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Abstract—MapReduce is a crucial framework in the cloud computing architecture, and is implemented by Apache Hadoop and other
cloud computing platforms. The resources required for executing jobs in a large data center vary according to the job types. In general,
there are two types of jobs, CPU-bound and I/O-bound, which require different resources but run simultaneously in the same cluster.
The default job scheduling policy of Hadoop is first-come-first-served and therefore, may cause unbalanced resource utilization.
Considering various job workloads, numerous job allocation schedulers were proposed in the literature. However, those schedulers
encountered the data locality problem or unreasonable job execution performance. This study proposes a job scheduler based on a
dynamic grouping integrated neighboring search strategy, which can balance the resource utilization and improve the performance and

data locality in heterogeneous computing environments.

Index Terms—Hadoop, heterogeneous computing environments, heterogeneous workloads, MapReduce, scheduling

1 INTRODUCTION

HE scale and maturity of the Internet has recently
increased dramatically, providing an excellent opportu-
nity for enterprises to conduct business at a global level
with minimum investment. Enterprises are rapidly captur-
ing/collecting enormous amount of business data, and
therefore, must be able to process data in a timely manner.
Scientific and big data applications have similar require-
ments. Therefore, processing large amount of data in paral-
lel for producing results in timely manner has become more
vital. Cloud computing has emerged as a new paradigm for
supporting enterprises with low-cost computing infrastruc-
ture on a pay-as-you-go basis.
In cloud computing, the MapReduce framework designed
for parallelizing large data sets and splitting them into thou-
sands of processing nodes in a cluster is crucial. Hadoop [2],
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which implements the MapReduce programming frame-
work, is an open-source distributed system that is used by
numerous enterprises, including Google, Yahoo, and Face-
book for processing large data sets. This study focused on the
MapReduce and Hadoop distributed file system (HDFS)
layers, which form the core of Apache Hadoop.

HDFS is implemented by Yahoo based on the Goog]le File
System, which is used with the MapReduce model. HDFS is
a distributed storage system that adopts the master/slave
architecture. It comprises a NameNode and many DataNodes.
The NameNode is responsible for the management of the
entire file system, information of each file such as name-
space and metadata, and storage and management. A Data-
Node is responsible for storing data blocks. When an HDFS
client reads data from the HDFS, it requests the NameNode
to determine DataNodes that have data blocks that must be
read. While writing data, the HDFS client first requests
the NameNode to create a file. After the NameNode accepts
this request, the HDFS client directly writes the file to the
assigned DataNodes.

Using this distributed file system, the read rate is consid-
erably faster than that of a single node. A larger file can be
read from many nodes simultaneously, which is more effi-
cient than reading it from a single node read. This not only
reduces the time of accessing data, but also reduces the
average depletion of a hard disk, which further reduces the
cost of hardware maintenance. If the size of the files that
must be written to the HDEFS is larger than the capacity of
one physical hard disk, the files can be divided into several
blocks to be stored.

MapReduce mainly uses the divide and conquer policy.
It distributes a big data to many nodes for parallel
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processing, which reduces the execution time and improves
performance. Because of the main distributed scheduler of
data blocks processing are in map phase, in order to
improving performance by job assignment strategy so we
focused on the problem associated with the map phase of
MapReduce, which assigns tasks through the default first-
come, first-served (FCFS) scheduler.

Hadoop is a server-client architecture system that uses
the masterslave concept. The master node, called JobTracker,
manages multiple slave nodes, called TaskTrackers, to pro-
cess the tasks assigned by the JobTracker. A client submits
MapReduce job requests to the JobTracker, which subse-
quently splits jobs into multiple tasks, including map tasks
and reduce tasks. Map tasks receive the input data and out-
put the intermediate data to its local node, whereas reduce
tasks receive the intermediate data from several TaskTrack-
ers and output the final result.

By default, Hadoop adopts a FCFS job scheduling policy.
A TaskTracker transfers requests to the JobTracker through
the Heartbeat cycle. Because resource utilization is not con-
sidered in the default job scheduling policy of Hadoop
(FCFS), JobTracker assigns tasks to TaskTracker without
checking the appropriate resources on TaskTracker, some
slave nodes do not have the sufficient amount of resources
and capacity to perform an assigned task. Therefore, these
nodes cannot continue to perform tasks after the system
releases resources, leading to poor performance of a
Hadoop system. The resource allocation problem is an NP-
complete problem [38]; such a problem has received sub-
stantial attention in cloud computing.

Facebook fair scheduler [40] and Yahoo capacity sched-
uler [13] used multiple queues to achieve resource alloca-
tion through a policy in which each queue is assigned to a
different number of resources. Within multiple queues can
separate each task into several job types according to differ-
ent properties saving in different job queues, and then
assigned to TaskTracker from different job queues with suit-
able scheduler. Thus providing users with various queues
can maximize resource utilization. However, users may
have more resources than necessary, causing resources to
be wasted. In this study, we investigated how resource utili-
zation in Hadoop systems can be balanced in heterogenous
computing environments such as clouds. Here, the term
“heterogeneous” implies that the computing ability (e.g.,
the number of CPUs) of all nodes is different. In a Hadoop
system, the workload of MapReduce jobs submitted by cli-
ents often differs: a job may be split into several tasks that
achieve the same function, but involve managing different
data blocks. When the default job scheduling policy of
Hadoop is applied, the task of a single job usually runs on
the same TaskTracker. When a TaskTracker executes the same
task for a single job, it is limited by some resources even
though the other resources remain idle. Therefore, if we
consider that jobs can divided into CPU-bound and I/O-
bound jobs according to Equation (1) defined in Section 3.1,
clients submit the two classes of jobs to Hadoop and then
migrate these tasks to the TaskTracker. According to the
default job scheduling policy of Hadoop, each TaskTracker
performs the same tasks. However, some TaskTrackers are
assigned to perform CPU-bound jobs, which are bounded
by the CPU resource, and the other TaskTrackers are

specialized to perform I/O-bound jobs, which are bounded
by the I/O resource.

To improve the performance and data locality, this study
proposes a novel dynamic grouping integrated neighboring
search (DGNS) algorithm, which considers the node ability
on both the MapReduce and HDFS layers. According the
node ability, we assigned different number of taskslots in
each TaskTracker and different number of data blocks in
each DataNode. The performance of the proposed algo-
rithms was compared with that of the default FCFS job
scheduling policies of Hadoop, and other related schedulers
of DMR, JAS, JASL, and DJASL, which are described in
Section 2.4. The experimental results indicated that the pro-
posed algorithms improved both the performance and data
locality of the aforementioned job scheduler.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the default Hadoop, DMR, JAS, and JASL
schedulers. In addition, related work is discussed. Section 3
presents four phases of the proposed algorithm: job classifi-
cation, ratio table creation, node grouping, and neighboring
search of a task assignment. Section 4 presents experimental
results obtained in the heterogeneous computing environ-
ments. Finally, Section 5 concludes the paper.

2 BACKGROUND

2.1 Job Workloads

Rosti et al. [30] proposed that jobs can be classified accord-
ing to the resources used; some jobs require a substantial
amount of computation, whereas other jobs require numer-
ous I/0 resources. In this study, jobs were classified into
two types according to the workload: (1) CPU-bound jobs
and (2) I/O-bound jobs. Characterization and performance
comparisons of CPU- and I/O-bound jobs have been pro-
vided in [21], [29], [37]. CPU- and I/O-bound jobs can be
parallelized to balance resource utilization [30], [33].

2.2 Default Hadoop Scheduler
Hadoop supports the MapReduce programming model
originally proposed by Google [8] and it is a convenient
means for developing applications (e.g., parallel computing,
job distributing, and fault tolerance). MapReduce comprises
two phases. The first phase is the map phase, which is based
on a divide-and-conquer strategy. In the divide step, the
input data are split into several data blocks, of which the
block size can be set by the user, and then parallelized using
a map task. The second phase is the reduce phase. A map
task is performed to generate the output data as the inter-
mediate data after the map phase is complete, and these
intermediate data are then received and the final result is
produced.

The default job scheduling policy of Hadoop is FCFS and
comprises the following steps:

Step 1 (Job submission): When a client submits a MapRe-
duce job to a JobTracker, the JobTracker adds the job to
the Job Queue.

Step 2 (Job initialization): A job in the Job Queueis initialized
using the JobTracker, which splits the job into numer-
ous tasks.

Step 3 (Task assignment): When a TaskTracker periodically
(3 seconds is the default setting) sends a Heartbeat to
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a JobTracker, the JobTracker obtains information related
to the current state of the TaskTracker to determine
whether it has available slots. If the TaskTracker has
free slots, then the JobTracker assigns tasks from the
Job Queue to the TaskTracker according to the number
of free slots.

This approach differs considerably from the schedulers
of numerous parallel systems [4], [7], [22], [26], [27]. Specifi-
cally, the task schedulers, co-scheduler [4] and gang-sched-
uler [7], operate in a heterogeneous environment. The co-
scheduler ensures that subtasks begin at the same time and
are executed at the same pace on a group of workstations,
whereas gang-scheduler uses a set of scheduled threads to
execute tasks simultaneously on a set of processors. The
task schedulers grid-scheduler [22], [26] and dynamic task
scheduler [27], are designed to improve performance when
the workloads of jobs differ. The grid-scheduler determines
the order in which the jobs assigned to the distributed sys-
tem are processed, and the dynamic task scheduler operates
in an environment in which system resources vary and
adapts to these variations. This study proposes a task sched-
uler that allocates resources at various job workloads in a
heterogeneous computing environment.

2.3 Limitations of Default Hadoop Scheduler

The default job scheduling policy of Hadoop is FCFS, which
can cause several problems including imbalanced resource
allocation. Consider a situation in which numerous jobs are
submitted and then split into many tasks that are assigned
to TaskTrackers. Executing some of these tasks may require
only CPU or I/O resources. Neglecting the workloads of a
job may cause imbalanced resource allocation. Fig. 1 illus-
trates the imbalanced resource allocation in the default
scheduler of Hadoop.

Assume that the Job Queue comprises two jobs: a CPU-
bound job Jobl and an I/O-bound job Job2, which are initial-
ized using eight map tasks. Moreover, TaskTracker1, Task-
Tracker2, and TaskTracker3 send Heartbeat messages to the
JobTracker sequentially. According to the default job sched-
uler of Hadoop, the JobTracker submits tasks to the Task-
Tracker according to the Heartbeat order. TaskTrackerl and
TaskTracker2 are assumed to execute CPU-bound jobs; there-
fore, they have high CPU utilization and low I/O utiliza-
tion, causing them to be bounded by CPU resources.
Conversely, TaskTracker3 is assigned to execute I/O-bound
jobs; therefore, TaskTracker3 has high 1/O utilization but
low CPU utilization, causing it to be bounded by I/0O

resources. Because the default job scheduler in Hadoop
does not balance resource utilization, some tasks in the Task-
Tracker cannot be completed until resources used to execute
other tasks are released. Because some tasks must wait for
resources to be released, the task execution time is pro-
longed, leading to poor performance.

2.4 Other Schedulers

To address the imbalanced resource allocation problem of
the default scheduler in Hadoop described in Section 2.3,
Tian et al. [33] proposed a dynamic MapReduce (DMR)
function for improving resource utilization during various
types of jobs. However, the experimental environment of
DMR is homogeneous. In a heterogeneous environment, the
DMR function might not be favorable for resource utiliza-
tion. To overcome the limitations of the current MapReduce
application platforms, Hsieh et al. [14] first proposed a job
scheduler called the job allocation scheduler (JAS) for bal-
ancing resource utilization in heterogeneous computing
environments. The JAS divides jobs into two classes (CPU-
bound and I/O-bound) for testing the capability of each
TaskTracker (represented by a capacity ratio). According to
the capacity ratio for the two classes of jobs, TaskTrackers
have different slots corresponding to the job types for maxi-
mizing resource usage. However, if tasks are assigned only
according to the two job types, then it may not have the ben-
efit of locality [12], increasing the data transfer time. The fol-
lowing three phases of the JAS algorithm are executed.

Step 1: Job classification. When jobs are in the Job Queue, the
JobTracker does not know the type (CPU- or 1/0O-
bound) of each job. Thus, the job types must be clas-
sified and the jobs must be added to the correspond-
ing queue.

Step 2: TaskTracker slot setting. After a job type has been deter-
mined, the JobTracker must assign tasks to each Task-
Tracker depending on the number of slots of each type
that is available for each TaskTracker (CPU and 1/O
slots). Thus, the number of slots must be set according
to the individual ability of each TaskTracker.

Step 3: Task assignment. When a TaskTracker sends a Heart-
beat message, the JobTracker receives the number of
idle CPU and 1/0O slots, and then assigns job tasks of
various types to the corresponding slots for process-
ing (i.e., the tasks of a CPU-bound job are assigned
to CPU slots and those of a I/O-bound job are
assigned to I/O slots).

Hadoop tends to assign tasks close to the node possess-
ing its block; however, the JAS assigns tasks according to
the number of slots, namely CPU and 1/O slots, Tasktrackers
possess. Because of the characteristic of the JAS, data local-
ity is lost and the amount of network traffic is substantial.
Fig. 2 illustrates the problem. To address the problem, the
JAS was modified to ensure that the benefit of data locality
is retained (Fig. 3). For considering the data locality, a table
named LocalityBenefitTable is created to store the request
time of each task [14]. The execution times of all TaskTrackers
are stored into the LocalityBenefitTable in the cluster, includ-
ing the times that the TaskTrackers require to execute local
map task and non-local map tasks. And local map tasks
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Fig. 3. Work flow of a JASL scheduler. (a) When a new job is submitted through a client, it is added to the waiting queue. The scheduler then predicts
the job type. (b) After classifying the job type, the jobs are added to the CPU- or I/O-bound queue. The JobTracker then assigns these tasks accord-
ing to the number of free CPU or I/O slots that the TaskTracker has. (c) JobTracker assigns the tasks until all of the TaskTrackers have no free slots.

means that the resources required by these tasks already on
the located TaskTracker. The JobTracker then assigns either
CPU- or I/O-bound tasks according to the LocalBenefit equa-
tion. If NonLocalBenefit is true, then the TaskTracker can exe-
cute a non-local task; otherwise, it can execute only local
tasks.

To address this problem, a modified form of the JAS, called
the JAS with locality (JASL), was developed [14]. The JASL
can record the execution time of each node, and then compare
the execution time of the local and non-local nodes to deter-
mine whether the task can be executed on the non-local node.
In addition, an enhanced JASL, called the dynamic JASL
(DJASL), was developed by adding a dynamic function to the
JASL [14]. The aforementioned job scheduler improved the
performance and data locality step by step. Although JASL
and DJASL improved the data locality compared with JAS,
their performance was below expectation.

2.5 Related Works

Because of the increase in the number of data, balancing
resource utilization is a valuable method for improving the
performance of a Hadoop system.' Recently numerous
resource allocation algorithms have been proposed. Based
on the analysis of the inadequacy of the chaos immune
algorithm, Liang et al. [24] proposed an improved chaos
immune algorithm for solving the job-shop problem. A
combined chaos mapping was used to increase the diversity
of the initial population and MapReduce was used to
reduce the time complexity of the algorithm based on the
Hadoop framework.

1. This study utilizes a different approach by proposing a job sched-
uling algorithm to achieve this goal.

Zhang et al. [44] introduced PRISM, a fine-grained
resource-aware MapReduce scheduler that divides tasks
into phases, where each phase has a constant resource usage
profile, and performs scheduling at the phase level. It first
demonstrate the importance of phase-level scheduling by
showing the resource usage variability within the lifetime
of a task using a wide-range of MapReduce jobs. PRISM
offers high resource utilization and provides 1.3x improve-
ment in job running time compared to the current Hadoop
schedulers.

Bezerra et al. [5] added a RAMDISK for temporary stor-
age of intermediate data. A shared input policy schedules
batches of data-intensive jobs that share the same input data
set. RAMDISK has high throughput and low latency and
this allows quick access to the intermediate data relieving in
the hard disk. Thus, adding RAMDISK improves the perfor-
mance of the shared input policy.

Ghoshal and Ramakrishnan [10] proposed a set of pipe-
lining strategies to effectively utilize provisioned cloud
resources. The experiments on the ExoGENI cloud testbed
demonstrates the effectiveness of their approach in increas-
ing performance and reducing failures.

Wang et al. [36] addressed the data locality problem
from a stochastic network perspective. Focus on strike
the right balance between data locality and load balancing
to simultaneously maximize throughput and minimize
delay. Authors present a new queueing architecture and
propose a map task scheduling algorithm constituted by
the Join the Shortest Queue policy together with the Max-
Weight policy. The proposed algorithm is also delay-
optimal in the heavy-traffic regime.

Wang et al. [35] used the round robin technique with a
multiple feedback algorithm to solve this problem. Through
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this scheduler, the job which is submitted late, receives
quick response and is started without long delay. The
results of the experiments on the Hadoop benchmark Grid-
Mix indicate that this algorithm can reduce the average
response time by 10.

Isard et al. [16] mapped the problem to a graph data
structure and then used a standard solver that computes the
optimal online scheduler, which is called Quincy. When fair-
ness is required, Quincy increases fairness and, thus, sub-
stantially improves data locality.

Tumanov et al. [34] focused on the resource allocation of
mixed workloads in heterogeneous clouds and proposed an
algebraic scheduling policy for mixed workloads in hetero-
geneous clods called Alsched, which allocates resources by
regarding the composable utility functions submitted as
resource requests.

Schwarzkopf et al. [31] presented a novel approach to
address the increasing scale and the need for a rapid response
to changing requirements. These factors restrict the rate at
which new features can be deployed and eventually limit
cluster growth. Two schedulers, an monolithic scheduler and
a statically partitioned scheduler, were presented in [31] to
reach the flexibility for large computing clusters, revealing
that optimistic concurrency over a shared state is a viable and
attractive approach to cluster scheduling.

Max-min fairness is a resource allocation mechanism used
frequently in most data center schedulers. However, numer-
ous jobs are limited to specific hardware or software in the
machines that execute them. Ghodsi et al. [9] proposed an off-
line resource allocation algorithm called constrained max-min
fairness (CMMF), which is an extension of MMF and supports
placement constraints. In addition, they also proposed an on-
line version called Choosy. Apache has released a new version
of the Hadoop system, called YARN or MapReduce2.0
(MRv2)[3], which is now adopted by Yahoo. The two major
functions of JobTrackers, namely resource management and
job scheduling and monitoring, are split into two components
called ResourceManager and NodeManager. ResourceManager is
used for scheduling the demand of resources that applications
require, and NodeManager is used for monitoring the use of
resources, such as CPU, memory, disk, and network resour-
ces, by running applications. However, default schedulers of
both Hadoop and YARN still do not support heterogeneous
computing environments. Therefore, new scheduling algo-
rithms/ policies proposed in this paper are applicable to both
Hadoop and YARN.

TABLE 1

Parameters of Job Classification
Notation =~ Meaning
n number of map tasks
MID Map Input Data
MOD Map Output Data
SID Shuffle Input Data
SOD Shuffle Output Data
MTCT Map Task Completed Time
DIOR Disk Average I/0O Rate

3 PROPOSED ALGORITHM

This section introduces the proposed job scheduler with
dynamic grouping integrated neighboring search, which
considers both the MapReduce and HDFS layers. The pro-
posed scheduler provides each TaskTracker with a distinct
number of slots according to the ability of the TaskTracker
and each DataNode with different number of data blocks
according to the ability of the DataNode. The proposed
DGNS algorithm considers heterogeneous workloads and
computing environments.

When a TaskTracker sends a Heartbeat message, the follow-
ing four phases of the DGNS algorithm are executed (Fig. 4).

Phasel: Job classification.

When jobs are in the Job Queue, the JobTrackerdoes
not know the type(CPU- or I/O-bound) of each
job. Thus, the job types must be classified and
jobs must be added to the corresponding queue.
Ratio table creation.

(phase2.1:) Create a capability ratio table of the
TaskTracker (Map layer).

(phase2.2:) Set CPU and I/O slots (Map layer).
(phase2.3:) Create a capability ratio table of the
DataNode (HDFS layer).

Grouping and data block allocation.

(phase3.1:) Grouping with CPU slots number
(Map Layer).

(phase3.2:) Capacity constraints and data block
allocation (HDFS layer).

Neighboring search.

(phase4.1:) CPU task allocation (Map layer).
(phase4.2:) I/0O task allocation (Map layer).

Phase2:

Phase3:

Phase4:

3.1 Job Classification

Algorithm 1 is used for classifying jobs. When a TaskTracker
sends a Heartbeat message, the JobTracker can determine the
number of tasks that has been executed in the TaskTracker,
and the JobTracker can determine the states of these tasks.
When these tasks are complete, the JobTracker can receive
the following information from the tasks (Table 1).

Refer to [33] for the parameters used to classify jobs
(Table 1). Suppose that a TaskTracker has n slots and exe-
cutes the same n map tasks, and the completion times of
map tasks are the same. A map task generates data through-
put including the execution time of map input data (MID),
map output data (MOD), shuffle output data (SOD), and
shuffle input data (SID); therefore, n map tasks generate the
total data throughput =n x (MID + MOD + SOD + SID),
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and the amount of data that can be generated from a Task-
Tracker in 1 second is

« (MID + MOD + SOD + SID)
MTCT ’

Throughput = (1)

where MTCT is the map task completion time.

Algorithm 1. JOB_CLASSIFICATION (Heartbeat)

1: get TaskTracerQueues information from Heartbeat:

2: Initialize LocalityBenefitTable := null;

3: for each task in the TaskTracker do

4: if the task has been completed by the TaskTracker then

5: obtain the task information from the TaskTracker;
6: compute throughput := n*(MID+A£?%+T50D+SID);
7: if the task belongs to a job J that has not been
classified then
8: if throughput < DIOR then
9: set J as a CPU-bound job;
10: move J to the CPU Queue;
11: else
12: set J as a IO-bound job;
13: move J to IO Queue;
14: if the task belongs to a CPU-bound job then
15: record the execution time of the task on
TaskTrackerCPUCapability;
16: else
17: record the execution time of the task on
TaskTrackerlOCapability;
18: record the execution time of the task on
LocalityBenefitTable.

JobTracker can determine how much data one map task can
generate from the corresponding TaskTracker in 1 second
which can be represented as throughput (Equation (1)). Then,
the JobTracker determines the type of a job based on this

information if throughput is less than disk average 1/O rate
(DIOR), in which case, the 7 map tasks generate total data
throughput that is still less than the average I/O read/write
rate. Any map task that requires I/O resources is small, caus-
ing the JobTracker to classify the job to which these map tasks
belong as CPU-bound. However, if throughput is higher than
or equal to DIOR, the n map tasks generate total data through-
put that is higher than or equal to the average I/O read /write
rate. In this case, the JobTracker classifies the job to which these
map tasks belong as I/O-bound. After the type of each job has
been determined, the JobTracker must record the execution
time of all tasks, which can be used for computing the number
of CPU-slots (I/O-slots) for each TaskTracker.

3.2 Ratio Table

This phase comprises some important steps. Before setting
up the CPU- and I/O-slots of each TaskTracker, we must cal-
culate the execution time of tasks and records in TaskTrack-
erCPUCapability. After creating the capability ratio table of
the TaskTracker and setting up all CPU slots, we create
another ratio table of the DataNode in the HDFS layer for
determining the number of data blocks that will be allocated
to each DataNode according to the storage capacity. Sections
3.2.1 and 3.2.2 explains these steps.

3.2.1 TaskTracker Capability and Slot Setting

In Algorithm 1, if a task belonging to a CPU-bound job is
completed, then the JobTracker records the execution time of
the task on TaskTrackerCPUCapability. If the JobTracker
detects that the CPU slot of the TaskTracker has not been set,
then the JobTracker executes Algorithm 2 to set the CPU-slot
of the TaskTracker. In Algorithm 2, the JobTracker reads the
execution time of each task in TaskTrackerCPUCapability,
and uses (2) to compute the CPU capability of each Task-
Tracker. Finally, by using (3) to compute the CPU capability
ratio of each TaskTracker, the JobTracker can determine the
number of CPU slots in each TaskTracker.

Fig. 5 shows the work flow of setting slots. Algorithm 2 is
the CPU slot setting algorithm for a TaskTracker. Table 2 lists
the used parameters.

Cy=— (2)

k, = the number of CPU-slots * L. 3)
Z] 16

Fig. 6 illustrates the determination of the number of CPU
slots in each TaskTracker. Assume that a client submits a job

TABLE 2
Parameters of Setting CPU Slots
Notation Meaning
T={t1,ta,...,th—1,t, },|T| =n the set of tasks on a CPU-bound job
ET;, the execution time of task t;, where t; € T'

M; = {t; € T| t; run on TaskTracker;}
€ = the\l 9t;

the set of tasks run on TaskTracker;
the total execution time of the tasks run on TaskTracker;

ri,j=1,....m the label of TaskTracker;

s the number of all slots on hadoop

Ccy the CPU execution capability of the TaskTracker,
ky the number of CPU-slots in TaskTracker,
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Fig. 6. CPU slot setting.

J to a JobTracker, where J is a CPU-bound job that has been
divided into nine tasks. Three TaskTrackers rq, r2, and r3 are
present in this Hadoop system. The nine tasks are distrib-
uted by the JobTracker such that ¢, t3, and t5 are in ry; to, ts,
t7, and tg are in ro; and ¢, and ty are in r3. Whenever a task is
completed, the JobTracker determines that the task belongs
to a CPU-bound job and records the execution time of that
task on TaskTrackerCPUCapability. For example, when t; is
completed, the JobTracker determines that ¢, is a CPU-bound
job and records the execution time of ¢ in r; on TaskTrack-
erCPUCapability, and then TaskTrackerCPUCapability deter-
mines that ¢; has been completed by 7. By repeating the
aforementioned steps, to—t9 are recorded on TaskTrackerC-
PUCapability. Fig. 6 shows the results after determining all
the TaskTrackerCPUCapability. After the job is complete, the
JobTracker determines whether the CPU slot in the corre-
sponding TaskTracker has been set to one; if yes, the Job-
Tracker skips Algorithm 2; if not, the JobTracker executes
Algorithm 2. According to TaskTrackerCPUCapability, the
JobTracker uses (2) to compute the CPU capability of each
TaskTracker. Equation (2) shows the number of tasks
belonging to J on the TaskTracker that can be completed in 1
second. For example, the capacities of 71,72, and 73 are
c = 7““5;“5 = 7ﬁ2+t“jt7+t8, and c¢3 = @, respectively.
After determining the capacity of each TaskTracker, the Job-
Tracker uses (3) to compute the CPU capability ratio of each
TaskTracker, and further calculates the number of CPU slots
of each TaskTracker. For example, the number of CPU slots
on 7,7y, and r3 are k; =5 x m’ ky = x cﬁiﬁ, and
kg =3 % o +f§ Et respectively. Because the number of CPU

7

TABLE 3
Ratio Table
Node A Node B Node C
Jobl 0.4 0.2 0.1
Job2 0.42 0.21 0.14
0.43 0.18 0.11

slots (the number of I/O slots) is equal to half the number of
Hadoop slots, the number of CPU slots (I/O slots) is set to 5.

After executing Algorithm 2, the JobTracker can deter-
mine the number of CPU slots in each TaskTracker, improv-
ing the CPU resource utilization in each TaskTracker.

Algorithm 2. SET_CPU_SLOT(Job Queue)

1: for each Job in Job Queue do

2:  if Jobis completed and CPU-bound then

3: obtain the task information from the TaskTracker;
4 compute the TaskTracker capability according to

TaskTrackerCPUCapability;
| My,

5: ¢y =25
6: for eacﬁ TaskTracker do
7: k, := the number of CPU slots x ﬁ,
=1 J
8: record k, on TaskTrackerCPUTable; !
9: SetTaskTrackerCPUTable :=1;
10: return TaskTrackerCPUslot according to
TaskTrackerCPUTable;
11: break.

3.2.2 DataNode Capability

Before Hadoop startup, we create a RatioTable, which is
used for determining the allocation ratio of data blocks in
the nodes of the cluster. In other words, the RatioTable
records are the ratios of storage capacity of each DataNode,
which is in the heterogeneous cluster. Furthermore, accord-
ing to [19], which is proposed by Yahoo!, 77 percent of the
jobs are map-only and, 14 percent of the jobs are map-
mostly; therefore approximately 91 percent of all jobs are
map jobs, with only 9 percent of the jobs being reduce
mostly. Because the number of map jobs is ten times higher
than reduce jobs, from the engineering perspective, we can
ignore reduce job. By doing so, we can simplify the problem
and thus focus on the real data. Under this assumption, the
method utilized to compute the ratio of the DataNode is not
the same as that used in [39], which is testing different types
of jobs on each DataNode. The proposed strategy is to
record the execution time of each DataNode, calculating the
average execution time of each DataNode, and then trans-
form the average execution time into the storage capacity
ratio. After performing the aforementioned computation,
we record the ratio in the RatioTable.

Table 3 shows an example of RatioTable. There are three
nodes in the cluster and the computing capability of each
node is different. Node A is the fastest node, followed
by node B; node C is the slowest node. According to our
experiment, a situation in which B is the fastest node, fol-
lowed by C and then A will not occur. Other similar situa-
tions will not occur as well. We assume that unless the job
type changes, the computing capability of each node does

Authorized licensed use limited to: University of Melbourne. Downloaded on March 12,2020 at 03:13:19 UTC from IEEE Xplore. Restrictions apply.



200 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 8, NO. 1, JANUARY-MARCH 2020

S & &Y

TaskTracker1 TaskTracker2 TaskTracker3 TaskTracker4

== == == .
& 6 8 9

TaskTracker1 TaskTracker3 TaskTracker2 TaskTracker4

=l bt M= IR =]

(@)

TaskTracker2 TaskTracker4

TaskTracker1 TaskTracker3

= == .
_______ | o o

TaskTracker3 TaskTracker2

= - -

(b)

Fig. 7. Grouping with CPU slots. (a) Node grouping according to CPU slots number. (b) Node grouping with CPU slots number in descending order.

not change. Moreover, according to [19], 91 percent of all
jobs are map jobs; therefore, we can ignore the scenario that
computing capability of the DataNode may be changed
because of the type of job.

Next, we describe the ratio computation. After the execu-
tion of each DataNode is completed, we divide the execu-
tion time of a slower node by that of the fastest node; by
doing so, the computing ratio is obtained and we can trans-
form and record it into the RatioTable. For example, in
Table 3, Node A is the fastest node in the cluster; therefore,
we divide the execution time of Node B by that of Node A
and obtain the ratio of Node B=2, which implies that the
execution time of Node B is two times slower than that of
Node A. This also indicates that the storage capacity of
Node A is two times greater than that of Node B. In other
words, Node A processes more data than Node B, because
the computing capability of Node A is higher than that of
Node B.

However, each DataNode may comprise different num-
ber of task slots. The tasks in each task slot can be processed
in parallel on DataNodes. This causes the ratio of execution,
which was calculated based on the time of the task execu-
tion, to be inaccurate. Therefore, if we want to calculate the
ratio of the storage capacity of each DataNode in accordance
with the task execution time, the number of task slots must
be considered.

Consider the following example. Assume that there are
two DataNodes A and B. Node A is two times faster than
node B, and the map slot numbers of nodes A and B are
set to four and two, respectively. Assume that the execu-
tion times of the four tasks on each map slot of node A
are 45, 43, 43, and 46 seconds and the four tasks execute
simultaneously, the average execution time to complete
one task is 44.25 seconds. To execute two tasks, node B
requires 39 and 40 seconds; therefore, the average execu-
tion time is 39.5 seconds. If we calculate the computing
ratio only in accordance with the average execution time
of nodes, the value of node B is higher than that of node
A. However, the actual computing efficiency of node A is
higher than that of node B. Although the average execu-
tion time of node B is less than that of node A, the task
slots assigned to node A and node B are different. Node
A can execute four tasks simultaneously; however, node
B only executes two tasks simultaneously. Therefore, the
execution time must be divided by the number of task
slots to obtain the average time required to complete one
task. Let T}, be the average execution time and S be the

number of task slots. In addition, let 7, be the average
time required to complete one task. Then,

Tavg

T, = 5 (4)
According to the aforementioned example, the average
time required by node A to complete one task is 11 seconds,
and that required by node B equals 20 seconds. Therefore,
the efficiency of node A is two times higher than that of
node B. Therefore, we use T; to calculate the computing
capability of each DataNode, instead of directly dividing
the execution time of a slower node by that of the fastest
node. Finally, we transform the computing capability of
each DataNode to the storage ratio, and record it into the
RatioTable.

3.3 Grouping and Allocation

After classifying the types of jobs and setting up numbers of
the slot to each TaskTracker, we use a new strategy, which
groups TaskTrackers according to the CPU-slot numbers on
each TaskTracker; the example is presented in Section 3.3.1.
Moreover, after we create the ratio table of the DataNode, we
allocate data blocks according to the storage ability of each
DataNode from the start (fastest node). A simple example is
presented in Section 3.3.2.

3.3.1 Grouping

Fig. 7a shows that there are four TaskTrackers with different
number of CPU slots. TaskTrackerl has two CPU slots and
one 1/0 slot, TaskTracker2 has one CPU slot and two 1/O
slots, TaskTracker3 has two CPU slots and zero 1/0 slot,
TaskTracker4 has three CPU slots and one I/0O slot. Accord-
ing to the CPU-slot number, we can place TaskTrackerl and
TaskTracker3 in the same group, which means they possess
the same execution ability for executing CPU-bound jobs.
Fig. 7b shows the next step. We sort the TaskTracker in the
descending order according to the group with different exe-
cution ability. We can update the number of TaskTrackers
and node ability of each TaskTracker based on the capability
ratio table, which we created in Section 3.2.1, to provide
dynamic adjustment.

3.3.2 Data Block Allocation

In this section, we create a storage ratio table of each Dat-
Node. According to this ratio table we assign each DataNode
different capacities to allocate different number of data

Authorized licensed use limited to: University of Melbourne. Downloaded on March 12,2020 at 03:13:19 UTC from IEEE Xplore. Restrictions apply.



CHEN ETAL.: HETEROGENEOUS JOB ALLOCATION SCHEDULER FOR HADOOP MAPREDUCE USING DYNAMIC GROUPING INTEGRATED... 201

Node A Node B Node C Node D
1 0.66 0.66 0.5

%

NameNode

O

DataNode B

>
DataNode D

|
O

DataNode C

|
O

DataNode A

L

(@)

[ NodeA | NodeB | NodeC | NodeD |
[ 1 [ oes | oes | 05 |
ameNode

%@N
|
Sy

DataNode A DataNode B DataNode C ~ DataNode D
L[ 2] L2 L2 ]

30 % siem [

[ ]|

(b)

Fig. 8. Data block allocation. (a) Before data block allocated. (b) After data block allocated.

blocks. To improve performance, we select the fastest Data-
Node to allocate a data block first, and allocate same replica
to DataNode in descending order according to node capac-
ity. Moreover, we avoid allocating the replica of the same
data block to the same DataNode. Algorithm 3 and Fig. 8
show a simple work flow to allocate the data blocks.

Algorithm 3. Allocat_Data_Block

1: Nodename := set by programmer;

2: ratio := get from RatioTable in accordance with Nodename;
3: Selected Node := the data that is allocated on;

4: for Nodename in the RatioTable do

5: Compare each ratio of DataNode with RatioTable;

6: if the ratio is the fastest in RatioTable then

7: Selected Node := Nodename;

8: Allocating data block to the Selected Node.

3.4 Neighboring Search

Although MapReduce and HDFS are consider different
layers of the Hadoop architecture, the TaskTracker and Data-
Node actually run on the same computing node. Fig. 9 shows
the overview of the TaskTracker and DataNode.

After node grouping and data block allocation, assigning
tasks to each TaskTracker is crucial. Fig. 10 shows the simple
processes task assignment through neighboring search.
Fig. 10a shows that there are three groups of TaskTrackers
according to the CPU-slot numbers of each TaskTracker.
When task3 of job3 has to be assigned, groupl comprising
TaskTrackerl, TaskTracker2, and TaskTracker3 is the first
choice. In Fig. 10c, if the data block required by task3 of job3

o

@ DataNode A

TaskTracker 1 --.... Node @
= S

@ - DataNode ¢ DataNode B

TaskTracker 2

&

TaskTracker x

o

DataNode x

Fig. 9. Overview of the TaskTracker and DataNode in the computing
node.

is not present in the first group, we must consider the Non-
Localbenefit to determine the TaskTracker that is the most
favorable choice for reducing the additional traffic flow and
exhibits higher performance. Fig. 10d illustrates an example
that considers NonLocalbenefit according to

true, if ET; < ET; + Trans ferTime

NonLocal Bene fit = { false, otherwise.

)
4 PERFORMANCE EVALUATION

This section presents evaluation of proposed dynamic
grouping integrated neighboring search algorithm on a
Cloud experimental testbed environment created at
National Cheng Kung University in Taiwan. We compare
evaluation results of our algorithm with existing scheduling
algorithms including default one present in Hadoop.

4.1 Experimental Environment

The experimental setup included IBM Blade Center H23 with
seven blades (84 CPUs, 1450-GB memory, and a 3-TB disk
partitioned into four spaces) and Synology DS214play NAS
was mounted to extend hardware resources (Intel Atom
CE5335 CPU and 3-TB disk space). Moreover, VirtualBox
4.2.8 was used to create several virtual machines. One of the
machines was the master and the other machines were
slaves. Several heterogeneous experimental environment
setups shown in Tables 4 and 5 were employed to observe
performance diversification and data locality. The first setup,
Environment 1, comprised one master, which had two CPUs
with 4-GB memory, and 99 slaves, each having one CPU
with 2-GB memory. Environment 1 was set to the control
group. The second setup, Environment 2 comprised one
master, which had four CPUs with 16-GB memory, and 99
slaves, each having one CPU with 2-GB memory. Environ-
ment 2 was set up for considering the different computing
abilities of the master node. The third setup, Environment 3,
comprised one master, which had two CPUs with 4-GB
memory, and 99 slaves. Among these 99 slaves, 33 slaves had
one CPU each with 2-GB memory, another 33 slaves had two
CPUs each with 2-GB memory, and the remaining 33 slaves
had four CPUs each with 2-GB memory. Environment 3 was
set up for considering the different number of CPUs for dif-
ferent groups of slaves. The last setup, Environment 4, com-
prised one master, which had two CPUs with 4-GB memory,
and 99 slaves. Among these 99 slaves, 33 slaves had one CPU
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Fig. 10. Task assignment through neighboring search.

each with 2-GB memory, another 33 slaves had one CPU
each with 4-GB memory, and the remaining 33 slaves had
one CPU each with 8-GB memory. Environment 4 was set up
for considering the different amount of memory on different
group of slaves. All machines shared 6-TB hard disk space.
Ubuntu 14.04 LTS was adopted as the operating system.
Hadoop Version Hadoop-0.20.205.0 was used, and each
node had four map slots and one reduce slot.

Eight types of jobs were executed: Pi, Wordcount,
Terasort, Grep, Inverted-index, Radixsort, Self-join, and K-
Means. The data size of the different jobs was from 5 to

TABLE 4
Heterogeneous Experimental Environment of the Master
Master Slave
Quantity Specification Quantity Specification

33 1 cpu & 2 GB memory

Environment 1 1 2 Criinitoi CB 33 1 cpu & 2 GB memory
y 33 1cpu& 2GBmemory
33 1 cpu & 2 GB memory
Environment 2 1 4 C}::ef;;f CB 33 1 cpu & 2 GB memory
Y 33 1cpu& 2GBmemory
TABLE 5
Heterogeneous Experimental Environment of the CPU
Master Slave
Quantity Specification Quantity Specification

33 1 cpu & 2 GB memory

Environment 1 1 2 Crizritoi GB 33 1 cpu & 2 GB memory

y 33 1 cpu & 2 GB memory

33 1 cpu & 2 GB memory

Environment 3 1 2cpu& 4GB 33 2 cpu & 2 GB memory
memory

33 4 cpu & 2 GB memory

2500
2000

1500

1000

Execution Time (s)

o
S
S

Fig. 11. Average execution time of each job with Hadoop, DJASL, and
DGNS algorithms.

100 GB. When a client sent a request to Hadoop to execute
these eight jobs, the execution order was random. Ten
requests were sent to determine the average job execution
time. These results are presented in Section 4.2.

4.2 Results

The experimental results of this study can be classified as
follows: (1) the individual performance of each job and the
effect of different data sizes (Section 4.2.1); (2) the proposed
DGNS algorithm improves the overall performance of the
Hadoop system in different heterogeneous computing envi-
ronments (Section 4.2.2); (3) the proposed DGNS algorithm
improves the overall performance of the Hadoop system
and the data locality is similar to that of the DJASL algo-
rithm (Section 4.2.3).

4.2.1 Individual Performance of Each Workload

Fig. 11 illustrates the individual performance of each jobs
and each job has a data size of almost 10 GB with 100 nodes
in Environment 1. The average execution time of DGNS
compared with the default Hadoop and DJASL algorithms
in Environment 1 (Table 4) shows that sorting jobs require
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Fig. 12. Average execution time of each job with different data sizes.

more execution time than the others, and join jobs require
less execution time. However, the results in Fig. 12 demon-
strate that when multiple amounts of data are added, the
average execution time does not significantly increases dur-
ing the experiment. We designed almost 100 GB data size of
each request comprising different jobs and performed batch
processing by using DGNS algorithm. The experimental
results are presented in the following sections.

4.2.2 DGNS in Heterogeneous Computing
Environments

We used three types of heterogeneous computing environ-
ments (Tables 4, 5, and 6) and compared each of them in detail
with all algorithms presented in Section 2.5 (e.g., Hadoop,
DMR, JAS, JASL, and DJASL). Fig. 13a shows the performance
of the DGNS in Environment 2, which involved more CPUs
and memory on the master node, compared with Environ-
ment 1. Fig. 13b shows the performance of the DGNS in Envi-
ronment 3, which included more CPUs on the portion of
slaves, compared with that of Environment 1. Fig. 13c shows
the performance of the DGNS in Environment 4, which
included more memory on the portion of slaves, compared
with that of Environment 1. A comparison of these figures
reveals that the number of CPUs highly affects the perfor-
mance with respect to the amount of memory and higher abil-
ity to ability of the master node (Fig. 13). Moreover, the
proposed algorithm (DGNS) has higher performance in these
three heterogeneous computing environments.

In some of the ten requests, the performance of the JAS
was not more favorable than that of Hadoop and DMR
because the JAS set slots incorrectly. Therefore, the resource
utilizations of some TaskTrackers overloaded, and some
tasks could not be executed until resources were released.

TABLE 6
Heterogeneous Experimental Environment of RAM
Master Slave
Quantity Specification Quantity Specification

33 1 cpu & 2 GB memory

Environment 1 1 2cpu& 4GB 33 1 cpu & 2 GB memory
memory

33 1 cpu & 2 GB memory

33 1 cpu & 2 GB memory

Environment 4 1 Zcpu& 4GB 33 1 cpu & 4 GB memory
memory

33 1 cpu & 8 GB memory
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Fig. 13. Performance of DGNS compared with that of DJASL, JASL, JAS,
DMR, and Hadoop in different heterogeneous computing environments.

Therefore, the execution times of these tasks increased,
causing the performance of the JAS to decrease compared
with that of Hadoop and DMR. However, for simulating
real situations, the execution time of all jobs was averaged
over ten requests. The average performance of the JAS and
JASL was superior to that of Hadoop and DMR in a hetero-
geneous computing environment.

In the four heterogeneous computing environments, the
DGNS algorithm improved performance by almost 21 percent
compared with Hadoop and almost 8-10 percent compared
with DJASL. Moreover, the DGNS algorithm improved the
data locality in these four environments. The results of data
locality are presented in Section 4.2.3.

4.2.3 Performance and Data Locality of DGNS

The proposed (DGNS) job scheduler improves the perfor-
mance by considering the ability of each TaskTracker.
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Fig. 15. Performance and data locality overview of the DGNS algorithm.

Moreover, it considers the ability of each NameNode by
using the NonLocalbenefit equation for determining the most
favorable choice to obtain considerable improvement.

Because the main DGNS strategy proposes that effective
nodes not only have more slots to compute tasks but also
have more resources, its performance on average is superior
to that of Hadoop, DMR, JAS, JASL, and DJASL. In some
scenarios, tasks that have been executed by TaskTrackers are
not removed using the JobTracker. Therefore, the JobTracker
must wait for these tasks to be completed. When TaskTrack-
ers are overloaded, the tasks in these TaskTrackers cannot be
completed until resources are released. Therefore, the exe-
cution times for these tasks are prolonged, causing perfor-
mance to be poor compared with that of DMR. When the
slots of the JobTracker are reset, the resources of each Task-
Tracker can be used appropriately to improve the perfor-
mance of the Hadoop system. The average execution time
of all jobs was used for simulating real situations.

As shown in Fig. 14, the proposed (DGNS) algorithm has
higher data locality than JASL and DJASL in the four hetero-
geneous computing environments. Fig. 15 presents an over-
view of both performance and data locality. The results show
that the DGNS algorithm not only effectively reduces the exe-
cution time but also improves the data locality compared
with the default Hadoop, JAS, JASL, and DJASL algorithms.

5 CONCLUSION AND FUTURE WORK

This paper proposed a new job scheduling algorithm, called
DGNS, for providing a more efficient job scheduler for the

Hadoop system. The default job scheduling of Hadoop does
not consider the type of jobs, causing resource utilization in
some TaskTrackers to be overloaded. In a previous study, the
JAS, JASL, and DJASL algorithms improved the perfor-
mance and data locality step by step. Although the DJASL
algorithm effectively improved the data locality, it did not
improve the performance as expected. Therefore, the DGNS
proposed in this paper not only achieves higher resource
utilization for each TaskTracker but also improves perfor-
mance and data locality. The experimental results demon-
strated that the proposed DGNS algorithm can improve the
performance of the Hadoop system by approximately 21
percent, and approximately 8-10 percent compared with
the DJASL. Moreover, it improved the data locality to 86
percent. In the future, the authors plan to modify this algo-
rithm to focus on various types of jobs, maximizing resource
utilization, and providing large scale experimental environ-
ments in the Hadoop system.
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