
 

DEPARTMENT: Blue Skies 

The Next Grand Challenges 

Integrating the Internet of 
Things and Data Science  

This article discusses research challenges related to 

devising a new IoT programming paradigm for 

orchestrating IoT applications’ composition and data 

processing across heterogeneous computing 

infrastructure (Cloud, Edge, and Things).  

In the last decade, we have been transitioning from a data-
poor to a data-rich world with the promise of unparalleled 
intelligence. Such transition will definitely require signifi-
cant investments in every aspect in our societies including 
social, political, economic and cultural. Much of the (un-
precedented) increase in data generation can be attributed 
to the abundance of mobile devices and wearables, the 
increase of instrumentation in every industry vertical, the 
mass adoption of social networks and the digitization of 
every aspect of our lives. Generically, the bulk of such 
data collection falls under the Internet of Things (IoT).1–5 
IoT data comes from a variety of sources that can be clas-
sified into (a) machine-based (e.g., environmental, weath-
er, air quality, water quality, flows, traffic speeds, people 
flows and GPS location) or (b) people-based (e.g., social 
media, crowd sourced data collection, and simple text 
messaging) providing data and situational observations 
associated with events. 

The emergence of computing paradigms such as Edge, 
Fog, and Osmotic Computing for supporting the analysis 
of data near the data sources are especially applicable for 
IoT use cases where insights need to be actioned on in the 
least amount of time possible.1,6 Figure 1 depicts a typical 
IoT application infrastructure consisting of the Things, the 
Edge, and the Cloud layers. The layers are connected to 
each other in a plethora of ways. But the most interesting 
one is connecting the Things to the Edge of directly to the 
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cloud. Examples of networking protocols include (but not limited to) WiFi, Cellular (e.g., 4G & 
5G), Bluetooth, Bluetooth Low Energy, LoRa-WAN [Lora], and Narrowband IoT (NB-IoT). On 
the other hand, the Edge layer consists of network gateways/middleboxes, Content Delivery 
Networks (CDNs), or micro datacenters, which provide limited computing and storage resources. 
The edge resources usually communicate with Cloud layer via wide Area Networks (WANs). 
The last layer is the Cloud, which is provided by different cloud providers such as Amazon, Mi-
crosoft, Tencent, Google and Alibaba. Cloud datacenters offer unlimited computational re-
sources and their cloud services are usually offered on a pay-as-you-go fashion. 

The increase in data collection, along with advances in infrastructure development and intelli-
gence, have led to an opportunity for developing several new usage scenarios, ranging from 
smart cities, smart transportation, smart health care, to Industry 4.0 as depicted in Figure 2. 
However, the potential of these different paradigms/technologies requires coordination across 
several layers, leading to important research challenges to be addressed. Currently, existing IoT 
applications processing data run on remote Cloud infrastructure. To support new application 
scenarios, novel software/application abstractions are needed that can utilize distributed and 
dynamic infrastructure supported at Edge and Things layers (as shown in Figure 1). Moreover, 
IoT data is typified by the heterogeneity of data formats and types, which usually results in be-
spoke platforms and code that make subsequent integration and processing problematic and 
time-consuming. The provenance of data is another key aspect that IoT needs to address, not just 
to ensure the physical integrity of bytes produced, but to be able to trace decision making from 
model outputs to individual sensors or sensor platforms. This is significant to enable “trust” to be 
established in the analysis that is carried out on such data. IoT systems currently deployed are 
largely passive observers of the environment that transmit data to a remote location (with a vary-
ing and limited degree of on-board processing). Retasking this one-way behavior in a reliable 
fashion (e.g. changing sampling rates triggered by external stimuli) is a prerequisite for develop-
ing and deploying future IoT applications.  

 

Figure 1. A typical IoT application infrastructure of a healthcare use case showing of  
Things, Edge, and Cloud layers. 

In this column, we provide an IoT roadmap, moving from the (significant) existing research 
focus on handling streaming IoT data to developing application instances that have intelligence 
to adapt their behavior/operation based on several external (e.g. environment) and internal (e.g. 
application) QoS stimuli. We present our vision and associated challenges in the areas of IoT: (i) 
application composition, (ii) dynamic data management, and (iii) service orchestration across 
Things/Edge/Cloud infrastructure. Our discussion is based around the IoT application architec-
ture shown in Figure 3 that illustrates how user requirements can be coupled with efficient utili-
zation of computing resources and data provided by Cloud, Edge, and Things layers. 
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Figure 2. Examples of an IoT-driven smart world: from Smart Homes to Smart Retail, Industry 4.0 
and Smart Grids. 

In this environment, a user submits requirements to an IoT application orchestrator which identi-
fies: types of services, data sources, QoS metrics that need to be monitored to meet user re-
quirements. Following that, the orchestrator generates a graph showing services needed to realise 
application requirements. A data management component subsequently maintains and monitors 
IoT data sources including data governance, data analysis, and data warehousing. An IoT appli-
cation orchestrator therefore considers IoT data sources as services with specific functions and 
Service Level Agreements (SLAs). The generated application graph will be deployed to compu-
ting resources according to the provisioned data resources and other SLA constraints. This de-
ployment is not undertaken in a one-shot manner, requiring refinement and adaptation based on 
changes in the operating environment.   

 

Figure 3. IoT application orchestration, showing interplay among different system components. 
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IOT APPLICATIONS COMPOSITION 

IoT Data Sources  
In general, IoT data can be of different types and can be collected at different rates and time 
scales. The data can be generated by two types of sources: Things (e.g. environment monitoring 
sensors, GPS, etc.) and People (e.g. social networking apps). Things, such as sensors, provide 
quantitative observational values; they provide measurement of physical phenomenon at differ-
ent levels of precision. Moreover, these measurement data can be generated in different formats 
such as images from cameras, audio from satellites, and text from GPS. Conversely, social sen-
sors provide a qualitative observation of a situation very quickly and succinctly. An IoT applica-
tion, such as real-time flood forecasting and warning, requires the integration of machine and 
social sensors data to provide complementary and corroborative information. This aggregate data 
can be semantically tagged to generate and distribute events of interest (to particular subscrib-
ers). One of the key data science research question is how to identify IoT data sources that are 
most appropriate for a given IoT application context/use case. To answer this question, we need 
to overcome the following five challenges summarized by Baltrusaitis and colleagues:7 

1. Representation: Structure and represent the data to facilitate multiple modalities, ex-
ploiting the complementarity and redundancy of different data sources.  

2. Translation: Interpret data from one modality to another, i.e., provide a translator that 
allows the modalities to interact with each other for enabling data exchange.  

3. Alignment: Identify the relation among modalities. This requires identifying links be-
tween different types of data. 

4. Fusion: Fuse information from different modalities (e.g., to predict). 
5. Co-learning: Transfer knowledge among modalities. This explores the field of how 

the knowledge of a modality can help or enhance a computational model trained on a 
different modality.  

A Standard way to describe an IoT Computation Unit 
There is a requirement to define a basic IoT computation unit (a software abstraction) that can be 
ubiquitously deployed across different infrastructures (as proposed by the Osmotic Computing 
programming paradigm)1 and can be migrated based on various potential “triggers (e.g., perfor-
mance, security/privacy or cost)”. A software abstraction is used to describe a basic IoT compu-
tation unit called MicroELement (MEL).2 A MEL encapsulates:  

1. MicroServices (MS), which implement specific functionalities and can be deployed 
and migrated across different virtualized and/or containerized infrastructures (e.g., 
Docker) available across Cloud, Edge, and Things layers;  

2. MicroData (MD), encodes the contextual information about (i) the sensors, actuators, 
edge devices, and cloud resources it needs to collect data from or send data to, (ii) the 
specific type of data (e.g., temperature, vibration, pollution, pH, humidity) it needs to 
process, and (iii) other data manipulation operations such as where to store data, where 
to forward data, and where to store results; 

3. MicroComputing (MC), executing specific types of computational tasks (machine 
learning, aggregation, statistical analysis, error checking, and format translation) based 
on a mix of historic and real-time MD data in heterogeneous formats. These MCs 
could be realized using a variety of data storage and analytics programming models 
(SQL, NoSQL, stream processing, batch processing, etc.); and  

4. MicroActuator (MA), implementing programming (e.g., for sending commands) in-
terfaces with actuator devices for changing or controlling object states in the IoT envi-
ronment.  
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Figure 4. Osmotic “movement” of (1) MELs across Cloud, Edge, and Things; (2) MELs graph 
representation. 

In summary, developments such as MEL,2 provide a good starting point for describing the basic 
IoT computation unit. However, additional enhancements to the MEL abstraction are required so 
that it can be used to describe and program different types of IoT applications (e.g., Smart 
Homes, Smart Grids). Current IoT applications development is typically a vertical, proprietary 
application stack that is often difficult to generalise. Where there is heterogeneity of IoT sensors 
and platforms (Smart Cities) they are typified by large amount of bespoke code and data integra-
tion requirements. Adoption of standards and protocols across IoT deployments is piecemeal at 
best and chaotic at worst. A step-by-step development approach reducing the cost of deployment 
and configuration, putting flexibility of system design at the core, could be used to increase up-
take of software abstractions such as MEL.  

IoT Application Graph Choreography  
We need fundamentally new IoT applications programming pattern (e.g., MEL graph as shown 
in Figure 4) for: (1) decomposing IoT data analysis activities into fine-grained activities (e.g., 
statistics, clustering, classification, anomaly detection, accumulation, filtering), each of which 
may impose different planning and run-time orchestration requirements; (2) identifying and inte-
grating real-time data from IoT devices and historical IoT data distributed across Cloud and 
Edge resources; (3) identifying data and control flow dependencies between data analysis activi-
ties focusing on coordination and data flow variables, as well as the handling of dynamic system 
updates and re-configuration; and (4) defining and tagging each data analysis activity with run-
time deployment constraints (QoS, security and privacy).  

Existing composition and choreography standards (such as SOAP, TOSCA, and BPEL) are not 
suitable, as they cannot sufficiently capture the complexity of an IoT application graph (e.g., 
heterogeneous data sources, data and control flow dependencies across heterogeneous activities, 
and heterogeneous software and hardware configurations across Things, Edge, and Cloud lay-
ers). Additional research is required for implementing and deploying an IoT application graph 
(see Figure 4). Approaches such as Juju and Fabric8 provide promising developments in this 
area.   
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IoT Application Graph Performance Calibration 
IoT applications developers need to systematically undertake performance characterization of 
data analysis activities (e.g., MELs) across different parts of the infrastructure (Cloud, Edge, and 
Things). They need to understand and reason about most important QoS metrics and/or security 
and privacy threats to each data analysis activity. For instance, QoS metrics required to charac-
terize the performance of a data analysis activity mapped to a Cloud layer (see Figures 1 and 3) 
is quite different from a gateway and/or device in the Edge and Things layer Similarly, perfor-
mance analysis8 at the Things and Edge layers may require assessing network stability, through-
put optimality, routing delays, fairness in resource sharing, available bandwidth, and sensor 
battery state. These QoS metrics might be very different from the ones relevant to a Cloud opera-
tor, who is interested in end-to-end response times, platform scalability and reliability, virtual 
server utilizations, and the costs of moving data to and from the Cloud.  

Currently, many benchmarking kernels (e.g., TPCx-IoT, BigDataBench, TeraGen, TeraSort, 
TeraValidate, Google ROADDEF, Linear Road, DeepBench, and MLPack) exist for characteriz-
ing performance of IoT data analysis activities. Moreover, each benchmarking kernel type has its 
own benefits and can help us understand performance of specific type of IoT data processing 
activity under variable workload scenarios. For example, TPCx-IoT benchmark can be used to 
calibrate the performance at the Edge layer as it is representative of the data analysis activities 
(data aggregation, real-time analytics and persistent storage) that are typically hosted in IoT 
gateway systems. Similarly, Google ROADEF & Linear Road benchmarking kernels can be 
applied for calibrating performance of stream processing data analysis activity at the Edge layer.  
On the other hand, TeraGen, TeraSort, and TeraValidate benchmarking kernels can be applied to 
calibrate the performance of batch processing activity at the Cloud layer. As it can be inferred, 
none, by themselves, can reveal the true bottleneck of whole IoT application graph, which in-
cludes multiple data analysis activities unless multiple benchmarking kernels are properly com-
bined together. Hence, one of the possible research directions will be to identify/build different 
suitable benchmarks from each type of the data analysis activities and hierarchically/logically 
combine them to draw accurate conclusions across an IoT graph in a holistic way. 

IOT APPLICATION DATA MANAGEMENT 
The ability to efficiently capture and manage multiple, diverse types of real-time and historical 
data streams lie at the heart of developing improved decision models and impact analytics. This 
includes traditional, structured data such as that acquired by environmental sensor networks, for 
instance. It also includes more challenging unstructured data streams including geospatial social 
media feeds (twitter, Instagram, news feeds, etc.), as well as data from the continuous monitoring 
of ambient environment, people, and machines. In addition to being harder to interpret and use, 
such data feeds have variable velocities and less structure and thus will require more opportunis-
tic data management approaches. 

Storage 
It is now widely recognized that in the era of high velocity, volume and variety data no single 
data storage approach is optimal for IoT data management purposes. Thus, there is increasingly a 
move towards developing heterogeneous storage platforms where different data storage and ana-
lytics programming model (e.g., stream processing, batch processing, SQL, NoSQL) can be used 
depending on the subsequent analytics requirements. Hence, future research will need to address 
the challenges of selecting and tuning a suite of data storage and analytics programing models 
and related tools. To achieve this, it is necessary to take into account the specific characteristics 
of each IoT data stream, as well as the specific access requirements of the underlying IoT appli-
cation. There is also growing interest in supporting storage at the network edge, eliminating the 
need to capture all data into a central repository, such as work proposed by Edge Analytics 
(www.edgeintelligence.com).  

17May/June 2018 www.computer.org/cloud



 

 BLUE SKIES 

Access 
The real-time and/or semi real-time data analysis requirements of IoT applications require seam-
less access to IoT data feeds. The research community will need to investigate techniques for 
efficient IoT data retrieval that will include indexing to meet the demands of real-time analytics 
and support for sharding of the data stream based on application and infrastructure requirements. 
Apache Kafka already provides some of this capability, i.e., the ability to shard a data stream 
based on the memory capacity of the computational nodes undertaking the analysis. However, 
understanding mechanisms to support such sharding at the network edge remains a challenge. 
One possible research direction will be to implement a federated approach; where data query and 
retrieval functionality from multiple individual platforms are mediated by an IoT programming 
abstraction (e.g., a MEL). As discussed earlier, MEL will need to expose a uniform programmat-
ic interface (APIs) to models and analytics, hence, reducing the barriers (and associated laten-
cies) to data ingestion into models and visualisations. The new federated API suite may utilize 
the Apache Spark SQL API to benefit from its existing interoperability features, in addition to 
other Apache libraries such as Samza and Kafka. The chosen API must be lightweight, and ena-
ble integration with services made available in libraries supported by other vendors.  

Geo-Distributed Cross-Querying 
As noted above, an IoT application may be described as a graph and stored across different parts 
of the infrastructure which are likely to be geo-distributed. The data sets that need to be pro-
cessed through such applications are also distributed, requiring support for distributed search and 
for performing multiple analytical queries in a geo-distributed manner. Moreover, these analyti-
cal queries will differ depending on the type of storage and analytics programming model im-
plemented by a given IoT data analysis activity. The analytical queries can be a SQL query, 
stream processing query, NoSQL query, or a MapReduce query. Hence the challenge is to design 
new types of multi-query planning and provisioning algorithms that can optimally distribute 
queries across data analysis activities mapped to different parts of an IoT infrastructure, while 
optimizing end-to-end QoS associated with the query graph (query plan), to improve resource 
utility and meet users’ SLAs.   

Existing geo-distributed querying systems9–11 do not consider the heterogeneous computing in-
frastructure, neither do they execute the queries over different types data analysis activities pro-
grammed using heterogeneous models (e.g., stream processing, NoSQL, SQL, batch processing). 
While IoT applications need to process and query both static and real-time data, existing geo-
distributed querying systems were designed for managing static data. Event Processing Lan-
guage (EPL) has been used in majority of stream process platform such as Apache Spark, Kafka, 
Flink and Esper. Similar to SQL, EPL supports the following data querying operations: 
SELECT, FROM, WHERE, GROUP BY HAVING and ORDER BY. Unlike relational database 
systems, these EPL-based platforms can limit the query data size to guarantee real-time pro-
cessing. However, one of the core limitations of EPL- and SQL-based querying approaches is 
that they cannot deal with heterogeneous data stored across multiple types of storage platforms 
and/or programmed using multiple types of storage and analytics programming models.  

Integration 
Future research efforts need to develop innovative techniques for supporting the integration of 
heterogeneous IoT data from thousands or millions of sources. However, establishing relation-
ships between IoT data sources (e.g., CCTV), associated events (e.g., air pollution, traffic inci-
dents, flooding, landslide), and stakeholders (e.g. decision makers, first responders) are generally 
difficult to detect as it is dependent on the context of the IoT application. For example, data inte-
gration techniques for air quality monitoring need to establish a relationship between road traffic 
patterns and the associated air and noise pollution. At the same time it should allow seamless 
integration of different types of air quality data including the pollution data extracted from the 
raw chemical sensors data, water quality sensors, traffic flow sensors (e.g., CCTV), and air 
quality sensors.  
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Moreover, such data integration efforts can build on existing standards such as the Semantic 
Sensor Networks (SSN) to allow consistent representation of IoT sensors and their data streams. 
Another very interesting research direction will be to apply graph-based approaches and machine 
learning techniques for discovering relationships between IoT data sources, associated events, 
and stakeholders. 

Data Provenance 
An IoT data provenance technique is responsible for logging the origins (IoT data sources) and 
historical derivations of data by means of recording data analysis transformation operations 
(those data analysis activities that are in charge of manipulating data). IoT-based sensing equip-
ment is deployment to improve decision making. Automated decision making at the source (e.g., 
traffic control signal) requires metadata to be able to validate decisions post-event and check the 
reliability/efficiency of the decision-making processes. Once one steps away from real-time au-
tomated decision making, the process chain of data manipulation becomes more complex, and 
likewise, the associated decision making process moves further from the data source. Thus, the 
provenance and metadata of IoT systems are critical to the implementation, trust, and social use 
necessary for the deployment and use of IoT based sensing. 

Dealing with provenance in the context of large IoT application graphs is challenging often due 
to the size and volume of data involved, the heterogeneous configurations of the underlying in-
frastructure (Cloud vs. Edge vs Things), and the heterogeneous data analysis activities (e.g., type 
of storage and analytics programming model). Developing contextual metadata is essential for 
reasoning about heterogeneous IoT data and related lifecycle activities (e.g., produce, store, pro-
cess, and query). Traditional data provenance techniques require collection and transmission of 
large data volumes, which is impractical for IoT applications that warrant sub-second decision 
making and data processing latency. Hence, new techniques are required which can reduce and 
enhance the efficiency of provenance and metadata collection, recording, and transmission. Un-
derstanding how provenance relationships can be derived from IoT data processing activities 
therefore remains a challenge, as precedence relationships identifying which output was a conse-
quence of a particular set of inputs may be difficult to establish.  

One possible research direction to develop IoT data provenance technique based on Blockchain’s 
Distributed Ledger Technology (DLT) to record lifecycle activities on data as it travels through 
the IoT ecosystem. Another hard challenge to solve will be to develop provenance techniques 
than can verify complying with data privacy regulation such as GDPR. Here GDPR-based IoT 
data access policies need to be verified, to ensure that the user has provided consent on how their 
data can be analysed and fused with other data sources. Undertaking GDPR compliance for stati-
cally held data (e.g. user information) can be easier to manage, however extending this to a dy-
namic data stream (which may be context dependent) remains a challenge. Another research 
topic is the use of smart contracts in IoT deployments that involve more than one vendor and 
where data exchange needs to take place. This will be needed in complex use cases such as smart 
cities.  

IOT APPLICATION ORCHESTRATION 
When  an IoT application is expressed as a collection of multiple self-contained data analysis 
activities (e.g., MEL), future research will need to consider the following: (i) choosing storage 
and analytics programming models (e.g., stream processing, batch processing, NoSQL) and 
computational (e.g., data analysis algorithms) models that can seamlessly execute in highly dis-
tributed and heterogeneous IoT infrastructure (see Figure 3 and Figure 4); (ii) dynamically de-
tecting faults across multiple parts of the IoT infrastructure; (iii) dynamically managing 
resources, data, and software available in Things, Edge and Cloud layers driven by IoT-specific 
applications requirements (data volume, data velocity, QoS, security, and privacy).  
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Optimal Configuration selection 
Mapping of IoT application (graph of data analysis activities) demands selecting bespoke con-
figurations1 of resources at Things, Edge, and/or Cloud layers from abundance of possibilities. 
For example, in context of: (i) Cloud: we need to consider configurations such as datacentre 
location, pricing policies, compute/storage configurations, virtualization features, up-
stream/downstream network latency, etc. (ii) Edge: we need to consider configurations such as 
Edge device (Raspberry Pi 3, UDOO board, ESP8266 ) hardware features (e.g., CPU power, 
main memory size, storage size), upstream/downstream network latency, supported virtualization 
features, etc.; and (iii) Things: we need to consider data source location, battery, up-
stream/downstream network latency, network type, life, sensor type etc.. The diverse configura-
tion space coupled with conflicting (trade-off) QoS, security, and privacy requirements leads to 
exponential growth of potential search space. Hence, computing a near-optimal solution for 
mapping IoT application graph to Things, Edge and/or Cloud layers in a reasonable time is NP-
hard in much stronger sense when compared against task mapping and scheduling problems in 
Cloud computing, Services computing, and Grid computing systems. 

Given the complexity of multilayered configuration search space and mix of conflicting re-
quirements, future research efforts need to focus on developing computationally tractable opti-
misation techniques that can accommodate cross-layer resource configurations and conflicting 
QoS, security and privacy requirements. Moreover, these techniques will need to cater for di-
verse requirements of heterogeneous IoT applications.  

Holistic Monitoring 
To automatically predict and detect anomalies and their root causes, it is critical to monitor12 and 
profile the following contextual information in real-time: QoS parameters (whole IoT application 
graph, activity-specific, edge-specific, Things-specific and cloud-specific) and activity-specific 
data flow. Much of the difficulty in monitoring IoT application graphs is due to the massive 
scale and heterogeneity of underlying computing infrastructure and multi-modal data sources.  

Although QoS monitoring topic has attracted a lot of attention from the distributed computing 
(Grid, Cloud, Web Service) community, none of the existing monitoring tools and techniques are 
able to monitor performance of IoT application graphs in a holistic way. Data streams them-
selves need monitoring and here context and location can be important. Understanding a fault or 
change in a sensor may require profiling of the normal operation of that sensor which cannot be 
assumed to operate in a generic fashion. Hence, novel monitoring techniques providing detailed 
data flow and QoS information related to IoT application graph are required. These techniques 
will need to give deep insights into how data analysis tasks and underlying resources are per-
forming, where possible QoS bottlenecks should be monitored along with all security or privacy 
threats. At the same time, these techniques should be able to give holistic view of QoS and data 
flow in an end-to-end fashion. 

Fault-detection and Debugging 
In future IoT environments where multiple decentralized and distributed devices and resources 
from the Things (e.g., sensors), Edge (e.g., compute and storage) and Cloud layers function to-
gether, the probability of failures will be high—simply due to the plethora of connected things. 
Moreover, the complexity of multiple data analysis activities simultaneously happening across 
these devices further adds to the chances of failure particularly in the cases when they are inter-
dependent of each other. Such failures can be in several forms for example hardware, software or 
wrong user inputs or interaction with the ecosystem including connectivity, mobility and battery 
power of different devices. For example, some devices may be connected via wireless connec-
tions that may also vary in speed and reliability, this will impact the data transfer rate required by 
the applications. Most of the edge devices may have wireless connectivity and many cases they 
may be mobile devices, which are battery powered. In other words, their capacity and capability 
may vary quite frequently and some may fail if overloaded. In summary, the complexity of fail-
ure management within such heterogeneous and changing environments is not trivial. This gets 
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complicated when various data analysis activities have some SLA defining bounds on QoS pa-
rameters with IoT providers. Therefore, the challenge for IoT providers is how to ensure SLA 
/QoS in such failure-prone environments. Or question may be asked how to define QoS parame-
ters in SLAs for such environments. 

Run-time Reconfiguration 
One of the most important aims of IoT applications orchestration processes is to design run-time 
reconfiguration algorithms to dynamically allocate and reallocate data analysis activities (within 
an application graph) to different parts of the infrastructure depending upon many unpredictable 
events including sudden unavailability of sensing devices (e.g., due to battery drain, a power 
failure, or IoT devices being made unavailable by their owners) and degradation of either an 
edge node or the communication network (e.g., due to overloading, edge failure or changes in the 
IoT data flow rate).To determine how each data analysis activity consistently achieves its QoS 
objectives while dynamically handling the run-time uncertainties of data flow behaviour and 
“Cloud-Edge-Things” performance is a unsolved research challenge. Moreover, data analysis 
activities are interdependent; changes in the execution and data flow of one activity will influ-
ence others. At run time, the reconfiguration technique must therefore be aware of these interde-
pendencies between activities – passing aggregate data from the edge to the cloud, for example. 
In other words, all of the above uncertainties in IoT applications demand bespoke run-time re-
configurations.  

To achieve multilayer (“Cloud-Edge-Things”) reconfiguration, IoT research community needs to 
investigate a comprehensive set of QoS prediction models for heterogeneous data analysis activi-
ties mapped across Cloud, Edge, and Things layers. The QoS prediction models should be dy-
namically tuneable based on real-time monitoring information available from holistic monitoring 
approaches. These QoS prediction models will also need to undertake trade-off analysis between 
limited compute capability and low latencies at the Edge (i.e., close to the IoT devices), versus 
large compute capability and high latency (i.e., at the Cloud). In order to achieve this, new re-
search efforts are required focussed on designing network, compute and storage aware optimisa-
tion algorithms to identify the best topology for IoT graph dataflow that may arise from the same 
underlying physical configuration of the edge and IoT networks. 

CROSS CUTTING CONCERNS 

Security, Privacy and Compliance  
With increasing up take of IoT application services (smart city, smart traffic, smart home, smart 
healthcare), often hosted over (distributed cloud, edge, and IoT) infrastructure, there is a realiza-
tion that IoT services can involve an interlinked set of providers (data, service, network and in-
frastructure). Stakeholders in IoT environments implicitly expect and demand their data and 
services to be secure, trusted as well as to preserve their privacy. Users of IoT applications may 
only interact with other applications via simple web interface without actually being aware of the 
large, distributed service, data, and network ecosystem. They often entrust their data and identity 
without realising that IoT applications providers may share their data with several back-end ser-
vices (Cloud hosted analytics, mobile edge network provider, government stakeholders).  

Security in IoT applications involves satisfying mainly two key properties: Authentication and 
Integrity. Achieving successful authentication in IoT ecosystem requires a device identity man-
agement and a suitable authentication scheme. The ubiquitous (and heterogeneous) nature of the 
variety of IoT devices from different vendors and their presence in an untrusted environment 
with no central authority makes the traditional enterprise-based identity management system 
incapable of working for IoT applications. The challenge for a further research is how to manage 
the identity of IoT devices in fully decentralised and distributed systems. A comprehensive iden-
tity management framework that works seamlessly with existing enterprise-based identity man-
agement systems is needed.  
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Traditional authentication schemes are no longer applicable to IoT environments due to limited 
resources (e.g., memory, battery life, etc.). Different lightweight authentication protocols have 
been explored in the literature to address this challenge. A practical lightweight authentication 
scheme still remains as a problem to be solved. In addition, many schemes under development 
have largely ignored the possible realisation of Quantum Computing. Developing lightweight 
post-quantum authentication schemes is the next grand challenge in IoT authentication. It is im-
portant to note that such authentication schemes should not only support devices to gate-
ways/edges authentication, but also mutual authentication between devices and all other 
components in the system (e.g., other devices, servers, users, etc.).  

Integrity is the most important security property when you consider the integration of IoT with 
the emerging data science paradigm. First, a device needs to be trusted so that the data generated 
by the device can be reliably used in making the (right) decision. Because of the diversity of 
devices and manufactures, many different firmwares could be present at any one point in time; 
all could be vulnerable to attacks by adversaries. Performing static and dynamic analysis might 
help to identify potential vulnerabilities, but it is almost impossible to do so for every firmware 
in the market. Furthermore, even as vulnerabilities are detected and a patch is developed to fix 
them, the distribution of such patches to all IoT devices is very difficult since the devices may or 
may not support automatic discovery. Further research is needed in this area. Second, we need to 
ensure that data integrity is maintained, not only when the data is at rest and in motion, but also 
while performing the data analytics. Providing integrity to data analytics is a challenging area of 
research, and a good amount of attention has been paid to it in recent time. Adversarial machine 
learning (e.g., GAN-based approaches) is an active research area and it is important to under-
stand the impact of it on the integration of IoT and data science.   

Privacy has been widely studied under different research disciplines: Privacy Preserving Tech-
nologies (PPT), Privacy Enhancing Technologies (PET) and Privacy Engineering (PE). While 
this has been a well-defined problem in the community, it is greatly exacerbated by the expan-
sion of Internet-connected devices. A large number of techniques have been developed; most 
notably, ones in recent time include differential privacy and privacy-by-design. Some of these 
privacy technologies have been extended and used in IoT applications. This area needs further 
research in terms of developing privacy guidelines for IoT devices and data. General Data Pro-
tection Regulation (GDPR) introduced by the European Union (EU), which ensures that non-
expert users can make informed decisions about their privacy and thereby give ‘informed con-
sent’ to the use, sharing and repurposing of their personal data, is a right direction towards ad-
dressing some of the problems. Other world geographies are likely contemplating regulations 
similar to GDPR. Privacy preserving data trading platform is needed to ensure that IoT data can 
be made available for data science without worrying too much about privacy breaches.  

Like all other computer systems, the weakest link in security and privacy is always the end users. 
Hence, the development and deployment of technological solutions should put users at the core. 
Human-centric security and privacy for IoT is the next big research challenge. Comprehensive 
security and privacy guidelines need to be developed for users, whether they are employees or 
citizens. Different levels of governments have a role to play in this space. Guidelines and regula-
tions can only work if there is a way to check the compliance against such regulations and guide-
lines. A number of governments around the world have started to look at this seriously. The 
research challenge is how to automate the compliance checking process.  

Ultimately, the IoT research community will need to investigate new security-, privacy- and 
compliance-aware applications graph provisioning mechanism to enable: (i) greater trust among 
users, stakeholders and IoT applications’ providers; (ii) emergence of new actors that can offer 
services; and (iii) an IoT data marketplace that enables greater control of personal data by users. 

As IoT is directly involved in the physical world we are living in and the data we generate, secu-
rity, privacy and compliance will always remain sensitive topics and must be managed carefully. 
That said we feel the aforementioned points are just snippets of what needs to be covered. So, we 
urge the research community and industry at large to considerably elaborate on these topics go-
ing forward.   

22May/June 2018 www.computer.org/cloud



  

 IEEE CLOUD COMPUTING 

Scalable and Unified messaging  
An IoT application may use a hybrid approach for message communication depending on con-
text (i.e., centralized and decentralized). The message communication includes sensor to sensor 
(S2S), sensor to edge (S2E), edge to cloud (E2C) and sensor to cloud (S2C) interaction. The use 
of centralized modes such as S2C cannot meet the requirements of soft and hard real-time appli-
cations. For example, a neighbouring smart vehicle system in New York city uses local WiFi to 
support the real-time interaction of vehicle to vehicle (V2V) and vehicle to traffic infrastructure 
(V2I).13 Existing cloud-based communication solutions, such as AWS IoT and Azure IoT Hub, 
are unable to meet the strict QoS, security, and compliance requirements of diverse IoT applica-
tions. As we note in a previous Blue Skies instalment,14 future efforts needs to focus on develop-
ing distributed IoT messaging middleware which can leverage the ever- increasing amount of 
resources at the edge of the network to provide reliable, ultra-low-latency, and privacy-aware 
message routing and communication. Having said that, the protocol heterogeneity inherent to 
Edge (e.g. WiFi, 4G/5G, wired) and Things (e.g. Bluetooth Low energy, COAP, MQTT) re-
sources, and the unpredictability and resource constrained nature of Edge and Things resources, 
make it extremely challenging to provide resilient coordination mechanisms and guaranteed 
message delivery. In order to fit these heterogeneous protocols on the existing architecture such 
as OSI Model, we need to unify and abstract the protocols present across different layers into a 
new IoT communication API stack. The new IoT communication API will need to include com-
munication adapters for multiple, heterogeneous communication protocols relevant to Things, 
Edge and Cloud layers.  

Programmable networks for supporting IoT 
The ability to independently manage the control and data plane, as proposed by software-defined 
networking (SDN) is an approach that allows network administrators to program and initialise, 
control, change and manage networking components of the OSI model. SDN is designed to ad-
dress programmability shortcoming of static architecture of traditional networks such as those 
are used in current datacenters.15 SDN has already shown great performance improvements in 
other fields such as flow optimisation or bandwidth allocation in cloud-based datacentres, and as 
yet has never been realistically utilised for IoT application infrastructure (see Figures 1–4). This 
is due to the fact that current SDN platforms are built on two assumptions: (1) having a central-
ized controller and (2) the requirement to contact devices to pull usage statistics or to push com-
mands to devices. None of the above assumptions are applicable to IoT applications 
infrastructure because (1) connecting millions of IoT devices to a centralised controller is not 
scalable; and (2) IoT sensors/actuators may have intermittent connections. Thus, one of the im-
portant research direction will be to further study and consequently modify current SDN control-
lers (such as OpenDayLight) to first subdivide the controlling layer and secondly to tolerate 
lossy connections.  

CONCLUSION 
There is significant potential for IoT applications to improve our well-being and be drivers for 
social good. To go beyond the hype and the use of bespoke solutions, we need to address the 
many architectural challenges that will enable demonstrable and ongoing value. While many 
challenges exist firmly in the ICT sphere, these also accompany external factors and immature 
technologies elsewhere, so development must go hand-in-hand with e.g., more reliable and accu-
rate sensing systems (and acknowledgement of the uncertainty in many systems we measure), 
better and more reliable communication stacks and improved power management and battery 
life. IoT applications also do not exist in a technology vacuum. They are scaffolded by existing 
regulatory systems, processes, social, economic and legal systems, which means holistic change 
may be required to achieve the IoT vision we have been promising the world. IoT infrastructure 
needs to be developed within a symbiotic feedback loop with these existing systems to engender 
public trust and the social and political license to benefit fully from technological advances. 
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It now also appears that Artificial Intelligence (AI) based technologies are the new operating 
system, as many hardware & software vendors attempt to integrate these in their IoT systems and 
software libraries. Understanding how these AI algorithms process and interpret such data re-
mains a challenge, as opening up the “box” to understand the actual operations of these algo-
rithms remains unclear, leading to issues around trust in how such algorithms make their 
decisions (but this is a topic for another column). 
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