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With the advances in monitoring techniques and storage capability in the cloud,
a high volume of valuable monitoring data is available. The collected data can
be used for profiling applications behavior and detecting anomalous events that
identify unexpected problems in the normal functioning of the system. However,
the fast-changing environment of the cloud brings a need for fast and efficient
analytic solutions to monitor the cloud system for its correct operational behavior.
The isolation-based method is an effective approach for detecting anomalies. This
method randomly samples the data and builds several isolation-trees (iTrees) data
structures to find anomalous records. However, a common challenge of iTrees as
well as other anomaly detection algorithms is dealing with high-dimensional data
that can impact the accuracy and execution time of the process. This is an important
issue for cloud-hosted applications where a variety of problems are constantly
changing the normal pattern of features from low-level network data to high-level
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application performance. Therefore, refining the feature space for the removal of
irrelevant attributes is a critical issue.

In this chapter, we introduce an iterative iTree based Learning (ITL) algorithm
to handle high-dimensional data. ITL takes the advantage of iTree structure to learn
relevant features for detecting anomalies. Initially, it builds iTrees making use of all
features of the data. Then, in the iterative steps, it refines the set of the features to
find the most relevant ones by selecting highly ranked anomalies discovered in the
previous iteration. Experiments are conducted to validate the performance of our
proposed ITL method on several benchmark datasets. The results show that ITL can
achieve significant speedups with the appropriate choice of the number of iTrees
while achieving or exceeding the area under the curve (AUC) values of other state-
of-the-art isolation-based anomaly detection methods.

7.1 Introduction

Anomaly detection is an important field of knowledge discovery with rapid adoption
in a variety of applications. The main goal is to find interesting patterns in the data
that deviate from the expected behavior of the application. In the context of the
cloud environment, this process is utilized for a variety of performance management
applications. For example, intrusion detection systems provide frameworks that
monitor the performance of the network to find misbehaving users, possible
misconfiguration, or serious conditions from an attack on the system [1]. Similarly,
SMART (Self-Monitoring, Analysis, and Reporting Technology)-based disk failure
prediction applications perform regular monitoring and anomaly detection analysis
to increase the reliability of storage systems [2].

With the advances in data collection techniques, storage capabilities, and high-
performance computing, a huge volume of monitoring data is collected from
continuous monitoring of the system attributes. Despite the appealing benefits of
access to larger amounts of data for better diagnostics of anomalous events, the great
challenge is how to deal with a high volume of information that should be processed
effectively in real time. The increase in the volume of data is due to (1) recording of
fine-grained measurements for long periods which increases the number of records
to be processed and (2) high-dimensional data with many features that describe
various aspects of the target system. The curse of dimensionality or having many
features can make the problem of anomaly detection in high-dimensional data more
complex in terms of the runtime efficiency and accuracy [3]. This is also becoming
a critical issue in cloud systems which are exposed to several performance problems
at different layers of computing. As a result, the collected performance data is
heterogeneous and includes a variety of attributes from low-level operation logging
data to hardware-specific features, application performance data, or network-related
information. On the other hand, these performance data are exposed to a variety of
problems such as different types of attacks and intrusion patterns in network-related
performance data. Particularity, the general anomaly detection techniques cannot
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perform well for high-dimensional network data with a variety of data types and
embedded meaningful subspaces from different sources [4]. Moreover, the collected
data is dynamic and rapidly changing. All of these, together, highlight the need for
highly adaptable and fast analytic solutions. Therefore, researchers are investigating
more efficient techniques with the goal of better explorations of collected data and
improving the quality of the extracted knowledge.

Traditional anomaly detection algorithms usually work based on the assumptions
that highly deviated objects in terms of the common metrics such as distance or
density measures have a higher probability of being anomalous (outliers in statistical
methods). While these assumptions are applicable in general, their accuracy can be
affected when the base assumptions do not hold, such as in the high-dimensional
data [5, 6]. Moreover, in the traditional methods, anomalies are detected as a by-
product of other goals such as classification and clustering. More recent approaches,
such as isolation-based methods, directly target the problem of anomaly detection
with the assumption that anomalies are few and different [7, 8]. However, the
problem of having a high number of noisy features can also affect these methods.
To improve the efficiency of detection algorithms in high-dimensional data, a
variety of solutions such as random feature selection or subspace search methods
are proposed [9, 10]. However, the proposed approaches are usually considered
as the preprocessing steps which are performed as a separate process from the
anomaly detection. Although this separation makes them applicable for a variety
of algorithms, finding the relevant features in the datasets with many noisy features
can be challenging when the mechanism of target detection algorithms in finding
the anomalies is ignored. Therefore, a question arises that is there a way that one
can improve the efficiency of anomaly detection by extracting knowledge from the
assumptions and the process which leads to identifying potential anomalies in the
data? Having this question in mind, in this chapter, we address the problem of
anomaly detection in high-dimensional data by focusing on the information that can
be extracted directly from the isolation-based mechanism for identifying anomalies.
The reason for selecting this technique as the base process is that it is designed to
directly target the most common characteristics of anomalous events such as rarity
compared to other objects. We exploit the knowledge that comes from the detection
mechanism to identify the features that have higher contribution in the separation
of the anomaly instances from normal ones. This approach helps to identify and
remove many irrelevant noisy features in high-dimensional data. The proposed
method, Isolation-Tree (iTree)-Based Learning (ITL), addresses the problem of
anomaly detection in high-dimensional data by refining the set of features to
improve the efficiency of the detection algorithm. These are the features that appear
in the short branches of iTrees. The refining procedure helps the algorithm to
focus more on the subset of features where the chances of finding anomalies are
higher while reducing the effect of noisy features. The process helps to obtain more
informative anomaly scores and generates a reduced set of features that improves
the detection capability with better runtime efficiency in comparison to the original
method that uses all the features.

Accordingly, the major contributions of this work are as follows:
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• Proposed an iterative mechanism for structural learning of data attributes and
refining features to improve the detection efficiency of isolation-based methods.

• Exploited the inherent knowledge from iTree data structure to reduce the effect
of noisy and irrelevant features.

• Efficiently found an essential subset of the features that can effectively detect
anomalies. The simplified model is extremely fast to train so that the model can
be periodically trained when the important features largely remain unchanged.

• Carried out experiments on network intrusion datasets and other high-
dimensional benchmark datasets to demonstrate the effectiveness of ITL in
improving the anomaly detection results as well as runtime efficiency.

ITL focuses on the data engineering part of data analytics which also helps to speed
up the process of anomaly detection. We have compared ITL with the state-of-the-
art feature learning-based framework [11] and show that not only ITL improves
results as an ensemble learning method with the bagging of scores, but also it can
discover a subset of the features that can detect anomalies with reduced complexity.
Since anomalies can be different and dependent on the context of the datasets, we
have considered the heterogeneity by analyzing different benchmark datasets with a
variety of attributes and anomaly patterns.

The remainder of this chapter is structured as follows. Section 7.2 reviews
some of the related works in the literature. Section 7.3 overviews the basic idea
of isolation-based anomaly detection and the main assumptions in the problem
formulation. Section 7.4 presents the ITL framework and details the steps of the
algorithm. Section 7.5 presents experiments and results followed by time complexity
and runtime analysis, and finally, Sect. 7.6 concludes the chapter with directions for
future research.

7.2 Related Work

The general concept of anomaly detection indicates the exploration and analysis of
data to find patterns that deviate from the expected behavior. The concept has been
widely used and customized in a range of applications such as financial analysis,
network analysis and intrusion detection, medical and public health, etc. [1, 12,
13]. The growing need for anomaly related analysis has led researchers to propose
new ways of addressing the problem where they can target unique characteristics of
anomalous objects in the context of the target applications. For example, distance-
based algorithms address the problem of anomaly detection based on the distance of
each instance from neighborhood objects. The greater the distance, the more likely
it that the instance presents abnormal characteristics in terms of the values of the
features [14, 15]. Alternatively, [16, 17] define the local density as a measure for
abnormality of the instances. The objects with a low density in their local regions
have a higher probability of being detected as an anomaly. Ensemble-based methods
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try to combine multiple instances of anomaly detection algorithms to improve the
searching capability and robustness of the individual solutions [11, 18].

Performance anomaly detection has also widely been applied in the context of
cloud resource management to identify and diagnose performance problems that
affect the functionality of the system. These problems can happen at different
levels of granularity from code-level bug problems to hardware faults and network
intrusions. The fast detection of the problem is a critical issue due to the high
rate of changes and volume of information from different sources. A variety of
techniques from statistical analysis to machine learning solutions are used to process
collected data. For example, Principal Component Analysis (PCA) is used in [19]
to identify the most relevant components to various types of faults. Xiao et al. [2]
applies random forests on various exported attributes of drive reliability to identify
disk failures. Dean et al. [20] exploits the self-organizing map technique to pro-
actively distinguish anomalous events in virtualized systems. Clustering techniques
are utilized by [21] to split the network-related log data into distinctive categories.
The generated clusters are then analyzed separately by anomaly detection systems to
identify intrusion and attack events. Cao et al. [22] uses entropy concept on network
and resource consumption data to identify denial of service attacks.

While the abovementioned approaches show promising results for a variety of
problems, the exploding volume and speed of the data to be analyzed require
complex computations which are not time efficient. A common problem that makes
these difficulties even more challenging is the high-dimensional data. For example,
the notion of distance among objects loses its usability as a discrimination measure
as the dimension of data increases [3, 5]. Methods based on the subspace search
or feature space projections are among approaches that are proposed as possible
solutions for these problems [23]. The idea of dividing high-dimensional data
into groups of smaller dimensions with related features is investigated in [24].
This approach requires a good knowledge of the domain to define meaningful
groups. PCA-based methods try to overcome the problem by converting the original
feature set to a smaller, uncorrelated set which also keeps as much of the variance
information in data as possible [25]. PINN [26] is an outlier detection strategy based
on the Local Outlier Factor (LOF) method which leverages random projections to
reduce the dimensionality and improve the computational costs of LOF algorithm.
Random selection of the features is used in [27] to produce different subspaces of
the problem. The randomly generated sub-problems are fed into multiple anomaly
detection algorithms for assigning the anomaly scores. While random selection can
improve the speed of the feature selection process, as the selection is completely
random there is no guarantee of having informative subspaces of data to improve
the final scoring. A combination of correlation-based grouping and kernel analysis
is applied in [28] for feature selection and anomaly detection in time-series data.
Feature reduction is done by selecting representative features of final clusters. Keller
et al. [9] and Pang et al. [11] propose two different variations of subspace searching.
The former tries to find high contrast subspaces of the problem to improve the
anomaly ranking of density-based anomaly detection algorithms. The subspace
searching is based on the statistical features of the attributes and is performed as
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a preprocessing step separated from target anomaly detection algorithms. The latter,
in contrast, integrates the subspace searching as a sequential refinement and learning
in anomaly detection procedure where the calculated scores are used as a signal for
the selection of the next subset of the features. Our proposed anomaly detection
approach is inspired by such models and tries to refine the subset of the selected
features at each iteration. However, we try to take advantage of the knowledge from
the structure of constructed iTrees instead of building new models for the regression
analysis.

7.3 Model Assumptions and an Overview on Isolation-Based
Anomaly Detection

The iterative steps in the ITL process are based on the iTree structure for assigning
the anomaly scores as well as identifying features. We choose the isolation-based
approach and specifically IForest algorithm [7, 29] in this work due to its simplicity
and the fact that they target the inherent characteristic of the anomalies as being
rare and different without any prior assumption on their distributions. We note that
the target types of the anomaly in this work are instances that are anomalous in
comparison to the rest of the data and not as a result of being part of the larger
groups [1, 30]. This is also consistent with the definition of anomaly in many cloud-
related performance problems especially network and resource abnormalities.

The idea of Isolation-based methods is that for an anomaly object we can find
a small subset of the features that their values are highly different compared to
the normal instances, and therefore it can quickly be isolated in the feature space
of the problem. IForest algorithm demonstrates the concept of the isolation and
partitioning of the feature space through the structure of trees (iTrees), where each
node represents a randomly selected feature with a random value and existing
instances create two new child nodes based on their values for the selected feature. It
is demonstrated that the anomaly instances usually create short branches of the tree,
and therefore, the length of the branch is used as a criterion for the ranking of the
objects [29]. Consequently, anomaly scores are calculated as a function of the path
length of the branches that isolates the instance in the leaf nodes on all generated
iTrees. This process can be formulated as follows [7]: let ht (x) be the path length
of instance x on iTree t. Then, the average estimation of path length for a subset of
N instances can be defined as Eq. 7.1:

C (N) =

⎧
⎪⎪⎨

⎪⎪⎩

2H(N − 1) − 2 (N−1)
N

if N > 2,

1 if N = 2,

0 otherwise

(7.1)
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Fig. 7.1 Isolation-based anomaly detection. iTree structures are used to represent the partitioning
and isolation process of instances in a dataset with two attributes. The left and right columns show
example sequences of partitions to isolate normal and anomaly instances, respectively

where H(N) is the harmonic number and can be calculated as ln(N) +
Euler_Constant . Using C(N) for the normalization of expected h(x) of instance
x on all trees, the anomaly scores can be calculated as follows:

s (x,N) = 2− E(h(x))
C(N) (7.2)

Considering this formula, it is clear that anomaly scores have an inverse relation
with the expected path length. Therefore, when the average path length of an
instance is close to zero, the anomaly score is close to 1, and vice versa.

Figure 7.1 shows a graphical representation of the isolation technique for a
dataset with two attributes X1 and X2. The left and right columns show examples
of random partitions on the attribute space and their corresponding tree structures
to isolate a normal and anomaly instance, respectively. As it is shown, instance A
(anomaly) can be isolated quickly considering the sparsity of values of X1 around
this instance. Though this example is a simple case with just two attributes, the
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general idea can be extended to the problems with many features and a variety of
distributions.

Considering the above explanations, ITL process is based on the idea that iTrees
can also give information on important features for detection purpose. Therefore,
ITL analyzes the generated iTree structure to extract information about the features
that have more contribution in creating short branches and detected anomalies. In
order to better explain the problem, let us assume that the input D is a matrix of N

instances, each instance explained with a row of M features such that

D = {(Xi), 1 ≤ i ≤ N |Xi = (xij ), 1 ≤ j ≤ M,

xij ∈ R}. (7.3)

We have excluded nominal data in our assumptions and definition of Eq. 7.3.
However, the ITL process is general and can be combined with solutions that convert
categorical data to numerical to cover both cases [11]. We formulate the problem as
follows: given a matrix D as the input, we try to iteratively remove some irrelevant
features from the feature space of D, keeping the more relevant features for the
detected anomalies at each step in an unsupervised manner. The goal is to increase
the quality of the scores in terms of assigning higher scores to the true anomaly
points by reducing the effect of noisy features. The output at each step k is a set of
the scores Sk on a set of the reduced features Mk . The idea is that the removal
of noisy features makes it easier to focus on the relevant partitions of the data,
where the values of the features show higher deviations for the anomalous objects in
comparison to the normal ones. As a result, the ranking of the input objects would
improve with regard to the true detected anomalies.

7.4 ITL Approach

Figure 7.2 shows the main steps in ITL framework. As we already discussed in
Sect. 7.3, the iTree structure forms the base of the ITL learning phase following
the assumption that short branches in the structure of iTree are generated by the
attributes with higher isolation capability. In another word, a subset of the attributes
that are creating the nodes in the short-length branches can from a vertical partition
of the data that localize the process on anomaly related subset of the data. As we can
see in Fig. 7.2, the process is completely unsupervised with the input matrix as the
only input of each iteration (that is we have no information of anomalous instances).
There are four main steps in the ITL process and these are:

1. Building iTrees Ensemble: IForest creates a set of the iTrees from input data.
This is a completely unsupervised process with a random sampling of the
instances/features to create the splitting nodes in each tree.
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Algorithm 1: ITL process

input : D = (X1, X2, ..., XN), Xi ∈ RM : D is a matrix of N records, each record
including M features

Parameter: th: Anomaly score threshold value
output : Reduced Matrix, Scores

1 D′ ← D

2 while not (There are unseen features) do
3 Build iT rees ensemble using iForest on D′

/* Calculate scores for all input instances using Eq.7.2 */
4 S = (Sk) = (sk1, sk2, ..., skN ) ← Scores(iT rees,D′)

/* Filter a small part of the input matrix with higher
anomaly scores */

5 D_subset ← {xi | xi ∈ D′ && si ≥ th}
6 initialize Frequency as an array with length equal to the number of features in

D_subset all equal to zero
7 for tree ∈ iT rees do
8 for x ∈ D_subset do
9 update Frequency of features by adding the occurrences of each attribute seen

while traversing from the root node to the leaf node that isolates x

10 end
11 end
12 D′ ← {xij |xij ∈ D′ && f requency(j) ≥ Average(f requency)}
13 end
14 return(D′, S)

M = { 1, 2, …., m}

N
 =

 { 
1,

 2
, …

., 
n} Build iTrees

iTrees Ensemble

Horizontal Par��oning

iTree structure
Analysis

Feature Frequencies
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(Feature Refinement)

M = { 1, 2, …., m}
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N
 =

 { 
1,

 2
, …

., 
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N
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 2
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n 
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Fig. 7.2 ITL framework. The initial input is a matrix ofN instances withM features. An ensemble
of iTrees is created. Then, top ranked identified anomalies are filtered. The iTrees are analyzed for
filtered instances to create a list of ranked features
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2. Horizontal partitioning: The anomaly score for each instance is computed based
on the length of the path traversed by the instance on the generated iTrees [7].
The final score shows the degree of outlierness of the instance. Our goal is
to discover important features based on their contribution in the isolation of
anomaly instances. The low score instances do not affect the determination of
the important features for anomaly detection, and therefore, we can remove them
to reduce the data size.

3. Extracting Feature Frequencies: We create a frequency profile of occurrences of
different features observed during the traversal of short branches of iTrees. These
features have a high probability of detecting anomalous instances.

4. Vertical Partitioning: Having a profile of the feature frequencies, a subset of the
features with a higher contribution in the abnormality of data are selected and
other features are removed. This process creates a vertically partitioned subset of
data as the input for the next iteration of the ITL.

This process is repeated multiple times until the termination condition is met. As
we continuously refine the features, we expect to see improvement in the anomaly
detection process as the detection process becomes more focused on the interesting
set of features. Therefore, the set of iTrees built during consecutive steps can be
combined to create a sequence of the ensembles. Algorithm 1 shows the pseudo-
code of ITL. A more detailed and formal description of the process is presented in
the following section.

7.4.1 Feature Refinement Process

We assume that the input D is a matrix of objects labeled as one of the classes
of normal or anomaly. These labels are not part of the ITL process as it is
an unsupervised mechanism. They are used for evaluating the output results of
proposed algorithms and other benchmarks for validation purpose. The goal is to
find a ranking of the objects so that the higher values imply higher degrees of
abnormality. Considering this objective, the first step of ITL process is to build
the initial batch of the iTrees from the input matrix. IForest is used to create t

iTrees. To create each iTree, ψ random instances are selected from D, and each
node of the tree is created by randomly selecting a feature and a value and splitting
the instances based on this selection to form two branches. The output is iTrees
ensemble and anomaly scores S = (s1, s2, ..., sN ) computed for all instances based
on Eq. 7.2 (Lines 3–4, Algorithm 1).

After creating new iTrees, the next step is to reduce the target instances for the
learning procedure (Line 5). A threshold value (th) is defined and all instances with
an anomaly score lower than this value are discarded. The idea behind this selection
is to focus better on parts of the data which have a higher degree of abnormality
based on the iTrees structure as well as reducing the complexity of the problem.
As the learning phase is the most time-consuming part of the ITL process, this
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reduction dramatically decreases the runtime of the algorithm. The selection can
also take advantage of the expert knowledge on the characteristics such as the
contamination ratio of the dataset for defining a proper cut-off value of anomaly
scores. The output of this step is a subset of the input matrixD (D′) with p instances
such that p << |D|. We emphasize that the process is unsupervised as we do not
have the knowledge of anomalous instances. However, based on the assumption that
anomalies are few and different, we expect to see many of the anomaly instances in
D′. It should also be noted that the generation of each iTree is completely random
in terms of the splitting features and value selection. Therefore, one tree may not
be informative per se. However, when the random process is repeated to generate
many trees, the overall observed patterns confirm the idea of short branch isolation
of anomaly instances [7]. This can be observed in Fig. 7.1 as well. Generating iTree
structure on high-density regions requires many nodes and splitting conditions to
isolate one instance, while for an anomaly instance there is one feature or more that
can quickly differentiate that from the rest of the data.

The instances that passed the filtering procedure from the previous step (highly
ranked anomalies) are processed by each iTree from the ensemble model to record
the frequency of occurrences of features when traversing the trees. The frequency
profile of features allows determining important features relevant to detecting target
anomalies. According to the formulas in Sect. 7.3 and their interpretation as an
iTree structure, we expect to see a subset of more important features for anomalous
instances in the short branches of trees. It should be noted again that these are the
expected observations from an ensemble of many random trees and are not attributed
to any specific iTree. Consequently, we keep the features whose frequencies are
higher than the average of the frequency profile (Lines 6–12).

The above steps are repeated multiple times. The output is a set of the anomaly
scores for each subset of the data, starting from full data with all features. Therefore,
the iteration k of ITL process creates a set Sk of anomaly scores for all instances on
the reduced feature setMk (M0 is the full set of the features for the first iteration). We
note that each iteration would produce a potentially different set of anomalous points
and hence a different frequency profile of the features. The termination condition
we choose is when the frequency of occurrences for all features is greater than
one, meaning that every feature has seen at least one anomalous point in the short
branches of iTrees. The idea behind this condition is that as the noisy features are
removed during the iterative process, ITL produces better iTrees for detecting the
true set of anomalies. Therefore, the observed features become more important in
the detection process. When ITL reaches a state that all the features are present in the
short branches, it indicates that all current features are contributing to the detection
of anomalous instances. Therefore, the termination condition Tk at iteration k is
evaluated as follows:
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Tk =

⎧
⎪⎪⎨

⎪⎪⎩

T rue if Size(Mk) ≤ 1 or

Frequencyk > 0

False otherwise,

(7.4)

where Size(Mk) evaluates the number of remaining features at the iteration k.
Frequencyk is the corresponding frequency profile which is an array of length M

initialized by zero (Line 6). The term Frequencyk > 0 evaluates the condition that
the frequencies of all attributes in Mk are greater than zero. When Tk evaluates to
true, ITL process terminates and the final outputs are evaluated as follows:

• Bagging of the Scores: Each iterative step of the ITL process produces a score
for each data point in D, which represents the degree of anomalousness based on
the corresponding set of the reduced features. As we try to improve the detection
capability of the ensemble by reducing the noisy features, we expect to get better
anomaly scores in terms of the ranking of instances. Therefore, in this approach,
the goal is to take advantage of detection results from all iterations by averaging
the scores and defining a new score for each instance. Accordingly, the final score
of each instance is calculated as follows:

Sf (x) = 1

K

k=K∑

k=1

Sk(x), (7.5)

where Sf is the final score and Sk is the score at iteration k from K iterations of
ITL process.

• Reduced Level Scores: ITL produces an ensemble of iTrees on the important
features for anomaly detection. The generated iTrees on the reduced features can
be used for detecting anomalies in new data. Therefore, the anomaly scores are
calculated directly based on the extracted reduced feature set from the process.

7.5 Performance Evaluation

In this section, an empirical evaluation of ITL process on two network intrusion
datasets and three other benchmark datasets is presented. The two sets of exper-
iments are designed to demonstrate the behavior of ITL in bagging and reduced
modes on the target datasets. First, Sect. 7.5.1 presents the datasets and parameter
settings of the experiments. Then, Sect. 7.5.2 shows the comparison results of
ITL in the bagging mode with a recently proposed state-of-the-art sequential
ensemble learning method and then investigates the improvements made by reduced
level features in terms of both AUC and runtime analysis in a set of the cross-
validated experiments. Sections 7.5.2.3 and 7.5.3 discuss runtime complexity and
weakness/strength points of ITL approach.
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Table 7.1 Properties of data
used for experiments. N and
M are the number of
instances and features in each
dataset, respectively

N M Anomaly ratio (%)

DOS 69363 37 3

U2R 69363 37 3

AD 3279 1558 13

Seizure 11500 178 20

SECOM 1567 590 6

7.5.1 Experimental Settings

Table 7.1 shows a summary of statistics for the benchmark datasets. All datasets
are publicly available in UCI machine learning repository [31].1 For U2R and
DOS datasets which are network intrusion dataset from Kddcup99, a downsampling
of attack classes is performed to create the anomaly class. In other datasets, the
instances in the minority class are considered as the anomaly.

In order to evaluate the results, we select the Receiver Operating Characteristics
(ROCs) technique and present Area Under the Curve (AUC) as a measure of the
accuracy of the system. AUC value summarizes the trade-off between true positive
and false positive detection rates as shown in Eqs. 7.6 and 7.7 under different
threshold values. Higher AUC indicates better performance with regard to the
detected anomalous instances.

T PR = T P

T P + FN
(7.6)

FPR = FP

FP + T N
. (7.7)

ITL process is implemented based on the publicly available Python library,
scikit-learn [32]. Unless otherwise specified, the values of the parameters for iTree
generation step of ITL process are according to the recommended settings as
explained in [7]. The value of other parameters is set based on the experimental
tunings. The threshold value for the horizontal partitioning (th in Algorithm 1) is
determined by assuming a contamination ratio equal to 0.05% for all datasets. This
means that the cut-off threshold is identified so that 0.05% of the objects have a
score higher than the th, which is good enough considering the number of instances
and the contamination ratio in our target datasets. The frequency profiling is done on
the branches with a maximum length of 4. This threshold has been selected based on
the average length of the trees which is dependent on the sample size and therefore
constant in all experiments. To ensure comparativity, the number of trees for the
IForest algorithm in all methods is the same and is between 600 and 900 trees.

1 http://archive.ics.uci.edu/ml.
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For the comparison, we have selected a recently proposed sequential learning
method, CINFO, designed for outlier detection in high-dimensional data [11].
CINFO works based on lasso-based sparse regression modeling to iteratively
refine the feature space. As their method is general, we select the IForest-based
implementation which considers the scores generated by IForest algorithm as the
dependent variable of the regression model. Due to the randomness feature of iTree
generation, each experiment is repeated for minimum of 5 times, and the average
of results is reported. For CINFO, the number of repeated experiments is based on
their recommended values to have stable results [11].

7.5.2 Experiment Results

7.5.2.1 ITL with Bagging of the Scores

Table 7.2 shows the AUC results for the base IForest algorithm as well as both
ITL and CINFO learning methods. The best results are highlighted in bold. As the
results show, the ITL process improves the performance of IForest by combining
the scores from various subsets of the feature space. The best AUC results are
achieved for AD dataset for which the results of ITL show a dramatic improvement
(around 22%) compared to the base method. This is a result of the higher ratio of
noisy features in this dataset. In comparison to CINFO method, the same or better
performance is observed for 4 of the 5 datasets. The only exception is Secom where
ITL shows improvements compared to the base, but not as much as the CINFO.
This could be attributed to the greedy removal of features in vertical partitioning of
ITL as we explained in Sect. 7.4.1. Since the results for DOS and Seizure are very
high, even with the base IForest (higher than 95%), we do not expect to see too
much improvement. However, ITL still shows comparable or improved AUC while
achieving a reduction of about 8 and 43% in the size of the feature set. In general,
ITL shows improved results as well as a reduction of the features between 9 and
97% compared to the original set. These results are especially important when the
quality of reduced features is investigated for the detection of unseen anomalies.

Table 7.2 AUC results for the base IForest, ITL, and CINFO. M and M
′
show the size of the

original and reduced features for ITL. The best AUC for each dataset is highlighted in bold

ITL Feature Reduction

IForest CINFO ITL M M
′

Reduction

DOS 0.981 0.971 0.981 37 21 43%

U2R 0.874 0.894 0.901 37 18 51%

SECOM 0.551 0.655 0.594 590 80 86%

AD 0.704 0.850 0.856 1558 54 97%

Seizure 0.989 0.987 0.990 178 163 8%
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Fig. 7.3 AUC comparison for IForest and OCSVM. OCSVM results are shown when applied on
input data with all features and with ITL reduced set of the features. The results are average AUC
over cross-validation folds

Therefore, in the following, we further study the effectiveness of the reduced subset
of features produced by ITL in anomaly detection results.

7.5.2.2 ITL with Reduced Features

To validate the efficacy of the reduced subset of features on the detection capability
of IForest algorithm, a series of experiments are conducted based on the k-fold
cross-validation. Figure 7.3 compares the performance of isolation-based technique
(IForest) and a kernel-based anomaly detection method (OCSVM). OCSVM is a
novelty detection method that can also be used in unsupervised anomaly detection
by selecting soft boundaries. The figure also shows the results of OCSVM when
applied on ITL reduced set of features. As the results show while applying
OCSVMwith ITL approach can improve the results of OCSVM, the isolation-based
technique (IForest) shows higher performance. Therefore, in the next experiments,
the performance of ITL on IForest is studied. The five-fold validation is used to
train the IForest model on 4 parts of the data when all features are included in
comparison to the data with the reduced features from the ITL process and AUC
values of validation parts are reported. Figure 7.4 demonstrates ITL results for
different numbers of trees from 1 to 100. As we can see, reduced features can
achieve or improve AUC value compared to the full set of the features for a range of
number of trees in all datasets. The interesting observation is that the reduction in the
number of trees has less impact on the performance, especially for the reduced set as
shown in Fig. 7.4. For example, even with 10 trees, the results are very close to the
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(a) (b)

(c) (d)

(e)

Fig. 7.4 AUC comparison for IForest when applied on input data with all features and with ITL
reduced set of the features. The results are average AUC over cross-validation folds. (a) AD. (b)
Secom. (c) DoS. (d) U2R. (e) Seiz

performance of the algorithm with default parameters (100 trees). This improvement
can be attributed to having fewer features to be explored during the random selection
of the features. In other words, having a subset of the features learned through ITL
process, one can achieve improved results with less number of trees. The reduction
of features, as well as the number of trees, can help to reduce the complexity in
terms of the memory and runtime requirements. Figure 7.5 shows the running time
taken for a variety of tree numbers. As we can see, the number of trees can hugely
impact the testing time. This is highly important for dynamic environments such as
the cloud where the testing should be performed regularly. These results indicate
ITL approach as a potential choice to be employed by real-time applications where
the new incoming stream of data requires quick online tests for identifying possible
problems.

During the ITL learning phase, the number of iTrees in each ensemble is a
parameter that should be decided for each iteration. In order to have a better
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Fig. 7.5 Runtime for the Testing of cross-validated results on the reduced features. Logarithmic
scale is used on y axis

understanding of the sensitivity of ITL to this parameter, we run ITL several times
for a range of values for the number of trees. Figure 7.6 shows the AUC distribution
of each set of the experiments for all datasets. As the results show, ITL is sensitive
to this parameter. However, AUC values show improvements with the increased
number of trees and are stable for numbers larger than 600. Practically, we found
that a value between 600 and 900 trees is sufficient in most cases to have a good
trade-off between accuracy and training complexities in terms of memory and
runtime.

7.5.2.3 Time Complexity and Runtime Analysis

Algorithm 1 presents the main steps of the ITL process. The main while loop (Line
2) continues until the termination condition of having zero unseen attributes is met.
The termination condition is guaranteed to converge as during the vertical partition
phase, features with zero-seen or low frequency are removed which reduces the
feature space. As a result, the remaining features have more chance to be explored
with regard to anomalous instances (and possibly showing in short branches of
the tree which increases their potential to be included in high-frequency profile).
Since we always have potential anomalies seen in short branches, there is at least
one feature with a frequency higher than one which will create the final reduced
subspace. Therefore, we finally get to a level where all features are seen at least
one time or the reduced subspace has just one feature left. The loop typically
converges in less than 5 iterations. Lines 3–11 build IForest models and filter high-
rank instances based on the predefined threshold. Considering the IForest trees as
the base structure for these steps, it takes O(tψlog(ψ)) for constructing where ψ is
the number of selected subsamples and t is the number of constructed trees. If there
are N testing points, it requires O(Ntlogψ) for determining anomalous points and
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(a) (b)

(c)

(d) (e)

Fig. 7.6 AUC value distribution for ITL reduced features in training. This plot shows the
sensitivity of ITL process to different numbers of the learning trees. (a) AD. (b) Secom. (c) U2R.
(d) DoS. (e) Seiz

O(Ktlogψ) for updating frequency profile of the features, where K << N (Line 5)
is filtered anomalies (worst-case complexity is order O(tψ(ψ + N))). Therefore,
we expect a linear complexity with regard to data size.

IForest is shown to have a very fast and memory-efficient runtime for both
modeling and testing purposes. In order to have a clear understanding of the ITL
contribution to make this process even faster, a series of execution times with
respect to the number of learning trees are presented. Figure 7.7 shows the learning
time in ITL, where the main feature refinements are done by constructing iTrees
and creating a new subset of features. The diagram shows the learning time for
a variety of tree numbers. As it is mentioned before, 600–900 usually is enough
to have a sufficient exploration of feature space for target datasets. When the
learning phase of ITL is completed, the anomaly detection is done by modeling
iTrees with extracted features. To have a better comparison of execution times,
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Fig. 7.7 Total runtime of learning phase of ITL. Logarithmic scale is used on y axis

Fig. 7.8 Comparison of modelling times for ITL-produced features with reduced number of iTrees
(yellow) and base IForest algorithm (Purple) with default parameters. Logarithmic scale is used on
y axis

Fig. 7.8 compares modeling time of ITL-learned features with the reduced number
of trees with the base IForest without feature refinements and with the recommended
number of trees in the literature. As we can see, ITL process makes a dramatic
decrease in modeling times by helping to decrease the number of features/trees
which makes the construction of iTrees and training step much faster. It should
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be highlighted that this reduction is achieved by keeping or improving the detection
accuracy as it is shown in Fig. 7.4. However, the feature refinement process of ITL
as shown in Fig. 7.7 is the cost of achieving these results. But the learning phase
is a one-time process which is performed off-line, and the final subset is used for
subsequent anomaly detection task which is significantly improved in terms of both
modeling and testing times as shown in Figs. 7.5 and 7.8, respectively. Considering
the context of one application, the learning phase can be done with a low frequency
and as a background process. Therefore, systems that require regular updating of
their performance models can highly benefit from time/memory reductions of this
process.

In conclusion, ITL shows that by targeting the main contributing features which
isolate the instances in iTrees, we can reach a refined set of the features that can be
used by fewer trees to create a model with better results.

7.5.3 Strength and Limitations of ITL Approach

IForest algorithm, as described in Sect. 7.3, is designed to detect anomalous objects
by the ensemble of binary trees from input data. ITL tries to take the advantage
of this mechanism to extract information about relevant features that better isolate
instances. Since the core of the ITL is iTree data structures from IForest, the same
advantages of random-based sampling and feature selection are equally applicable
to ITL. Moreover, it can be used as a preprocessing step to learn a reduced set
of features for any other anomaly detection algorithm. ITL is a promising method
for real-time applications as high detection accuracy can be achieved with small
memory and time complexity, and it can perform well without prior knowledge of
the specific distribution. We have tested the applicability of our proposed techniques
on a variety of datasets with different characteristics and application domains. The
benefit of our method is that it can be trained rapidly as trees are a very fast construct.
Finding optimal features can be computed in the background without sacrificing
response time for anomaly detection. Moreover, ITL is an unsupervised method and
does not require training data containing anomaly annotations.

Similarly, ITL inherits the same drawbacks as the base algorithm in detecting
local clustered anomalies [8]. This can affect the filtering of instances when the
assumption is made that there are a majority of anomaly instances at the top of
the ranking list. Adaptive, data-dependent configuration for parameters such as the
maximum height of trees or customized split point selection for node constructions
may help to reduce this effect but requires more preprocessing and knowledge on
statistical characteristics of anomalous data.



7 ITL: An Isolation-Tree-Based Learning of Features for Anomaly Detection. . . 205

7.6 Conclusions and Future Work

In this part, we introduced an iterative learning framework (ITL) for the refinement
of features and improvements of the anomaly detection process. Advances in
monitoring and storage capabilities provide a high volume of information on the
performance of applications and systems to be used for anomaly and fault analysis.
This requires real-time analysis of data to quickly identify problems and take
appropriate corrective actions. However, high-dimensional data can adversely affect
the traditional measures of anomaly detection such as distance between instances
in terms of efficacy and time complexity. More recent approaches such as the
isolation-based technique try to directly target the main features of anomalies as
being different and rare. ITL is designed based on the idea that isolation-based
generated trees can give some insights on the importance of the features. Therefore,
the learning phase of ITL is based on the knowledge from iTree structures which are
binary trees constructed by random selection of the features from domain problems.
The assumption is made that the features on the short branches of iTree can be used
as a reference to identify relevant features to the detection of anomaly instances.
The learning is based on the iterative removal of the noisy and irrelevant features
in terms of their importance for isolating anomalies to generate a final subset of the
features to be used for anomaly detection. The experiments show that the anomaly
scores from IForest algorithm on generated subsets of the data at each iteration can
be combined to create a more informative set of the scores in terms of the detection
capability of anomaly instances. Moreover, the experiments on five benchmark
datasets demonstrate that with the reduced set of the features and choosing a proper
number of trees IForest can achieve better results in terms of the detection accuracy
while reducing the complexity of the algorithm.

For future work, we plan to enhance ITL framework to identify groups of
anomalous metrics that isolate individual faults. The isolation can be achieved for
environments that different groups of features are impacted by different types of
faults. This helps to distinguish among different anomalies such as various types of
attacks. We also would like to extend the ITL idea to more flexible tree structures
(for example, trees with more than two branches) to investigate the possibility
of further improvements for clustered anomalies. We also highlight that anomaly
detection, in general context, considers any significant deviation in the values of the
attributes from the past data (training part) as an anomaly which will be reflected
in anomaly scores. However, with regard to the required actions after detecting
anomalies, some level of knowledge expert may be required. For example, after
detecting abnormality in packet-level information that can be a sign of the attacks
(as shown by datasets of U2R and DoS in the experiments), application owners
may prefer to shut down targeted resources (VM or physical machine) to reduce the
cost of wasted resources. The integration of anomaly detection part and resource
management modules may bring new challenges in the design of scaling solutions
that require further investigations.
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