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A B S T R A C T

The evolution of Artificial Intelligence of Things (AIoT), coupled with advancements in edge and
cloud computing, has enabled the development of real-time IoT-based applications. Integrating
Internet of Things (IoT) and AI-driven edge–cloud services can address challenges such as early
disease detection, system performance, data management and environmental sustainability in
cloud-centric healthcare environments. To address these challenges, we propose HealthAIoT, a
new architecture that utilises AIoT with cloud computing services to create a smart healthcare
system. In our current implementation, HealthAIoT assesses the risk of developing Diabetes Mel-
litus in healthy individuals based on their personal health metrics and medical history; however,
the proposed framework is fundamentally designed to be disease-agnostic and can be extended
to incorporate detection and monitoring for other diseases. The HealthAIoT architecture consists
of two main modules: a diabetes predictor and a cloud scheduler. The diabetes prediction mod-
ule and cloud scheduler both utilise Multilayer Perceptron (MLP) models. The cloud scheduler
manages health-related data and application requests from IoT devices, optimising resource
utilisation and minimising the environmental impact of cloud services. The performance of
the HealthAIoT framework is tested using realistic testbed CloudAIBus. Experimental results
demonstrate that the MLP-based diabetes predictor achieves 78.30% accuracy and an F1-score
of 0.7719 on unseen patient data while cloud scheduler achieves 93.6% accuracy. Further,
system performance is evaluated using metrics including energy consumption, carbon-free
energy usage, cost, execution time, and latency. By identifying individuals at the highest risk
of developing diabetes, the framework enables targeted preventative interventions, optimise
resource usage and maximises impact, while also serving as a foundational framework for
broader healthcare applications.
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. Introduction

Internet of Things (IoT) introduces a wide range of sensors and devices that are capable of executing sophisticated computations
nd maintaining reliable communications, these technologies have been deployed across numerous sectors [1,2]. In healthcare,
oT-enabled Body Sensor Network (BSN) has moved beyond conventional applications to fundamentally transform patient care
y enabling precise and proactive chronic disease monitoring and detection [3]. Advances in machine learning (ML) have
ubstantially enhanced our ability to address complex health-related challenges [4]. The emerging paradigm of Artificial Intelligence
f Things (AIoT) that integrates AI with IoT further improves the intelligence of sensing systems [5]. When these BSN/IoT sensors
re integrated with AI and managed through public cloud services, they provide a robust framework for the development of
nvironmentally sustainable and health-focused smart cities [6]. This integration facilitates the rapid and accurate processing of
arge volumes of real-time patient data, thereby supporting prompt diagnostics, timely updates to treatment strategies, improved
atient care and overall streamlined healthcare innovation.

Diabetes Mellitus, a chronic disease responsible for 1.5 million deaths in 2019, with nearly 48% of these fatalities occurring
n individuals under 70 years of age, is closely associated with severe complications affecting the cardiovascular system and kid-
eys [7,8]. Early risk assessment in non-diabetic individuals is therefore crucial to implementing timely preventative interventions.
elays in diagnosis have resulted in approximately 50% of individuals with Type 2 diabetes (T2D) presenting with complications at

he time of diagnosis, which not only increase disease severity but also increases the likelihood of additional health issues [9,10].
everaging advanced computational methods can not only enable early intervention for T2D prevention but also facilitate continuous
onitoring for the early identification of individuals at high risk.

.1. Motivation

Modern approaches, such as the use of BSN sensor-based IoT devices [11], have addressed some challenges and brought
ignificant convenience to daily life. However, further integration of AIoT technology with cloud computing in healthcare is needed
o develop robust and comprehensive architectures for chronic disease risk assessment [12]. Traditional blood sugar monitoring
evices, such as glucose metres are available for home use but can be costly. This can impose a financial burden on patients,
articularly those managing other medical conditions with multiple monitoring devices. Relying on periodic blood sugar tests
t clinical laboratories is both expensive and inconvenient, especially for individuals without a history of diabetes who want to
inimise the risk of complications through early diagnosis. The advent of AIoT-enabled wearable devices, such as smartwatches

nd smart scales, has made it possible to continuously monitor general health-related parameters and track lifestyle changes. These
mart devices generate comprehensive daily activity data that can be analysed using AI algorithms to provide accurate insights into
ndividuals’ risk of developing diabetes without additional cost. This can help users improve their lifestyle to prevent the disease or
eek timely medical consultation if needed [13].

The traditional questionnaires for diabetes risk assessment often heavily rely on scoring systems that may not capture the
omplexity of disease risk factors. Furthermore, these methods often fail to account for individual differences due to variations
n lifestyle and dietary habits resulting from cultural differences and environmental factors [14]. The advancement of AI models has
nabled new insights into data that contain biases and discrepancies due to regional and cultural differences, which can identify
hese non-linear and complex relationships and interactions that traditional methods might overlook. AI techniques therefore can
e utilised by both individuals and clinical practitioners to discover and capture unique lifestyle factors that affect diabetes risk,
hich traditional risk assessment methods may not detect, aiming to improve accuracy for various demographic groups [14]. The
K’s National Health Service (NHS) has identified AI as a critical transformative technology, aiming to incorporate AI to promote
ealthcare innovation, support decision making and analyse data generated by digital health devices [15]. NHS is exploring various
I applications, such as the early identification of patients at high risk of hospital admission, continuous monitoring through IoT
evices, and decision support during consultations [16]. For instance, AI can process patient data in real-time, offering possible
iagnoses and suggesting follow-up investigations, thus improving diagnostic accuracy and efficiency. The effectiveness of AI
lgorithms in these prediction and decision-making tasks is particularly valuable in the current era due to increasing availability of
arge datasets [17]. AI algorithms are often more capable than traditional statistical analysis techniques in handling large datasets
nd capturing irregular patterns and complex relationships within the data [18]. Additionally, AI models can continuously improve
s more data become available and more advanced algorithms are developed [19,20].

In addition to these deficiencies of traditional risk assessment methods, issues in the area of IoT and AI-based cloud integration
n the healthcare sector remain, particularly in terms of performance, sustainability and Quality of Service (QoS) optimisation [21].
lobal healthcare activities contribute an estimated 4%–5% of worldwide greenhouse gas emissions, with a substantial portion
ttributed to IT-related components [22,23]. This highlights a clear need to improve sustainability in the healthcare sector. Some
ajor healthcare organisations have been increasingly emphasising targets for environmental sustainability and carbon neutrality.

or instance, NHS has launched its ‘Net Zero’ targets in the UK, aiming to become the world’s first carbon-neutral national health
ystem by 2040 [24]. Similarly, the World Health Organisation (WHO) has been highlighting the need for the healthcare sector
o combat climate change [25]. Additionally, to address the challenges of handling large data volumes on edge devices [26],
here is an essential requirement for an AIoT–cloud based integrated solution. Such a solution should effortlessly handle user data,
mploy AI techniques for processing to overcome latency, optimise resource utilisation, and achieve energy-efficient operations while
enerating accurate prediction results for potential diabetes risk assessment [27]. Therefore, exploring an AI-driven edge–cloud

olution for sustainable healthcare is essential to deal with the above challenges.
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.2. Our contributions

The primary purpose of HealthAIoT is to present an AIoT-driven cloud solution for efficient diabetes risk assessment, focusing
on cloud QoS parameter optimisation while improving cloud sustainability. The proposed framework HealthAIoT addresses the
challenges mentioned above. Its main contributions are as follows:

• Design and Implementation of HealthAIoT architecture: We developed a comprehensive architecture that integrates IoT
devices with an AI-enabled cloud infrastructure for diabetes risk prediction. The framework includes a user-friendly frontend
for diabetes assessment, its modular design enables that the same architecture can also be readily extended to monitor other
chronic diseases, such as cardiovascular or respiratory conditions.

• AI Cloud Resource Scheduler: An innovative AI-based cloud resource scheduler was developed using a Multilayer Perceptron
(MLP) model. The scheduler achieves 93.6% accuracy in predicting optimal computing resource allocation, ensuring efficient
workload management. This approach enhances energy efficiency, reduces carbon footprint, and maintains application
reliability and user data security, making it suitable for scalable and sustainable cloud environments.

• Diabetes Risk Prediction Model: A novel diabetes risk prediction model was proposed leveraging an MLP framework. The
model achieves a peak accuracy of 78.30% and F1-score of 0.7719 on unseen data. These results indicate its potential for
real-world deployment in healthcare scenarios, providing a reliable tool for early diabetes risk assessment.

• Explainable AI (XAI) for Explaining Diabetes Prediction: We incorporate XAI technique, specifically SHAP (SHapley
Additive exPlanations), was incorporated. This approach quantifies and visualises the contribution of each dataset feature
to the final decision-making process of the disease prediction model. This is particularly critical in healthcare applications
where understanding the rationale behind predictions and improving transparency are essential for clinical adoption.

• Comprehensive Performance Evaluation: A thorough performance evaluation of the proposed architecture was conducted
using the real testbed CloudAIBus [28]. Key QoS parameters including energy consumption, carbon-free energy usage, cost,
execution time and latency were analysed. AI performance metrics such as accuracy and F1-score were evaluated to assess the
effectiveness of the proposed solution. The results demonstrate the architecture’s ability to balance performance, efficiency,
and sustainability in real-world cloud environments.

.3. Organisation

The rest of the paper is structured as follows: Section 2 presents details about recent related work in the healthcare sector that
mploys IoT devices and cloud services. Section 3 discusses the methodology used to develop the proposed architecture, including
ystem design, communication topology, dataset processing and model training for the HealthAIoT framework. Section 4 explains
he experimental environment setup and the performance evaluation metrics including AI performance metrics and QoS parameters.
ection 5 discusses experimental outcomes and result analysis as well as the research limitations. Section 6 concludes the paper along

with suggestions for future work.

2. Related work

The integration of cloud computing and AIoT in healthcare represents a transformative shift in the delivery of healthcare services.
Recent surveys highlight that IoT devices, such as wearable sensors and medical equipment continuously collect health-related data,
which is then transmitted via various communication technologies such as Wi-Fi and Bluetooth to cloud platforms [29,30]. These
cloud systems provide scalable computing resources and advanced data processing capabilities, enabling remote patient monitoring
and personalised treatment plans [31]. However, while many studies have leveraged these capabilities, much of the discussion
round cloud performance remains largely theoretical. The existing research often does not incorporate cloud-side optimisation,
uch as resource allocation, energy consumption and operational cost, nor does it adequately address the need for XAI to improve
ser acceptance in healthcare settings.

.1. Existing studies

Over the past decades, IoT applications have evolved significantly from basic data collection tools to systems capable of intelligent
nalytics and real-time processing [32–35]. Recent research has further emphasised the integration of cloud services with edge
evices to support continuous healthcare monitoring and predictive analysis using advanced ML models and secure communication
rotocols [36].

For instance, Hennebelle et al. [37] present HealthEdge framework that utilises ML algorithms (Random Forest and Logistic
Regression (LR)) for T2D prediction in an integrated edge–cloud environment. In the framework, health metrics from IoT devices
re pre-processed at edge servers before being sent to the cloud for further analysis. Their framework are tuned and evaluated
n public datasets including PIMA Indian and Sylhet. Although it is promising in managing real-world risk-factor heterogeneity,
ealthEdge does not address cloud optimisation aspects, such as resource allocation, energy consumption and operational cost,
hich are critical for deploying scalable IoT–cloud systems. Similarly, Khan et al. [38] present an advanced federated ensemble

earning approach for healthcare monitoring. Their system integrates various IoT devices to capture medical images, specifically
hest X-rays (CXR) and Magnetic Resonance Imaging (MRI), which constructs local models at the edge. These local models are then
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c
ombined using an ensemble strategy that distinguishes between malicious and non-malicious data to mitigate poisoning attacks.
Their framework achieves notable diagnostic performance on public CXR and MRI datasets, with accuracy rates of 99.24% and
99.0% respectively, outperforming traditional centralised models. Nonetheless, their study primarily focuses on disease prediction
and does not consider cloud performance metrics or cloud-side optimisation strategies. Additional contributions such as, Desai
et al. [12] proposed HealthCloud, an architecture designed for monitoring heart patient data for early detection and prediction
of cardiac complications using various ML models including Artificial Neural Network (ANN), K-Nearest Neighbour (KNN), LR,
Support Vector Machine (SVM) and Gradient Boosting (GB), which evaluate QoS parameters such as execution time and latency.
Their study primarily considers accuracy and F1-score without a comprehensive investigation into cloud sustainability. Ramkumar
et al. [39] present an IoT-based heart disease prediction model employing Long Short-Term Memory (LSTM) and Recurrent Neural
Network (RNN) architectures alongside a combined Lion and Krill Head optimisation technique. Despite achieving high accuracy
and F1-scores, their framework also lacks a detailed analysis of cloud optimisation.

In another study, Alsubai et al. [40] propose a digital twin initiative to enable real-time monitoring and proactive management
of athlete health during intensive training sessions. Their framework integrates IoT devices with edge and cloud computing
to continuously capture both physiological and environmental data, which is then transformed into a dynamic digital twin
representation. They applied Convolutional Neural Network (CNN) and Multi-scaled Long Term Memory (MLSTM) to predict
athlete’s adverse health conditions early. Their experimental simulations show their framework outperforms existing techniques
with high temporal efficacy and predictive accuracy, underscoring the potential of combining digital twin technology with IoT–
cloud integration for enhancing real-time healthcare monitoring [40]. Sharma et al. [41] implemented an Extreme Learning Machine
(ELM) model for monitoring and early diagnosis of diabetes. The system’s performance was evaluated based on resource utilisation,
latency and scalability in both standalone deployment and Amazon Web Services (AWS) deployment scenarios. The proposed
architecture addresses system failure and security through scalability and cloud deployment. However, this framework does not
consider sustainability aspects of both deployment strategies. Atoum et al. [42] proposed a K-Nearest Neighbour (KNN) model to
develop a real-time, continuous health monitoring system for anomaly detection in patient health. It utilises edge devices (Raspberry
Pi processor) as the main computational unit, which continuously receives patient data from IoT sensors and performs data pre-
processing, then transfers the data to the AWS cloud platform. The model processes the data to detect anomalies, and the results are
transmitted back to the Raspberry Pi module for display via web interface. The system operates on a private Wi-Fi setup, ensuring
secure inter-device and intra-device communication. Patients can access their data stored on the cloud platform through a secure
login authentication mechanism. The paper analyses the model’s performance using accuracy and latency metrics.

The authors [43] propose a FedSDM (Federated Learning-based Smart Decision Making) module for anomaly detection in
Electrocardiogram (ECG) data within an integrated edge–cloud environment. This framework employs an autoencoder that comprises
an encoder and a decoder implemented as MLP, which is used for reconstructing ECG data to detect anomaly based on reconstruction
error, which also leverages FedAvg for aggregating local models trained on ECG data from distributed IoT devices to detect anomaly.
Importantly, the paper evaluates the deployment of the proposed framework across edge, fog and cloud layers by measuring QoS
parameters such as energy consumption, network usage, cost, execution time and latency. The findings demonstrate their proposed
framework can reduce latency and resource usage within edge environment, which offers a strong baseline for comparative analysis.

Tuli et al. [44] introduced HealthFog, a novel framework that uses ensemble ML algorithms deployed on edge devices to predict
heart disease in patients. The system uses the FogBus architecture based on Blockchain technology, to handle communication and
data flow between IoT sensors and edge devices. The framework also manages data privacy and security to ensure application safety.
In their framework, Aneka software is utilised to integrate the IoT–edge system with the cloud platform. The system’s performance
is evaluated based on QoS parameters including latency, execution time, network bandwidth usage, jitter and power consumption,
while the model performance is evaluated based on prediction accuracy.

2.2. Critical analysis

We reviewed the existing studies in the related area and found extensive research on integrating IoT devices with cloud or
edge computing paradigms for various health-monitoring aspects. Although significant advancements have been made in leveraging
IoT sensors and edge–cloud services for health monitoring and disease prediction, our review reveals persistent research gaps
that motivate the need for the proposed HealthAIoT framework (see Table 1). Many studies emphasise that the backbone of
their frameworks relies on cloud services for deploying ML models and real-time analytics; however, these discussions of cloud
performance are largely theoretical with limited investigation into critical aspects such as QoS parameter optimisation and
sustainability. For example, Desai et al. [12] and Ramkumar et al. [39] apply various ML models, including ANN, KNN, LSTM
and RNN for heart disease prediction, while their frameworks are predominantly centred on cloud services without exploration
of cloud-side optimisation. Similarly, Sharma et al. [41] present an ELM-based model for diabetes diagnosis, but their evaluation
mainly focuses on accuracy and F1-score, neglecting broader system-level metrics. Furthermore, studies by Atoum et al. [42] and
Tuli et al. [44] apply ML techniques for health anomaly detection and heart disease prediction; however, they do not adequately
address the sustainability and efficiency with QoS parameters optimisation in IoT–cloud service integration, nor do they conduct
deployment in the real testbed. Additionally, none of these works incorporate XAI methods to help to understand their models’
decision-making processes, which is significant in interpretability of healthcare applications [45,46].

In summary, although these studies collectively demonstrate the potential of integrating IoT, edge and cloud computing for health
monitoring and disease prediction, they frequently overlook critical aspects of cloud optimisation, framework integration and model
explainability. This gap justifies the development of our HealthAIoT framework, which not only aims to achieve accessible disease
prediction but also promote system sustainability, QoS optimisation and enhanced transparency through AI-driven scheduling and
resource management.
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able 1
omparison of proposed HealthAIoT with existing research.
Works Computing Paradigm Security Algorithms Employed AI Performance Metrics Scheduler Computing Parameters (QoS) Real Testbed

Accuracy F1-score

[37] Cloud–Edge ✗ RF, LR ✓ ✓ ✗ – ✗

[38] Cloud–Edge ✗ Federated Learning ✓ ✓ ✗ – ✗

[12] Cloud ✓ KNN, LR, SVM, GB ✓ ✓ ✗ Latency, ET ✗

[39] Cloud ✓ LSTM, RNN ✓ ✓ ✗ – ✗

[40] Cloud–Edge ✓ MLSTM, CNN ✓ ✓ ✗ – ✗

[41] Cloud ✓ ELM ✓ ✓ ✗ Latency ✗

[42] Cloud–Edge ✓ KNN ✓ ✗ ✗ Latency ✗

[43] Cloud–Edge ✗ Federated Learning ✓ ✗ ✗ EC, ET, Cost, Latency, Network ✗

[44] Cloud–Edge ✓ EDL ✓ ✗ FogBus Latency, Execution Time, Energy Consumption ✗

HealthAIoT (Ours) Cloud–AIoT ✓ MLP ✓ ✓ MLP Scheduler EC, ET, Carbon-free Energy Usage, Cost, Latency CloudAIBus

Abbreviation used — KNN: K-Nearest Neighbour; LR: Logistic Regression; RF: Random Forest; SVM: Support Vector Machine; CNN: Convolution Neural Network; RNN: Recurrent Neural Network; GB:
radient Boosting; LSTM: Long Short Term Memory; MLSTM: Multi-scaled Long Term Memory; ELM: Extreme Learning Machine; ML:Machine Learning; MLP: Multi-Layer Perceptron; EDL: Ensemble
eep Learning; ET: Execution Time; EC: Energy Consumption

. Proposed methodology

This section introduces the architecture of our proposed framework and discusses its main components.

.1. HealthAIoT framework

The HealthAIoT framework is built on an AIoT-Cloud platform that seamlessly integrates multiple hardware with software
omponents. The framework utilises a RESTful API to facilitate inter-device communication. The proposed MLP scheduler serves as
he core component of the architecture, managing resources utilisation, data acquisition, allocation and operations on user health
ata. The scheduler also manages the connection between the Gateway device and the system. To ensure security, the framework
ncorporates security measures that restrict access and communication to authorised Workers and users by operating within a private

LAN (Wireless Local Area Network). This approach protects sensitive data by mitigating risks of unauthorised internet access. Fig. 1
rovides a detailed overview of the hardware and software components described below:

.1.1. Hardware units
In this study, we have taken into account the following hardware components:
Body-sensor Network (BSN) IoT Devices: A smartwatch is used to collect health data such as heart rate and daily activity

evels, which are essential for assessing general health conditions. Although ECG result and cholesterol levels are included in our
esearch, the methods for obtaining these measurements are beyond the scope of the HealthAIoT architecture.
Gateway Device: A laptop, mobile phone or tablet can be used as a gateway device. The only requirements are the installation

f either the Google Chrome or Firefox browser and access to the Internet.

.1.2. Software units
In this work, we have considered the following software units:
Webpage Interface: A webpage interface (see Fig. 2) was developed in the form of a diabetes risk assessment questionnaire. This

uestionnaire allows users to input their health-related information, including lifestyle habits, health history and general personal
nformation. The user can submit their responses to receive diabetes risk assessment results displayed on a result page.
Broker and Workers Modules: In our AI-based IoT–cloud framework, the system architecture comprises two main modules—the

roker and the Workers, which together function as computational units and a cloud task scheduler to manage data flow, resource
anagement and task distribution across the network.

• Broker Module: The Broker module acts as the orchestrator of the entire system. On the front end, it handles connection
requests and data received from the user gateway devices, providing responses to corresponding user queries. On the back end,
it manages secure communication among devices and monitors the heartbeat signals and resource availability of the Worker
modules, which allows it to determine the optimal allocation of user data processing tasks. This includes assigning tasks to the
optimal Worker during normal operation, or reallocating tasks to another available Worker if necessary, or processing tasks
locally in case of hardware failure. This dynamic allocation mechanism serves as a cloud task scheduler to optimise resource
utilisation and ensure uninterrupted service.

• Workers Module: The Worker module performs two key functions. First, it sends continuous heartbeat messages along with QoS
parameter statistics to the Broker, providing real-time updates on operational status and resource usage. Second, it executes
the diabetes prediction tasks on the health data received from the Broker and sends the prediction results back to the Broker
module. The Workers function as computational units, processing tasks assigned by the Broker and contributing to the overall
performance and scalability of the HealthAIoT system.
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hput [KB/s]

Network received
throughput [KB/s]

Network transmitted
throughput [KB/s]

0 0.267
0 0.133
0 0.2
0 0.667
0 0.2
Table 2
Sample VMs system metrics from BitBrains cloud dataset.

Timestamp
[ms]

CPU cores CPU capacity
provisioned [MHZ]

CPU usage
[MHZ]

CPU usage
[%]

Memory capacity
provisioned [KB]

Memory usage
[KB]

Disk read throughput
[KB/s]

Disk w
throug

1376314846 1 2599.999 17.333 0.667 2 097 152 157 984.8 0 7.8 
1376315146 1 2599.999 17.333 0.667 2 097 152 160 780.3 0 7.533 
1376315446 1 2599.999 17.333 0.667 2 097 152 173 362.1 0 7.133 
1376315746 1 2599.999 22.533 0.867 2 097 152 226 489.9 0 9 
1376316046 1 2599.999 20.8 0.8 2 097 152 176 159.7 0 7.067 
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th MentHlth PhysHlth DiffWalk Sex Age Education Income

18 15 1 0 9 4 3
0 0 0 0 7 6 1
30 30 1 0 9 4 8
0 0 0 0 11 3 6
3 0 0 0 11 5 4
Table 3
Sample participant records from the diabetes health indicators dataset.

HighBP HighChol CholCheck BMI Smoker Stroke HeartDiseaseorAttack PhysActivity Fruits Veggies HvyAlcoholConsump AnyHealthcare NoDocbcCost GenHl

1 1 1 40 1 0 0 0 0 1 0 1 0 5 
0 0 0 25 1 0 0 1 0 0 0 0 1 3 
1 1 1 28 0 0 0 0 1 0 0 1 1 5 
1 0 1 27 0 0 0 1 1 1 0 1 0 2 
1 1 1 24 0 0 0 1 1 1 0 1 0 2 
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Fig. 1. HealthAIoT architecture.

3.2. HealthAIoT communication protocols

The HealthAIoT architecture handles a significant volume of network instructions and data exchanges among its components.
o achieve this, robust and practical communication protocols are essential. Fig. 3 illustrates the topological representation of each
etwork component in the sequence diagram. The AI Scheduler manages the information exchanges between devices within the
ealthAIoT network. The HealthAIoT network follows a classic Leader–Follower model, with the Broker acting as the Leader and

he Workers as Followers. All physical components (Broker, Workers and Gateway devices) operate within the same WLAN to ensure
ecure communication. Users access the diabetes assessment application webpage interface (see Fig. 2) through an HTTP request from
he Gateway device. This interface is hosted on the Broker unit. The Broker routes the request based on two scenarios: processing
he prediction locally, or assigning it to a Worker unit. Workers periodically send status updates and resource usage statistics to
roker, enabling it to determine the optimal Worker for processing in the second operational mode.

Each communication in the topology follows a standardised protocol. As shown in Fig. 3, there are two communication
ossibilities: communication via the Broker or via a Worker. The user accesses the HealthAIoT webpage interface from the Gateway
evice by sending a request to the Broker, which responds with a ‘200’ HTTP status code if the request is successful. The Broker then
rovides the Gateway device with the appropriate IP address (its own or that of the optimal Worker) depending upon the operation
ode. The user then can send data for diabetes prediction to this IP address via the Gateway device. In the Broker communication
ode, if the Workers are over-utilised or non-functional, the Gateway device immediately receives the Broker’s IP address without

hecking the status of the Workers. The Broker can handle the data processing depending on its resource availability. In the Worker
ommunication mode, the Broker routes the IP address of the optimal Worker to the Gateway device. If a Worker failure occurs,
he Broker provides the IP address of the next optimal Worker or itself. After this request–response cycle, the Gateway device sends
he user data to the designated IP address (Broker or Worker) for processing and diabetes prediction. To enhance data security, user
ata accessed via the webpage interface is not stored within the HealthAIoT system.

.3. AI-driven cloud scheduler model

The AI cloud scheduler is developed with an MLP network. It was then deployed on the Broker to serve two functions: it monitors
ystem metrics of Workers and dynamically manages data-related requests to determine the Worker with the optimal resources for
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Fig. 2. HealthAIoT disease prediction user interface webpage.

processing tasks. It also oversees a fail-safe mechanism by migrating tasks to other available resources (either another Worker or
itself) if the initially assigned Worker is unreachable. This ensures optimal throughput and prevents communication bottlenecks
across devices by efficiently balancing task distribution. Fig. 4 illustrates the scheduling mechanism used to achieve load balancing,
as well as the fail-safe mechanism implemented to prevent system disruption in case of Worker unit failure. The dataset and model
structure and training processes are detailed below:
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Fig. 3. HealthAIoT framework communication protocols.

.3.1. BitBrains cloud dataset
In this research, a cloud workload dataset from BitBrains [47] was used to train the cloud scheduler model. The dataset

ontains 11 features (see Table 2) capturing various system metrics that provide comprehensive insights into the resource usage
and performance of VMs in the real cloud environment: (a) Timestamp (time in ms), (b) CPU Cores (number of cores), (c) CPU
Capacity Provisioned (requested CPU capacity in MHz), (d) CPU Usage (utilisation in MHz), (e) CPU Usage Percentage (utilisation
in percentage), (f) Memory Capacity Provisioned (requested memory capacity in KB), (g) Memory Usage (memory utilisation in KB),
(h) Disk Read Throughput (disk read speed in KB/s), (i) Disk Write Throughput (disk write speed in KB/s), (j) Network Received
Throughput(network received speed in KB/s), (k) Network Transmitted Throughput(network transmitted speed in KB/s).

.3.2. Cloud dataset preparation and pre-processing
Data processing starts with loading the Bitbrains dataset [47]. Dimensionality reduction is performed to retain only the columns

elated to CPU Usage, Memory Usage, Memory Capacity Provisioned, Network Received Throughput and Network Transmitted
hroughput. Next, data cleaning is conducted to remove any rows containing only null values. On the refined dataset, Memory
sage (in percentage) is calculated from the values of Memory Usage and Memory Capacity Provisioned columns; this dataset is

eferred to as 𝐷. The data in 𝐷 are then randomly shuffled and split in half. The two halves are placed side by side to create a
ew dataset with eight feature columns, four features for each worker (represented as 𝑊1 and 𝑊2), which enables the analysis of
nteractions between pairs of Workers based on these system metrics as shown Eq. (1):

𝑊1, 𝑊2 =
⌊𝐷
2

⌋

(1)

The scoring function combines all the features for each Worker on a row-wise basis to determine the optimal Worker. The features
nd target columns are then split in two separate DataFrames for further computation. The split dataset is divided into a training
et and a test set with an 80:20 ratio. The data is normalised using the StandardScaler function from the sklearn module to ensure
onsistency across all features. This aids in better feature learning by the models. The normalised data is then converted into tensors.
he scoring function is defined on a 4-dimensional input vector (cpu,mem, recv, send) as follows Eq. (2):

𝑆(cpu,mem, recv, send) = cpu + mem + recv + send (2)

here 𝑐 𝑝𝑢 represents CPU utilisation of the VM in percentage, 𝑚𝑒𝑚 represents memory utilisation of the VM in percentage, 𝑟𝑒𝑐 𝑣
epresents VM network received bandwidth in Mbps, and 𝑠𝑒𝑛𝑑 represents VM network transmitted bandwidth in Mbps.
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.3.3. Scheduler model structure, parameters, and tuning process
Table 4 shows the details of the scheduler structure and its training parameters setup used, the Algorithm 1 presents the

corresponding pseudocode. In the pseudocode, t r ain and t est denote the training and test data loaders respectively, which
provide batches of input features 𝑋bat ch and corresponding labels 𝑦bat ch. The model parameters 𝜃 are updated during training
via backpropagation using the Adam optimiser (configured with a learning rate 𝛼 and a weight decay 𝜆). The total number of
training epochs is denoted by 𝐸 and the cross-entropy loss function Loss(⋅) measures the deviation between the predicted outputs
̂bat ch = (𝑋bat ch; 𝜃) and the true labels 𝑦bat ch. An evaluation function   computes the ratio of correct predictions to the total
number of samples, providing both training and test accuracies.

The scheduler incorporates a neural network-based supervised learning algorithm with one hidden layer. Glorot initialisation is
utilised to ensure balanced weight distribution across layers [48]. The Adam optimiser (with a learning rate of 0.001 and weight
decay of 0.00001) is used to update model parameters to balance convergence. To prevent overfitting and improve generalisation,
a dropout rate of 0.3 is applied to the hidden layer, and a Leaky Rectified Linear Unit activation function is used. Model
training involves batch-wise forward passes to compute predictions, followed by backward passes to calculate gradients and update
parameters via backpropagation, which minimises the loss and enhances prediction accuracy [49]. After each epoch, the model
evaluates its performance on both training and test data by averaging the batch-wise accuracies.

In terms of computational efficiency, each batch requires a forward pass (with a cost proportional to the batch size 𝐵 times the
feature size 𝑓 ) a backward pass (with a cost that scales with the number of parameters 𝑝). Therefore, over 𝐸 epochs, the overall
time complexity can be approximated as Eq. (3):

𝑂(𝐸 × (𝐵 × 𝑓 + 𝑝)) (3)



H. Wang et al.

1
1
1
1
1
1
1
1

T

3

a
c
I

C
a
c
d
m
r
a
f
A

c

Table 4
Structure and parameters of the cloud scheduler model.

Component Configuration

Input Size 64 X 8 (Batch Size X Number of Features)
One Hidden Layer 8 input neurons, 32 output neurons
Activation Function Leaky ReLU Applied to hidden layer
Dropout Layer Applied to hidden layer, dropout rate = 0.3
Output Layer 32 input neurons, 2 output neurons (number of classes)
Output Size 64 X 2 (Batch Size X Number of Classes)
Optimizer Adam with Learning rate (𝛼) = 0.001 and weight decay (𝜆) = 0.00001
Parameter Initialisation  Glorot Initialisation

Algorithm 1 MLP-based Cloud Scheduler Training & Evaluation
1: Initialise model  with parameters 𝜃 using Glorot initialisation.
2: Initialise empty lists: losses, trainAcc, testAcc.
3: for epoch = 1 to 𝐸 do
4: Set  to train mode.
5: for each batch (𝑋bat ch, 𝑦bat ch) in t r ain do
6: Compute 𝑦̂bat ch ← (𝑋bat ch; 𝜃).
7: Compute loss 𝑙 ← Loss(𝑦bat ch, ̂𝑦bat ch).
8: Reset gradients of 𝜃.
9: Backpropagate: update 𝜃 via Adam with learning rate 𝛼 and weight decay 𝜆.
0: Append 𝑙 to losses.
1: end for
2: Set  to evaluation mode.
3: Compute training accuracy trainAcc ←  (,t r ain).
4: Compute test accuracy testAcc ←  (,t est ).
5: Save model checkpoint.
6: end for
7: return Best model checkpoint.

3.4. Diabetes prediction model

The diabetes prediction model is trained to assess the individuals’ risk of developing diabetes based on their response on the
questionnaires interface. The trained model was deployed on Workers on Google Cloud Platform (GCP) to conduct the assessment.

his section describes the dataset and prediction model development process.

.4.1. Diabetes dataset
This research uses the Diabetes Health Indicators Dataset from Centres for Disease Control and Prevention (CDC), which is

publicly available from the UCI Machine Learning Repository [50,51] and contains 253,680 participant records. Each record provides
 snapshot of an individual’s health profile, lifestyle habits and demographic characteristics relevant to diabetes risk. The dataset was
ollected and anonymised by the CDC, it does not include any personally identifiable information (PII) such as names or addresses.
nstead, participants are represented by integer-coded attributes for demographic and health metrics.

The dataset was fetched via the ucimlrepo Python library from the UCI Machine Learning Repository. It is distributed as a
SV file with 21 features (columns) plus a single binary target column. The CDC aggregated these health indicators from a diverse
dult population, including metrics for blood pressure, cholesterol, physical activity, and self-reported health ratings. Individuals are
lassified as either non-diabetic (0) or diabetic (1). In the dataset, 84.24% of the participants are reported as having no diabetes or
iabetes only during pregnancy, 1.83% are identified as having pre-diabetes, and 13.93% are diabetic. Fig. 5 shows the correlation
atrix for the 21 features of the diabetes dataset to explore how risk factors interrelate. The heat map of correlation coefficients

epresents the clusters of positively correlated risk indicators such as HighBP, Stroke, HeartDiseaseorAttack and possible negative
ssociations such as PhysActivity and BMI, which help with the interpretation of health-behaviour linkages in the dataset. See Table 3
or the example of five records in the dataset, illustrating how features are coded, most of them are integer- or binary-coded with
ge, Education, and Income represent ordinal levels. The dataset’s features are summarised as follows:

Health Conditions: cholesterol level, Body Mass Index (BMI), history of stroke, heart disease or heart attack;
Health Behaviours: smoking status, physical activity in the last 30 days, regular consumption of fruits and vegetables, and alcohol

onsumption;
Medical Access: cholesterol check within five years, access to healthcare, and affordability of doctor visits;
Self-Reported Health: general health rating, number of days with mental or physical health issues, and mobility issues;
Demographics: sex, age, education level, and income range.
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Fig. 5. Correlation matrix of diabetes health indicators dataset features.

Fig. 6. Comparison of data distribution before and after applying SMOTE.

.4.2. Diabetes dataset preparation and pre-processing
The CDC Diabetes Health Indicators dataset [50,51] is imported from the UCI Machine Learning Repository using its ucimlrepo

ython package. The dataset is divided into training, validation and test sets with a 60:12:28 ratio and then normalised using
tandardScaler function from sklearn module to ensure uniform scaling of features. There was a significant class imbalance in the
ataset, which was addressed using the Synthetic Minority Oversampling Technique (SMOTE) to balance the class distributions
nd enhance model training [52]. SMOTE was applied only to the training set to ensure the model learned meaningful patterns
nd relationships from the data without introducing bias into the validation and test sets. The class distribution figures before and
fter applying SMOTE are shown in Fig. 6. Finally, the datasets were converted into tensors and batch-loaded for training using the
ensorDataset and DataLoader functions from the Torch framework.

.4.3. Diabetes prediction model structure, parameters, and tuning process
Table 5 shows the details of the diabetes prediction model structure and corresponding parameters used during the training

rocess. The pseudocode is presented in Algorithm 2. t r ain and t est represent the training and test data loaders respectively,
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Table 5
Structure and parameters of the diabetes prediction model.

Component Configuration

Input Size 128 X 21 (Batch Size X Number of Features)
Two Hidden Layers First Layer: 21 input neurons, 128 output neurons

Second Layer: 128 input neurons, 64 output neurons
Activation Functions Leaky ReLU applied to both hidden layers
Dropout Layer Applied to second hidden layer, dropout rate = 0.24237
Output Layer 64 input neurons, 2 output neurons (number of classes)
Output Size 128 X 2 (Batch Size X number of Classes)
Two Batch Normalisation Layers Applied on First Hidden Layer with 128 Features

Applied on 2nd Hidden Layer with 64 Features
Optimiser AdamW with learning rate (𝛼) = 0.006771 and weight decay (𝜆) = 0.000031
Parameter Initialisation  Glorot initialisation

which provide mini-batches of input features 𝑋 and corresponding labels 𝑦. The model parameters are represented by 𝜃, which
are updated during training via backpropagation using the AdamW optimizer , configured with a learning rate 𝛼 and weight
ecay 𝜆. The total number of training epochs is denoted by 𝐸. The loss function  is the cross-entropy loss that measures the
eviation between the predicted outputs 𝑦̂ = (𝑋; 𝜃) and the true labels 𝑦. An evaluation function   computes the ratio of correct
redictions to the total number of samples, providing training, validation and test accuracies. Early stopping   is employed to stop
raining when no improvement in validation accuracy is observed over a specified number of epochs.

Fig. 7 shows the overview for developing and deploying the diabetes prediction model. The diabetes prediction model employs
a MLP architecture, which contains an input layer with 21 neurons corresponding to the 21 diabetes dataset features. The model
uilds upon the cross-entropy loss function and the AdamW optimiser (with a learning rate of 0.006771 and weight decay of about
.000031 to minimise the prediction errors and balance convergence speed and regularisation. It also utilises Glorot initialisation

to balance weight distribution across different layers. To reduce overfitting and improve the model’s generalisation, a dropout rate
of 0.24237 is applied to the second hidden layer to randomly deactivate neurons during training. The training process comprises
atch-wise forward passes to compute predictions, loss calculations and subsequent parameter updates via backpropagation. After
ach epoch, the model’s accuracy is evaluated on the validation set, and finally its performance is assessed on the test dataset. The
verall time complexity of this training process is also given by Eq. (3), which accounts for both the forward and backward passes,

thereby ensuring computational efficiency while performing the diabetes prediction task.

Algorithm 2 Diabetes Prediction Model Training and Evaluation
1: Initialise model  with parameters 𝜃 using Glorot initialisation; set up Early Stopping  , batch size , and data  .
2: Configure Cross-Entropy Loss  and AdamW optimizer (𝛼 , 𝜆).
3: for epoch = 1 to 𝐸 do
4: Set  to train mode.
5: for each mini-batch (𝑋 , 𝑦) ∈ t r ain do
6: Compute predictions 𝑦̂ ← (𝑋; 𝜃).
7: Compute loss 𝑙 ← (𝑦, ̂𝑦).
8: Reset gradients and update 𝜃 via backpropagation using .
9: Record 𝑙 in losses.
0: end for
1: Set  to evaluation mode.
2: Compute training accuracy 𝑎t r ain ←  (,t r ain).
3: Compute validation accuracy 𝑎val ←  (,val).
4: if Early stopping condition is met (via  ) then
5: break
6: end if
7: Save checkpoint of .
8: end for
9: Compute test accuracy 𝑎t est ←  (,t est ).
0: Return the best model .

4. Performance evaluation

To validate the proposed HealthAIoT framework in a real-time application, we deployed the AI cloud scheduler (Broker) and the
orkers on GCP and employed a comprehensive set of evaluation metrics, including QoS parameters and AI performance metrics.

The experiment setup and evaluation metrics are explained as follows.
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Fig. 7. Development and deployment workflow for diabetes prediction model.

4.1. Experimental setup

The experiment of our proposed framework HealthAIoT was performed and tested on CloudAIBus, CloudAIBus is an AI-based
testbed designed for improving resource allocation in cloud environments [28], it can function as a flexible framework for integrating
and testing predictive models. Our experimental configuration is explained in detail: The Broker was running on Apple MacBook Air

ith M2 64-Bit ARM processor and 8 GB RAM, running macOS Ventura 13.4.1; The Workers were hosted on Google Cloud Platform
GCP) e2-small VMs with 2vCPU (1 shared core), 2 GB RAM, 15 GB Balanced Persistent Disk, running Ubuntu 20.04 LTS. Gateway

devices used in this experiment were Google Pixel 6a and an Apple MacBook Air. The majority of the HealthAIoT framework was
developed in Python, with Python 3.11.3 for Broker and Python 3.8.10 for the Workers (on GCP VMs). The webpage interface
was developed using HTML. The HealthAIoT framework was developed using the following Python modules: torch v1.13.1+cpu for

orkers, torch v2.3.1 for Broker, flask v3.0.3, scikit-learn v1.3.2, joblib v1.4.2, numpy v1.24.4, pandas v2.2.2, matplotlib v3.9.1,
equests v2.32.3, imbalanced-learn (imblearn) v0.0 and ucimlrepo v0.0.7.

Power consumption of the Broker was measured using the Activity Monitor macOS application [53], while power consumption
or the Workers is discussed in Section 4.2. Processor performance metrics (CPU utilisation and latency) for both Broker and Worker
nits were generated using the Python Psutil (process and system utilities) library v6.0.0.

.2. Quality of service (QoS) parameters

In cloud computing services, requirements for QoS parameters vary in different application scenarios [54–56]. The choice of
oS parameters depends on the focus of the research [57]. In this research, QoS parameters of energy consumption, carbon-free
nergy usage, cost, execution time and latency are considered. Evaluating energy consumption of cloud services is essential when
eveloping cloud-based applications, as the recent advancements of AI have consumed a considerable amount of energy, resulting
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n substantial CO2 emissions [58]. Incorporating energy consumption and carbon-free energy usage can illustrate how our proposed
framework leverages renewable energy, which is particularly important for healthcare applications that increasingly prioritise energy
sustainability. The cost parameter is considered to assess the operation cost of the services, which is crucial for both service providers
and end-users. The parameters of latency and execution time are considered. This is particularly important in cloud-based healthcare
pplications, where real-time monitoring and instant feedback to users and healthcare practitioners are essential to ensure patient
are and user experience [59].

.2.1. Energy consumption
For our experimental setup, the configured Workers utilise GCP VMs, designed to imitate the functionality of low-powered

omputing machines. To simulate an IoT-AI integrated cloud environment, the configured VMs are placed in the nearest VM zones
o the Broker. The total power consumption formula is given as Eq. (4) [60]:

𝑃total = 𝑃idle + 𝑃cpu(𝑢) + 𝑃eth,idle + 𝑃WLAN,idle (4)

here 𝑃idle is the power consumption of the device in the idle state, 𝑃cpu(𝑢) represents the power utilised by CPU, 𝑃eth,idle represents
ower consumption of Ethernet module in idle state, 𝑃WLAN,idle represents power consumption WLAN module in idle state.

The 𝑃cpu(𝑈 ) is calculated as Eq. (5), where 𝑈 is the CPU utilisation ratio ranging between 0 and 1 [60]:

𝑃cpu(𝑈 ) = 0.6191 × 𝑈 (5)

.2.2. Carbon-free energy usage
To calculate the Carbon-Free Energy (CFE) usage, the total energy consumption is calculated using Eq. (6):

𝐸total = 𝑃total × 𝑡 (6)

here 𝐸total is total energy usage in watt-hours (Wh), 𝑃total is the total power consumption in watts, and 𝑡 represents the system’s
p-time in hours.

In our experiment, we consider the system to be running for 24 h to calculate the total energy consumption. GCP provides
region- and zone-specific Carbon-Free Energy (CFE) percentages, which indicate the proportion of energy consumed by VMs that
are generated from the carbon-free resources [61]. Employing Workers on GCP VMs significantly reduces the carbon footprint of
implementing the HealthAIoT system. The carbon-free energy consumption is calculated using the following Eq. (7):

𝐸carbon-free = 𝐸total ×
CFE
100

(7)

4.2.3. Cost
The cost of operating the VMs in various modes of operation is given by Eq. (8):

𝐶 𝑜𝑠𝑡total = 0.02 × 𝑡 × 𝑛 (8)

$0.02 is the cost of operating the GCP VMs per hour for the configuration mentioned in Section 4.1 [62], ’n’ represents number
f Worker units and ’t’ represents the total time VMs were operational, the total operational cost of our system was calculated based
n a continuous 24-hour runtime.

.2.4. Latency and execution time
With reference to the communication protocols diagram, the temporal metrics were monitored and analysed. The latency time

easures the delay between when a user POSTs (HTTP request) the data and when the diabetes estimation model runs on the Broker
r the Worker. Total execution time accounts for the entire time lapse from when the user data reaches the destination node for
xecution and data processing to when the user receives their result. For our deployment setup, we calculated all three parameters
or different operation modes: Broker only, 1-Worker and 2-Worker.

.3. AI model performance

To assess the model performance, we examined the test accuracy of the model, which is defined as the percentage of patients
for whom the model correctly classifies the presence or absence of the disease [44]. Additionally, we employed a confusion matrix
nd calculated the F1-score to gain a deeper insight into the model’s classification performance. The Confusion Matrix is a square
× 2 matrix, with each row and column combination representing a class and it assesses the model’s ability to classify between

hese classes [63]. For our diabetes model, the four classes include true negative (TN) - a person is predicted as non-diabetic and is
actually non-diabetic, false positive (FP) - a person is predicted as having diabetes but is actually non-diabetic, false negative (FN)
 a person is predicted non-diabetic but actually has diabetes, true positive (TP) - a person is predicted as having diabetes and is

actually diabetic. The F1-score is calculated by Eq. (9) [64]:

𝐹1 − 𝑠𝑐 𝑜𝑟𝑒 = 2 × 𝑅𝑒𝑐 𝑎𝑙 𝑙 × 𝑃 𝑟𝑒𝑐 𝑖𝑠𝑖𝑜𝑛
𝑅𝑒𝑐 𝑎𝑙 𝑙 + 𝑃 𝑟𝑒𝑐 𝑖𝑠𝑖𝑜𝑛 (9)

Where recall is defined as Eq. (10):

𝑅𝑒𝑐 𝑎𝑙 𝑙 = 𝑇 𝑃 (10)

𝑇 𝑃 + 𝐹 𝑁
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Fig. 8. SHAP swarm plot illustrating data feature impact on model predictions.

It represents the ratio of users diagnosed with diabetes to the actual total number of users with diabetes. Precision is defined as
Eq. (11):

𝑃 𝑟𝑒𝑐 𝑖𝑠𝑖𝑜𝑛 = 𝑇 𝑃
𝑇 𝑃 + 𝐹 𝑃 (11)

It represents the ratio of user diagnosed with diabetes to the predicted total number of users who are diabetic.

4.4. Explainable AI in healthcare application

In addition to achieving accessible disease prediction and sustainability system performance, our framework also emphasises
the critical need for XAI in healthcare. The SHAP plot in Fig. 8 illustrates the contribution of each feature from the CDC Diabetes
Health Indicators dataset to the diabetes prediction model’s decision outcome. This visualisation enables healthcare professionals to
validate whether these contributions align with their conventional approaches, leveraging their domain expertise to ensure model
transparency and trustworthiness [65,66].

4.5. Experimental results

The HealthAIoT system’s performance was evaluated across three operation modes: Broker only, 1-Worker, and 2-Worker. The
experimental outcomes are discussed below:

4.5.1. System latency and execution time
Fig. 9(a) shows the latency variations across operation modes. The 1-Worker mode exhibits the lowest latency, outperforming

both the Broker and 2-Worker modes. This is attributed to the efficient distribution of computational tasks between the Broker and
a single Worker, minimising processing delays. Fig. 9(b) shows that total execution time increases with the number of Workers, the
Broker mode completes tasks fastest, while the 2-Worker mode incurs the longest execution time (0.3095s on average).

4.5.2. Power and carbon-free energy usage
As discussed in Section 4.2, power consumption was calculated from the CPU utilisation ratio for each mode. The Broker mode

consumes the least power (Fig. 10(a)), as it avoids cloud resource utilisation. Power consumption scales with Workers, with the
2-Worker mode consumes the most. Fig. 11 shows a critical sustainability advantage, both 1-Worker and 2-Worker modes leverage
carbon-free energy, while Broker mode relies entirely on carbon-intensive sources. This highlights the environmental benefits of
cloud-based processing despite higher total energy consumption.
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Fig. 9. Comparison of system latency and execution time in different modes.

Fig. 10. Comparison of power consumption and operation cost in different modes.

Fig. 11. Green energy usage in different modes.

4.5.3. Operation cost
Operational costs increase with cloud resource usage (Fig. 10(b)). Since the Broker runs locally on the end device, Broker mode

incurs no cost. As the Workers are deployed on GCP, we calculated the total operation cost of the system based on GCP’s pay-per-use
pricing model. This demonstrates a cost-performance trade-off when scaling cloud resources.



H. Wang et al.

m
w
a
d

5

b
e

5

a
o
9
9
m
a
H

Fig. 12. Confusion matrix of diabetes prediction model.

Table 6
System latency and total execution time comparison (in seconds).
Comparison Frameworks Broker 1-Worker Mode 2-Workers Mode

System Latency HealthFog [44] 0.0146 0.0200 0.0174
FedSDM [43] 0.0333 0.2273 –
HealthAIoT 0.0018 0.0011 0.0028

Total Execution Time HealthFog [44] 0.2408 0.3741 0.3660
FedSDM [43] 1.60071 2.3214 –
HealthAIoT 0.0258 0.1903 0.3095

Table 7
Model average accuracy comparison in percentage.
Frameworks HealthAIoT FedSDM [43] HealthFog [44]

Accuracy 78.3% 93.75% 72%

4.5.4. Accuracy, confusion matrix and F1-score
The diabetes prediction model achieves an overall accuracy of 78.30% and an F1-score of 0.7719 on unseen data. The confusion

atrix shown in Fig. 12 indicates the model correctly identifies non-diabetic individuals with 72.82% precision and diabetic cases
ith 76.53% recall. However, in 23.65% of cases, it misclassifies diabetic individuals as non-diabetic (risk of delayed intervention)
nd 22.18% of non-diabetic cases as diabetic (potential overdiagnosis). These errors could be mitigated by incorporating more
iverse training data to improve generalisability.

. Discussion and performance comparison with existing works

The HealthAIoT framework balances performance, cost and sustainability through its AI-driven scheduler. Compared to the
aselines HealthFog [44] and FedSDM [43] (as discussed in Section 2), our framework demonstrates superior efficiency in latency,
xecution time, and energy usage while maintaining competitive accuracy for diabetes risk prediction.

.1. System latency and execution time

We discuss the performance results of the HealthAIoT system in contrast to the benchmarks of HealthFog [44] and FedSDM [43]
s reviewed in Section 2. As shown in Table 6, HealthAIoT achieves significantly lower latency and execution time across all
peration modes compared to both baselines. In Broker mode, HealthAIoT reduces latency by 87.7% (HealthFog’s 0.0146s) and
4.6% (FedSDM’s 0.0333s). Similarly, total execution time in 1-Worker mode (0.1903s) is 49.1% lower than HealthFog’s 0.3741s and
1.8% lower than FedSDM’s 2.3214s. These improvements benefit from the lightweight architecture that employs a streamlined MLP
odel optimised for edge–cloud environment, reducing computational overhead; also due to AI-driven scheduler that dynamically

llocates tasks between the Broker and Workers, minimising coordination delays inherent in FedSDM’s federated averaging and
ealthFog’s Blockchain-based FogBus.
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Table 8
Power usage comparison (in watt)
Frameworks Broker 1-Worker Mode 2-Workers Mode

HealthFog [44] 2.22 2.83 3.4422
HealthAIoT 2.02 2.296 2.325

5.2. Energy efficiency and sustainability

While direct power consumption comparisons are unavailable for FedSDM, HealthAIoT’s Broker mode consumes 58% less power
than HealthFog (Table 8), primarily due to avoiding resource-intensive Blockchain operations (used in HealthFog). Furthermore,
HealthAIoT’s use of carbon-free energy in 1-Worker and 2-Worker modes addresses a critical gap in both baselines, which do not
prioritise environmental sustainability.

5.3. Accuracy trade-offs

As shown in Table 7, HealthAIoT achieves 78.3% accuracy, outperforming HealthFog (72%) but lagging behind FedSDM
(93.75%). This discrepancy arises from fundamental differences in task complexity and architectural priorities. FedSDM’s
autoencoder-based anomaly detection for ECG data benefits from federated learning (FedAvg), which aggregates diverse ECG
datasets across edge devices, improving generalisability. However, this comes with higher latency and energy consumption. While
FedSDM prioritszes accuracy for ECG anomaly detection, HealthAIoT emphasises real-time diabetes risk prediction with XAI
interpretability. The 0.7719 F1-score and SHAP-based feature explanations make it clinically actionable despite slightly lower
accuracy.

5.4. Limitations

The following are the main limitations of this research work:

• Edge-Cloud Environment: The Workers are deployed on Google Cloud VMs to emulate low-powered edge devices, prioritising
reproducibility and controlled benchmarking. While real-world testing on devices such as Raspberry Pi is needed, the
framework’s low latency advantage suggest strong potential for deployment on actual edge hardware.

• Dataset Scope and Framework Adaptability: The current diabetes model is trained on a U.S.-centric dataset, this may
limit its generalisability to global populations. However, the HealthAIoT framework is designed as a modular platform,
its architecture separates the prediction module from the cloud scheduler, enabling seamless integration of region-specific
datasets or alternative predictors (such as for cardiovascular or other chronic diseases) without redesigning the core IoT–cloud
infrastructure.

• Balancing Accuracy with Deployment Efficiency: The diabetes predictor achieves 78.3% accuracy and an F1-score of 0.7719,
which might be relatively lower than state-of-the-art models for related tasks. This trade-off is because of our intentional use of
a lightweight MLP architecture, which are optimised for fast inference and compatibility with resource-constrained IoT–edge
environments. While deeper architectures such as transformer-based or multimodal frameworks might improve accuracy [67],
they would compromise real-time responsiveness, which is a critical requirement for clinical deployment.

6. Conclusions and future work

We propose HealthAIoT framework as a scalable and sustainable architecture for integrating IoT devices with AI-enabled cloud
services, prioritising real-time healthcare applications. We tested the framework in three operation modes, Broker only, 1-Worker
and 2-Workers in terms of QoS parameters and predictive performance. In 1-Worker mode, HealthAIoT achieves a system latency
of 0.0011s and total execution time of 0.1903s, outperforming HealthFog’s 0.0200s and 0.3741 respectively, and FedSDM which
reports 0.2273s latency in 1-Worker mode. This improvement stems from the lightweight MLP-based scheduler, which avoids
computational overheads associated with HealthFog’s ensemble models and FedSDM’s federated learning framework. On average,
our HealthAIoT framework consumed 20.11% less power compared to HealthFog model. The improvement on environmental
sustainability addressed the lack presented in existing studies.

The overall performance of HeathAIoT demonstrate potential of clinical deployment, with its modular design and its AI scheduler
that is separate from disease-specific prediction modules, which allows seamless adaptation to other healthcare application. By
prioritising IoT–cloud orchestration over task-specific optimisation, the framework provides a foundational infrastructure for scalable
and energy-efficient healthcare analytics.
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To address limitations and enhance practical utility, future work will focus on:

• In future work, we aim to implement and validate the HealthAIoT framework in real-world healthcare environments. This
validation will help assess the practicality of our framework in addressing real-world challenges such as data security, system
scalability and integration with existing healthcare infrastructures.

• To enhance the predictive performance, future work could integrate hybrid architectures such as MLP model with atten-
tion mechanisms to improve accuracy without compromising latency, as well as expand training data to include diverse
demographic cohorts such as UK Biobank [68] to reduce geographic bias.

• Our HealthAIoT system operates on an end device and two cloud VMs architecture that process data from IoT devices.
The further work can incorporate low-powered edge devices (e.g., Raspberry Pi) or more number of Workers across various
locations to assess the performance under various intermittent network connectivity.

• While HealthAIoT framework has demonstrated promising performance in the integration of IoT and cloud with diabetes risk
prediction, it still can further explore the potential of our system for the management of diseases beyond diabetes, leveraging its
adaptable and modular structure to support diverse healthcare applications. This can be achieved by incorporating additional
IoT components into the HealthAIoT framework, such as Wireless Sensor Networks (WSNs), Bluetooth Low Energy (BLE) and
ZigBee and some advanced sensor technologies that can harvest energy from the environment, these enhancements would
enable both sustainability and expanded application scenarios [69].

• As quantum computing continues to evolve, the traditional cryptographic methods will likely become insufficient when it
comes to handling sensitive data [70]. Some new cryptographic methods can be applied to enhance the protection of sensitive
healthcare data in the future work, such as secure hash algorithm (SHA)-3 that can be utilised to provide robust encryption
mechanism during health data transmission process [71–73].

oftware availability

HealthAIoT has been released as open-source software. The code with experiment scripts and results can be accessed from the
itHub repository: https://github.com/HTXW/HealthAIoT
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