
Hermes: Memory-Efficient Pipeline Inference for
Large Models on Edge Devices

1st Xueyuan Han
Shanghai Jiao Tong University

Shanghai, China
hxy771126@sjtu.edu.cn

2nd Zinuo Cai
Shanghai Jiao Tong University

Shanghai, China
kingczn1314@sjtu.edu.cn

3rd Yichu Zhang
Shanghai Jiao Tong University

Shanghai, China
1654468697@sjtu.edu.cn

4th Chongxin Fan
Shanghai Aerospace System Engineering Institute

Shanghai, China
fcs-841220@163.com

6th Ruhui Ma
Shanghai Jiao Tong University

Shanghai, China
ruhuima@sjtu.edu.cn

5th Junhan Liu
Shanghai Jiao Tong University

Shanghai, China
liujunhan@sjtu.edu.cn

7th Rajkumar Buyya
The University of Melbourne

Melbourne, Australia
rbuyya@unimelb.edu.au

Abstract—The application of Transformer-based large models
has achieved numerous success in recent years. However, the
exponential growth in the parameters of large models introduces
formidable memory challenge for edge deployment. Prior works
to address this challenge mainly focus on optimizing the model
structure and adopting memory swapping methods. However,
the former reduces the inference accuracy, and the latter raises
the inference latency. This paper introduces PIPELOAD, a
novel memory-efficient pipeline execution mechanism. It reduces
memory usage by incorporating dynamic memory management
and minimizes inference latency by employing parallel model
loading. Based on PIPELOAD mechanism, we present Hermes, a
framework optimized for large model inference on edge devices.
We evaluate Hermes on Transformer-based models of different
sizes. Our experiments illustrate that Hermes achieves up to
4.24× increase in inference speed and 86.7% lower memory
consumption than the state-of-the-art pipeline mechanism for
BERT and ViT models, 2.58× increase in inference speed and
90.3% lower memory consumption for GPT-style models.

Index Terms—Edge computing, Memory optimisation, Large
model inference, Pipeline execution.

I. INTRODUCTION

The Transformer architecture has profoundly transformed
the landscape of deep learning and brought forward large
models with their applications spreading from data centers [1]
to edge devices. Large models are generally categorized into
Natural Language Processing (NLP), Computer Vision (CV),
and Multimodal models. NLP is widely applied on mobile de-
vices [2], [3], from intelligent personal assistants, like Google
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Assistant and Apple Siri to real-time language translation [4].
CV plays a pivotal role in the field of autonomous driving [5],
[6], where it is utilized for tasks such as real-time object
detection [7], [8], lane recognition [9], and traffic signal
detection [10]. By enriching robots’ perception and decision-
making capabilities through the integration of diverse data
types [11], such as visual, auditory [12], and tactile [13]
information, Multimodal large models are revolutionizing the
field of robotics [14], [15].

Due to the explosive growth in the size of large mod-
els, deploying them at the edge faces critical memory chal-
lenges [16]. Specifically, current edge devices offer only a
limited amount of memory capacity, ranging from a few tens
of megabytes to a few gigabytes. For example, NVIDIA Jetson
Nano has 4 GB of memory and Raspberry Pi 4 Model B has up
to 8 GB of memory. In contrast, large models’ parameters have
experienced exponential growth, reaching sizes in the hundreds
of billions. For instance, the GPT-3 [17] model has 175 billion
trainable parameters, while the recently developed GPT-4
model exceeds the trillion parameter mark. Consequently, the
memory usage of these large models can easily reach tens to
hundreds of gigabytes, far surpassing the memory capacity of
typical edge devices.

Existing works to address the memory challenges of large
model inference on edge devices can be classified into two
categories. The first attempts to optimize the model structure
to reduce the computational load through techniques including
model pruning [18], [19], model compression [20], [21], model
quantization [22] and adaptive inference [23], [24]. Although
these approaches significantly diminish the number of required
computational operations, they often result in reduced model
accuracy. Moreover, these approaches are generally tailored



for specific models, thus limiting their applicability on a
broader scale. The second optimizes the memory usage during
model inference by model swapping between different storage
media [25]–[27]. This method initially divides the model into
separate shards and selectively preloads certain shards from
disk into a buffer or the memory as needed for the inference
process. Even though memory swapping methods can reduce
memory overhead, they can inadvertently prolong inference
latency due to the increased frequency of I/O operations
between varying storage media.

In this paper, we envisage pipelining the model loading
and inference process, hiding the latency of the loading by
overlapping it with the inference. Given the ubiquity of CPUs
in edge devices, the loading process involves loading model
weights from disk to memory, and the inference process
refers to performing inference on CPUs. Fig. 1a illustrates
the standard pipeline design, which loads model weights from
disk to memory at a layer granularity. A transformer layer
consists of the multi-head self-attention and the position-wise
feed-forward network. Given that the transformer model is
comprised of sequential layers, it performs the loading and
inference process layer-by-layer. Inference in memory begins
immediately following the loading of the initial layer from
disk, with the subsequent layer being loaded concurrently. The
standard pipeline formed by this process allows inference to
commence prior to the complete model being loaded, thus
reducing the latency.

Although we are not the first to apply pipeline to large
model inference on edge devices, we attempt to solve two
challenges that have not been addressed by existing works,
such as PipeEdge [28] and PipeSwitch [29]. The first challenge
is that pipeline schemes do not reduce the memory require-
ments of inference. For instance, PipeEdge employs pipeline
parallelism, leveraging under-utilised or idle distributed edge
resources to enhance inference performance across diverse
edge devices. Although this approach enhances inference
speed, it lacks memory optimization and does not reduce
the memory requirements for inference. The second challenge
is that the deployment of pipeline on edge may lead to
serious pipeline stalls, because of the huge gap between the
model loading and execution latency. Our experiments in §II-B
demonstrate that the loading latency is generally an order of
magnitude larger than the inference latency, leading to the
pipeline stall issue illustrated in Fig. 1b.

To resolve two issues mentioned above, we develop
PIPELOAD, a memory-efficient pipeline execution mechanism
to streamline the loading and inference process with per-
layer granularity. Building upon this mechanism, we introduce
Hermes, an innovative framework for large model inference
on edge devices. This framework integrates three main compo-
nents. Firstly, the Layer Profiler evaluates the performance and
memory utilization of each individual model layer for a given
transformer model. Next, the Pipeline Planner utilizes the
profiling data from Layer Profiler to devise a PIPELOAD ex-
ecution schedule within different memory constraints. Lastly,
the Execution Engine determines the execution strategy from
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Fig. 1: Standard pipeline design and pipeline stall problem.

the schedule based on the current memory constraints of the
edge device and executes PIPELOAD inference.

We conduct experiments with four transformer-based mod-
els, including BERT-Large, GPT-2-Base, ViT-Large and GPT-
J, on our CPU cluster server. These four models vary in
size from a few hundred megabytes to a dozen gigabytes.
Through a comprehensive performance and memory footprint
evaluation, Hermes achieves up to 4.24× increase in inference
speed and 86.7% lower memory footprint than PipeSwitch for
BERT and ViT models, 2.58× increase in inference speed
and 90.3% lower memory footprint for GPT-style models. We
also evaluate Hermes under different memory constraints and
it works well in all test environments with all results meeting
service level objective (SLO) expectations.

Our contributions are highlighted as follows.
• We propose PIPELOAD, a memory-efficient pipeline

mechanism designed to reduce the memory footprint and
latency during model inference.

• We present Hermes, a framework based on the
PIPELOAD to mitigate memory usage and pipeline stall
for large model inference on edge devices.

• We implement a system prototype of Hermes and eval-
uate it on several transformer models. Experiments show
that our method achieves a 4.24× speedup while reducing
memory footprints by 90.3%.

II. BACKGROUND AND MOTIVATION

A. Transformer Model Structure

The architectural makeup of transformer models is the basis
for developing pipeline inference strategies on edge devices.
A typical transformer model comprises embedding, encoder,
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Fig. 3: Decomposition of loading and inference latency.

decoder, pooling, and additional specialized layers. Based
on their architectural configurations, they can be classified
into three primary categories: encoder-decoder, encoder-only
and decoder-only models. Encoder-decoder models, such as
BART [30] and T5 [31] integrate both encoder and decoder
layers. BART is architected for complex sequence-to-sequence
tasks, and T5 generalizes this capability with a comprehensive
text-to-text methodology applicable to a wide array of NLP
challenges. Encoder-only models like BERT employ a series
of encoder layers to interpret input data, ideally suited for
tasks that do not involve generating sequences. Meanwhile,
Vision Transformer (ViT) presents an innovative adaptation
of encoder-only architecture to analyze sequences of image
patches, eschewing the conventional decoder layout found in
text-centric models. Conversely, decoder-only models such as
GPT rely exclusively on decoder layers, focusing on the gen-
eration of new content by drawing on recognizable patterns.

B. Characteristics of Transformer-based Models

In order to design an efficient pipeline scheme, we conduct
experiments to characterize two key aspects when the model
performs forward computation: the allocation of memory
among transformer model layers and the latency of model
loading and model inference. We first evaluate the memory
allocation in five kinds of transformer models, including
ViT-Large, BERT-Large, GPT-2, GPT-J and BART (BART-
Base and BART-Large), which cover all three categories
of Transformer models. Additionally, we evaluate the time
requirements of loading and inference for various transformer
models, including BERT-Large, GPT-2, ViT-Large and GPT-J,
by performing standard model inference. All the experiments
are conducted on Intel(R) 193 Xeon(R) Gold 6248R CPU.
TestCase1: Memory distribution. To understand the allocation
of memory across layers, we conduct experiments with five
kinds of transformer models. Typically, transformer-based
models are characterized by their extensive reliance on at-
tention mechanisms, necessitating substantial memory to ac-
commodate attention scores and intermediate representations,
particularly within encoder or decoder layers. Fig. 2 delineates
the memory usage distribution across different layers for five
kinds of prevalent transformer variants, revealing that encoder
or decoder layers predominate, consuming between 70% to

95% of the total memory. Notably, the memory consumption
attributed to these layers escalates with the model’s overall
size. For instance, BART-Large necessitates approximately
14.4% more memory relative to BART-Base.
Observation I

For general transformer-based models, the encoder or
decoder layers occupy the largest memory footprint.

TestCase2: Latency evaluation. To evaluate the latency of
model loading and inference, we run standard model inference
processes for four transformer models on CPU. Generally,
transformer models exhibit considerably higher latency during
layer loading compared to layer inference. Through our exper-
iments, as depicted in Fig. 3, we observe that, for the first three
smaller models (each with a memory footprint around 1 GB),
the layer loading period substantially exceeds the inference
time, by roughly an order of magnitude. Conversely, for the
larger GPT-J model (12 GB), the layer loading duration is
approximately twice that of the inference time. Subsequently,
such disparities contribute to a significant portion of the
computational process, between 60% to 80%, being spent
idle during typical pipeline execution, underlining a serious
pipeline stall issue, as shown in Fig. 1b.
Observation II

For general transformer-based models, loading latency
is much larger than the inference latency, resulting in the
execution process being stalled during most of inference
time.

C. Implications

Our experiments in §II-B analyze the time distribution
and memory usage of transformer-based large models during
model inference. Observation I suggests that a targeted
focus on either the encoder or decoder layers is pivotal for
optimizing memory management in our pipeline infrastruc-
ture. Observation II underscores the necessity of adopting
a parallel loading strategy by overlapping multiple inference
times with a single loading time within our pipeline scheme,
to efficiently mitigate pipeline stalls. In summary, we progress
our design by addressing the following challenges: (1) memory
challenge on edge devices; (2) pipeline stall problem caused
by the huge gap between loading and inference latency.
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III. PIPELOAD: A MEMORY-EFFICIENT PIPELINE
EXECUTION MECHANISM

A. Overview

We present PIPELOAD, a memory-efficient pipeline exe-
cution mechanism to reduce memory footprint and latency
during model inference on edge devices. There are three core
workers in PIPELOAD mechanism: multiple Loading Agents ,
one Inference Agent and one Daemon Agent . Loading Agents
work in parallel to load model layers from disk to memory, re-
ducing inference latency. The Inference Agent simultaneously
executes computations on these loaded layers sequentially
in CPU, guaranteeing the model’s predictive accuracy and
minimizing pipeline stalls. The Daemon Agent maintains a
queue of loaded layers in memory, detects memory usage and
destroys memory space for specific layers at a specific point
to reduce memory overhead. Three workers communicate with
each other through a signalling mechanism that facilitates the
realization of whole memory-efficient pipeline.

Fig. 4 illustrates the overall workflow of PIPELOAD, includ-
ing the loading and inference process of model layers as well
as the signaling mechanism. Before performing pipeline in-
ference, we 1 adopt a layer-based model partitioning scheme
to pre-process the model weights. Multiple Loading Agents

constantly 2 load specific layers from disk into memory
in parallel. Once a model layer is successfully loaded, the
corresponding Loading Agent 3 transmits a computation
ready signal that corresponds to this layer to Inference Agent ,
indicating that this layer is ready for computation. Infer-
ence Agent 4 maintains an inference queue in CPU that
decides which layer will be processed next, ensuring that
model inference respects the original sequence of layers. Upon
receiving the computation ready signal, Inference Agent 5

performs forward computation only if all preceding layers have
been computed. Following computation of the layer, Inference
Agent 6 issues a memory destruction signal to Daemon
Agent , notifying it to destroy the memory space of the layer.
Daemon Agent then 7 destroys the memory space occupied
by the layer to reserve enough space for other layers. When
memory usage is about to exceed or has exceeded the memory
constraints of the edge device, Daemon Agent 8 sends a stop
signal to all Loading Agents , pausing their loading operations
until sufficient memory space is available.

B. Case Study

Fig. 5 presents a simple case of PIPELOAD with three
Loading Agents . Based on the characteristics of transformer
model layers, we adopt a layer-based model partitioning
scheme. In our scheme, we methodically segment the general
transformer model architecture into its constituent layers:
embedding layers, encoder layers, decoder layers and other
layers. Among these layers, we focus only on the encoder
and decoder layers that occupy most of the model weights in
PIPELOAD mechanism design.

For simplicity, we show only three computation ready
signals and three memory destruction signals in Fig. 5. And
for the sake of clarity, three Loading Agents are symbolized
as LA1, LA2, LA3. Model layers are signified as Lk where
k represents the index within the total number of layers,
denoted by N . Symbols Scomp

k , Sdest
k and Sstop respectively

represent computation ready signal for layer Lk, memory
destruction signal for layer Lk and loading stop signal. During
the implementation of PIPELOAD, the i-th Loading Agent is
assigned a subset of model layers, following the distribution
Li+jm, where i ranges from 1 to m, with m representing
the total number of Loading Agents , and j represents an
iterative index, ranging from 0 to ⌊(N − i)/m⌋ (i+ jm ≤ N
and j ∈ N). In this case, LA1 is responsible for layers
(L1, L4, L7, . . .), LA2 for layers (L2, L5, L8, . . .) and LA3

for layers (L3, L6, L9, . . .). This layer allocation method is
designed to minimize pipeline stalls since we can overlap the
inference time of three layers with the loading time of a single
layer.

As shown in Fig. 5, the three Loading Agents commence
the parallel loading process. As the layer L1 is fully loaded
to memory, LA1 issues the computation ready signal, Scomp

1

to Inference Agent . After receiving Scomp
1 , Inference Agent

starts to perform forward computation for L1. If Inference
Agent receives Scomp

2 or Scomp
3 first, the inference queue in

CPU will ensure that the layers are computed in the correct



Transformer
Model Layer Profiler Profiling Data Pipeline Planner Optimal Number

of Loading Agents Execution Engine

#Layer Load Time Exe Time Mem 

1 1.02 0.095 46.7

2 0.98 0.097 47.3

3 1.04 0.102 45.6

4 0.93 0.106 47.0

(a) Profiling every layer's runtime
performance and memory usage. (b) Getting the execution schedule. (c) Final pipeline execution with an

exact number of Loading Agents.

Memory
Constraints (MB)

Optimal Number of
Loading Agents

1000 3

2000 4

3000 6

4000 8

Deamon Agent      

Inference Agent      

Loading Agent 1     

L1 L4 L7

L1

S1
comp S9

comp

S1
dest S2

dest S3
dest

Time

L2 L5 L8

L3 L6 L9

L2 L3 L4 L5 L6 L7 L8 L9

L1 L2 L3 L4

Sstop

S5
comp

CPU

Memory

Loading Agent 2     

Loading Agent 3     

Fig. 6: Hermes system architecture.

order. Simultaneously, after LA2 and LA3 load L2 and L3

as well as sending computation ready signals to Inference
Agent , the three Loading Agents are able to continue loading
the respective next layers L4, L5, L6 into memory. Following
the computation on L1, Inference Agent issues the memory
destruction signal, Sdest

1 to Daemon Agent , which initiates the
process of de-allocating memory space for L1. The loading
and inference process for the subsequent layers is similar.
In addition, when Daemon Agent detects the system memory
usage has exceeded the memory constraints of the edge device,
it sends the loading stop signal, Sstop to all Loading Agents ,
pausing their layers’ loading operation until sufficient memory
space is available.

IV. HERMES: A FRAMEWORK TO OPTIMIZE LARGE
MODEL INFERENCE ON EDGE DEVICES

Fig. 6 presents Hermes system architecture, a comprehen-
sive framework designed to enhance the performance and re-
duce memory usage of large model inference in edge comput-
ing environments. Specific modules within Hermes comprise
Layer Profiler, Pipeline Planner, and Execution Engine.
This framework encapsulates methodologies for evaluating
layer efficiency, deploying an optimal execution schedule,
executing the memory-efficient pipeline, PIPELOAD and aims
to collaborate diverse elements essential for optimizing model
execution in resource-constrained settings, such as memory
usage, latency and execution strategy.

1) Layer Profiler: Fig. 6a presents some possible results
of Layer Profiler, which serves as the foundation of our
system architecture. The Layer Profiler’s primary function is
to profile each layer within a given transformer model to gauge
runtime performance and memory usage. Through a pre-run
of standard model inference, this profiling enables the accurate
measurement of loading time, computation time and memory
size for every individual layer of the given model.

2) Pipeline Planner: Utilizing the data generated by the
Layer Profiler, the Pipeline Planner develops a PIPELOAD
execution schedule that includes several optimal execution

strategies under different memory constraints, as shown in Fig.
6b. Firstly, drawing from the profiling insights encompassing
layer’s memory footprint along with layer’s load and compute
duration for the given model, the planner determines a reason-
able range for the number of Loading Agents in conjunction
with different memory constraints. In general, more Loading
Agents means fewer pipeline stages, i.e., less latency, but more
encoder or decoder layers are reserved in memory, i.e., more
memory overhead. Next, the planner pre-runs the PIPELOAD
within the range of the number of Loading Agents to obtain
the exact number of Loading Agents under different memory
constraints and finally outputs the execution schedule.

3) Execution Engine: Finally, upon establishing the ex-
ecution schedule, the inference of PIPELOAD with an exact
number of Loading Agents will be executed in the Execution
Engine based on the current memory constraints of edge
device, as shown in Fig. 6c. This includes actual pipeline
inference execution facilitated by the specific number of
Loading Agents , one Inference Agent , one Daemon Agent and
signalling mechanism.

V. EVALUATION

A. Experimental Setup

1) Workloads: For estimating the memory-efficient pipeline
execution mechanism, PIPELOAD, we focus on a quartet of
transformer models: i) one NLP model: BERT-Large; ii) one
CV model: ViT-Large; iii) and two generative text language
models: GPT-2-Base and GPT-J. These four transformer mod-
els have different sizes, from a few hundred megabytes to
a dozen gigabytes. Each of their configurations is shown in
TABLE I, where the number of layers is the number of
encoder or decoder layers, excluding other layers such as
embedding layers and pooling layers, memory (layers / total)
indicates that the memory footprint of encoder or decoder
layers accounts for the total memory of the model and memory
per layer represents the average memory footprint per encoder
or decoder layer.



TABLE I: Model Configurations.

Model Parameters Size (Millions) Types of Layers Number of Layers Data Type Memory (Layers/Total) (MB) Memory per Layer (MB)

ViT-Large 304 encoder 24 FP16 582 / 601 25

GPT-2-Base 355 decoder 24 FP32 1223 / 1433 51

BERT-Large 340 encoder 24 FP32 1317 / 1627 55

GPT-J 6000 decoder 28 FP32 11535 / 12354 412

TABLE II: Performance comparison.

Model
Baseline PipeSwitch PIPELOAD with 2 LAs PIPELOAD with 4 LAs PIPELOAD with 6 LAs

Latency (ms) Latency (ms) Speedup Latency (ms) Speedup Latency (ms) Speedup Latency (ms) Speedup

BERT-Large 15891.5 14897.1 1.067 7720.8 2.058 4621.8 3.438 3510.7 4.527

GPT-2-Base 1659.5 2457.9 0.675 1704.7 0.974 1396.1 1.189 1121.4 1.480

ViT-Large 345.0 157.3 2.193 90.8 3.799 56.8 6.070 43.2 7.978

GPT-J 31330.9 76494.6 0.410 51003.3 0.614 33487.2 0.936 29640.9 1.057

TABLE III: Memory footprints comparison.

Model
Baseline PipeSwitch PIPELOAD with 2 LAs PIPELOAD with 4 LAs PIPELOAD with 6 LAs

Memory footprint (MB) Memory footprint (MB) Ratio Memory footprint (MB) Ratio Memory footprint (MB) Ratio Memory footprint (MB) Ratio

BERT-Large 1627.3 1689.2 1.038 457.1 0.281 661.5 0.407 930.8 0.572

GPT-2-Base 1433.8 1436.8 1.002 387.5 0.270 518.8 0.362 649.9 0.453

ViT-Large 600.9 626.6 1.043 60.8 0.101 110.2 0.183 159.4 0.265

GPT-J 12354.0 12468.6 1.009 1668.6 0.135 2455.4 0.199 3242.2 0.262

2) Baselines: In performance and memory usage evalua-
tion, we focus on evaluating four transformer models men-
tioned above in Execution Engine. And the engine provides
three distinct operational modes: Baseline (non-pipeline),
PipeSwitch, and our designed PIPELOAD with optional Load-
ing Agents . In particular, the workflow of Baseline is the
normal process of loading model first and then inferring it,
and the workflow of PipeSwitch is basically the same as the
standard pipeline.

3) Metrics: We use two performance metrics, latency and
memory footprints. In the context of BERT and ViT models,
latency is defined as the end-to-end time taken to generate an
output with single inference; for GPT-style models, latency
defines as the end-to-end output generation time for a given
input prompts and a given output tokens length. Memory
footprints is quantified as the maximum memory occupation
by the model throughout its execution lifecycle.

4) Testbeds: We conduct our experiments on a server
consisting of Intel(R) Xeon(R) Gold 6248R CPUs. We deploy
a controlled and consistent environment with docker that im-
poses limits on resource usage, including limiting the number
of CPU cores to a maximum of 8 and restricting memory
size through docker --memory command, to simulate
resource-constrained scenarios on edge devices.

B. Evaluation of Performance and Memory Footprints

We evaluate the performance and memory footprints of
PIPELOAD with 2, 4 and 6 Loading Agents and compare
them to baseline and to PipeSwitch. We choose these three
numbers of Loading Agents since they are essentially factors
of the number of encoder or decoder layers in four transformer

models. The performance and memory footprints test results
are shown in TABLE II and TABLE III respectively, where
LAs is an acronym for Loading Agents . In order to show the
optimisation results more directly, we add two metrics in tables
respectively, the speedup and the ratio, with their expressions
are as follows:

Speedup =
Tbaseline

Tothers

Ratio =
Mothers

Mbaseline

where Tbaseline and Tothers represent the latency of baseline and
latency of other methods and Mothers and Mbaseline indicate
the memory consumption of other methods and memory
consumption of baseline.

1) BERT and ViT Models Analysis: For BERT and ViT
models, we evaluate them with a single inference since they
can generate outputs through loading and inference in a single
pass. According to TABLE II and TABLE III, PIPELOAD
with multiple Loading Agents indicates a promising trend
of decreasing memory usage and latency compared to the
PipeSwitch implementation. For BERT-Large, the speedup
improvement is 1.93 ∼ 4.24× and the memory footprint
reduction is 44.9% ∼ 73.0%. For ViT-Large, the speedup
improvement is 1.73 ∼ 3.64× and the memory footprint
reduction is 74.0% ∼ 86.7%. The smaller proportion of
memory footprint reduction for BERT model compared to the
ViT model is mainly due to the fact that the embedding and
pooling layers of BERT-Large have a much larger portion,
about 20% while ViT-Large about 1.5%. As we increment the
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(a) ViT-Large model.

400 500 600 700 800 900 1000
Memory Constraint (MB)

0

200

400

600

800

1000

1200

1400

1600

La
te

nc
y 

(m
s)

Latency

0

2

4

6

8

10

12

Lo
ad

in
g 

Ag
en

t N
um

be
r

2
3

4

6

8 8

12Optimal Loading Agent Number

(b) GPT-2-Base model.
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(c) BERT-Large model.
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(d) GPT-J model.

Fig. 7: Models evaluation under different memory constraints.

number of Loading Agents , the speedup is also significantly
increasing while the degree of memory footprint reduction is
slowly decreasing. This result is also as expected, since more
Loading Agents means less pipeline stages and more encoder
or decoder layers saved in memory. Specifically, adding one
Loading Agent implies one additional layer saved in memory.

2) GPT-2 and GPT-J Models Analysis: For the two GPT-
style transformer models, we evaluate them for a given input
prompts (number of tokens = 4) and for a given output
tokens (length of tokens = 8). As shown in TABLE II and
TABLE III, PIPELOAD with multiple Loading Agents pro-
duces excellent results in reducing memory usage and good
results in decreasing latency compared to the PipeSwitch.
For GPT-2-Base, the speedup improvement is 1.44 ∼ 2.20×
and the memory footprint reduction is 13.7% ∼ 72.9%. For
GPT-J, the speedup improvement is 1.50 ∼ 2.58× and the
memory footprint reduction is 74.6% ∼ 90.3%. PIPELOAD
works better in GPT-J slightly better because its proportion
of decoder layers’ size to the total model size is higher. And
for the same reasons as the previous two models, with the
number of Loading Agents growing, the speedup is increasing
while the degree of memory footprint reduction is slowly
decreasing. However, their improvements in execution speed
are less effective in comparison to the baseline when the
number of Loading Agents is low (≤ 4). This is because the
GPT-style transformer model loads memory only once for non-
pipeline execution but performs inference multiple times (one
inference for each token) while PIPELOAD and other pipeline
methods require one loading and inference operation for each
token, thus increasing latency when there are a large quantity
of tokens.
C. Evaluation under different Memory Constraints

We evaluate the performance of Hermes under different
memory constraints. In addition, we measure the latency and
the corresponding optimal number of Loading Agents .

1) ViT and BERT Models Analysis: Fig. 7a and Fig. 7c
show the evolution of latency and optimal number of Loading
Agents with respect to memory constraints for ViT-Large
model and BERT-Large model. Across the experiments, a
trend is the gradual increase in the optimal number of Loading
Agents , the decrease in the latency in correlation with the aug-
mentation of memory limits. Specifically, the latency dropped
from 81 ms at the 60 MB memory limit to 36 ms at 300 MB
memory limit for ViT-Large, a reduction of 55.6% and from
7721 ms at the 500 MB memory limit to 2923 ms at the 1250

MB memory limit for BERT-Large, a reduction of 62.1%. All
above results are as expected, since higher memory availability
allows for more Loading Agents .

2) GPT-2 and GPT-J Models Analysis: Fig. 7b and Fig. 7d
show the evolution of latency and optimal number of Loading
Agents with respect to memory constraints for GPT-2-Base
model and GPT-J model. Overall, their trends of latency and
optimal number of Loading Agents are the same as for the
previous two models, from 1705 ms at the 400 MB memory
limit to 1004 ms at 1000 MB memory limit for GPT-2-Base,
a reduction of 41.1%, and from 51003 ms at the 2000 MB
memory limit to 29074 ms at the 7000 MB memory limit for
GPT-J, a reduction of 43.0%.

VI. RELATED WORK

Memory Optimization. PQK [32] is a novel model com-
pression method, designed expressly for edge devices with
constrained computational resources. This method combines
pruning, quantisation, and knowledge distillation processes
to fabricate a model that is both lightweight and energy-
efficient. Keivan et al. address the memory challenges for large
model inference under memory constraints by storing model
parameters in flash memory and bringing them on demand
to DRAM and introduce techniques including windowing and
row-column bundling to optimize data transfer and memory
usage. STI [33] is a memory optimization architecture through
model sharding and elastic pipeline, which employs a preload
buffer to optimize resource utilization for large model infer-
ence tasks on mobile devices. Our work is complementary,
focusing on minimizing inference latency by pipeline scheme
while reducing memory overhead.

Pipeline Schemes. Prior works have attempted to apply
pipeline schemes to optimize large model inference [34].
DeepPlan [35] is an optimized pipeline system that incor-
porates two mechanisms, direct-host-access and GPU parallel
transmission to reduce the model loading latency on the GPU
and improve performance. PipeSwitch is a system designed for
fine-grained time-sharing of GPU resources for deep learning
applications, aiming to optimize task switching overhead and
achieve near 100% GPU utilization. This system leverages
the structure and computation pattern of DNN models to
enable fast context switching with millisecond-scale overhead,
addressing inefficiencies in shared GPU clusters where training
and inference tasks are provisioned separately. These works
mainly focus on reducing inference latency but do not involve
memory optimization and require the use of one or even more



GPUs. In this paper, we focus on both memory and latency
optimization and do not require GPU usage.

VII. CONCLUSION

In this paper, we present PIPELOAD, a memory-efficient
pipeline execution mechanism to mitigate memory overhead
and address the pipeline stall issue during large model in-
ference on edge devices. This mechanism incorporates dy-
namic management of memory and deploys multiple Loading
Agents to load model weights in parallel. Based on this
mechanism, we introduce Hermes, an innovative framework
to optimize large model inference performance on edge de-
vices. By our evaluation, Hermes reaches 4.24× speedup and
86.7% lower memory consumption than PipeSwitch for BERT
and ViT models, 2.58× speedup and 90.3% lower memory
consumption for GPT-style models. For future research, we
are dedicated to applying the Hermes to more Transformer
models and exploring its generalization and pervasiveness.
For text generation large models like GPT, based on their
characteristics, we target to optimize PIPELOAD mechanism
to provide better latency reduction.
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