reason for using the active-cold (or
cold) standby or active-warm standby is cost, as using an active
host node is associated with higher costs. The standby modes
are usually not explicitly supported by modern HAC solutions;
instead, the different standby modes of databases and related
features that are supported are specified (Bartkowski et al., 2012;
Schmidt, 2006). Moreover, the standby modes are frequently used
to refer to the modes of the data centres, particularly in the
context of establishing DR for a system (Nguyen et al., 2016).

D.2.2: N-to-1. In an N-to-1 topology, multiple applications are
supported by one dedicated standby node. Hence the name N-
to-1 (Distefano et al., 2010; Veritas Technologies LLC, 2017a). If a
node fails, the application is failed over to the standby node and
made available there temporarily. However, while the application
is active on the standby node, there will be no HA for that
application until the primary node is back online. Another aspect
of an N-to-1 topology is that such a standby node must be able to
host all N applications simultaneously. Hence, sufficient capacity
must be available on the standby node.

D.2.3 : N + 1. In an N+1 topology, one passive (spare) node sup-
ports multiple active applications, similarly to the N-to-1 topol-
ogy. However, unlike the N-to-1 topology, the N+1 topology
employs a rotation scheme for failovers (Veritas Technologies LLC,
2017a). This means that, during a failover, an application is failed
over to the standby node, but the failed node, once the problems
are resolved, effectively becomes the standby node. Hence, any
node in the cluster can become a standby node. A variant of the
N+1 topology that uses 2+1 nodes (with two active nodes and
one node operating as a standby or backup) has been referred
to as asymmetric active–active in the context of HACs for HPC
(Leangsuksun et al., 2005).

D.2.4 : N + M. The N+M topology refers to HACs that comprise
N active nodes and M passive nodes in the cluster, and is called
an N + N topology when the number of passive nodes equals
the number of active nodes. The topology is employed when
one passive node is not sufficient, and M > 1 passive nodes are
required for failovers (Kanso et al., 2014; Gonçalves et al., 2020).

3.5. E: Cluster management

The cluster management module of a HAC is responsible for
managing the resources, resource groups, nodes, heartbeats, clus-
ter data, and failovers of a cluster, directly or through other
modules. The characteristics used to distinguish between differ-
ent types of HAC cluster management are shown in Fig. 7 and
described below.

E.1: Cluster data. Two types of cluster data are relevant to HACs:
configuration and runtime. Configuration data contains configu-

ration details of a HAC while runtime data stores status of the



P. Somasekaram, R. Calinescu and R. Buyya The Journal of Systems & Software 187 (2022) 111208

c
r

u
H
r
s
a
H
p
w
d
o
o
n
(
S
i
i
(
u
w
r
a
t
a
d
S
I
t
2

E

Fig. 7. Cluster management.
Fig. 8. Cluster communication.
luster components. Cluster data can be stored in three types of
epositories: disk, file and memory.

A repository can be either local or shared. However, a prereq-
isite for a repository is that it is accessible by all cluster nodes.
ence, if a repository is local, a replication mechanism is used to
eplicate it between the nodes at regular intervals. However, in
ome cases, when persistent files are employed, the replication is
manual activity. Both in-memory and file repositories are local.
owever, there are differences in what cluster data type they sup-
ort. Configuration data is static and is commonly stored in files,
hile an in-memory repository is generally used to store runtime
ata to capture changes in real-time. This means there is a rigor-
us requirement for in-memory repositories to replicate data to
ther nodes. Therefore, a designated process governs the synchro-
isation of the runtime data, for instance, Designated Coordinator
DC) in the case of a Pacemaker-based HAC (Vogels et al., 1998;
USE LLC, 2017). The coordinator ensures that one master repos-
tory exists in the primary node while a copy of it, a replica,
s distributed across all the member nodes. A shared repository
e.g., disk or file share), on the other hand, stores both config-
ration and runtime data. In many cases, a quorum repository,
hich is shared, can support the requirements. Cluster data in a
epository is organised using an information model. For instance,
Cluster Information Base (CIB) uses an XML-based object model
o represent both configuration and runtime data. However, there
re no standardised information models for dealing with cluster
ata, and, as such, HACs use different information models. Open
ervice Availability Framework (OpenSAF), for example, employs
nformation Model Management (IMM), and objects represent the
wo types of data: configuration and runtime (Toeroe and Tam,
012).

.2: Communication. HACs can use different communication

types and methods (Fig. 8).

9

E.2.1: Type. A communication type describes the different kinds
of communications that a HAC employs and is split further into
three subclasses: heartbeat, node and cluster.

E.2.1.1: Heartbeat. A heartbeat is a form of intra-cluster communi-
cation. However, it is separated in the taxonomy to highlight its
importance and use of additional resources, such as a dedicated
network. The type and content of heartbeat messages differ from
solution to solution. In some cases, a heartbeat message could be
a simple ping or a keepalive to provide the status of a cluster
node (Hou et al., 2003; Bouizem et al., 2020). Heartbeat commu-
nication use a LAN-based or a disk-based method (Marcus and
Stern, 2003; Veritas Technologies LLC, 2017a; SUSE LLC, 2017;
IBM Corporation, 2016).

E.2.1.1.1: LAN-based heartbeat communication uses a Transmis-
sion Control Protocol/Internet Protocol (TCP/IP) network (Marcus
and Stern, 2003; Schmidt, 2006). Since heartbeat is a key compo-
nent of a HAC, the recommendation for business-critical solutions
is to set up a dedicated network, such as a virtual LAN, to facilitate
heartbeat communication (Marcus and Stern, 2003; Veritas Tech-
nologies LLC, 2017a; IBM Corporation, 2016). With this approach,
the heartbeat traffic is not disturbed or delayed by other kinds
of traffic in a network, which could be the case if the network is
shared. Furthermore, adding redundancy to a heartbeat network
by using multiple networks is also a good option so that a single
network does not become a SPOF.

E.2.1.1.2: Disk-based heartbeat uses a shared disk and also the
SAN fabric as a means to facilitate communication (IBM Corpora-
tion, 2016). In some cases, LAN-based and disk-based heartbeat
types can be combined to create a full heartbeat service. If a
heartbeat mechanism is not employed, an alternative and robust
mechanism is required to detect node failures. Cheng et al. (2005)
propose a HA solution that employs a module that can detect
whether a node is sick or not and subsequently forecast the time



P. Somasekaram, R. Calinescu and R. Buyya The Journal of Systems & Software 187 (2022) 111208

o
s
a

E
d
m
i
s
m

E
m
G

E
s

f failure. This renders the heartbeat setup to be nonessential in
uch cases. However, there is no information regarding how such
solution works when there are many nodes in a cluster.

.2.1.2: Node communication is referred to as intra-node and
eals with communication within a cluster node. The node com-
unication uses internal communication schemes, for instance,

nter-process communication (IPC) within a server. Two types of
uch communication exist in HACs: user interface and resource
anagement.

.2.1.2.1: User interface communication refers to the different
eans to connect to the cluster on a particular node, including
raphical User Interfaces (GUIs) for cluster administration.

.2.1.2.2: Resource management communication can belong to two
ubclasses: base resource and agent. Base resource describes the
communication between the cluster resource management and
those resources that are available as a standard (e.g., IP, CPU of
a server). An agent describes the communication between the
cluster resource management and the agents that are responsible
for managing application-specific resources (e.g., database, EA
components) (Dake et al., 2008; Veritas Technologies LLC, 2017a).

E.2.1.3: Cluster communication, also termed intra-cluster, inter-
node (or resource group) communication, describes communica-
tion between cluster nodes. For a HAC, internal cluster commu-
nication is crucial. It is required for continuous communication
between nodes regarding changes in configuration, the health
status of nodes, quorum status, and failure notification. Further-
more, since cluster communication is often a basis for making
necessary decisions by a cluster, the requirement for cluster
communication is that it is enabled using an atomic (ordered) and
reliable messaging scheme. Even though several HAC solutions
use different types of cluster communication, a strict definition
can be used to distinguish the two main types: runtime and
configuration. Thus, cluster communication deals primarily with
the synchronisation of cluster configuration and cluster runtime
data (e.g., the status of the nodes).

E.2.2: Method. The types of communications utilise different trans-
mission methods, and these methods can employ different pro-
tocols, such as UDP and TCP. Some HAC solutions employ custom
protocols to meet the HAC-specific requirements, and an example
is the Transparent Inter-Process Communication (TIPC) proto-
col, used by OpenSAF (Toeroe and Tam, 2012; Maloy, 2004).
The methods are further divided into four subclasses: multicast,
broadcast, unicast, and IP socket.

E.2.2.1: Multicast. Multicast enables transmission from one node
to multiple nodes. Thus, it can be characterised as a one-to-
many (1:m) method. The receivers are usually a group of nodes,
which means that a subset of cluster nodes can also be addressed
(Forouzan, 2007; Dolev and Malki, 1996; Marcus and Stern, 2003).

E.2.2.1.1: Atomic. Atomic multicast (or total order multicast) im-
plies that all nodes receive the same message in their sent order
(Défago et al., 2004).

E.2.2.1.2: Virtual synchrony. Virtual synchrony is an atomic mul-
ticast technology that supports reliable inter-process messaging.
Corosync, the open-source communication protocol, employs the
Totem Single-Ring Ordering and Membership (TOTEM) protocol,
which is an example of implementation of virtual synchrony
(Dake et al., 2008). Engelmann et al. (2006) present a multi-node
HAC solution for HPC that employs virtual synchrony to support
state machine replication between the nodes in a symmetric
active–active topology.
10
E.2.2.2: Broadcast. This method supports one-to-all (1:n) transmis-
sions. While multicast supports transmission to a group of nodes,
broadcast transmits to all nodes (Forouzan, 2007; Schmidt, 2006).

E.2.2.3: Unicast. This method facilitates transmission between two
nodes, and it is characterised as a one-to-one (1:1) transmission
(Marcus and Stern, 2003; Forouzan, 2007).

E.2.2.4: IP socket. An IP socket can also be used in some cases to
facilitate communication between cluster nodes (Forouzan, 2007;
SIOS Technology Corp., 2018). However, the majority of the HACs
do not support this method but rely on other methods.

Typically, cluster communication employs either multicast or
broadcast, although unicast is also used in some cases. On the
other hand, heartbeat communication employs either unicast or
multicast (Marcus and Stern, 2003). The different communication
types and methods may have limitations in cloud, fog and edge
deployment environments. For example, routing a private IP ad-
dress across subnets may not be possible in these environments,
although such routing is required to failover from one subnet
to another in a two-node cluster hosted in two data centres
(Veritas Technologies LLC, 2020a; SUSE LLC, 2021). A solution
could be to use an overlay network technique, which provides a
network, e.g., an auxiliary network, on top of the main network,
allowing routing across subnets (Waldvogel and Rinaldi, 2003),
thus enabling seamless failovers.

E.3: Resource management. Resources are structured hierar-
chically to form a resource group, and links between the re-
sources define the relationships between the resources (Marcus
and Stern, 2003).

E.3.1: Type. HACs can manage two types of resources: base re-
sources and applications (Fig. 7).

E.3.1.1: Base resource. A base resource is a standard building block
(e.g., IP address, file system) (Critchley, 2014; Veritas Technolo-
gies LLC, 2017a; SUSE LLC, 2017; Oracle Corporation, 2017b).
A HAC can manage base resources without requiring additional
tools. Hence, a distinction is made between base and application
resources. While managing base resources is supported by all
HAC solutions to different degrees, application support must be
provided explicitly.

E.3.1.2: Application. Application management is the capability to
manage application-specific functionalities and features. Since
each application must be handled individually, an extension to
a HAC is usually required (Critchley, 2014; Veritas Technologies
LLC, 2013; IBM Corporation, 2017b). Such addition is provided in
the form of either an extension or an agent.

E.3.1.2.1: Agent-based. Agents manage two main types of appli-
cations: application and database. Application agents deal with
managing several application-specific layers (e.g., application core
of an ERP as in layer 2). Database agents manage database-
specific components (layer 3). The application agent functionality
connects application-specific (this includes both types: database
and application) configuration and procedures with the resource
management module of a HAC and supports functionalities in-
cluding (Veritas Technologies LLC, 2013; IBM Corporation, 2017b):

• Monitoring application-specific components
• An application-specific configuration, which can recognise

the architecture of the application components
• Complying with application-specific dependencies
• Logging
• Procedures — to stop and start related application compo-

nents in a specific order
• Supporting Application Programming Interfaces (APIs) or

specification by the application vendor



P. Somasekaram, R. Calinescu and R. Buyya The Journal of Systems & Software 187 (2022) 111208

u
(

3

a
t
i
r
f
i
w

F
c
t
w
f
f
c
m
c
m
2
p
r
C
a
s
c

F
i
i
f
m

Fig. 9. Failure detection and recovery.
However, not all HAC solutions can support all applications, as
each will require separate lifecycle management. When an ap-
plication changes, for instance, when it is upgraded, the HAC
application agent may also need to be updated to reflect the
changes. Likewise, when the HAC solution is upgraded, the ap-
plication agent may also need to be updated. Thus, supporting a
large number of application agents could be connected to much
effort. Furthermore, such support may be subject to licensing
conditions, and HAC vendors could treat individual application
support as an extension to license terms.

E.3.2: Method. Two main methods are used when managing re-
sources: policy- and rule-based. Policy-based resource manage-
ment uses policies to configure conditions, and, when a particular
condition is satisfied, appropriate action is triggered (Leangsuk-
sun et al., 2004; Veritas Technologies LLC, 2017a; IBM Corpora-
tion, 2017b). On the other hand, rule-based resource management
ses one or more rules to make decisions and act upon them
Marcus and Stern, 2003).

.6. F: Failure detection and recovery

Failure detection implies detecting failures by monitoring and
nalysing monitoring output (Yang and Kim, 2020). If the moni-
oring identifies a status change in a resource or a resource group,
t invokes recovery management to initiate a recovery. If the
ecovery is not successful, the recovery manager may initiate a
ailover of a resource group or even a system; therefore, failover
s part of recovery management. Fig. 9 depicts the top-level class
ith its subclasses.

.1: Monitoring. HAC failure detection and recovery monitoring
an be further organised into subclasses depending on its area,
ype and method. The area describes the monitored domains,
hile the type of monitoring addresses monitoring from a con-

iguration point of view. In most cases, HACs can provide support
or specific monitoring metrics; however, if there is no support, a
ustom approach where HAC users define their own monitoring
etrics is adopted. The monitoring scope may also vary and
an range from the simple state monitoring of a resource to the
onitoring of a resource in a detailed manner (Marcus and Stern,
003; Schmidt, 2006; Veritas Technologies LLC, 2017a; IBM Cor-
oration, 2016; Fujitsu Limited, 2017). Several research initiatives
efer to the monitoring aspect of HACs as means to detect failures.
heng et al. (2005) present a state-based internal monitoring
pproach for the experimental cluster APCS+PEV, while Leang-
uksun et al. (2004) employ threshold-based monitoring for the
luster HA-OSCAR.

.1.1: Area. The monitoring areas that a HAC can support play an
mportant role in the overall solution. This is because monitoring
s the process that collects details regarding monitored elements
rom different areas and delivers that data to the cluster manage-

ent to make appropriate decisions. The areas that a solution can

11
support can roughly be split into three subclasses: server, cluster,
and application.

F.1.1.1: Server. Server-specific metrics focus on critical and non-
critical monitoring elements of an operating system and a server
level. Examples of metrics are CPU utilisation and memory utilisa-
tion (Veritas Technologies LLC, 2017a; Oracle Corporation, 2017b;
IBM Corporation, 2016; NEC Corporation, 2017a).

F.1.1.2: Cluster. Cluster monitoring implies that monitoring is
enabled, even for the internal components of a HAC, including
cluster-related processes and objects (NEC Corporation, 2017a,b;
Veritas Technologies LLC, 2017a). This approach enables a HAC to
distinguish between failures of cluster and application elements,
thus preventing making incorrect decisions.

F.1.1.3: Application. Application monitoring is usually adminis-
tered by an application-specific agent or an extension that is
specifically designed to support a particular application and its
architecture. This implies that an application agent is aware of
the internals of the application (Oracle Corporation, 2016c; IBM
Corporation, 2017b).

F.1.2: Type. A monitoring type describes how the state of the
resources is measured. There are two types of monitoring: state-
and threshold-based.

F.1.2.1: State-based monitoring uses the state of a resource as a
monitoring metric, and the states can be as simple as ‘‘up’’ and
‘‘down’’, or the monitoring can be more elaborate and contain
more states (Veritas Technologies LLC, 2017a; SUSE LLC, 2017;
IBM Corporation, 2016, 2017b).

F.1.2.2: Threshold-based monitoring uses a set of threshold values
related to metrics (Ward and Barker, 2014). As such, alerts with
different severity levels can be generated, depending on which
threshold is exceeded. While the threshold-based type gives the
flexibility to configure monitoring at a granular level, it also adds
complexity as the HAC must interpret all the different values and
severity levels and act accordingly. One advantage is that a HAC
will have more data that can be analysed, and decisions can be
made at a granular level.

Even though state-based monitoring is the common type of
monitoring, both monitoring types (and others) are sometimes
combined. For example, OpenSAF HACs combine threshold-based
monitoring with a type called watermark monitoring. The thre-
shold-based monitoring is used to monitor system resources,
while the watermark monitoring is employed to register the
highest and lowest utilisation per configured resource (Service
Availability Forum, 2011).

F.1.3: Method. There are mainly three methods for monitoring,
and they are push, poll, and event-based. Polling implies that the
monitoring module of HAC and agents poll for state changes of
resources periodically (Ward and Barker, 2014; Endo et al., 2016).
On the other hand, push implies monitoring data is pushed to the
monitoring module or agents (Endo et al., 2016; Ward and Barker,



P. Somasekaram, R. Calinescu and R. Buyya The Journal of Systems & Software 187 (2022) 111208

2
w
i
a
t
f
a
l
e
e
f
a
t
T
t
t
H
d
o
b
r
i
2
t
H
d

F

r
a

014). Such a setup will require additional enablers to interact
ith resources and push monitoring data to HAC agents. Polling

s the most common method of monitoring (Endo et al., 2016),
nd it usually employs synchronous communication. However,
his procedure is associated with a specific overhead. There-
ore, other methods are studied by both industry and academia,
nd a technique that applies an event-based design is viewed as
ess resource-demanding. One type of event-based monitoring
mploys an intermediate module that interfaces with an op-
rating system to capture instantaneous notifications relevant,
or instance, the state change of a process. It passes that to an
ppropriate module of a HAC. An example of such a setup is
he Intelligent Monitoring Framework (IMF) by Veritas (Veritas
echnologies LLC, 2017a). The IMF has a monitoring feature in-
egrated into an operating system for a particular resource so
hat state changes are captured instantaneously, and a relevant
AC agent is alerted. However, this approach requires specific
evelopment towards an operating system for a particular set
f resources. Thus, IMF is not available for all types of resources
ut is being released gradually for different applications. Another
ecent development is to enable a HAC to interact with the mon-
toring feature of an operating system directly (IBM Corporation,
016), which means that the HAC needs only a slim variant of
he monitoring module. The downside of this approach is that the
AC becomes highly dependent on the operating system and its
evelopments.

.2: Failover. Failover management includes procedures for
failover and failback, and all such actions are usually policy-
driven. Policy-based indicates that policies can be associated with
events so that the appropriate policies are triggered whenever a
related event occurs (Hiep et al., 2020). Policies can be used, for
example, to determine the target node for failover. Furthermore,
policies can encode application-specific requirements, such as
the order for starting up or shutting down resources. Failover
management can further be split into two subclasses: reactive
and proactive (Kaitovic and Malek, 2018).

F.2.1: Reactive. A reactive measure uses policies to ensure the
correct failover actions. There are two types of policies: static and
dynamic. A static policy is created during the implementation or
when applying manual changes, while a dynamic policy is cre-
ated automatically by HACs to enforce policies based on runtime
failure cases (Beekhof, 2017).

F.2.2: Proactive. A proactive measure assumes that a predictive
model is employed to ensure that a failover can be initiated
based on predictions (Kaitovic and Malek, 2018). The predictions
can, in turn, use policies to trigger the required actions (Leang-
suksun et al., 2004). However, the proactive approach could be
a challenge in HAC environments that deal with complex EAs
because all relevant layers must be addressed in such cases while
evaluating the HAC behaviour. Therefore, all active HAC solutions
employ only the reactive mechanism.

F.3: Recovery level. The threefold strategy to manage failures
is implemented using three recovery procedures: resource, re-
source group, and node (system) level (Schmidt, 2006; Veritas
Technologies LLC, 2017a).

F.3.1: Resource. A resource-level recovery deals with recovery
attempts on a resource level, implying re-initialisation of a failed
resource while adhering to the dependency rules between re-
sources. However, if this step fails, the failure is propagated to
a resource-group level (Schmidt, 2006).

F.3.2: Group. A group-level recovery attempts to failover the entire
esource group to a secondary node. However, if there are no
vailable secondary nodes, an attempt to reinitialise the resource
12
group within the same node can also be initiated. If a resource
group have dependencies on other resource groups, it may lead
to a node (system) recovery (Schmidt, 2006).

F.3.3: Node. A node-level (system) recovery deals with failing over
the resource groups to a secondary node. Moreover, a resource
or resource group failure can also have a cascading effect due to
dependencies, and, in such cases, it might lead to recovery on a
node level. Since the previous node is labelled as "failed’’, policies
may prevent any resources from being started there until that
node is repaired (Schmidt, 2006).

F.4: Prediction. Prediction in the context of HACs implies that
prediction approaches are used to provide prediction at the dif-
ferent levels to improve the operations of HACs. One such ex-
ample is to predict resource failures; however, current HACs
do not commonly employ prediction. Some research initiatives
explore the area of predicting failures, but often within a lim-
ited scope. An example of such an initiative is the HA-OSCAR
project which assesses prediction by evaluating hardware com-
ponent failures (Leangsuksun et al., 2004). The research team
used a Hardware Platform Interface (HPI), as specified by the
Service Availability Forum, to identify hardware events and, sub-
sequently, to analyse such data in order to provide predictions
(Leangsuksun et al., 2004). Similarly, Lee et al. (2008) propose
a stochastic prediction model for node failure or a node-switch
interconnected system failure of HA-OSCAR head nodes. Liu et al.
(2003) have also explored a failure-repair model for predicting
the availability of HA-OSCAR cluster by using Stochastic Reward
Nets (SRNs). While many of the prediction models use HA-OSCAR
as the platform, some initiatives explore other platforms. For
example, Cheng et al. (2005) have used a module for a custom
cluster solution that detects sick nodes and subsequently uses a
prediction method to forecast the time-to-failure of nodes.

Both Veritas InfoScale Availability and Oracle Clusterware pro-
vide functionalities to simulate failures and observe potential
paths to failovers (Veritas Technologies LLC, 2017a; Oracle Corpo-
ration, 2017c). However, the objective of the subclass prediction is
to ensure that the wealth of information that HACs produce can
be incorporated to predict failures or optimise failovers. An ex-
ample of such an approach could be using prediction to optimise
the quorum voting process by dynamically evaluating scenarios.

F.5: Simulation. A simulated cluster or cluster simulation is a fea-
ture to run cluster simulations to study the potential failover and
recovery paths when failure is simulated at a resource, multiple
resources, resource groups, or a system level. Simulating fail-
ures and studying the cluster behaviour is becoming increasingly
important for the configuration and optimisation of complex
HAC solutions. The feature can be provided: (1) as part of HAC
software; (2) as a separate tool; and (3) as part of the system
management software.

Most HAC solutions provide a simulation feature with vary-
ing capabilities, and many simulators can be executed without
interfering with the running cluster solutions. OpenSAF provides
a simulated cluster (method 1) with the source code distribu-
tion. The resulting five-node simulated cluster can be brought
up quickly to evaluate the cluster and perform functional and
API tests. Further examples of simulated clusters include the
simulator functionality provided by the ClusterLab stack (method
1), which can be used to simulate failures to study the poten-
tial failover paths. The simulator feature continues to add more
features to enable HACs to deliver optimal services. Red Hat
Enterprise Linux HA Add-On provides a command-based tool
(method 1) to simulate recovery scenarios. Veritas provides a
standalone simulator (method 2) for the Veritas cluster server
(VCS) to simulate and test different failover situations and use the
results to optimise the cluster configuration (Veritas Technologies



P. Somasekaram, R. Calinescu and R. Buyya The Journal of Systems & Software 187 (2022) 111208

L
a
D
e
l
d
c
c

3

a
l
a
h

Fig. 10. Consistency and integrity.
t
c
f
b
2
a
m
C
t

G
s
q
a
s
t
m
t
a
n
a
d
m

t
W
n
C
s
t
q
D
d
i
a
c
C

p
M
q
r
f
d
i

LC, 2017a). IBM PowerHA SystemMirror for AIX delivers an
dvanced graphical cluster simulator as part of the IBM Systems
irector, which is used to manage systems (method 3) (Quintero
t al., 2015). The simulator supports creating and saving simu-
ated cluster topologies. It enables conducting experiments with
ifferent configuration options, and one of the saved simulations
an then be used to deploy the cluster when all the required
omponents are in place.

.7. G: Consistency and integrity

Fig. 10 presents the top-level class consistency and integrity
nd its subclasses. A HAC employs measures, such as a cluster
ock or quorum, to preserve the data integrity of cluster resources
nd, most importantly, the clustered application by preventing
armful situations, for instance, split-brain and amnesia.

G.1: Cluster lock. Cluster lock is a technique used to lock cluster
resources to a particular node, thus preventing other nodes from
claiming the same resources. While a quorum-based approach
could also be viewed as a cluster lock, a distinction is made
to separate a quorum from a cluster lock. A cluster lock is a
technique that does not employ a quorum-based approach but
uses other means, such as a software-based lock mechanism. In
the case of HACs, a distributed cluster lock is one such option,
and an example is OpenSAF, which uses a global lock service
to manage shared resources and ensure that only one node can
access the resources at any given time (Toeroe and Tam, 2012).
Such configurations are deemed quorum-less.

G.2: Quorum. A HAC quorum serves two purposes: 1) main-
taining cluster consistency by storing configuration and runtime
data (e.g., cluster data) (Gomes et al., 2021), and 2) managing
a voting system required in the event of a cluster partition.
For the latter purpose, the quorum hosts a voting mechanism
in which every healthy and active node has a vote (Naor and
Wool, 1998; Critchley, 2014). Furthermore, the quorum also has
a vote, a potential decider, hence the alternative name tiebreaker.
Other names that are used to refer to the quorum mechanism
are arbitrator, witness and voting system (Schmidt, 2006). When a
partition of a cluster occurs after the failure of one or more nodes,
a quorum is gathered to decide which partition should have the
quorum. To reach a quorum, a partition must have a majority
of votes (Wang et al., 2015). The quorum service casting its
vote can ensure that one of the partitions achieves this majority.
Ultimately, the majority cluster is allowed to run the cluster. If a
quorum cannot be reached, the surviving nodes will shut down to
ensure cluster consistency. The quorum collaborates closely with
the heartbeat mechanism, as the heartbeat is the method used to
identify unhealthy nodes. Additionally, the quorum or a similar
service is required for fencing, as the two often collaborate to
determine a quorum and subsequent fencing.

A quorum consists of a device and a process (Critchley, 2014;
Vogels et al., 1998; Hewlett Packard Enterprise Development,
 a

13
2011). A device describes where quorum elements are stored,
and a device facilitates the process, which uses an algorithm to
calculate votes to achieve a quorum. The process employs a mode
to determine what policy to use when performing the quorum
voting.

G.2.1: Device realisation. Three types of devices can be used by
a HAC: server, disk, and file share. A quorum server is a service
hat runs on a server that is usually hosted outside a cluster
onfiguration (Critchley, 2014). The cluster is subsequently con-
igured to connect to the quorum server. A disk-based quorum is
ased on a disk, which can be either local or shared (Schmidt,
006; Critchley, 2014). A file share uses a shared file location,
nd it can be ideal for geographically distributed HACs since
ember nodes do not have access to a shared disk (Microsoft
orporation, 2011). The prerequisite for all quorum devices is that
hey support concurrent access by all cluster members.

.2.2: Mode. Four modes are possible: server, node, disk and file
hare. The modes and the devices are an integral part of the
uorum solution. However, the supported combination of devices
nd modes are specific to the different HAC solutions. The mode
erver uses the device server, and the device Disk is used by
he mode Disk. Similarly, the device File share is used by the
ode File share. While the devices disk and File share imply that

hey are storage points that are managed by the quorum process,
quorum server indicates an advanced device type. The mode
ode is implemented implicitly. Hence, it does not require any
dditional devices but uses the number of available nodes to
ecide, and the arrangement is referred to as the ‘majority node’
ode.
A quorum can be set up in different ways, and, in some cases,

he several modes of a quorum can be combined. For example,
indows Server Failover Clustering (WSFC) supports a combi-
ation of devices and modes, as detailed in Table 7 (Microsoft
orporation, 2011). However, the same combination is not always
upported by other HAC solutions, and an example of this is
hat the Serviceguard HAC does not recommend combining a
uorum server with a quorum disk (Hewlett Packard Enterprise
evelopment, 2011). There are new quorum device types intro-
uced to meet the advances in IT. For example, Microsoft has
ntroduced recently a new quorum device called cloud witness,
nd the purpose is to support a server-based quorum in the Azure
loud, which could be ideal for cloud-based solutions (Microsoft
orporation, 2018).
The standard for all explicit quorum devices is that they are

laced outside a HAC to avoid creating a quorum device as a SPOF.
oreover, redundancy of quorum is also preferred because the
uorum is a critical HAC functionality. For this reason, most cur-
ent HAC solutions support a dynamic reconfiguration procedure
or quorum devices, which enables adding or removing quorum
evices without impacting the running clusters. While quorum
s crucial for a two-node cluster, it can also be opted out using

different mechanism. Furthermore, when a cluster has more



P. Somasekaram, R. Calinescu and R. Buyya The Journal of Systems & Software 187 (2022) 111208

T
Q

i
t
b
t
a
c
t
T
Z
a
e

G
a
(
i
F
s
c
o

G
p
e
a
u
o
f
I
a

able 7
uorum implementation with Windows server failover cluster (WSFC).
Combination of modes Devices realisation Formula for number of nodes Purpose

Majority node Node only (implicit device) n = 2k + 1 (odd numbers) Survive failures of (n − 1)/2 nodes.
Node and disk majority Node and disk n = 2k (even numbers) Survive failures of n/2 nodes when disk is available.
Node and file share majority Node and file share n = 2k (even numbers) Survive failures of n/2 nodes when file share is available.
No majority: Disk only Disk only – Survive failures of n − 1 nodes when disk is available.
than two nodes, an explicit quorum device could become optional
because that cluster can survive the failure of a single node.
However, a configuration using the mode node is still required to
achieve a quorum. The research in this area focuses on enabling
probabilistic approaches. For instance, Malkhi et al. (2001) have
explored a probabilistic approach to address both benign server
failures and arbitrary (Byzantine) ones.

G.3: Dynamic quorum. While a quorum deals with static votes,
a dynamic quorum calculates the number of votes and adjusts
the quorum dynamically upon the failure of one or more nodes
(Microsoft Corporation, 2018). Thus, if a node is unavailable, it
will effectively be out of the quorum voting process. This gives
more flexibility to continue running a cluster even when other
nodes fail. For example, dynamic quorum enables WSFC to run a
cluster when only one node and a quorum device are available
(Microsoft Corporation, 2016).

G.4: Isolation. HACs may ‘‘isolate’’ a particular node from the
rest of the cluster, i.e., prevent it from allocating any resources.
The objective of node isolation is to preserve data integrity by
employing several mechanisms, such as putting a fence around a
node (fencing) or shutting down a node.

G.4.1: Fencing. There are two types of fencing, node-level and
resource-level (Critchley, 2014; Veritas Technologies LLC, 2017a;
SUSE LLC, 2017; IBM Corporation, 2016). The common implemen-
tation is to employ the node-level fencing (Veritas Technologies
LLC, 2017a; SUSE LLC, 2017; IBM Corporation, 2016).

G.4.1.1: Resource. Resource-level fencing isolates one or more crit-
cal resources and, by doing so, renders a node unusable because
he node cannot allocate resources. Resource-level fencing can
e based on a SAN switch, allowing only one node to connect
o the SAN-based storage or SCSI. SCSI-based fencing often uses
SCSI-3 option called persistent reservation, which means there
an be only one SCSI-3 persistent reservation per disk at any given
ime, making it an efficient method for isolating disks (Veritas
echnologies LLC, 2017a; SUSE LLC, 2017; IBM Corporation, 2016;
hu and Lin, 2020). Since resource-level fencing is based on stor-
ge input/output (I/O), it is sometimes called I/O fencing (Preslan
t al., 2000).

.4.1.2: Node. On the other hand, node-level fencing acts at
node-level and isolates or quarantines the node completely

Lumpp et al., 2008). In some cases, the node can be shut down
nstead, but the fencing functionality still manages the operation.
urthermore, the state of the fenced node is effectively changed
o that it is no longer recognised as an active node by the
luster. Thus, the isolated node is not participating in any cluster
perations.

.4.2: Shutdown. A node shutdown is different from the shutdown
rocedure managed by the fencing functionality because it op-
rates outside the fencing mechanism. This can be achieved by
HAC module that interacts with operating systems or servers
sing industry-standard specifications. Examples of APIs based
n specifications are: Intelligent Platform Management Inter-
ace (IPMI) and vendor-specific embedded technology, such as
ntegrated Lights-Out (iLO) by HPE (SUSE LLC, 2017; Service Avail-
bility Forum, 2011; NEC Corporation, 2017a; Lee et al., 2021).
14
3.8. H: Data synchronisation.

Data synchronisation refers to the means, technologies and
methods used to synchronise data between cluster nodes. The dif-
ferent layers of EAs require that data are synchronised to ensure
consistency across all cluster nodes. Although a diverse range of
synchronisation methods can be employed at the different layers,
the overall responsibility for all layers managed by HACs lies with
the HACs because they are responsible for failover management
and ensuring data integrity. HACs may employ additional tools or
features that come with the application components to facilitate
data synchronisation. Hence, we identify three principal areas of
data synchronisation:

1. Client-state (i.e., session state replication) deals mainly with
client connectivity (e.g., sessions), which means the client
state of an application running on a primary node is syn-
chronised with other cluster nodes (Rossi and Turrini,
2005; van der Linde et al., 2020; Mortazavi et al., 2020).
Subsequently, a failover can occur seamlessly and with-
out losing any connection data or affecting any active
connections. Hence, other nodes can continue to support
the connections instead. Client-state synchronisation is
widely employed in HAC for the application area network
appliances (e.g., firewalls) (Noble et al., 2003; Check Point
Software Technologies Ltd, 2018; Palo Alto Networks Inc.,
2018; Fondo-Ferreiro et al., 2020).

2. Cluster-state employs different methods to synchronise the
state of a cluster, and it can be considered as an intra-
cluster activity. For instance, OpenSAF uses a checkpoint
service to record the state of an application or a service.
Subsequently, states are replicated to a standby application
or service that is hosted on the secondary node (Toeroe
and Tam, 2012). A more advanced approach is a State Ma-
chine Replication (SMR) which creates replicas of client and
process states to one or more nodes deterministically (Le
et al., 2016), which can even support more comprehensive
solutions such as databases (Pedone et al., 2003; Magalhaes
et al., 2021). An example of SMR concerning a HAC is an
implementation of a HAC for HPC, which employed SMR to
synchronise states between nodes in a symmetric active–
active topology (Engelmann et al., 2008). A variation of
SMR is Replicated State Machine (RSM) employed by VCS
to synchronise the resource status across all nodes (Veritas
Technologies LLC, 2017a).

3. Application-state, on the other hand, implies that the data
of an application that a HAC protects are synchronised to
one or more nodes to support a possible failover. Hence,
data synchronisation in this taxonomy refers implicitly
to application-state synchronisation. Such synchronisation
can occur at different levels, such as on an application or a
file system level.

The top-level class data synchronisation is shown in Fig. 11. It
is further divided into two storage technologies, shared storage
and shared-nothing. They both can be connected to a subclass
of file systems which, in turn, can influence the configuration
of a HAC. An example of file systems related to shared storage
is presented in Fig. 12. Both cluster and distributed file systems



P. Somasekaram, R. Calinescu and R. Buyya The Journal of Systems & Software 187 (2022) 111208

f
V
A

s
m
d
a
S
f
C

H
s
a
o
m
c
d
c
s
a
i

H
s
a
(
S
s
w
F
a
i
s
r
(
a
r

H
f
a
2
2
w

Fig. 11. Data synchronisation.

r
p
m
a
t
b
L
D
r
c

H
o

a
g
(
r
l
P
i
t
m
a
w
h
i
r
s
i

Fig. 12. File systems related to shared storage. Key: ext4 — Fourth extended
ile system, ZFS — Z File System, OCFS2 — Oracle Cluster File System, vxCFS —
eritas Cluster File System, NFS — Network File System, IBM Spectrum Scale —
distributed file system, formerly called the General Parallel File System (GPFS).

upport concurrent access and are ideal for sharing data between
ultiple nodes (Shi et al., 2020). A distributed file system can be
eployed on the top of either shared storage or shared-nothing,
nd some file systems can be deployed on both. For example, IBM
pectrum Scale (formerly the General Parallel File System (GPFS))
ile system can be deployed using both storage technologies (IBM
orporation, 2017c).

.1: Shared storage. HAC solutions use several forms of shared
torage. However, requirements for such implementation usu-
lly come from business requirements, such as supporting DR
r geographically dispersed user groups. While shared storage
ight be ideal for the cluster types local and campus, metro and
ontinental clusters require a different solution due to extended
istances between nodes. Shared-nothing is an option in such
ases. A hybrid approach is also possible, which means that
hared storage and shared-nothing can support a combination of
local cluster (or campus) and continental cluster, as discussed

n the topology section.

.2: Shared-nothing. This setup assumes that there is no shared
torage. Instead, each cluster node is connected to separate stor-
ge, which could either be SAN-based or based on local storage
e.g., Direct-attached storage (DAS)) (Marcus and Stern, 2003;
chmidt, 2006; Critchley, 2014). However, EAs must explicitly
upport these kinds of setups. Moreover, there are also challenges
ith accessing shared storage in new and emerging technologies.
or example, shared storage is limited in the public cloud, fog
nd edge computing environments (Rani et al., 2021); hence,
t becomes difficult to set up a HAC using shared storage. In
uch cases, replication between the individual storage units is
equired, and this has led to the new term SANless (SAN-Less)
SIOS Technology Corp., 2017a). There are two techniques associ-
ted with the synchronisation of data in a shared-nothing setup:
eplication and mirroring.

.2.1: Replication. Replication describes the process of replicating
rom a primary node to other nodes so that data is synchronised
nd consistent across all participating nodes (Marcus and Stern,
003; Schmidt, 2006; Critchley, 2014; Veritas Technologies LLC,
017a). Since there are different kinds of replications in HACs,
e group them by type and method. The type describes the
15
replication approaches, while the method specifies the execution
technique.

H.2.1.1: Type. Four types of HAC replication are possible:
application-based, array-based, cluster-based, and host-based.

Application-based replication is set up at an application level,
and it uses replication features that are provided natively by an
application (Saxena and Pound, 2020). One of the nodes will be
active in such a setup, while other nodes will be either warm
standby or hot standby. To include an application in a HAC,
explicit support for the application-specific replication feature by
the HAC is required. Databases employ application-based repli-
cation to synchronise with standby databases (Xiong et al., 2016;
Lee et al., 2017; Oracle Corporation, 2017b; Lu et al., 2021). Array-
based replication is set up on a storage system level to enable
synchronisation between two storage systems (e.g., SAN- or NAS-
based) (Critchley, 2014; Saxena and Pound, 2020). Additional
software may be required to facilitate array-based replication. In
cluster-based replication, the replication functionality is within a
HAC and entirely administrated by the HAC (NEC Corporation,
2017a; SIOS Technology Corp., 2017b). It means that the solution
is independent of the operating environment or any other tool;
instead, it relies on a high-speed network connection. Host-based
eplication uses software tools on a host (server or nodes) to
erform replication. An example is using a Linux logical volume
anager (LVM) to set up replication between two logical volumes
cross two nodes (Critchley, 2014; IBM Corporation, 2017a). Tools
hat operate on an operating system level and are similar to host-
ased replication can also be included in this category (Zhu and
in, 2020). For instance, Gómez et al. (2014) use a software-based
istributed Replicated Block Device (DRBD) solution to enable
eplication between two volumes at a block-level in a virtual
luster setup.

.2.1.2: Method. HACs can perform the replication synchronously
r asynchronously.
Synchronous replication waits until a write is completed and

n acknowledgement is received from the other replication end,
uaranteeing consistency between the two replication points
Critchley, 2014). From a transaction viewpoint, synchronous
eplication can support all the ACID properties. Therefore, no data
oss is usually associated with it Kanagavelu et al. (2013) and
ohanka and Pechanec (2020). However, synchronous replication
s challenging with extended distances. Nevertheless, modern
echniques may offer solutions. For instance, Schmidt (2006)
eans that connections up to a distance of 100 km can be
chieved by using dark fibre. This results in latencies of 0.5 µs,
hich is adequate for synchronous replication. On the other
and, asynchronous replication does not wait until the writing
s completed but gets an acknowledgement as soon as data is
eceived at the second point (Critchley, 2014; Lu et al., 2021). As
uch, it may not comply with the ACID properties entirely, which,
n turn, may result in data loss.



P. Somasekaram, R. Calinescu and R. Buyya The Journal of Systems & Software 187 (2022) 111208

T
S

able 8
election questions.
No Question Evaluation parameters

Q1 Support for enterprise class databases? SAP ASE, DB2, HANA, Informix, MySQL, Oracle, PostgreSQL, SQL Server, Teradata
Q2 Support for EAs? Oracle Siebel Customer relationship management (CRM), Oraclea , SAPa , Othersa ,

WebSphere
Q3 Multi-tier support for EAs? X — Yes, N — no, ? — no information
Q4 Enterprise support provided? 24 × 7x365
Q5 Application features can be supported by further developments? X — Yes, N — no, ? — no information
Q6 Support for disaster recovery? X — Yes, N — no, ? — no information
Q7 Support for virtualization? X — Yes, N — no, ? — no information
Q8 Cloud support? X — Yes, N — no, ? — no information
Q9 Support for enterprise operating environments? AIX, HP-UX, IBM i, Linux, Solaris, Windows
Q10 Support for multiple platforms? Power, SPARC, x86
Q11 Support for large-scale clusters? Number of nodes
Q12 Support for multiple topologies? Active–active, application-based, server-based, N-to-N, active–passive, N+1, N+M, N-to-1
Q13 Support for availability level? Minimum 99.9%
Q14 Active lifecycle management? X — Yes, N — no, ? — no information
aAny of the business suite EAs (e.g., ERP).
Different factors influence the selection of a method, and some
of the critical factors are (Marcus and Stern, 2003; Critchley,
2014): the distance between two nodes; the volume of data
transported between nodes; type of data; frequency (continuous
or burst); business requirements, such as DR. There is a network
latency recommendation for synchronous replication, as it im-
plies real-time mirroring, while asynchronous replication does
not have the same kind of rigorous requirement (Critchley, 2014;
Pohanka and Pechanec, 2020).

H.2.2: Mirroring. In some cases, the terms replication and mir-
roring are used interchangeably. For example, a host-based mir-
roring of a file system can also be referred to as file system
replication. However, in other cases, a few differences can be ob-
served; for instance, mirroring may differ by not having a running
instance on the standby node (Critchley, 2014; Schmidt, 2006).
Mirroring can be performed synchronously or asynchronously
(Marcus and Stern, 2003; Critchley, 2014; Schmidt, 2006).

Synchronous mirroring ensures that the mirroring process
waits until a write is completed and committed on the standby
node and an acknowledgement is sent back. This method secures
consistency of data between two nodes. An asynchronous mir-
roring process, on the other hand, does not wait until a write is
ended on the secondary node. This approach may result in data
loss when the primary node fails abruptly.

4. Survey of high-availability clusters

4.1. Selection of HACs for the survey

We selected the relevant HACs for our survey using a system-
atic approach that comprised the following six steps.

Step 1. Identification of HACs that support enterprise applications
(EAs). Our survey focused on HACs that can protect EAs. However,
only a limited number of HACs support EAs due to the complex
composition of EAs, which are multi-tiered and multi-layered.
We identified likely candidate HACs using comprehensive re-
search reports (IDC Corporation, 2016; Prior et al., 2001) and
articles (Leangsuksun et al., 2004; Engelmann, 2008; Rabbat et al.,
2001; Corsava and Getov, 2003), resulting in 23 candidate HAC
solutions.

Step 2. Identification of relevant EAs and databases. In this step, we
gathered information for assessing the applicability of each HAC
solution to distinct layers of enterprise applications. To this end,
we used relevant research and analysis reports, e.g. Gartner Inc.
(2017a,b) and Gartner Inc. (2016), to identify the databases and
EAs listed next to questions Q1 and Q2 from Table 8.

Step 3. Elimination of HACs not supported by EA vendors. In this
step, we used the lists of supported HACs released regularly by
16
enterprise application vendors, e.g. SAP SE (2018) and IBM Corpo-
ration (2018b), to check which HAC solutions are supported (and
sometimes certified) by these EA vendors. ‘‘Supported’’ HAC solu-
tions are solutions that fulfil the requirements of the application
vendor for a specific application, with the added implication that
support channels have been established between the vendors.

We assessed the candidate HAC solutions using the following
criteria to narrow down the list:

1. Does the HAC solution being assessed focus on only specific
IT solutions (such as HPC or Hadoop)?

2. Is the HAC solution no longer active, implying that the
product lifecycle has ended or the research project that
developed it has ended?

3. Is the information available to analyse the HAC solution
properly insufficient?

4. Are EAs supported by the HAC solution, or is it the case
that the information available cannot be used to conclude
whether EAs are supported or not?

We eliminated all the candidate solutions for which one or sev-
eral of these questions were answered affirmatively. As a result,
six HAC candidates were removed in this step, and we proceeded
with the remaining 17 candidates. We made an exception for two
of the candidate HAC solutions for the reasons described below:

• OpenSAF does not provide enterprise support directly. Nev-
ertheless, we retained OpenSAF because of its stability as
a HAC (Kanso and Lemieux, 2013; Khan et al., 2017). Be-
sides, application support can be developed individually
with OpenSAF, meaning that an OpenSAF HAC can be used
to support enterprise-class databases and applications.

• Similarly, the ClusterLabs stack does not support enterprise
applications on its own. However, we retained the Clus-
terLabs stack because it provides the core components for
two other selected solutions, SUSE Linux Enterprise High
Availability Extension and Red Hat High Availability Add-On.
This implies that customisation and further developments
are possible using it.

Step 4. Retention of only HACs that support automatic failover. We
used this filter to retain only the HAC solutions that support auto-
matic failover, which is crucial for an EA to minimise downtime.
All 17 candidates support automatic failover; hence, all were
retained.

Step 5. Design of additional questions for the selection and evalu-
ation of HACs. In this step, we created the questions to evaluate
the HACs. The queries reflected the typical requirements of EAs



P. Somasekaram, R. Calinescu and R. Buyya The Journal of Systems & Software 187 (2022) 111208

s
a
a
q
s
q
w
r
e

F
H
o
p
s

4

s
s
H
s
b
s
t
t
i
s
d
a
w
s
p
n
a
d

t
H
s

4

1
c
i
i

Table 9
Eliminated HAC solutions in the six-step approach for selecting HACs for survey.
Product Reason(s) for elimination

Apache Mesos (DelValle et al., 2017) Focus on specific IT solutions (HPC)
DxEnterprise (DH2i, 2020) Lack of EA support; insufficient information available to evaluate the solution properly
everRun (Stratus Technologies, 2020) Lack of EA support; insufficient information available to evaluate the solution properly
HA-OSCAR (Haddad et al., 2003) No longer active
Kimberlite (Leangsuksun et al., 2004) No longer active
Linux FailSafe (Leangsuksun et al., 2004) No longer active
(Franke, 2011), and the objective was to select those HACs that
could respond to most of the questions positively. The set of
questions is listed in Table 8.

Step 6. Selection of the set of HAC solutions for the survey. We
elected all the HAC solutions that can support EAs and fulfil the
dditional criteria from the questions Q1–Q14 in Table 8, where
positive response for any of the ‘‘evaluation parameters’’ from
uestions Q1, Q2, Q9, Q10 and Q12 was deemed sufficient to con-
ider that a HAC solution met the criterion associated with that
uestion. The result of the HAC selection is presented in Table 10,
hich comprises 17 HAC solutions for which we obtained positive
esponses to all queries and products, while noting the following
xception:

• DR support (question Q6) for the following solution was
unclear or not available: ApplicationHA, Clusterware 12c,
Primecluster, RSF-1, SafeKit and WSFC.

or completeness, we also provide, in Table 9, a list of the six
AC solutions considered initially but eliminated in Step 3 of
ur selection approach. For each of these solutions, Table 9 also
rovides a summary of the reasons for its elimination from the
urvey.

.2. HAC analysis methodology

We used a hybrid methodology for the analysis of the 17 HAC
olutions from Table 10. As a first step, we created a comprehen-
ive spreadsheet and an online questionnaire covering our entire
AC taxonomy, which we used as a basis for the survey. In the
econd step, we populated the spreadsheet entries for 17 HACs
y analysing product documentation, technical white papers, case
tudies, books, and articles as a primary analysis method. We no-
iced several inconsistencies between the different materials for
he same edition and version of a HAC solution. To resolve these
nconsistencies, we crosschecked the results by using a diverse
et of materials (e.g., reference guides, technical manuals and
ocumentation) whenever inconsistencies were observed. Finally,
s a secondary method, we prepared an email that described
hat we were trying to achieve. We sent it to all the vendors of
elected HACs, particularly to the experts responsible for the HAC
roducts. After two weeks, we sent a reminder to those who did
ot reply to our original invitation; a second reminder was sent
fter an additional two weeks. After six weeks, we collected the
ata provided by the vendors and transferred it to a spreadsheet.
Despite assurance from multiple vendors, we managed to ob-

ain a response from only one vendor, High Availability for the
AC RSF-1. Subsequently, we transferred all collected data to the
preadsheet for conducting further analysis.

.3. HAC survey results

We used the taxonomy to establish the characteristics of the
7 end-to-end HAC solutions selected for the survey. The out-
ome of the survey is presented in Table 11, starting with general
nformation about each HAC solution (i.e., version and vendor)
n the second and third row. The remaining rows from the table
17
present the main results of the survey, organised in the same way
as our HAC taxonomy. The results are analysed in Section 4.4.

The surveyed HAC solutions usually consist of multiple edi-
tions with varying features, some of which are subject to addi-
tional licensing. Our survey covers only advanced editions that
include most of the features. As even advanced editions do not
support all the features when different operating systems and
platforms are considered, we provide details about the limitations
relating to the individual HACs where applicable (as footnotes at
the end of Table 11).

As discussed, a HAC vendor may enforce further constraints by
stating explicitly what version and edition of an EA are supported.
Likewise, an EA vendor may list what HACs are supported by
a particular EA version and edition. Many combinations of EA
version, database version, HAC version and edition, operating
system version, and platform make it challenging to crosscheck
every single combination. Therefore, only the relevant EAs and
databases are included in Table 11.

4.4. Analysis of the survey results

The distribution of the operating system and platform sup-
port for the surveyed HACs is shown in Fig. 13 grouped by the
operating system. Linux is the dominating operating system, and
15 solutions support Linux, out of which 12 support SUSE Linux
on an x86-based platform, seven support SUSE Linux on Power-
based platforms. Similarly, Red Hat Linux supports 13 HACs on
the x86 platform and seven on the Power platforms. Oracle Linux
is supported by 8 HAC solutions on x86 platforms, while only
two support it on the SPARC platform. Solaris operating system
is supported by seven HACs on the SPARC platform, while only
four support Solaris on the x86 platform. Seven solutions support
windows, and the platform is always x86. Five HACs support
AIX on power, and only two HACs support HP-UX on the IA64
platform. Lastly, the rare environment is the IBM i operating
system on the Power platform, which is only supported by one
HAC solution.

The surveyed HAC solutions can be divided into two groups.
The first group, comprising 14 of the 17 surveyed solutions,
comprises the HACs marked with a star ‘*’ in Table 12.

Each of these HACs functions as middleware, which means
that it creates an additional layer on the top of an operating
environment. The HACs from the second group, which comprises
the remaining three solutions, are tightly integrated with an
operating system and make use of the features that are offered
by an operating environment. The latter type of HAC functions as
part of an operating environment, operating in the kernel mode
and directly interacting with operating system functionalities.
While such features can make a HAC more efficient, they may
also create problems with modularity and portability, and that
is why, for example, such HAC solutions only support specific
operating systems. Furthermore, the lifecycle management of
such a HAC solution also becomes the operating system’s lifecycle
management. WSFC has already embraced this approach, and it
is entirely integrated with the Windows server operating system.

Major software and hardware vendors have their HAC solu-
tions. However, some of them are supported only by the oper-

ating environment and platform from the vendor. An example



P. Somasekaram, R. Calinescu and R. Buyya The Journal of Systems & Software 187 (2022) 111208

T
E

o

e

able 10
valuation of selected HAC solutions (X — Yes; N — No; ? — No information).

Question no Ap
pl
ic
at
io
nH

A

Cl
us

te
rw

ar
e

EX
PR

ES
SC

LU
ST

ER
X

In
fo
Sc

al
e
Av

ai
la
bi
lit
y

O
pe

nS
AF

Cl
us

te
rL
ab

s
st
ac
k

Po
w
er
H
A

Sy
st
em

M
ir
ro
r

PR
IM

EC
LU

ST
ER

Re
d

H
at

H
ig
h

Av
ai
la
bi
lit
y
Ad

d-
O
n

RS
F-
1

Sa
fe
Ki
t

Se
rv
ic
eg

ua
rd

SI
O
S
Pr
ot
ec

tio
n

Su
ite

So
la
ri
s
Cl
us

te
r

SU
SE

Li
nu

x
En

te
rp

ri
se

H
ig
h

Av
ai
la
bi
lit
y
Ex

te
ns

io
n

Ti
vo

li
Sy

st
em

Au
to
m
at
io
n

fo
r
M
ul
tip

la
tf
or
m
s
(S
A

M
P)

W
in
do

w
s
Se

rv
er

Fa
ilo

ve
r
Cl
us

te
ri
ng

(W
SF

C)

Q1 X X X X X X X X X X X X X X X X X
Q2 X X X X X X X X X X X X X X X X X
Q3 X X X X X X X X X X X X X X X X X
Q4 X X X X N N X X X X X X X X X X X
Q5 X X X X X X X X X X X X X X X X X
Q6 ? ? X X X X X ? X ? ? X X X X X ?
Q7 X X X X X X X X X X X X X X X X X
Q8 X X X X X X X X X X X X X X X X X
Q9 X X X X X X X X X X X X X X X X X
Q10 X X X X X X X X X X X X X X X X X
Q11 X X X X X X X X X X X X X X X X X
Q12 X X X X X X X X X X X X X X X X X
Q13 X X X X X X X X X X X X X X X X X
Q14 X X X X X X X X X X X X X X X X X
Fig. 13. Platform and operating system support of the surveyed high availability clusters (HACs) grouped by operating system.
s

p

f this is WFCS, which is only available on the Windows server

nterprise edition. On the other hand, some independent vendors
 H

18
pecialise in HAC products, and these vendors can support multi-

le operating systems and platform combinations. Typically, such

ACs belong to the middleware group.



P. Somasekaram, R. Calinescu and R. Buyya The Journal of Systems & Software 187 (2022) 111208

T
O

able 11
utcome of the survey.

Taxonomy Ap
pl
ic
at
io
nH

Aa

Cl
us

te
rw

ar
e

EX
PR

ES
SC

LU
ST

ER
X

In
fo
Sc

al
e
Av

ai
la
bi
lit
y

O
pe

nS
AF

Cl
us

te
rL
ab

s
st
ac
k

Po
w
er
H
A

Sy
st
em

M
ir
ro
ra

PR
IM

EC
LU

ST
ER

Re
d

H
at

H
ig
h

Av
ai
la
bi
lit
y
Ad

d-
O
n

RS
F-
1w

Sa
fe
Ki
t

Se
rv
ic
eg

ua
rd

SI
O
S
Pr
ot
ec

tio
n

Su
ite

So
la
ri
s
Cl
us

te
r

SU
SE

Li
nu

x
En

te
rp

ri
se

H
ig
h

Av
ai
la
bi
lit
y
Ex

te
ns

io
n

Ti
vo

li
Sy

st
em

Au
to
m
at
io
n

fo
r
M
ul
tip

la
tf
or
m
s
(S
A

M
P)

W
in
do

w
s
Se

rv
er

Fa
ilo

ve
r
Cl
us

te
ri
ng

(W
SF

C)

Version 6.
2

12
c

3.
3

7.
3.
1

5.
17

.0
7

2.
3.
2

7.
2.
1

4.
5

7.
0

3.
9.
10

7.
2

A.
12

.2
0x

9.
2

4 12 4.
1

20
16

Vendor Ve
ri
ta
s

O
ra
cl
e

N
EC

Ve
ri
ta
s

SA
Fo

ru
m

Cl
us

te
rL
ab

s

IB
M

Fu
jit
su

Re
d

ha
t

H
ig
h-

Av
ai
la
bi
lit
y

Ev
id
ia
n

H
PE

SI
O
S

O
ra
cl
e

Su
SE

IB
M

M
ic
ro
so

ft

A: Deployment
Patternsaa
OS and platform

AIX on Power Xa Xd NS X NS NS X NS NS NS NSv NS NS NS NS X NS
HP-UX on IA64 NS X NS NS NS NS NS NS NS NS NS X NS NS NS NS NS
IBM i on Power NS NS NS NS NS NS X NS NS NS NS NS NS NS NS NS NS
Oracle Linux on
SPARC

NS NS NS NS X?h X NS NS NS NS NS NS NS NS NS NS NS

Oracle Linux on
x86_64

Xa Xd X X X X NS NS NS X NS NS X NS NS NS NS

Red Hat Enterprise
Linux on Power

NS NS X NS X?h X X NS X X NS NS NS NS NS X NS

Red Hat Enterprise
Linux on x86_64

Xa X X X X X NS X X X X X X NS NS Xj NS

Solaris on SPARC Xa X NS X NS NS NS X NS X NS NS NS X NS X NS

Solaris on x86_64 NS X NS X NS NS NS NS NS X NS NS NS Xk NS NS NS

SUSE Linux
Enterprise Server
on Power

NS NS X NS X?h X X NS NS X NS NS NS NS X X NS

SUSE Linux
Enterprise Server
on x86_64

Xa X X X X X NS X NS X NSv X X NS X Xj NS

Windows Xa X X X NS NS NS NS NS NS X NS X NS NS NS X

Support for
virtualized
environments

X X X X X X X X X X X X X X X X X

Supported virtual
solutions (E —
Xen, H — Hyper-V,
K — KVM, O —
Others, V —
VMware)

E, H,
K, O,
V

O E, H,
V

H, K,
O, V

K, O,
V, X

E, H,
K, V

Oi K, O,
V

K ? H H, K,
V

E, H,
K, V

O E, K K, O,
V

H, V

Maximum number
of nodes per
cluster

? 64e 32 128 100 32 16 16 16 64 ? 16/32y 32 8/16z 32 32/
130n

64

(continued on next page)
19



P. Somasekaram, R. Calinescu and R. Buyya The Journal of Systems & Software 187 (2022) 111208

T
able 11 (continued).

Taxonomy Ap
pl
ic
at
io
nH

Aa

Cl
us

te
rw

ar
e

EX
PR

ES
SC

LU
ST

ER
X

In
fo
Sc

al
e
Av

ai
la
bi
lit
y

O
pe

nS
AF

Cl
us

te
rL
ab

s
st
ac
k

Po
w
er
H
A

Sy
st
em

M
ir
ro
ra

PR
IM

EC
LU

ST
ER

Re
d

H
at

H
ig
h

Av
ai
la
bi
lit
y
Ad

d-
O
n

RS
F-
1w

Sa
fe
Ki
t

Se
rv
ic
eg

ua
rd

SI
O
S
Pr
ot
ec

tio
n

Su
ite

So
la
ri
s
Cl
us

te
r

SU
SE

Li
nu

x
En

te
rp

ri
se

H
ig
h

Av
ai
la
bi
lit
y
Ex

te
ns

io
n

Ti
vo

li
Sy

st
em

Au
to
m
at
io
n

fo
r
M
ul
tip

la
tf
or
m
s
(S
A

M
P)

W
in
do

w
s
Se

rv
er

Fa
ilo

ve
r
Cl
us

te
ri
ng

(W
SF

C)

B: Application
Areas (EA
category, B —
Business-critical, T
— telecom
(carrier-grade))

B B B B T, B B B B B B B B B B B B B

C: Type of cluster

C.1: Local X X X X X X X X X X X X X X X X X

C.2: Campus X X X X X X X X X X X X X X X X X

C.3: Metro ? X X X x X X NS? X X? NS? X X X X x X

C.4: Continental ? NS? X X x X X NS? X NS NS? X X? X X x NS?

D: Topology

D.1: Symmetric

D.1.1:
Active–active

D.1.1.1:
Application-based

NS X Xg Xg Xg Xg Xg Xg Xg Xg Xg Xg Xg Xg Xg ? Xg

D.1.1.2:
Server-based

X X X X X? X X X X X X X X X X X X

D.1.2: N-to-N X? ? X X X X X? X? ? NS ? X? X X X ? X

D.2: Asymmetric

D.2.1:
Active–passive

X X X X X X X X X X X X X X X X X

D.2.2: N-to-1 X? ? X X X X X ? X X X X X X X ? NS

D.2.3: N+1 ? ? X X X X X? ? ? X ? X? X? X X ? NS?
D.2.4: N+M ? ? X X X X X? ? ? X X X? X? X X ? NS?

E: Cluster
management

E.1: Cluster data

E.1.1:
Configuration (D
— Disk or file
share, F — File, M
— memory)

D,F F F F F F D,F F F D,F F F D,F F F F F

E.1.2: Runtime (D
— Disk or file
share, F — File, M
— memory)

D, M? F, M? F, M? F, M? F, M? F, M D,F,M? F, M? F, M? D, M? F, M? F, M? D,M? F, M? F, M? F, M? F, M?

E.2:
Communication

E.2.1: Type

E.2.1.1: Heartbeat Xp X X X NS X X X X X X X X X X X X

E.2.1.1.1:
LAN-based

X X X X NS X X X X X X X X X X X X

(continued on next page)
20



P. Somasekaram, R. Calinescu and R. Buyya The Journal of Systems & Software 187 (2022) 111208

T
able 11 (continued).

Taxonomy Ap
pl
ic
at
io
nH

Aa

Cl
us

te
rw

ar
e

EX
PR

ES
SC

LU
ST

ER
X

In
fo
Sc

al
e
Av

ai
la
bi
lit
y

O
pe

nS
AF

Cl
us

te
rL
ab

s
st
ac
k

Po
w
er
H
A

Sy
st
em

M
ir
ro
ra

PR
IM

EC
LU

ST
ER

Re
d

H
at

H
ig
h

Av
ai
la
bi
lit
y
Ad

d-
O
n

RS
F-
1w

Sa
fe
Ki
t

Se
rv
ic
eg

ua
rd

SI
O
S
Pr
ot
ec

tio
n

Su
ite

So
la
ri
s
Cl
us

te
r

SU
SE

Li
nu

x
En

te
rp

ri
se

H
ig
h

Av
ai
la
bi
lit
y
Ex

te
ns

io
n

Ti
vo

li
Sy

st
em

Au
to
m
at
io
n

fo
r
M
ul
tip

la
tf
or
m
s
(S
A

M
P)

W
in
do

w
s
Se

rv
er

Fa
ilo

ve
r
Cl
us

te
ri
ng

(W
SF

C)

E.2.1.1.2:
Disk-based

? NS X NS NS NS X NS NS X NS NS? NS? X NS X NS?

E.2.1.2: Node

E.2.1.2.1:User
interface

X X X X X X X X X X X X X X X X X

E.2.1.2.2: Resource
management

E.2.1.2.2.1: Agent X X X X X X X X X X X X X X X NS NS

E.2.1.2.2.2: Base
resource

X X X X X X X X X X X X X X X X X

E.2.1.3: Cluster

E.2.1.3.1:
Configuration

X X X X X X X X X X X X X X X X X

E.2.1.3.2: Runtime X X X X X X X X X X X X X X X X X

E.2.2: Method

E.2.2.1: Multicast X? X ? NS? X X X ? X X NS? X NS? X X ? X?

E.2.2.1.1: Atomic ? ? ? NS? X X ? ? X ? ? ? ? ? X ? ?

E.2.2.1.2: Virtual
synchrony

NS NS NS NS ? X NS NS X NS NS NS NS NS X NS NS

E.2.2.2: Broadcast ? ? ? X X X X X X ? X X X X X X X

E.2.2.3: Unicast ? ? ? X X X X ? X X X X ? ? X ? ?

E.2.2.4: IP socket NS NS NS NS NS NS NS NS NS X NS NS X NS NS NS NS

E.3: Resource
management

E.3.1: Type

E.3.1.1: Base
resource

X X X X X X X X X X X X X X X X X

E.3.1.2:
Application

X X X X x X X X X X X X X X X X x

E.3.1.2.1:
Agent-based

X X X X X X X X X X X X X X X NS NS

E.3.1.2.1.1:
Application (C —
Siebel CRM, O —
Oracle, S — SAP, T
— Others W —
WebSphere)

C, S, T C, O,
S, T

S, T,
W

O, S Tl O, S O, S, T,
W

S, T O, S,
W

O, S,
T

T O, S S, W C, O,
S, W

O, S,
W

S C, O,
S, T,
Wo

E.3.1.2.1.2:
Database (A — SAP
ASE, D — DB2, H
— HANA, I —
Informix, M —
MySQL, O —
Oracle, P —
PostgreSQL, S —
SQL Server, T —
Teradata)

D, M,
O, S

M, O A, D,
H, M,
O, P,
S

A, D,
H, O,
S

Ml D, M,
O, P

D, H, O O A, D,
M, O,
P

A, D,
I, M,
O, P

O, M,
P, S

A, D,
H, O,
P

A, D,
I, M,
O, P,
S

A, M,
P, O

D, H,
I, M,
O, P

D, H,
O

A, D,
M, O,
P, So

(continued on next page)
21



P. Somasekaram, R. Calinescu and R. Buyya The Journal of Systems & Software 187 (2022) 111208

T
able 11 (continued).

Taxonomy Ap
pl
ic
at
io
nH

Aa

Cl
us

te
rw

ar
e

EX
PR

ES
SC

LU
ST

ER
X

In
fo
Sc

al
e
Av

ai
la
bi
lit
y

O
pe

nS
AF

Cl
us

te
rL
ab

s
st
ac
k

Po
w
er
H
A

Sy
st
em

M
ir
ro
ra

PR
IM

EC
LU

ST
ER

Re
d

H
at

H
ig
h

Av
ai
la
bi
lit
y
Ad

d-
O
n

RS
F-
1w

Sa
fe
Ki
t

Se
rv
ic
eg

ua
rd

SI
O
S
Pr
ot
ec

tio
n

Su
ite

So
la
ri
s
Cl
us

te
r

SU
SE

Li
nu

x
En

te
rp

ri
se

H
ig
h

Av
ai
la
bi
lit
y
Ex

te
ns

io
n

Ti
vo

li
Sy

st
em

Au
to
m
at
io
n

fo
r
M
ul
tip

la
tf
or
m
s
(S
A

M
P)

W
in
do

w
s
Se

rv
er

Fa
ilo

ve
r
Cl
us

te
ri
ng

(W
SF

C)

E.3.2: Method

E.3.2.1:
Policy-based

X X X X X X X X X NS X X X X X X X

E.3.2.2: Rule-based ? ? ? ? ? X ? ? ? X ? ? ? ? ? ? X?

F: Failure
detection and
recovery

F.1: Monitoring X X X X X X X X X X X X X X X X X

F.1.1: Area

F.1.1.1: Server X X X X X X X X X X X X X X X X X

F.1.1.2: Cluster X X X X X X X X X X X X X X X X X

F.1.1.3: Application X X X X X X X X X X X X X X X X Xh

F.1.2: Type

F.1.2.1:
State-based

X X X X X X X X X X X X X X X X X

F.1.2.2:
Threshold-based

? X X X X NS? NS? X NS X NS? ? X ? NS? NS? X

F.1.3: Method

F.1.3.1: Poll X X X X X X X X X X X X X X X X X

F.1.3.2: Push NS NS ? NS ? NS ? ? NS? NS NS ? NS? NS NS NS? ?

F.1.3.3:
Event-based

Xb NS? NS? X ? NS NS X NS NS NS NS NS NS NS NS NS

F.2: Failover

F.2.1: Reactive X X X X X X X X X X X X X X X X X

F.2.2: Proactive NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS

F.3: Recovery level

F.3.1: Resource X X X X X X X X X ? ? X X X X X X

F.3.2: Group X X X X X X X X X ? X X X X X X X

F.3.3: Node X X? X X X X X X X X X X X X X X X

F.4: Prediction NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS

F.5: Simulation NS? X X X X X X NS? X NS NS? X NS? NS? X X NS?

G: Consistency
and integrity

G.1: Cluster lock NS ? X NS X NS NS X X ? ? X X NS NS X NS

G.2: Quorum ? X NS X NS X X Xt X NS NS X X X X X X

G.2.1: Device
realisation

G.2.1.1: Server ? NS NS X NS X NS X X NS NS X X X X X X

G.2.1.2: Disk ? X NS NS NS NS? X NS X NS NS NS NS X X X X

G.2.1.3: File share NS NS NS NS NS NS Xu NS NS NS NS NS NS X NS X X

G.2.2: Mode

G.2.2.1: Server ? NS NS X NS X NS X X NS NS X X X X X X

(continued on next page)
22



P. Somasekaram, R. Calinescu and R. Buyya The Journal of Systems & Software 187 (2022) 111208

T
able 11 (continued).

Taxonomy Ap
pl
ic
at
io
nH

Aa

Cl
us

te
rw

ar
e

EX
PR

ES
SC

LU
ST

ER
X

In
fo
Sc

al
e
Av

ai
la
bi
lit
y

O
pe

nS
AF

Cl
us

te
rL
ab

s
st
ac
k

Po
w
er
H
A

Sy
st
em

M
ir
ro
ra

PR
IM

EC
LU

ST
ER

Re
d

H
at

H
ig
h

Av
ai
la
bi
lit
y
Ad

d-
O
n

RS
F-
1w

Sa
fe
Ki
t

Se
rv
ic
eg

ua
rd

SI
O
S
Pr
ot
ec

tio
n

Su
ite

So
la
ri
s
Cl
us

te
r

SU
SE

Li
nu

x
En

te
rp

ri
se

H
ig
h

Av
ai
la
bi
lit
y
Ex

te
ns

io
n

Ti
vo

li
Sy

st
em

Au
to
m
at
io
n

fo
r
M
ul
tip

la
tf
or
m
s
(S
A

M
P)

W
in
do

w
s
Se

rv
er

Fa
ilo

ve
r
Cl
us

te
ri
ng

(W
SF

C)

G.2.2.2: Node NS NS NS ? NS ? ? ? ? NS NS ? ? ? ? ? X

G.2.2.3: Disk ? X NS NS NS NS? X NS X NS NS NS NS X X X X

G.2.2.4: File share NS NS NS NS NS NS X NS NS NS NS NS NS X NS X X

G.3: Dynamic
quorum

? ? NS X NS X X X X NS NS X ? X X X X

G.4: Isolation

G.4.1: Fencing NS X NS X NS X X X X X NS X X X X ? NS

G.4.1.1: Resource NS NS? NS X NS X X X X X NS X X X X ? NS?

G.4.1.2: Node NS X NS X NS X ? ? X X Xs ? X ? X ? NS

G.4.2: Shutdown NS X X NS X xm X X X X NS X X X? NS? X NS

H: Data
synchronisation

H.1: Shared
storage

X X X X X X X X X X ? X X X X X X

H.2:
Shared-nothing

X X X X X X X X X X X X X X X X X

H.2.1: Replication X X x X X X X X X X X X X X X X x

H.2.1.1: Type

H.2.1.1.1:
Application-based

Xf Xf Xf Xf ? Xf Xf Xf Xf Xf Xf Xf Xf Xf Xf Xf Xf

H.2.1.1.2:
Array-based

x x x x x x x x x ? ? x x x x ? x

H.2.1.1.3:
Cluster-based

NS NS X NS NS NS NS NS NS NS X NS Xr NS NS NS NS

H.2.1.1.4:
Host-based

xq x x X x X X X X ? NS X X X X ? x

H.2.1.2: Method

H.2.1.2.1:
Synchronous

X X X X X X X X X ? X X X X X X X

H.2.1.2.2:
Asynchronous

X X X X X X X X X ? X X X X X X X

(continued on next page)
23



P. Somasekaram, R. Calinescu and R. Buyya The Journal of Systems & Software 187 (2022) 111208

T

K
a
N
N
b
a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

v

w

x

y

z

a

able 11 (continued).

Taxonomy Ap
pl
ic
at
io
nH

Aa

Cl
us

te
rw

ar
e

EX
PR

ES
SC

LU
ST

ER
X

In
fo
Sc

al
e
Av

ai
la
bi
lit
y

O
pe

nS
AF

Cl
us

te
rL
ab

s
st
ac
k

Po
w
er
H
A

Sy
st
em

M
ir
ro
ra

PR
IM

EC
LU

ST
ER

Re
d

H
at

H
ig
h

Av
ai
la
bi
lit
y
Ad

d-
O
n

RS
F-
1w

Sa
fe
Ki
t

Se
rv
ic
eg

ua
rd

SI
O
S
Pr
ot
ec

tio
n

Su
ite

So
la
ri
s
Cl
us

te
r

SU
SE

Li
nu

x
En

te
rp

ri
se

H
ig
h

Av
ai
la
bi
lit
y
Ex

te
ns

io
n

Ti
vo

li
Sy

st
em

Au
to
m
at
io
n

fo
r
M
ul
tip

la
tf
or
m
s
(S
A

M
P)

W
in
do

w
s
Se

rv
er

Fa
ilo

ve
r
Cl
us

te
ri
ng

(W
SF

C)

H.2.2: Mirroring x x x x ? x x x x x x x x x x ? x

H.2.2.1:
Synchronous

x x x x ? x x x x x x x x x x ? x

H.2.2.2:
Asynchronous

x x x x ? x x x x x x x x x x ? x

ey: ? — No information; X — Supported; NS — Not supported; X? — Supported (not explicitly stated in the documentation, but this interpretation has been made by
nalysing the documentation); x — Supported together with additional components, and an example is replication support by the operating system volume manager;
S? — Not supported (not explicitly stated in the documentation, but this interpretation has been made by analysing the documentation.
ote: Although the operating system version is not stated, it is the most recent version at the time this survey was carried out (The survey was conducted mainly
etween October 2018 and June 2019. The survey was updated during July 2021, September 2021 and then October 2021).
Supported only on virtualized environments.
Intelligent monitoring framework.
Replication or mirroring support by additional tools is included.
Supported on both virtual and physical environments.
64 nodes are supported for the hub, while leaf nodes can support many more.
Replication is provided natively by an application, but a HAC must support the feature.
If an application supports parallel deployments.
OpenSAF provides a generic development package; it can be ported to other UNIX and Linux flavours.
LPARs: 2 logical partitions (LPARs) on IBM PowerVM.
Supported on System x hardware that is based on the x86 platform.
Supported only on Oracle s x86 platforms.
The implementer can develop application support.
Fencing by STONITH (Shoot the Other Node in the Head).
The maximum number of nodes on Linux is 32, and, for AIX, it is 130.
Application vendors provide application support for WSFC.
Usually, guest heartbeat is passed to a host.
Replication features of a virtual machine can also be used.
Replication feature is provided by the product DataKeeper, which is part of the SIOS Protection Suite.
Fencing as a concept is not employed, but, instead, the node with the problem is put into a waiting state.
The solution uses a quorum technique called cluster integrity.
Implies repository disk.
Supported by SafeKit 7.1.3.
The vendor provided most details.
Version for Linux. Current version for HP-UX is A.11.20.
The maximum number of supported nodes for Linux is 32, while for HP-UX, it is 16.
The maximum number of supported nodes on Solaris on x86 is 8, and Solaris on SPARC supports 16.
aNone of the surveyed HACs support container-based technologies.
24



P. Somasekaram, R. Calinescu and R. Buyya The Journal of Systems & Software 187 (2022) 111208

T
T

able 12
he surveyed HACs, versions and vendors.
Surveyed HAC Vendor Surveyed HAC Vendor

ApplicationHA 6.2a Veritas RSF-1 3.9.10a High-Availability
ClusterLabs stack 2.3.2a ClusterLabs SafeKit 7.2a Evidian
Clusterware 12ca Oracle Serviceguard A.12.20a HPE
EXPRESSCLUSTER X 3.3a NEC SIOS Protection Suite 9.2a SIOS
InfoScale Availability 7.3.1a Veritas Solaris Cluster 4 Oracle
OpenSAF 5.17.07a SA Forum SUSE Linux Enterprise High Availability Extension 12a SUSE
PowerHA SystemMirror 7.2.1 IBM Tivoli System Automation for Multiplatforms (SA MP) 4.1a IBM
PRIMECLUSTER 4.5a Fujitsu Windows Server Failover Clustering (WSFC) 2016 Microsoft
Red Hat High Availability Add-On 7.0a Red hat

aSolution that functions as middleware.
Cloud deployment has also come to play an important role.
In the early days of cloud computing, a separate development
of HAC was considered. This led to the development of specific
HAC solutions, such as ApplicationHA by Veritas and vSphere
App HA by VMware. However, a better approach is to port exist-
ing solutions to the cloud environment, which made developing
cloud-specific HAC solutions unnecessary. An such, solutions like
App HA by VMware were discontinued. However, HACs in the
public cloud comes with limitations. For example, using shared
storage is a challenge. On the other hand, this has contributed
to developing enhancements to enable deploying HACs in the
cloud. One such enhancement is the so-called storage-less or SAN-
less HAC, which allows HACs to operate without shared storage.
Moreover, the transition to cloud services models, such as SaaS,
PaaS, and IaaS, changes the way HACs are deployed and managed.
Likewise, roles and responsibilities for managing a HAC with the
different service models also change.

Furthermore, the introduction of multi-clouds can also compli-
cate a HAC deployment, not least from a roles and responsibilities
perspective. Somasekaram highlights the issues with roles and
responsibilities of HA and DR solutions in the context of out-
sourcing (Somasekaram, 2017). He argues that the issues are valid
even for the cloud environment because the cloud is regarded
as outsourcing, and cloud providers are usually responsible for
multiple layers (e.g., network and storage). At the same time,
other suppliers manage the rest of the layers.

Similar to the challenges described for the deployment envi-
ronment public cloud and host virtual, the emerging deployment
environments fog and edge also face challenges (Singh et al.,
2021; Yousefpour et al., 2019). When used with the host vir-
tual, the challenges are the same as the public cloud. On the
other hand, when the host container is used in all deployment
environments, ensuring high availability for stateful applications
hosted in containers becomes a challenge. Containers run as a
process in user space, and this may restrict the implementation of
HAC features that require running in kernel space (Ramos et al.,
2021). Moreover, containers typically support a single application
or a service in a container which means a HAC cannot deploy
agents in the same container to manage the application resources
(Veritas Technologies LLC, 2020b). To overcome this limitation,
the commonly implemented container orchestration system Ku-
bernetes provides a sidecar option (i.e., a separate container),
which enables deployments of HAC-related components there.
The sidecar container runs along with the container that hosts
the application. Using this approach, commercial vendors started
proving HACs for containers. InfoScale availability (formerly Clus-
ter Server—VCS) for containers from Veritas is one such HAC for
Kubernetes. This HAC provides monitoring, integrated I/O fencing,
arbitration and shared storage using a Container Storage Interface
(CSI) plugin (Veritas Technologies LLC, 2020b) to ensure that the
HAC can deliver HA for the application. The solution requires at
least two private networks to enable cluster communication and
25
one public network to facilitate heartbeat communication. There
are also research projects that explore the use of existing HACs
such as Pacemaker/Corosync (Vayghan et al., 2019) and OpenSAF
(Alahmad et al., 2018) to support container-based applications.

Latency over long distances has traditionally been a major
problem for HACs. However, the technology has evolved and
techniques are currently available to reduce latency considerably,
enabling the setting up of HACs across substantial distances.
Atomic broadcast and multicast (total order messaging) are often
associated with fault-tolerance in distributed systems; hence,
there are persuasive arguments to employ it even for HAC com-
munication (Service Availability Forum, 2011). However, it is only
employed by some of the HACs today.

On the whole, prediction is absent from the surveyed HAC solu-
tions. Most solutions employ a poll-based monitoring mechanism
that is often state-based, meaning that only the states of the
resources are monitored. Moving towards industry-standards has
also been observed in some areas, such as when using the IPMI
to shut down nodes as part of isolating a problematical node. The
SCSI-3 interface is widely employed to isolate on a resource level,
and often as part of fencing. The quorum concept is commonly
employed so that a cluster can take action upon a situation that
leads to the partitioning of a cluster.

In conclusion, the current HAC solutions for EAs are dominated
by commercial vendors (15 out of the 17 surveyed solutions).
This is unsurprising because customers look for HAC solutions for
their business-critical applications, and, as such, proper support
is paramount. However, this also means that the vendors conduct
most of the research. There are, however, some open-source
initiatives, and two active initiatives are OpenSAF and ClusterLabs
stack (Pacemaker/Corosync). The open-source initiatives often
focus on Linux, and there have been different projects to develop
a consistent HAC solution for Linux. While such efforts have been
split into other projects or discontinued, some of the components
are still active, and the current open-source cluster solutions are
a combination of various initiatives. The main components of the
current setup of the ClusterLabs stack are Corosync, Pacemaker,
DRBD, STONITH, and a diverse range of application agents, which
are packaged under a ClusterLabs stack. OpenAIS was an initiative
to support implementing Application Interface Specification (AIS)
developed by the Service Availability Forum (SA Forum), and
Corosync originated from that initiative. Pacemaker is a cluster
resource manager (CRM) tool that originates from the Linux-HA
project.

Application agents follow the standard API established by
the Open Cluster Framework (OCF), which helps standardise
the application resource management. Both SuSe Linux Enter-
prise HA Extension and Red Hat Enterprise Linux HA add-on use
Pacemaker, Corosync, the OCF concept and many other open-
source components. OpenSAF, on the other hand, focuses on the
telecommunications sector, where there is a need to support
very high availability for carrier-grade servers that operate in
the telecommunication infrastructure. However, there have been



P. Somasekaram, R. Calinescu and R. Buyya The Journal of Systems & Software 187 (2022) 111208

i
a
a
t
i
h
h
n
r
s
a
t
e

5

t
a
c
e
H
o

5

j
L

L
p
m
a
d
d
c
a
h
t
s

L
g
t
i
h
H
i
H
2
i
r
r
(
a
s
i
d
v
I
V
s
s
t
c
o

nitiatives to deploy OpenSAF in a range of environments, such
s the cloud. For example, Kanso and Lemieux (2013) proposed
n OpenSAF based deployment in the cloud, but it too focuses on
elecom applications. The challenge with open-source initiatives
s to secure proper support, which is crucial for EAs. On the other
and, Red Hat and SuSe provide such support even though they
ave developed their HACs using mainly open-source compo-
ents. It must be noted that there have been several projects
elated to the development of HACs, both commercial and open-
ource, over the years. However, many of them are no longer
ctive, and examples include FailSafe by Silicon Graphics (SG) in
he commercial area, while HA-OSCAR represents an open-source
quivalent.

. Future directions

We have identified several limitations, challenges and oppor-
unities as part of constructing the HAC taxonomy from Section 3
nd conducting the survey from Section 4. The limitations and
hallenges are from an implementation perspective and an op-
rations viewpoint, while opportunities can improve the overall
AC solutions. Using the identified limitations, challenges and
pportunities, we discuss future research directions.

.1. Limitations

The HAC limitations presented in this section apply to a ma-
ority of the HAC solutions that we have studied, with limitations
1, L5, and L7 common for all solutions.

1. Standardisation. Standardisation of the HA domain, its com-
onents, and related processes is missing. For example, the ter-
inology used by HAC solutions differs considerably. Standardis-
tion could improve research approaches and could enable better
iscussions and research quality. Furthermore, the lack of stan-
ardisation makes it challenging to develop standard APIs that
an function with multiple solutions to support specific function-
lities, for instance, application-specific agent development. We
ave addressed this lack of standard terminology using consistent
erminology while constructing the taxonomy and performing the
ubsequent survey.

2. Virtual environments. The separation between host and
uest in virtualised environments complicates some of the func-
ionalities of HACs, such as coordinated monitoring of two operat-
ng environments, guest and host, which must be correlated when
osting a critical application. If such a setup is not in place, a guest
AC may not be aware of the host at all. If there are problems
n the host which impact all the guests hosted there, the guest
AC may not be able to recognise the problems (Loveland et al.,
008), which could potentially impact the application. Likewise,
f the guest application experiences problems, the host may not
eact since it is unaware of any issues except when hardware
esource utilisation significantly increases. Kanso and Lemieux
2013) highlighted the problem with a guest HAC that is not
ware of the host environment. Some HAC solutions promote a
olution by running additional components on the host that also
nteract with the guest HAC. However, there is no uniformity for
eploying such components because they may differ based on the
irtual environment, such as VMWare or kernel-based VM (KVM).
n KVM, additional tools are typically required on the host, while
Mware comes with a set of accessories that can be used instead
o that no additional means are required. Some HAC solutions,
uch as ApplicationHA on KVM, employ a separate HAC installa-
ion on a host machine. For example, ApplicationHA on the guest
an interact with the host HAC. This setup can support monitoring
f the host and enable the use of features that are not otherwise
26
available in the guest environment due to restrictions. However,
a heterogeneous virtual environment with different operating
environments for hosts and guests may also complicate the cross-
deployment of a HAC as each operating system, platform, and
virtual environment comes with restrictions.

L3. Cloud environment limitations. Both private and public
clouds come with limitations. In such a cloud environment, par-
ticularly in an IaaS model, customers have access to a guest
environment (e.g., VMs). To support an EA, a HAC will require
access to some host elements well. In addition, the host envi-
ronment must be monitored as well as part of a holistic HAC
approach, which may mean deploying additional tools, as de-
scribed in L2, on the host. The limitations of a cloud environment
may require changes in the architecture of the HAC, hence also
the protected application (Nabi et al., 2016).

L4. Public cloud limitations. In addition to what is described in
L2 and L3, the public cloud has some additional infrastructure-
related restrictions, which are usually different from those of
a private cloud. For example, shared storage is not typically
supported (Amazon Web Services Inc, 2016). Hence any shared-
storage-based HAC must find an alternative solution that implies
that shared-disk-based quorums cannot be employed. Further,
there could be additional restrictions impacting the core func-
tionality of a HAC, such as multicast or broadcast communication
not being allowed (AmazonWeb Services Inc, 2016), which would
impact the HAC’s ability to communicate. Again, this means alter-
native solutions must be identified and implemented by adding
new tools and procedures, which may, in turn, add more com-
plexity to a solution. Moreover, if an application is deployed in
a virtual environment, additional restrictions, described in L2,
apply. For instance, the deployment of additional HAC tools on
a host, as explained in L2, is usually not possible as hosts are
managed entirely by cloud providers in such settings (L3).

L5. Rating of errors. Often a severity rating is not used for
errors on a resource level, which means that all errors are treated
equally. Adding severity levels would help distinguish between
the different types of errors and by the different modules of
HACs (e.g., monitoring, failure management) so that actions can
be taken accordingly. In addition, multilevel severity would help
to improve the recovery process so that, in some cases, errors
can be disregarded, indicating that such errors do not result in
a complete failover.

L6. Standardisation of error, failure, and event message repre-
sentation. The current approach is very much individualised to
different HAC solutions, implying no standard structure for log
messages. This makes it hard to develop a general solution to
analyse log messages (e.g., for analytical purposes). Furthermore,
several modules of a HAC (e.g., monitoring, failure management)
may write the same error messages with the same timestamp
when a resource fails, making it challenging to mine the log for
distinct error messages. Moreover, log sources can also vary as
some HAC solutions may employ more than one log source. The
difference presents a challenge in mining data from log sources,
as it will require one or more data extraction interfaces for each
HAC solution.

L7. Rating of resource and resource group dependencies. Re-
source and resource group dependencies are not always rated,
which means that the same failover and recovery policies are
applied to all dependencies, regardless of the strength of the
dependencies. The dependency rating describes how the failure
of a resource can impact another resource through a dependency



P. Somasekaram, R. Calinescu and R. Buyya The Journal of Systems & Software 187 (2022) 111208

c
m

L
H
c
t
w
a
t
u
f
i
w
a
f

5

c
t
s

C
a
t
i
o
d
o
e
w
M
c
a
u
T
t
r
f
a

C

m
w
v
a

C
f
i
s
d
n
i
s
c
s
a

onnection and on what level, which can ultimately influence the
itigation action.

8. Application monitoring. Even though many of the current
AC solutions employ application monitoring, application-spe-
ific errors (e.g., hang situations), are not usually captured. Fur-
hermore, application-related errors are often difficult to monitor
ith a HAC. This may require additional modules and steps, such
s logging in to an application, to detect such failure. Hence,
he current situation is that an application may be completely
nresponsive, yet it is still regarded as running by a HAC. There-
ore, such errors do not trigger any action until the problem
s reported by the users of the application. Consequently, this
ill also result in incorrect values for MTTR and MTBF since no
ccurate time of failure is available, thus providing unreliable
igures for availability.

.2. Challenges

Challenges are associated with functionalities or features that
an be implemented to improve the effectiveness of HACs, but
hat are difficult to realise due to limitations and other con-
traints.

1. Roles and responsibilities. HACs work closely with oper-
ting environments and infrastructure components to provide
he required HAC functionalities, such as heartbeat, monitor-
ng, fencing, and quorum. While the roles and responsibilities
f the experts in charge of setting up a HAC change with the
ifferent cloud service models (Vacca, 2016), it is unlikely that
ne team can manage a complete HAC implementation and op-
rations. Instead, multiple teams and even organisations must
ork together to support HAC implementation and operations.
oreover, a heterogeneous virtual environment further compli-
ates the setup because at least two operating systems will be
ssociated with host and guest, which means different teams are
sually designated to support the host and guest environments.
his means that there must be a support process that links all
he different teams together according to a well-defined roles and
esponsibilities matrix. Moreover, the related support processes,
or instance, change and incident management, must be designed
ccordingly.

2. Lifecycle management. The combination of many application
agents, HAC components, VMs, operating systems, and platforms
complicates the lifecycle management of HACs. While having a
standard across architecture components (including agents) can
reduce the number of combinations, this is extremely difficult to
achieve. In particular, in virtual environments, lifecycle manage-
ment must take into account other elements, such as host and
guest operating environments on various VMs, which adds fur-
ther complexity, as described in L2. The number of combinations
ay prompt more threads of lifecycle management. For example,
hen an EA vendor releases an update to the application, a HAC
endor must also make sure to release an update of the HAC or
gent to support the changes in the application.

3. Client-state synchronisation. Client-state synchronisation
or EAs is a difficulty. However, if achieved by a HAC, it can
mprove availability significantly because it can transfer user
essions in the event of a failover, which means that no user
ata is lost. When a failover takes place, all user input that is
ot saved is lost. When the failover is complete, users can log
n again to establish new sessions and start their work from
cratch. If an EA supports thousands of users, this means losing
ountless hours of work. On the other hand, if a client-state
ynchronisation can be achieved, it will preserve all connections
nd sessions, saving considerable time. It is also likely that, with
27
faster failovers using client-state synchronisation, users will not
even notice that a failover has taken place. Instead, they will be
able to continue working as if nothing has happened. However,
state synchronisation for an EA is a significant challenge because
it requires replicating user connections, user sessions, user con-
text, session context, user work, and global and local variables.
While solutions with a limited scope, such as a firewall, widely
employ client-state synchronisation, these are difficult to adopt
for the much more complex settings of EAs. Since the problem is
about preserving user sessions and related data, in many cases,
an applications server layer may also need to be synchronised,
as they are the front-ends for user communication in a multi-
tier system. Furthermore, applications with a sizable workload
require substantial time to stop and start application components
in a specific order. Some portion of that time is consumed on
ending user sessions gracefully during the stop and establishing
non-user (e.g., batch) sessions at the start. However, client-state
synchronisation may reduce that time significantly since user
data would be already synchronised across the HAC members.

5.3. Opportunities

We have identified a set of opportunities that can improve
HAC solutions considerably, typically by overcoming HAC limita-
tions from Section 5.1. For instance, introducing probabilistic and
statistical methods as detailed in opportunity O5 below requires
that ratings of errors and dependencies are in place. Hence, the
exploitation of opportunity O5 requires solutions to limitations
L5 and L7.
O1. Architecture components. HAC solutions employ different
architecture components, and therefore having a standard and
modular architecture will help standardise these components.
This assumes that such an architecture will consist of standard
modules, and that a HAC solution can choose to implement only
a subset of modules, but it can always refer such modules to the
standard modules. A set of specifications can support defining the
roles of the modules and even provide means to develop inter-
faces (e.g., APIs). Solutions that are developed using the APIs can
potentially be used with multiple HAC solutions. Moreover, the
approach would aid in simplifying and interpreting architecture
components while enabling the development of approaches for
new and emerging technologies (e.g., containerisation), standard
testing, and benchmarking.

O2. Evaluation of historical data. HACs produce a large volume
of data, and such data can be invaluable when analysing past
events and mitigations. These data are generated mainly through
logging of events, failures, recoveries, and failovers. Historical
data, together with current data, can be analysed to identify pat-
terns, enabling proactive approaches to ensuring high availability.
Therefore, evaluation of past data and current data can be used to
predict failures of a repeating nature and other related failures.

O3. Reliable cluster communication protocols. The reliability
of cluster communication can be increased significantly by em-
ploying protocols with atomic features such as TOTEM (Dake
et al., 2008). These features are only supported by a few HAC
solutions today. Employing a standard protocol will also enhance
development in the areas, as more people can be involved in the
development, which means that issues can be addressed quickly.

O4. Monitoring. Most HAC solutions use a poll-based monitor-
ing method, which is linked to performance problems (Veritas
Technologies LLC, 2017a). If the polling frequency increases, it
will improve the monitoring data quality because more up-to-
date data will then be available. However, there is an addi-
tional overhead associated with frequent polling of many re-
sources, which could be resource-demanding. Furthermore, de-
tecting application-specific errors might also present some chal-
lenges as described in L8. The monitoring functionality of a HAC



P. Somasekaram, R. Calinescu and R. Buyya The Journal of Systems & Software 187 (2022) 111208

m
s
v
q
m
t
e
o
r
b

O
m
f
c
m
a
p
m
s
m

O
t
p
l
t
p
s
p
f

O
m
m
c

O
t
t
t
a
m
a
n
M
t
a
a

6

a
t
o
T
H
n
i
t
t
f
c
S
t
e
H
d
e

C

I
D
–
C
V
S
d

D

c
t

R

A

A

A

A

A

B

B

B

B

B

B

B

B

C

C

C

C

C

C

ay not detect such cases since HACs often focus on monitoring
tate changes of a resource or a resource group. Therefore, rele-
ant monitoring models should be evaluated to improve the data
uality while reducing the performance overhead. The current
onitoring type is mostly state-based. However, a different op-

ion might be to use a standard API to interact with the operating
nvironments so that the enhanced monitoring features of the
perating systems can be utilised. Though this approach may still
equire an application-specific development, it can be simplified
y using standard APIs, as discussed in L1 and O1.

5. Incorporation of probabilistic and statistical methods. Such
ethods are not employed currently, but they can improve ef-

ectiveness significantly and reduce downtime by analysing data,
hecking behaviours and providing predictions. In addition, such
ethods will also improve the quality of the service for HACs
nd their components, in general, and promote a more robust
roactive approach than currently employed by mostly reactive
echanisms. One example of such an improvement is introducing
tatistical analysis to enable the management of quorum services
ore intelligently.

6. Analytical services. Analytical services will help identify pat-
erns in the behaviour of HACs and their components while also
roviding a consolidated view of total downtime and causes. Ana-
ytical services can also incorporate data from multiple sources so
hat data can be combined to provide reliable analysis and even
roduce predictions on potential failures. An example is that if
ome HAC components manifest intermittent failures before com-
lete failure, patterns can be analysed to estimate the subsequent
ailure or an eventual complete failure.

7. Benchmark. A standard benchmarking approach that can
easure availability at a granular level will improve the perfor-
ance measurements of HACs, while also enabling more a natural
omparison between different solutions.

8. Security. HAC security is a rarely concern. However, unau-
horised access to the services of a HAC means effectively that
he protected application is also jeopardised because a HAC has
ypically complete control of the operations of the protected
pplication. Security is of particular concern in cloud environ-
ents with shared responsibilities (C1), since multiple teams
ssume responsibility for the different layers, which may present
ew vulnerabilities without a proper security model in place.
oreover, operating a HAC solution in a public cloud may also in-

roduce new vulnerabilities (Chow et al., 2009), mainly when new
nd alternative solutions must be introduced due to restrictions,
s described in L4.

. Conclusions

In this article, we presented a comprehensive taxonomy and
two-part survey of high-availability clusters. The first part of

he survey, delivered while describing the elements of the tax-
nomy, provides an overview of the HAC research landscape.
he second part employs the taxonomy to survey end-to-end
AC solutions developed to support enterprise applications. Fi-
ally, we detailed HAC limitations, challenges and opportunities
dentified while constructing the taxonomy and conducting the
wo-part survey. Using these, we discuss future research direc-
ions for high-availability clusters. In particular, an adaption of
ully functional HACs for cloud-deployed enterprise applications
an significantly improve the availability of these applications.
imilarly, exploiting historical data through the use of probabilis-
ic approaches to predicting future failures and other relevant
vents can improve the effectiveness of HACs. Last but not least,
AC support for client-state synchronisation has the potential to
eliver zero downtime for an important range of failures affecting
nterprise applications.
28
RediT authorship contribution statement

Premathas Somasekaram: Conceptualization, Methodology,
nvestigation, Survey construction, Communication with vendors,
ata collection for survey, Survey analysis, Visualisation, Writing
original draft, Writing – review & editing. Radu Calinescu:

onceptualization, Methodology, Investigation, Survey analysis,
isualisation, Writing – original draft, Writing – review & editing,
upervision. Rajkumar Buyya: Survey analysis, Writing – original
raft, Writing – review & editing, Visualisation.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

eferences

lahmad, Y., Agarwal, A., Daradkeh, T., 2018. High availability manage-
ment for applications services in the cloud container-based platform. In:
2018 IEEE/ACS 15th International Conference on Computer Systems and
Applications (AICCSA). IEEE, pp. 1–8.

mazon Web Services Inc, 2016. SAP on Amazon Web Services High Availability
Guide. URL https://d0.awsstatic.com/enterprise-marketing/SAP/sap-on-aws-
high-availability-guide.pdf.

mazon Web Services Inc., 2018. Shared Responsibility Model. URL https://aws.
amazon.com/compliance/shared-responsibility-model/.

vizienis, A., Laprie, J.-C., Randell, B., Landwehr, C., 2004. Basic concepts and
taxonomy of dependable and secure computing. IEEE Trans. Dependable
Secure Comput. 1 (1), 11–33.

yuso, P.N., Gasca, R.M., Lefèvre, L., 2009. Demystifying cluster-based
fault-tolerant firewalls. IEEE Internet Comput. 13 (6), 31–38.

ajohr, M., Margaria, T., 2008. High service availability in MaTRICS for the OCS.
In: International Symposium on Leveraging Applications of Formal Methods,
Verification and Validation. Springer, pp. 572–586.

arroso, L.A., Hölzle, U., 2009. The datacenter as a computer: An introduction to
the design of warehouse-scale machines. Synth. Lect. Comput. Archit. 4 (1),
1–108.

artkowski, S., De Buitlear, C., Kalicki, A., Loster, M., Marczewski, M., Mosaad, A.,
Nelken, J., Soliman, M., Subtil, K., Vrhovnik, M., et al., 2012. High Availability
and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows. IBM
Redbooks.

eekhof, A., 2017. Pacemaker 1.1 Configuration Explained An A-Z Guide to
Pacemaker’s Configuration Options. URL http://clusterlabs.org/pacemaker/
doc/en-US/Pacemaker/1.1/pdf/Pacemaker_Explained/Pacemaker-1.1-
Pacemaker_Explained-en-US.pdf.

irman, K.P., 2012. Guide to Reliable Distributed Systems: Building High-
Assurance Applications and Cloud-Hosted Services. Springer Science &
Business Media.

irman, K., Van Renesse, R., Vogels, W., 2004. Adding high availability and au-
tonomic behavior to web services. In: Proceedings of the 26th International
Conference on Software Engineering. IEEE Computer Society, pp. 17–26.

ouizem, Y., Parlavantzas, N., Dib, D., Morin, C., 2020. Active-standby for high-
availability in FaaS. In: Proceedings of the 2020 Sixth International Workshop
on Serverless Computing. pp. 31–36.

uyya, R., et al., 1999. High Performance Cluster Computing: Architectures and
Systems (Volume 1). Prentice Hall, Upper SaddleRiver, NJ, USA, p. 999.

alinescu, R., Weyns, D., Gerasimou, S., Iftikhar, M.U., Habli, I., Kelly, T., 2018.
Engineering trustworthy self-adaptive software with dynamic assurance
cases. IEEE Trans. Softw. Eng. 44 (11), 1039–1069.

heck Point Software Technologies Ltd, 2018. ClusterXL Administration Guide
R80.10. URL https://downloads.checkpoint.com/dc/download.htm?ID=54804.

heng, F.T., Wu, S.L., Tsai, P.Y., Chung, Y.T., Yang, H.C., 2005. Application cluster
service scheme for near-zero-downtime services. In: Proceedings - IEEE
International Conference on Robotics and Automation 2005 (April). pp.
4062–4067.

how, R., Golle, P., Jakobsson, M., Shi, E., Staddon, J., Masuoka, R., Molina, J., 2009.
Controlling data in the cloud. In: Proceedings of the 2009 ACM Workshop
on Cloud Computing Security - CCSW ’09. ACM, p. 85.

orsava, S., Getov, V., 2003. Intelligent architecture for automatic resource
allocation in computer clusters. In: Proceedings International Parallel and
Distributed Processing Symposium. IEEE, pp. 8–pp.

ritchley, T., 2014. High Availability IT Services. Auerbach Publications.

http://refhub.elsevier.com/S0164-1212(21)00280-6/sb1
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb1
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb1
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb1
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb1
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb1
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb1
https://d0.awsstatic.com/enterprise-marketing/SAP/sap-on-aws-high-availability-guide.pdf
https://d0.awsstatic.com/enterprise-marketing/SAP/sap-on-aws-high-availability-guide.pdf
https://d0.awsstatic.com/enterprise-marketing/SAP/sap-on-aws-high-availability-guide.pdf
https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/shared-responsibility-model/
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb4
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb4
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb4
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb4
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb4
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb5
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb5
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb5
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb6
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb6
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb6
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb6
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb6
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb7
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb7
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb7
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb7
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb7
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb8
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb8
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb8
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb8
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb8
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb8
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb8
http://clusterlabs.org/pacemaker/doc/en-US/Pacemaker/1.1/pdf/Pacemaker_Explained/Pacemaker-1.1-Pacemaker_Explained-en-US.pdf
http://clusterlabs.org/pacemaker/doc/en-US/Pacemaker/1.1/pdf/Pacemaker_Explained/Pacemaker-1.1-Pacemaker_Explained-en-US.pdf
http://clusterlabs.org/pacemaker/doc/en-US/Pacemaker/1.1/pdf/Pacemaker_Explained/Pacemaker-1.1-Pacemaker_Explained-en-US.pdf
http://clusterlabs.org/pacemaker/doc/en-US/Pacemaker/1.1/pdf/Pacemaker_Explained/Pacemaker-1.1-Pacemaker_Explained-en-US.pdf
http://clusterlabs.org/pacemaker/doc/en-US/Pacemaker/1.1/pdf/Pacemaker_Explained/Pacemaker-1.1-Pacemaker_Explained-en-US.pdf
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb10
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb10
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb10
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb10
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb10
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb11
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb11
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb11
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb11
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb11
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb13
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb13
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb13
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb14
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb14
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb14
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb14
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb14
https://downloads.checkpoint.com/dc/download.htm?ID=54804
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb17
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb17
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb17
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb17
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb17
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb18
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb18
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb18
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb18
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb18
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb19


P. Somasekaram, R. Calinescu and R. Buyya The Journal of Systems & Software 187 (2022) 111208

C

D

D

D

D

D
D

D

D

E

E

E

E

F

F

F

F

F

G

G

G

G

G

G

G

H

H

H

ully, B., Lefebvre, G., Meyer, D., Feeley, M., Hutchinson, N., Warfield, A., 2008.
Remus: High availability via asynchronous virtual machine replication. In:
Proceedings of the 5th USENIX Symposium on Networked Systems Design
and Implementation. San Francisco. pp. 161–174.

ake, S.C., Caulfield, C., Beekhof, A., 2008. The corosync cluster engine. In: Linux
Symposium, Vol. 85. Citeseer.

éfago, X., Schiper, A., Urbán, P., 2004. Total order broadcast and multicast
algorithms: Taxonomy and survey. ACM Comput. Surv. 36 (4), 372–421.

elValle, R., Kaushik, P., Jain, A., Hartog, J., Govindaraju, M., 2017. Electron: To-
wards efficient resource management on heterogeneous clusters with apache
mesos. In: 2017 IEEE 10th International Conference on Cloud Computing
(CLOUD). IEEE, pp. 262–269.

emchenko, Y., De Laat, C., Membrey, P., 2014. Defining architecture components
of the Big Data Ecosystem. In: Collaboration Technologies and Systems (CTS),
2014 International Conference on. IEEE, pp. 104–112.

H2i, 2020. DxEnterprise. URL https://dh2i.com/dxenterprise/.
istefano, S., Longo, F., Scarpa, M., 2010. Availability assessment of ha standby

redundant clusters. In: 2010 29th IEEE Symposium on Reliable Distributed
Systems. IEEE, pp. 265–274.

olev, D., Malki, D., 1996. The Transis approach to high availability cluster
communication. Commun. ACM 39 (4), 64–70.

ukaric, R., Juric, M.B., 2013. Towards a unified taxonomy and architecture of
cloud frameworks. Future Gener. Comput. Syst. 29 (5), 1196–1210.

ndo, P.T., Rodrigues, M., Gonçalves, G.E., Kelner, J., Sadok, D.H., Curescu, C.,
2016. High availability in clouds: systematic review and research challenges.
J. Cloud Comput. 5 (1), 16.

ngelmann, C., 2008. Symmetric Active/Active High Availability for High-
Performance Computing System Services (Ph.D. thesis). Department of
Computer Science, University of Reading, UK, URL http://www.christian-
engelmann.info/publications/engelmann08symmetric3.pdf.

ngelmann, C., Scott, S.L., Leangsuksun, C., He, X.B., 2006. Symmetric active/active
high availability for high-performance computing system services. J. Comput.
Phys. 1 (8), 43–54.

ngelmann, C., Scott, S.L., Leangsuksun, C., He, X., 2008. Symmetric active/active
high availability for high-performance computing system services: Accom-
plishments and limitations. In: 2008 Eighth IEEE International Symposium
on Cluster Computing and the Grid (CCGRID). IEEE, pp. 813–818.

ernandes, D.A.B., Soares, L.F.B., Gomes, J.V., Freire, M.M., Inácio, P.R.M., 2014.
Security issues in cloud environments: a survey. Int. J. Inf. Secur. 13 (2),
113–170, URL http://link.springer.com/10.1007/s10207-013-0208-7.

ondo-Ferreiro, P., Gil-Castiñeira, F., González-Castaño, F.J., Candal-Ventureira, D.,
2020. A software-defined networking solution for transparent session and
service continuity in dynamic multi-access edge computing. IEEE Trans.
Netw. Serv. Manag. 18 (2), 1401–1414.

orouzan, A.B., 2007. Data Communications & Networking (Sie). Tata
McGraw-Hill Education.

ranke, U., 2011. Optimal IT service availability: Shorter outages, or fewer? IEEE
Trans. Netw. Serv. Manag. 9 (1), 22–33.

ujitsu Limited, 2017. Primecluster: Installation and Administration Guide 4.5.
URL http://software.fujitsu.com/jp/manual/manualfiles/m170002/j2s21672/
01enz200/j2s2-1672-01enz0.pdf.

artner Inc., 2016. Market Share Analysis: Customer Relationship Management
Software, Worldwide, 2016. Tech. rep., Gartner, Inc., Stamford.

artner Inc., 2017a. Magic Quadrant for Operational Database Management
Systems. Tech. rep., Gartner, Inc., Stamford.

artner Inc., 2017b. Market Share Analysis: ERP Software, Worldwide, 2017.
Tech. rep., Gartner, Inc., Stamford.

omes, C., Tavares, E., Junior, M.N.d.O., Nogueira, B., 2021. Cloud storage
availability and performance assessment: a study based on NoSQL DBMS.
J. Supercomput. 1–21.

ómez, A., Carril, L., Valin, R., Mouriño, J.C., Cotelo, C., 2014. Fault-tolerant virtual
cluster experiments on federated sites using BonFIRE. Future Gener. Comput.
Syst. 34, 17–25.

onçalves, G.E., Endo, P.T., Rodrigues, M., Sadok, D.H., Kelner, J., Curescu, C., 2020.
Resource allocation based on redundancy models for high availability cloud.
Computing 102 (1), 43–63.

u, X., Wang, H., 2009. Online anomaly prediction for robust cluster systems.
In: IEEE International Conference on Data Engineering. IEEE, pp. 1000–1011.

addad, I., Leangsuksun, C., Scott, S.L., 2003. HA-OSCAR: the birth of highly
available OSCAR. Linux J. 2003 (115), 1.

e, X., Ou, L., Engelmann, C., Chen, X., Scott, S.L., 2009. Symmetric active/active
metadata service for high availability parallel file systems. J. Parallel Distrib.
Comput. 69 (12), 961–973.

eimovski, G.B., Turchetti, R.C., Wickboldt, J.A., Granville, L.Z., Duarte, Jr., E.P.,
2020. FT-Aurora: A highly available IaaS cloud manager based on replication.

Comput. Netw. 168, 107041.

29
Hewlett Packard Enterprise Development L.P., 2011. Designing Disaster Recovery
HA Clusters using Metrocluster and Continentalclusters. URL https://support.
hpe.com/hpesc/public/docDisplay?docId=emr_na-c02814903.

Hewlett Packard Enterprise Development L.P., 2012. Understanding and Design-
ing Serviceguard Disaster Recovery Architectures. URL https://support.hpe.
com/hpsc/doc/public/display?docId=emr_na-c03604629.

Hiep, M.Q., Yang, H., Kim, Y., 2020. Dynamic policy management system for
high availability in a multi-site cloud. In: 2020 International Conference on
Information and Communication Technology Convergence (ICTC). IEEE, pp.
359–362.

Hou, Z., Huang, Y., Zheng, S., Dong, X., Wang, B., 2003. Design and implemen-
tation of heartbeat in multi-machine environment. In: 17th International
Conference on Advanced Information Networking and Applications, 2003.
AINA 2003. IEEE, pp. 583–586.

Hu, H., Wen, Y., Chua, T.-S., Li, X., 2014. Toward scalable systems for big data
analytics: A technology tutorial. IEEE Access 2, 652–687.

IBM Corporation, 2016. PowerHA SystemMirror Concepts. URL http://public.dhe.
ibm.com/systems/power/docs/powerha/721/hacmpconcepts_pdf.pdf.

IBM Corporation, 2017a. IBM PowerHA SystemMirror for AIX: Geographic Log-
ical Volume Manager. URL http://public.dhe.ibm.com/systems/power/docs/
powerha/722/hacmpgeolvm_pdf.pdf.

IBM Corporation, 2017b. Smart Assists for PowerHA SystemMirror. URL http:
//public.dhe.ibm.com/systems/power/docs/powerha/721/smartassist_pdf.pdf.

IBM Corporation, 2017c. IBM Spectrum Scale Concepts, Planning, and Installa-
tion Guide. URL https://www.ibm.com/support/knowledgecenter/STXKQY_4.
2.1/com.ibm.spectrum.scale.v4r21.doc/pdf/a7604417.pdf.

IBM Corporation, 2018a. Administering PowerHA SystemMirror. URL http:
//public.dhe.ibm.com/systems/power/docs/powerha/721/hacmpadmngd_pdf.
pdf.

IBM Corporation, 2018b. Supported Cluster Management Software. URL
https://www.ibm.com/support/knowledgecenter/SSEPGG_11.1.0/com.ibm.
db2.luw.admin.ha.doc/doc/r0051388.html.

IDC Corporation, 2016. Clustering Solutions for Achieving High Availability for
Diversifying Platforms: The Future in Advanced Best Practices. Tech. rep.,
IDC Corporation, Massachusetts, URL https://www.nec.com/en/global/prod/
expresscluster/materials/203586_EN_IDC_NEC_HA_White_Paper.pdf.

ISO/IEC 25010:2011, 2011. Systems and Software Engineering — Systems and
Software Quality Requirements and Evaluation (SQuaRE) — System and
Software Quality Models.

Kaitovic, I., Malek, M., 2018. Impact of failure prediction on availability: Modeling
and comparative analysis of predictive and reactive methods. IEEE Trans.
Dependable Secure Comput. 17 (3), 493–505.

Kanagavelu, R., Lee, B.S., Miguel, R.F., Mingjie, L.N., et al., 2013. Software defined
network based adaptive routing for data replication in data centers. In: 2013
19th IEEE International Conference on Networks (ICON). IEEE, pp. 1–6.

Kanso, A., Lemieux, Y., 2013. Achieving high availability at the application level
in the cloud. In: 2013 IEEE 6th International Conference on Cloud Computing
(CLOUD). IEEE, pp. 778–785.

Kanso, A., Toeroe, M., Khendek, F., 2014. Comparing redundancy models for high
availability middleware. Computing 96 (10), 975–993.

Khan, M., Toeroe, M., Khendek, F., 2017. Comparing pacemaker with OpenSAF
for availability management in the cloud. In: Edge Computing (EDGE), 2017
IEEE International Conference on. IEEE, pp. 106–111.

Koren, I., Krishna, C.M., 2007. Fault-Tolerant Systems, first ed. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA.

Le, L.H., Bezerra, C.E., Pedone, F., 2016. Dynamic scalable state machine replica-
tion. In: 2016 46th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN). IEEE, pp. 13–24.

Leangsuksun, C., Liu, T., Rao, T., Scott, S., Libby, R., 2004. A failure predictive and
policy-based high availability strategy for linux high performance computing
cluster. In: The 5th LCI International Conference on Linux Clusters: The HPC
Revolution. Citeseer, pp. 18–20.

Leangsuksun, C., Munganuru, V., Liu, T., Scott, S., Engelmann, C., 2005. Asymmet-
ric active-active high availability for high-end computing. In: Proceedings of
2nd International Workshop on Operating Systems, Programming Environ-
ments and Management Tools for High-Performance Computing on Clusters
(COSET-2).

Lee, Y.-L., Arizky, S.N., Chen, Y.-R., Liang, D., Wang, W.-J., 2021. High-availability
computing platform with sensor fault resilience. Sensors 21 (2), 542.

Lee, Y.-J., Kim, H.-Y., Lee, C.-H., 2008. A stochastic availability prediction
model for head nodes in the HA cluster. In: 22nd International Conference
on Advanced Information Networking and Applications-Workshops (Aina
Workshops 2008). IEEE, pp. 157–161.

Lee, J., Moon, S., Kim, K.H., Kim, D.H., Cha, S.K., Han, W.-S., 2017. Parallel
replication across formats in SAP HANA for scaling out mixed OLTP/OLAP

workloads. Proc. VLDB Endow. 10 (12), 1598–1609.

http://refhub.elsevier.com/S0164-1212(21)00280-6/sb21
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb21
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb21
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb22
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb22
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb22
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb23
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb23
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb23
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb23
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb23
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb23
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb23
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb24
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb24
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb24
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb24
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb24
https://dh2i.com/dxenterprise/
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb26
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb26
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb26
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb26
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb26
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb27
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb27
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb27
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb28
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb28
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb28
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb29
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb29
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb29
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb29
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb29
http://www.christian-engelmann.info/publications/engelmann08symmetric3.pdf
http://www.christian-engelmann.info/publications/engelmann08symmetric3.pdf
http://www.christian-engelmann.info/publications/engelmann08symmetric3.pdf
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb31
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb31
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb31
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb31
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb31
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb32
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb32
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb32
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb32
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb32
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb32
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb32
http://link.springer.com/10.1007/s10207-013-0208-7
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb34
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb34
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb34
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb34
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb34
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb34
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb34
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb35
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb35
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb35
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb36
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb36
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb36
http://software.fujitsu.com/jp/manual/manualfiles/m170002/j2s21672/01enz200/j2s2-1672-01enz0.pdf
http://software.fujitsu.com/jp/manual/manualfiles/m170002/j2s21672/01enz200/j2s2-1672-01enz0.pdf
http://software.fujitsu.com/jp/manual/manualfiles/m170002/j2s21672/01enz200/j2s2-1672-01enz0.pdf
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb38
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb38
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb38
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb39
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb39
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb39
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb40
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb40
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb40
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb41
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb41
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb41
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb41
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb41
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb42
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb42
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb42
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb42
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb42
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb43
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb43
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb43
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb43
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb43
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb44
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb44
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb44
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb45
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb45
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb45
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb46
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb46
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb46
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb46
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb46
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb47
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb47
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb47
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb47
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb47
https://support.hpe.com/hpesc/public/docDisplay?docId=emr_na-c02814903
https://support.hpe.com/hpesc/public/docDisplay?docId=emr_na-c02814903
https://support.hpe.com/hpesc/public/docDisplay?docId=emr_na-c02814903
https://support.hpe.com/hpsc/doc/public/display?docId=emr_na-c03604629
https://support.hpe.com/hpsc/doc/public/display?docId=emr_na-c03604629
https://support.hpe.com/hpsc/doc/public/display?docId=emr_na-c03604629
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb50
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb50
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb50
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb50
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb50
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb50
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb50
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb51
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb51
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb51
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb51
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb51
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb51
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb51
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb52
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb52
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb52
http://public.dhe.ibm.com/systems/power/docs/powerha/721/hacmpconcepts_pdf.pdf
http://public.dhe.ibm.com/systems/power/docs/powerha/721/hacmpconcepts_pdf.pdf
http://public.dhe.ibm.com/systems/power/docs/powerha/721/hacmpconcepts_pdf.pdf
http://public.dhe.ibm.com/systems/power/docs/powerha/722/hacmpgeolvm_pdf.pdf
http://public.dhe.ibm.com/systems/power/docs/powerha/722/hacmpgeolvm_pdf.pdf
http://public.dhe.ibm.com/systems/power/docs/powerha/722/hacmpgeolvm_pdf.pdf
http://public.dhe.ibm.com/systems/power/docs/powerha/721/smartassist_pdf.pdf
http://public.dhe.ibm.com/systems/power/docs/powerha/721/smartassist_pdf.pdf
http://public.dhe.ibm.com/systems/power/docs/powerha/721/smartassist_pdf.pdf
https://www.ibm.com/support/knowledgecenter/STXKQY_4.2.1/com.ibm.spectrum.scale.v4r21.doc/pdf/a7604417.pdf
https://www.ibm.com/support/knowledgecenter/STXKQY_4.2.1/com.ibm.spectrum.scale.v4r21.doc/pdf/a7604417.pdf
https://www.ibm.com/support/knowledgecenter/STXKQY_4.2.1/com.ibm.spectrum.scale.v4r21.doc/pdf/a7604417.pdf
http://public.dhe.ibm.com/systems/power/docs/powerha/721/hacmpadmngd_pdf.pdf
http://public.dhe.ibm.com/systems/power/docs/powerha/721/hacmpadmngd_pdf.pdf
http://public.dhe.ibm.com/systems/power/docs/powerha/721/hacmpadmngd_pdf.pdf
http://public.dhe.ibm.com/systems/power/docs/powerha/721/hacmpadmngd_pdf.pdf
http://public.dhe.ibm.com/systems/power/docs/powerha/721/hacmpadmngd_pdf.pdf
https://www.ibm.com/support/knowledgecenter/SSEPGG_11.1.0/com.ibm.db2.luw.admin.ha.doc/doc/r0051388.html
https://www.ibm.com/support/knowledgecenter/SSEPGG_11.1.0/com.ibm.db2.luw.admin.ha.doc/doc/r0051388.html
https://www.ibm.com/support/knowledgecenter/SSEPGG_11.1.0/com.ibm.db2.luw.admin.ha.doc/doc/r0051388.html
https://www.nec.com/en/global/prod/expresscluster/materials/203586_EN_IDC_NEC_HA_White_Paper.pdf
https://www.nec.com/en/global/prod/expresscluster/materials/203586_EN_IDC_NEC_HA_White_Paper.pdf
https://www.nec.com/en/global/prod/expresscluster/materials/203586_EN_IDC_NEC_HA_White_Paper.pdf
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb60
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb60
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb60
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb60
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb60
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb61
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb61
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb61
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb61
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb61
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb62
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb62
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb62
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb62
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb62
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb63
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb63
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb63
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb63
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb63
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb64
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb64
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb64
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb65
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb65
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb65
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb65
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb65
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb66
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb66
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb66
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb67
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb67
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb67
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb67
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb67
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb68
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb68
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb68
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb68
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb68
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb68
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb68
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb70
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb70
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb70
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb71
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb71
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb71
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb71
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb71
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb71
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb71
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb72
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb72
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb72
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb72
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb72


P. Somasekaram, R. Calinescu and R. Buyya The Journal of Systems & Software 187 (2022) 111208

L

L

v

L

L

L

L

L

L

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M
N

N

N

N

evitin, G., Xing, L., Dai, Y., 2014. Cold vs. hot standby mission operation
cost minimization for 1-out-of-N systems. European J. Oper. Res. 234 (1),
155–162.

i, W., Kanso, A., Gherbi, A., 2015. Leveraging linux containers to achieve
high availability for cloud services. In: Cloud Engineering (IC2E), 2015 IEEE
International Conference on. IEEE, pp. 76–83.

an der Linde, A., Leitão, J., Preguiça, N., 2020. Practical client-side replication:
weak consistency semantics for insecure settings. Proc. VLDB Endow. 13 (12),
2590–2605.

iu, T., Song, H., et al., 2003. Availability prediction and modeling of high mobility
OSCAR cluster. In: 2003 Proceedings IEEE International Conference on Cluster
Computing. IEEE, pp. 380–386.

iu, F., Tong, J., Mao, J., Bohn, R., Messina, J., Badger, L., Leaf, D., 2011. NIST cloud
computing reference architecture. NIST Spec. Publ. 500 (2011), 1–28.

oveland, S., Dow, E.M., LeFevre, F., Beyer, D., Chan, P.F., 2008. Leveraging
virtualization to optimize high-availability system configurations. IBM Syst.
J. 47 (4), 591–604.

u, Y., Yu, X., Cao, L., Madden, S., 2021. Epoch-based commit and replication in
distributed OLTP databases. Proc. VLDB Endow. 14 (5), 743–756.

umpp, T., Schneider, J., Holtz, J., Mueller, M., Lenz, N., Biazetti, A., Petersen, D.,
2008. From high availability and disaster recovery to business continuity
solutions. IBM Syst. J. 47 (4), 605–619.

yu, H., Li, P., Yan, R., Qian, H., Sheng, B., 2016. High-availability deployment
for large enterprises. In: 2016 International Conference on Progress in
Informatics and Computing (PIC). IEEE, pp. 503–507.

agalhaes, A., Monteiro, J.M., Brayner, A., 2021. Main memory database
recovery: A survey. 54 (2) http://dx.doi.org/10.1145/3442197.

agnanini, F., Ferretti, L., Colajanni, M., 2021. Scalable, confidential and
survivable software updates. IEEE Trans. Parallel Distrib. Syst..

alkhi, D., Reiter, M.K., Wool, A., Wright, R.N., 2001. Probabilistic quorum
systems. Inform. and Comput. 170 (2), 184–206.

aloy, J., 2004. Tipc: Providing communication for linux clusters. In: Linux
Symposium, Vol. 2. pp. 347–356.

ansouri, Y., Toosi, A.N., Buyya, R., 2018. Data storage management in cloud
environments: Taxonomy, survey, and future directions. ACM Comput. Surv.
50 (6), 91.

arcus, E., Stern, H., 2003. Blueprints for High Availability. John Wiley & Sons,
Indianapolis, Indiana.

icrosoft Corporation, 2011. Failover Cluster Step-by-Step Guide: Configuring
the Quorum in a Failover Cluster. URL https://docs.microsoft.com/en-
us/previous-versions/windows/it-pro/windows-server-2008-R2-and-
2008/cc770620(v=ws.10).

icrosoft Corporation, 2016. Behavior of Dynamic Witness on Windows
Server 2012 R2 Failover Clustering. URL https://blogs.technet.microsoft.
com/askcore/2016/03/21/behavior-of-dynamic-witness-on-windows-server-
2012-r2-failover-clustering-3/.

icrosoft Corporation, 2017a. Cluster an SAP ASCS/SCS Instance on a
Windows Failover Cluster using a Cluster Shared Disk in Azure. URL
https://docs.microsoft.com/en-us/azure/virtual-machines/workloads/sap/
sap-high-availability-guide-wsfc-shared-disk.

icrosoft Corporation, 2017b. Shared Responsibilities for Cloud Computing. URL
https://gallery.technet.microsoft.com/Shared-Responsibilities-81d0ff91.

icrosoft Corporation, 2018. Failover Clustering in Windows Server. URL https:
//docs.microsoft.com/en-us/windows-server/failover-clustering/failover-
clustering-overview.

icrosoft Corporation, 2020. High Availability for SAP NetWeaver on Azure
VMs on SUSE Linux Enterprise Server for SAP Applications. URL https:
//docs.microsoft.com/en-us/azure/virtual-machines/workloads/sap/high-
availability-guide-suse.

inhas, U.F., Rajagopalan, S., Cully, B., Aboulnaga, A., Salem, K., Warfield, A.,
2013. Remusdb: Transparent high availability for database systems. VLDB
J.—Int. J. Very Large Data Bases 22 (1), 29–45.

ortazavi, S.H., Salehe, M., Balasubramanian, B., de Lara, E., Puzhavakath-
Narayanan, S., 2020. Sessionstore: A session-aware datastore for the edge. In:
2020 IEEE 4th International Conference on Fog and Edge Computing (ICFEC).
IEEE, pp. 59–68.

urphy, K.P., 2012. Machine Learning: A Probabilistic Perspective. The MIT Press.
abi, M., Toeroe, M., Khendek, F., 2016. Availability in the cloud: State of the

art. J. Netw. Comput. Appl. 60, 54–67.
aor, M., Wool, A., 1998. The load, capacity, and availability of quorum systems.

SIAM J. Comput. 27 (2), 423–447.
EC Corporation, 2017a. EXPRESSCLUSTER X 3.3 for Linux Reference

Guide. URL https://www.nec.com/en/global/prod/expresscluster/en/support/
Linux/L33_RG_EN_06.pdf.

EC Corporation, 2017b. EXPRESSCLUSTER X 3.3 for Windows Reference
Guide. URL https://www.nec.com/en/global/prod/expresscluster/en/support/

Windows/W33_RG_EN_06.pdf.

30
Nguyen, T.A., Kim, D.S., Park, J.S., 2016. Availability modeling and analysis of a
data center for disaster tolerance. Future Gener. Comput. Syst. 56, 27–50.

Noble, J., Maxwell, D., Hourihan, K.X., Stephens, R., 2003. Check Point NG
VPN-1/FireWall-1: Advanced configuration and troubleshooting. Syngress
(Canada).

Novell, Inc., 2014. SAP Applications Made High Available on SUSE Linux
Enterprise Server 10. URL https://www.b1-systems.de/fileadmin/content/
whitepaper/Technical_Guide_SLES_HA_for_SAP.pdf.

O’Connor, P.P., Kleyner, A., 2012. Practical Reliability Engineering, fifth ed. John
Wiley & Sons, Ltd, New York.

Oracle Corporation, 2010. Oracle Solaris and Oracle Solaris Cluster: Extending
Oracle Solaris for Business Continuity. URL http://www.oracle.com/
technetwork/server-storage/solaris-cluster/documentation/solaris-cluster-
businesscontinuity-168285.pdf.

Oracle Corporation, 2013. Operating SAP Landscapes on Oracle Engineered
Systems Using ITIL Best Practices.

Oracle Corporation, 2014. Solaris Cluster Concepts Guide. URL https://docs.oracle.
com/cd/E39579_01/pdf/E39575.pdf.

Oracle Corporation, 2016a. Solaris Cluster Data Service for Oracle E-Business
Suite as of Release 12.2 Guide Oracle Solaris Cluster Data Service for Oracle
E-Business Suite as of Release 12.2 Guide. Oracle Corporation, Redwood, CA,
USA, URL https://docs.oracle.com/cd/E56676_01/pdf/E60641.pdf.

Oracle Corporation, 2016b. Oracle Solaris Cluster 4.3 Geographic Edition
Overview. URL https://docs.oracle.com/cd/E56676_01/pdf/E56739.pdf.

Oracle Corporation, 2016c. Solaris Cluster Data Service for Oracle Real Applica-
tion Clusters Guide. URL https://docs.oracle.com/cd/E56676_01/pdf/E57757.
pdf.

Oracle Corporation, 2017a. Oracle Fusion Middleware: High Availability Guide.
URL https://docs.oracle.com/middleware/12212/lcm/ASHIA/title.htm.

Oracle Corporation, 2017b. Oracle Database High Availability Overview.
URL https://docs.oracle.com/en/database/oracle/oracle-database/12.2/haovw/
index.html.

Oracle Corporation, 2017c. Oracle Clusterware Administration and Deployment
Guide. URL https://docs.oracle.com/en/database/oracle/oracle-database/12.2/
cwadd/clusterware-administration-and-deployment-guide.pdf.

Palo Alto Networks Inc., 2018. PAN-OS 8.0 Admin Guide. URL https:
//www.paloaltonetworks.com/content/dam/pan/en_US/assets/pdf/technical-
documentation/80/pan-os/pan-os-admin/pan-os.pdf.

Pedone, F., Guerraoui, R., Schiper, A., 2003. The database state machine approach.
Distrib. Parallel Databases 14 (1), 71–98.

Pohanka, T., Pechanec, V., 2020. Evaluation of replication mechanisms on selected
database systems. ISPRS Int. J. Geo-Inf. 9 (4), 249.

Preslan, K.W., Barry, A.P., Brassow, J., Declerck, M., Lewis, A., Manthei, A.,
Marzinski, B., Nygaard, E., Van Oort, S., Teigland, D., et al., 2000. Scalability
and failure recovery in a linux cluster file system. In: Annual Linux Showcase
& Conference.

Prior, D., MacNeela, A., Brown, I., Krischer, J., Scott, D., Green-Armytage, J.,
2001. Enterprise Guide to Gartner’s High-Availability System Model for SAP.
Gartner.

Qiu, T., Chi, J., Zhou, X., Ning, Z., Atiquzzaman, M., Wu, D.O., 2020. Edge comput-
ing in industrial internet of things: Architecture, advances and challenges.
IEEE Commun. Surv. Tutor. 22 (4), 2462–2488.

Quintero, D., Balappa, V., Bodily, S., De, D., Casali, S., Dengel, J.-G., Dhandapani, M.,
Hoshino, M., Kiran, J., Langer, K., Sergio, P., Queiroz, L., Radford, M., Socol-
iuc, A., Tu, N.K., 2013. IBM PowerHA SystemMirror 7.1.2 Enterprise Edition
for AIX. IBM Redbooks, URL https://www.redbooks.ibm.com/redbooks/pdfs/
sg248106.pdf.

Quintero, D., Bodily, S., Martin-Corben, D., Prathap, R., Singh, K., Thajudeen, A.,
Zanatta, W., Redbooks, I., 2015. IBM PowerHA SystemMirror for AIX
Cookbook. IBM Redbooks.

Rabbat, R., McNeal, T., Burke, T., 2001. A high-availability clustering architecture
with data integrity guarantees. In: Third IEEE International Conference on
Cluster Computing (CLUSTER’01). IEEE Computer Society, p. 178.

Ramos, F., Viegas, E., Santin, A., Horchulhack, P., dos Santos, R.R., Espindola, A.,
2021. A machine learning model for detection of docker-based APP over-
booking on kubernetes. In: ICC 2021-IEEE International Conference on
Communications. IEEE, pp. 1–6.

Ranade, D.M., 2002. Shared Data Clusters: Scaleable, Manageable, and Highly
Available Systems (VERITAS Series). John Wiley & Sons, Ltd, New York.

Ranade, D.M., 2003. Shared Data Clusters: Scaleable, Manageable, and Highly
Available Systems (Veritas Series), Vol. 9. John Wiley & Sons.

Rani, R., Kumar, N., Khurana, M., Kumar, A., Barnawi, A., 2021. Storage as a
service in fog computing: A systematic review. J. Syst. Archit. 102033.

Red Hat, Inc., 2014. Deploying Highly Available SAP NetWeaver-Based
Servers Using Red Hat Enterprise Linux HA add-on with Pacemaker.
URL https://access.redhat.com/sites/default/files/attachments/rh-pacemaker-

sap-whitepaper.pdf.

http://refhub.elsevier.com/S0164-1212(21)00280-6/sb73
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb73
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb73
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb73
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb73
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb74
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb74
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb74
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb74
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb74
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb75
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb75
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb75
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb75
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb75
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb76
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb76
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb76
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb76
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb76
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb77
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb77
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb77
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb78
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb78
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb78
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb78
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb78
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb79
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb79
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb79
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb80
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb80
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb80
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb80
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb80
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb81
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb81
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb81
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb81
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb81
http://dx.doi.org/10.1145/3442197
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb83
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb83
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb83
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb84
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb84
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb84
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb85
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb85
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb85
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb86
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb86
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb86
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb86
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb86
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb87
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb87
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb87
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2008-R2-and-2008/cc770620(v=ws.10)
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2008-R2-and-2008/cc770620(v=ws.10)
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2008-R2-and-2008/cc770620(v=ws.10)
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2008-R2-and-2008/cc770620(v=ws.10)
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2008-R2-and-2008/cc770620(v=ws.10)
https://blogs.technet.microsoft.com/askcore/2016/03/21/behavior-of-dynamic-witness-on-windows-server-2012-r2-failover-clustering-3/
https://blogs.technet.microsoft.com/askcore/2016/03/21/behavior-of-dynamic-witness-on-windows-server-2012-r2-failover-clustering-3/
https://blogs.technet.microsoft.com/askcore/2016/03/21/behavior-of-dynamic-witness-on-windows-server-2012-r2-failover-clustering-3/
https://blogs.technet.microsoft.com/askcore/2016/03/21/behavior-of-dynamic-witness-on-windows-server-2012-r2-failover-clustering-3/
https://blogs.technet.microsoft.com/askcore/2016/03/21/behavior-of-dynamic-witness-on-windows-server-2012-r2-failover-clustering-3/
https://docs.microsoft.com/en-us/azure/virtual-machines/workloads/sap/sap-high-availability-guide-wsfc-shared-disk
https://docs.microsoft.com/en-us/azure/virtual-machines/workloads/sap/sap-high-availability-guide-wsfc-shared-disk
https://docs.microsoft.com/en-us/azure/virtual-machines/workloads/sap/sap-high-availability-guide-wsfc-shared-disk
https://gallery.technet.microsoft.com/Shared-Responsibilities-81d0ff91
https://docs.microsoft.com/en-us/windows-server/failover-clustering/failover-clustering-overview
https://docs.microsoft.com/en-us/windows-server/failover-clustering/failover-clustering-overview
https://docs.microsoft.com/en-us/windows-server/failover-clustering/failover-clustering-overview
https://docs.microsoft.com/en-us/windows-server/failover-clustering/failover-clustering-overview
https://docs.microsoft.com/en-us/windows-server/failover-clustering/failover-clustering-overview
https://docs.microsoft.com/en-us/azure/virtual-machines/workloads/sap/high-availability-guide-suse
https://docs.microsoft.com/en-us/azure/virtual-machines/workloads/sap/high-availability-guide-suse
https://docs.microsoft.com/en-us/azure/virtual-machines/workloads/sap/high-availability-guide-suse
https://docs.microsoft.com/en-us/azure/virtual-machines/workloads/sap/high-availability-guide-suse
https://docs.microsoft.com/en-us/azure/virtual-machines/workloads/sap/high-availability-guide-suse
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb94
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb94
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb94
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb94
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb94
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb95
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb95
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb95
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb95
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb95
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb95
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb95
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb96
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb97
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb97
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb97
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb98
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb98
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb98
https://www.nec.com/en/global/prod/expresscluster/en/support/Linux/L33_RG_EN_06.pdf
https://www.nec.com/en/global/prod/expresscluster/en/support/Linux/L33_RG_EN_06.pdf
https://www.nec.com/en/global/prod/expresscluster/en/support/Linux/L33_RG_EN_06.pdf
https://www.nec.com/en/global/prod/expresscluster/en/support/Windows/W33_RG_EN_06.pdf
https://www.nec.com/en/global/prod/expresscluster/en/support/Windows/W33_RG_EN_06.pdf
https://www.nec.com/en/global/prod/expresscluster/en/support/Windows/W33_RG_EN_06.pdf
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb101
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb101
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb101
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb102
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb102
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb102
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb102
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb102
https://www.b1-systems.de/fileadmin/content/whitepaper/Technical_Guide_SLES_HA_for_SAP.pdf
https://www.b1-systems.de/fileadmin/content/whitepaper/Technical_Guide_SLES_HA_for_SAP.pdf
https://www.b1-systems.de/fileadmin/content/whitepaper/Technical_Guide_SLES_HA_for_SAP.pdf
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb104
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb104
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb104
http://www.oracle.com/technetwork/server-storage/solaris-cluster/documentation/solaris-cluster-businesscontinuity-168285.pdf
http://www.oracle.com/technetwork/server-storage/solaris-cluster/documentation/solaris-cluster-businesscontinuity-168285.pdf
http://www.oracle.com/technetwork/server-storage/solaris-cluster/documentation/solaris-cluster-businesscontinuity-168285.pdf
http://www.oracle.com/technetwork/server-storage/solaris-cluster/documentation/solaris-cluster-businesscontinuity-168285.pdf
http://www.oracle.com/technetwork/server-storage/solaris-cluster/documentation/solaris-cluster-businesscontinuity-168285.pdf
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb106
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb106
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb106
https://docs.oracle.com/cd/E39579_01/pdf/E39575.pdf
https://docs.oracle.com/cd/E39579_01/pdf/E39575.pdf
https://docs.oracle.com/cd/E39579_01/pdf/E39575.pdf
https://docs.oracle.com/cd/E56676_01/pdf/E60641.pdf
https://docs.oracle.com/cd/E56676_01/pdf/E56739.pdf
https://docs.oracle.com/cd/E56676_01/pdf/E57757.pdf
https://docs.oracle.com/cd/E56676_01/pdf/E57757.pdf
https://docs.oracle.com/cd/E56676_01/pdf/E57757.pdf
https://docs.oracle.com/middleware/12212/lcm/ASHIA/title.htm
https://docs.oracle.com/en/database/oracle/oracle-database/12.2/haovw/index.html
https://docs.oracle.com/en/database/oracle/oracle-database/12.2/haovw/index.html
https://docs.oracle.com/en/database/oracle/oracle-database/12.2/haovw/index.html
https://docs.oracle.com/en/database/oracle/oracle-database/12.2/cwadd/clusterware-administration-and-deployment-guide.pdf
https://docs.oracle.com/en/database/oracle/oracle-database/12.2/cwadd/clusterware-administration-and-deployment-guide.pdf
https://docs.oracle.com/en/database/oracle/oracle-database/12.2/cwadd/clusterware-administration-and-deployment-guide.pdf
https://www.paloaltonetworks.com/content/dam/pan/en_US/assets/pdf/technical-documentation/80/pan-os/pan-os-admin/pan-os.pdf
https://www.paloaltonetworks.com/content/dam/pan/en_US/assets/pdf/technical-documentation/80/pan-os/pan-os-admin/pan-os.pdf
https://www.paloaltonetworks.com/content/dam/pan/en_US/assets/pdf/technical-documentation/80/pan-os/pan-os-admin/pan-os.pdf
https://www.paloaltonetworks.com/content/dam/pan/en_US/assets/pdf/technical-documentation/80/pan-os/pan-os-admin/pan-os.pdf
https://www.paloaltonetworks.com/content/dam/pan/en_US/assets/pdf/technical-documentation/80/pan-os/pan-os-admin/pan-os.pdf
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb115
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb115
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb115
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb116
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb116
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb116
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb117
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb117
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb117
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb117
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb117
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb117
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb117
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb118
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb118
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb118
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb118
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb118
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb119
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb119
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb119
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb119
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb119
https://www.redbooks.ibm.com/redbooks/pdfs/sg248106.pdf
https://www.redbooks.ibm.com/redbooks/pdfs/sg248106.pdf
https://www.redbooks.ibm.com/redbooks/pdfs/sg248106.pdf
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb121
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb121
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb121
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb121
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb121
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb122
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb122
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb122
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb122
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb122
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb123
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb123
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb123
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb123
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb123
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb123
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb123
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb124
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb124
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb124
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb125
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb125
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb125
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb126
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb126
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb126
https://access.redhat.com/sites/default/files/attachments/rh-pacemaker-sap-whitepaper.pdf
https://access.redhat.com/sites/default/files/attachments/rh-pacemaker-sap-whitepaper.pdf
https://access.redhat.com/sites/default/files/attachments/rh-pacemaker-sap-whitepaper.pdf


P. Somasekaram, R. Calinescu and R. Buyya The Journal of Systems & Software 187 (2022) 111208

R

R

R

S

S

S

S

iley, J., Noss, J., Dillingham, W., Cuff, J., Llorente, I.M., 2017. A high-availability
cloud for research computing. Computer 50 (6), 92–95.

osendo, D., Gomes, D., Leoni Santos, G., Silva, L., Moreira, A., Kelner, J., Sadok, D.,
Gonçalves, G., Mehta, A., Wildeman, M., et al., 2020. Availability analysis of
design configurations to compose virtual performance-optimized data center
systems in next-generation cloud data centers. Softw. - Pract. Exp. 50 (6),
805–826.

ossi, D., Turrini, E., 2005. Analyzing the impact of components replication in
high available J2EE clusters. In: Joint International Conference on Autonomic
and Autonomous Systems and International Conference on Networking and
Services-(Icas-Isns’ 05). IEEE, p. 56.

antos, G.L., Endo, P.T., Goncalves, G., Rosendo, D., Gomes, D., Kelner, J., Sadok, D.,
Mahloo, M., 2017. Analyzing the IT subsystem failure impact on availability
of cloud services. In: Proceedings - IEEE Symposium on Computers and
Communications. pp. 717–723.

AP SE, 2018. Certified HA-Interface Partners - SAP Application Server High
Availability Interface Certification. URL https://wiki.scn.sap.com/wiki/display/
SI/Certified+HA-Interface+Partners.

AS Institute Inc., 2017. SAS 9.4 Intelligence Platform: Overview, second ed. URL
http://documentation.sas.com/api/docsets/biov/9.4/content/biov.pdf.

axena, H., Pound, J., 2020. A cloud-native architecture for replicated data
services. In: 12th {USENIX} Workshop on Hot Topics in Cloud Computing
(HotCloud 20).

Schmidt, K., 2006. High Availability and Disaster Recovery: Concepts, Design,
Implementation, Vol. 22. Springer Science & Business Media.

Service Availability Forum, 2011. Service Availability Forum Service Availability
Interface. URL http://devel.opensaf.org/SAI-Overview-B.05.03.AL.pdf.

Shankar, I., Mishra, A., 2013. Enhanced cluster failover management. US Patent
8, 484, 510.

Sheghdara, M., Hassine, J., 2020. Automatic retrieval and analysis of high
availability scenarios from system execution traces: A case study on hot
standby router protocol. J. Syst. Softw. 161, 110490.

Shi, Y., Zuo, J., Guo, Y., Lu, Y., 2020. Distributed file system multilevel
fault-tolerant high availability mechanism. In: Proceedings of the 2020 In-
ternational Conference on Cyberspace Innovation of Advanced Technologies.
pp. 431–438.

Singh, J., Singh, P., Gill, S.S., 2021. Fog computing: a taxonomy, systematic review,
current trends and research challenges. J. Parallel Distrib. Comput..

SIOS Technology Corp., 2017a. SANless Cluster Software. URL https://us.sios.com/
products/sios-datakeeper/what-is-a-sanless-cluster/.

SIOS Technology Corp., 2017b. SIOS Protection Suite for Linux Documentation.
URL http://docs.us.sios.com/Linux/9.2/LK4L/AllTechDocs/index.htm.

SIOS Technology Corp., 2018. SIOS Protection Suite for Windows. URL http:
//cdn.manula.com/user/1870/10540_11235_en_1504797428.pdf.

Snedaker, S., 2013. Business Continuity and Disaster Recovery Planning for IT
Professionals, second ed. Syngress Publishing.

Somasekaram, P., 2017. A Component-Based Business Continuity and Disaster
Recovery Framework (Master’s thesis). Uppsala university, URL http://uu.
diva-portal.org/smash/get/diva2:1108197/FULLTEXT01.pdf.

Stratus Technologies, 2020. everRun. URL https://www.stratus.com/solutions/
platforms/everrun/.

Sun, Z., Jin, H., Yong, J., Al-Ismaili, S., Li, C., Shen, J., 2016. A high availability
application service platform for nuclear power enterprises. In: 2016 IEEE
20th International Conference on Computer Supported Cooperative Work in
Design (CSCWD). pp. 613–618.

SUSE LLC, 2012. SAP on SUSE Linux Enterprise. URL https://www.suse.com/
media/white-paper/sap_on_sle.pdf.

SUSE LLC, 2017. Administration Guide SUSE Linux Enterprise High Availabil-
ity Extension 12 SP3. URL https://www.suse.com/documentation/sle-ha-12/
pdfdoc/sle-ha-12-sp3.zip.

SUSE LLC, 2021. SAP HANA High Availability Cluster for the AWS Cloud
- Setup Guide (v15). URL https://documentation.suse.com/sbp/all/pdf/
SLES4SAP-hana-sr-guide-PerfOpt-15_AWS_color_en.pdf.

Toeroe, M., Tam, F., 2012. Service Availability: Principles and Practice. John Wiley
& Sons.

Uhlemann, K., Engelmann, C., Scott, S.L., 2006. JOSHUA: Symmetric active/active
replication for highly available HPC job and resource management. In: 2006
IEEE International Conference on Cluster Computing. IEEE, pp. 1–10.

Vacca, J.R., 2016. Cloud Computing Security : Foundations and Challenges, first
ed. CRC Press, p. 492.

Vayghan, L.A., Saied, M.A., Toeroe, M., Khendek, F., 2019. Microservice based
architecture: Towards high-availability for stateful applications with Kuber-
netes. In: 2019 IEEE 19th International Conference on Software Quality,
Reliability and Security (QRS). IEEE, pp. 176–185.

Vercellis, C., 2011. Business Intelligence: Data Mining and Optimization for
Decision Making. John Wiley & Sons.

Veritas Technologies LLC, 2006. A Guide to Understanding Volume Replicator.

Engineering White Paper, Symantec.

31
Veritas Technologies LLC, 2013. Symantec High Availability Agent for SAP
NetWeaver Installation and Configuration Guide. URL https://sort.veritas.
com/agents/download_docs/8304/vcs_sapnetweaver_install.

Veritas Technologies LLC, 2017a. Cluster Server 7.3 Administrator’s Guide
- Linux. URL https://origin-download.veritas.com/resources/content/live/
DOCUMENTATION/SFDC/000126860/en_US/vcs_admin_73_lin.pdf.

Veritas Technologies LLC, 2017b. Storage Foundation for Oracle RAC 7.3
Administrator’s Guide - Linux. URL https://origin-download.veritas.com/
resources/content/live/DOCUMENTATION/SFDC/000126863/en_US/sfrac_
admin_73_lin.pdf.

Veritas Technologies LLC, 2020a. Veritas InfoScale 7.4.3 Solutions in Cloud
Environments. URL https://www.veritas.com/support/en_US/doc/145798412-
145798468-1.

Veritas Technologies LLC, 2020b. Veritas InfoScale 7.4.3 Support for Kuber-
netes - Linux. URL https://www.veritas.com/support/en_US/doc/145798412-
145798468-1.

VMware Inc., 2015. SAP Solutions on VMware vSphere Guidelines Summary and
Best Practices.

Vogels, W., Dumitriu, D., Birman, K., Gamache, R., Massa, M., Short, R., Vert, J.,
Barrera, J., Gray, J., 1998. The design and architecture of the Microsoft
Cluster Service-a practical approach to high-availability and scalability. In:
Fault-Tolerant Computing, 1998. Digest of Papers. Twenty-Eighth Annual
International Symposium on. IEEE, pp. 422–431.

Waldvogel, M., Rinaldi, R., 2003. Efficient topology-aware overlay network. ACM
SIGCOMM Comput. Commun. Rev. 33 (1), 101–106.

Wang, X., Sun, H., Deng, T., Huai, J., 2015. On the tradeoff of availability and
consistency for quorum systems in data center networks. Comput. Netw.
76, 191–206.

Wang, H., Wang, H., Shen, J., 2004. Architectural design and implementation of
highly available and scalable medical system with IBM Websphere middle-
ware. In: Proceedings. 17th IEEE Symposium on Computer-Based Medical
Systems. IEEE, pp. 174–179.

Ward, J.S., Barker, A., 2014. Observing the clouds: a survey and taxonomy of
cloud monitoring. J. Cloud Comput. 3 (1), 24.

Wen, Z., Liang, Y., Li, G., 2020. Design and implementation of high-availability
PaaS platform based on virtualization platform. In: 2020 IEEE 5th Information
Technology and Mechatronics Engineering Conference (ITOEC). IEEE, pp.
1571–1575.

Xiong, H., Fowley, F., Pahl, C., 2016. A database-specific pattern for multi-
cloud high availability and disaster recovery. Commun. Comput. Inf. Sci. 567,
374–388.

Yang, H., Kim, Y., 2020. Design and implementation of fast fault detection in
cloud infrastructure for containerized IoT services. Sensors 20 (16), 4592.

Yousefpour, A., Fung, C., Nguyen, T., Kadiyala, K., Jalali, F., Niakanlahiji, A.,
Kong, J., Jue, J.P., 2019. All one needs to know about fog computing and
related edge computing paradigms: A complete survey. J. Syst. Archit. 98,
289–330.

Zhang, C., Kumbhare, A.G., Manousakis, I., Zhang, D., Misra, P.A., Assis, R.,
Woolcock, K., Mahalingam, N., Warrier, B., Gauthier, D., et al., 2021. Flex:
High-availability datacenters with zero reserved power. In: 2021 ACM/IEEE
48th Annual International Symposium on Computer Architecture (ISCA). IEEE,
pp. 319–332.

Zhu, L.G., Han, D.Z., Zhou, S.Z., Xie, C.S., 2006. High availability cluster with com-
bining nas and ISCSI. In: Proceedings of the 2006 International Conference
on Machine Learning and Cybernetics 2006 (August). pp. 4455–4460.

Zhu, L., Lin, J., 2020. A SCSI3 persistent reservation synchronization solution
for iSCSI targets cluster hosting ceph RBD with active/active connections.
In: 2020 IEEE 4th Information Technology, Networking, Electronic and
Automation Control Conference (ITNEC), Vol. 1. IEEE, pp. 1785–1793.

Premathas Somasekaram is a Ph.D. student in the Department of Computer
Science at the University of York, UK. His research interests are in availability,
high availability, cloud, fog, edge and distributed computing, Bayesian networks
and probabilistic approaches to improve the availability of IT solutions.

Radu Calinescu is Professor of Computer Science at the University of York, UK.
His main research interests are in formal methods for self-adaptive, autonomous,
secure and resilient autonomous and AI systems, and in performance and
reliability software engineering. He is an active promoter of formal methods
at runtime as a way to improve the integrity and predictability of self-adaptive
and autonomous systems and processes. He is a Senior Member of the IEEE, the
winner of a British Computer Society Distinguished Dissertation Award for his
University of Oxford doctoral thesis, and a member of the IEEE Working Group
developing the IEEE Guide for the Verification of Autonomous Systems.

Rajkumar Buyya is professor and future fellow of the Australian Research

Council, and the director of the Cloud Computing and Distributed Systems

http://refhub.elsevier.com/S0164-1212(21)00280-6/sb128
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb128
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb128
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb129
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb129
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb129
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb129
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb129
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb129
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb129
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb129
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb129
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb130
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb130
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb130
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb130
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb130
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb130
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb130
https://wiki.scn.sap.com/wiki/display/SI/Certified+HA-Interface+Partners
https://wiki.scn.sap.com/wiki/display/SI/Certified+HA-Interface+Partners
https://wiki.scn.sap.com/wiki/display/SI/Certified+HA-Interface+Partners
http://documentation.sas.com/api/docsets/biov/9.4/content/biov.pdf
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb134
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb134
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb134
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb134
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb134
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb135
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb135
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb135
http://devel.opensaf.org/SAI-Overview-B.05.03.AL.pdf
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb137
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb137
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb137
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb138
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb138
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb138
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb138
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb138
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb140
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb140
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb140
https://us.sios.com/products/sios-datakeeper/what-is-a-sanless-cluster/
https://us.sios.com/products/sios-datakeeper/what-is-a-sanless-cluster/
https://us.sios.com/products/sios-datakeeper/what-is-a-sanless-cluster/
http://docs.us.sios.com/Linux/9.2/LK4L/AllTechDocs/index.htm
http://cdn.manula.com/user/1870/10540_11235_en_1504797428.pdf
http://cdn.manula.com/user/1870/10540_11235_en_1504797428.pdf
http://cdn.manula.com/user/1870/10540_11235_en_1504797428.pdf
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb144
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb144
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb144
http://uu.diva-portal.org/smash/get/diva2:1108197/FULLTEXT01.pdf
http://uu.diva-portal.org/smash/get/diva2:1108197/FULLTEXT01.pdf
http://uu.diva-portal.org/smash/get/diva2:1108197/FULLTEXT01.pdf
https://www.stratus.com/solutions/platforms/everrun/
https://www.stratus.com/solutions/platforms/everrun/
https://www.stratus.com/solutions/platforms/everrun/
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb147
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb147
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb147
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb147
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb147
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb147
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb147
https://www.suse.com/media/white-paper/sap_on_sle.pdf
https://www.suse.com/media/white-paper/sap_on_sle.pdf
https://www.suse.com/media/white-paper/sap_on_sle.pdf
https://www.suse.com/documentation/sle-ha-12/pdfdoc/sle-ha-12-sp3.zip
https://www.suse.com/documentation/sle-ha-12/pdfdoc/sle-ha-12-sp3.zip
https://www.suse.com/documentation/sle-ha-12/pdfdoc/sle-ha-12-sp3.zip
https://documentation.suse.com/sbp/all/pdf/SLES4SAP-hana-sr-guide-PerfOpt-15_AWS_color_en.pdf
https://documentation.suse.com/sbp/all/pdf/SLES4SAP-hana-sr-guide-PerfOpt-15_AWS_color_en.pdf
https://documentation.suse.com/sbp/all/pdf/SLES4SAP-hana-sr-guide-PerfOpt-15_AWS_color_en.pdf
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb151
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb151
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb151
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb152
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb152
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb152
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb152
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb152
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb153
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb153
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb153
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb154
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb154
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb154
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb154
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb154
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb154
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb154
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb155
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb155
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb155
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb156
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb156
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb156
https://sort.veritas.com/agents/download_docs/8304/vcs_sapnetweaver_install
https://sort.veritas.com/agents/download_docs/8304/vcs_sapnetweaver_install
https://sort.veritas.com/agents/download_docs/8304/vcs_sapnetweaver_install
https://origin-download.veritas.com/resources/content/live/DOCUMENTATION/SFDC/000126860/en_US/vcs_admin_73_lin.pdf
https://origin-download.veritas.com/resources/content/live/DOCUMENTATION/SFDC/000126860/en_US/vcs_admin_73_lin.pdf
https://origin-download.veritas.com/resources/content/live/DOCUMENTATION/SFDC/000126860/en_US/vcs_admin_73_lin.pdf
https://origin-download.veritas.com/resources/content/live/DOCUMENTATION/SFDC/000126863/en_US/sfrac_admin_73_lin.pdf
https://origin-download.veritas.com/resources/content/live/DOCUMENTATION/SFDC/000126863/en_US/sfrac_admin_73_lin.pdf
https://origin-download.veritas.com/resources/content/live/DOCUMENTATION/SFDC/000126863/en_US/sfrac_admin_73_lin.pdf
https://origin-download.veritas.com/resources/content/live/DOCUMENTATION/SFDC/000126863/en_US/sfrac_admin_73_lin.pdf
https://origin-download.veritas.com/resources/content/live/DOCUMENTATION/SFDC/000126863/en_US/sfrac_admin_73_lin.pdf
https://www.veritas.com/support/en_US/doc/145798412-145798468-1
https://www.veritas.com/support/en_US/doc/145798412-145798468-1
https://www.veritas.com/support/en_US/doc/145798412-145798468-1
https://www.veritas.com/support/en_US/doc/145798412-145798468-1
https://www.veritas.com/support/en_US/doc/145798412-145798468-1
https://www.veritas.com/support/en_US/doc/145798412-145798468-1
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb162
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb162
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb162
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb163
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb163
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb163
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb163
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb163
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb163
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb163
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb163
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb163
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb164
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb164
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb164
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb165
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb165
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb165
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb165
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb165
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb166
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb166
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb166
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb166
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb166
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb166
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb166
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb167
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb167
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb167
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb168
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb168
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb168
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb168
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb168
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb168
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb168
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb169
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb169
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb169
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb169
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb169
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb170
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb170
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb170
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb171
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb171
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb171
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb171
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb171
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb171
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb171
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb172
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb172
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb172
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb172
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb172
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb172
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb172
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb172
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb172
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb174
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb174
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb174
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb174
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb174
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb174
http://refhub.elsevier.com/S0164-1212(21)00280-6/sb174


P. Somasekaram, R. Calinescu and R. Buyya The Journal of Systems & Software 187 (2022) 111208

(
s
c
4
p
a
i
S
c
c
a

CLOUDS) Laboratory at the University of Melbourne, Australia. He is also
erving as the founding CEO of Manjrasoft, a spin-off company of the University,
ommercialising its innovations in Cloud Computing. He has authored more than
25 publications and four text books including ‘‘Mastering Cloud Computing’’
ublished by McGraw Hill and Elsevier/Morgan Kaufmann, 2013 for Indian
nd international markets, respectively. He is one of the highly cited authors
n computer science and software engineering worldwide. Microsoft Academic
earch Index ranked him as the world’s top author in distributed and parallel
omputing between 2007 and 2012. Software technologies for grid and cloud
omputing developed under his leadership have gained rapid acceptance and
re in use at several academic institutions and commercial enterprises in 40
32
countries around the world. He has led the establishment and development
of key community activities, including serving as foundation chair of the IEEE
Technical Committee on Scalable Computing and five IEEE/ACM conferences.
These contributions and international research leadership are recognised through
the award of ‘‘2009 IEEE Medal for Excellence in Scalable Computing’’ from the
IEEE computer society. Manjrasoft’s Aneka Cloud technology developed under
his leadership has received ‘‘2010 Frost & Sullivan New Product Innovation
Award’’ and ‘‘2011 Telstra Innovation Challenge, People’s Choice Award’’. He
served as founding Editor-in-Chief of the IEEE Transactions on Cloud Computing.
He is currently serving as Co-Editor-in-Chief of Journal of Software: Practice and
Experience, which was established over 45 years ago.


	High-availability clusters: A taxonomy, survey, and future directions
	Introduction
	Uses and architecture of high-availability clusters
	Key concepts and terminology
	Enterprise application layers
	HAC architecture

	Taxonomy of high-availability clusters 
	A: Deployment pattern
	B: Application areas
	C: Type of cluster
	D: Topology
	E: Cluster management
	F: Failure detection and recovery
	G: Consistency and integrity
	H: Data synchronisation.

	Survey of high-availability clusters 
	Selection of HACs for the survey
	HAC analysis methodology
	HAC survey results
	Analysis of the survey results

	Future directions
	Limitations 
	Challenges
	Opportunities

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	References


