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Abstract—The elasticity of cloud resources allows cloud clients to expand and shrink their demand for resources dynamically over time.

However, fluctuations in the resource demands and pre-defined size of virtual machines (VMs) lead to lack of resource utilization, load

imbalance, and excessive power consumption. To address these issues and to improve the performance of data center, an efficient

resource management framework is proposed, which anticipates resource utilization of the servers and balances the load accordingly. It

facilitates power saving, by minimizing the number of active servers, VMmigrations, and maximizing the resource utilization. An online

resource prediction system, is developed and deployed at each VM to minimize the risk of Service Level Agreement (SLA) violations and

performance degradation due to under/overloaded servers. In addition, multi-objective VM placement and migration algorithms are

proposed to reduce the network traffic and power consumption within data center. The proposed framework is evaluated by executing

experiments on three real world workload datasets namely, Google Cluster dataset, Planet Lab, and Bitbrains VM traces. The comparison

of proposed framework with the state-of-the-art approaches reveals its superiority in terms of different performance metrics. The

improvement in power saving achieved by OP-MLB framework is upto 85.3 percent over the Best-Fit approach.

Index Terms—Cloud computing, communication cost, load balancing, online-prediction, oversubscription, server, virtual machine

Ç

1 INTRODUCTION

COMMERCIAL cloud service providers (CSPs) offer elastic
computing benefits to cloud clients in the form of vari-

ety of VMs with different resource capacities at minimum
capital investment [1] which allow them to choose appropri-
ate VMs for their applications execution and pay accord-
ingly. However, the resource requirement changes over
time that raises challenges for CSPs including inefficient
resource utilization and extravagant power consumption.
For instance, the effect of resources utilization deviation
from their demanded capacity can be seen in Fig. 1 that
shows a snapshot of resource utilization over a period of 24
hours, collected from Google Cluster dataset [2] where the
CPU and memory utilization fluctuates between 5-42 and
5-60 percent respectively. It reveals that most of the time
user over-subscribes the resources that results into ineffi-
cient VM placement and leads to ample amount of resource
wastage and power consumption [3]. The reason behind
over-subscription is that cloud clients are unaware of the
actual resource usage of their applications and to avoid the

risk of failure at peak time, they tend to over-estimate the
resources [4]. Moreover, the network traffic scales up due to
placement of inter-dependent VMs on farther located serv-
ers. Cisco Global Cloud Index predicts that by the year
2021, network traffic among the devices within data center
will grow at Compound Annual Growth Rate (CAGR) of
23.4 percent [5]. Therefore, a network aware and power effi-
cient resource management technique is needed to consoli-
date cloud workload on minimum number of active servers
and minimize network traffic within data center [6].

The elastic resource management includes several opera-
tions like, balanced scheduling of applications and VMs,
controlling of server over/under-load by applying VM
migration etc. [7], each of which has been investigated indi-
vidually in the existing work. For example, task scheduling
is discussed in [8], [9], VM placement and migration algo-
rithms are presented in [10], [11] and [12], [13] respectively.
In the real cloud environment, all these operations work
continuously in cooperative manner because the perfor-
mance achieved by optimal task scheduling degrades, if
VMs are not placed effectively on the server. Similarly, opti-
mizing VM placement and ignoring optimization during
VM migration cannot bring the possible power saving.
Therefore, all these operations must be considered in coop-
eration to achieve the real benefits of performance optimiza-
tion associated at different levels. Moreover, the existing
literature [14] suggests that prior knowledge of upcoming
workload can assist in load balancing and reduction of per-
formance degradation due to overloads. On the other hand,
SLA violations may increase due to errors in predicting
future workloads. Now, the two key challenges are: ðiÞ
How to deploy prediction system at data center to assist in
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the resource management? ðiiÞ How to utilize the predicted
information for improving performance of data center while
avoiding risk of SLA violations?

To address aforementioned challenges, an Online VM
Prediction based Multi-objective Load Balancing (OP-MLB)
framework is proposed that incorporates several algorithms
to work in collaboration to provide efficient resource man-
agement for cloud environment. It includes SLA aware
user’s application execution on VMs followed by the multi-
objective VM assignment and migration for handling of
over/under-loaded servers. Furthermore, to effectively
exploit over-subscription by cloud clients, an online-predic-
tion system is developed and deployed at each VM that
learns and predicts the future resource demand in parallel
with application execution at respective VM to allow closer
estimation of the expected resource demand beforehand.
The physical resources are distributed on the basis of pre-
dicted resource demand combined with the error-driven
padding (EDP) to avoid risk of SLA violations.

1.1 Our Contributions

The key contributions of the proposed work are:

� A novel multi-objective load-balancing approach
based on online resource prediction i.e., OP-MLB
framework is proposed for elastic resource manage-
ment at cloud data center.

� A neural network based online predictor tuned with
adaptive evolutionary algorithm is developed to
forecast resource usage with enhanced accuracy by
appending error-driven padding to predicted
output.

� Multi-objective load balancing is presented with pro-
active VM placement and migration, where VMs are
allocated subject to maximum resource utilization
and minimum power consumption, communication
cost. It triggers VM migration before overload occur-
rence to improve performance of data center.

� Substantial power saving is achieved by exploiting
oversubscribed cloud, applying successive optimiza-
tion at different phases and reducing number of
active servers and VMmigrations.

� Implementation and evaluation of proposed frame-
work by using three real benchmark datasets reveal
that proposed work outperforms the state-of-art
approaches in terms of performance metrics like
server overload prediction, resource utilization,

reduction of power consumption and communica-
tion cost.

Organization. Section 2 discusses related work. The over-
view of proposed framework is given in Section 3 followed
by its detailed description including task assignment, online
resource predictor and load management in Sections 4, 5
and 6 respectively. Main algorithm is presented in Section 7.
The performance evaluation is presented in Section 8 fol-
lowed by conclusion and future scope of the proposed work
in Section 9. Table 1 shows the list of symbols with their
explanatory terms that have been used throughout the
paper.

2 RELATED WORK

The related work is organized into two subsections: (2.1) the
work which predicts the resource usage before load balanc-
ing and (2.2) overload handling and VM migration
techniques.

2.1 Resource Prediction and Allocation Techniques

Dynamic resource allocation and VM placement were pre-
sented in [15], [16] in which future demands of the resource
were predicted for energy efficient resource utilization. The
future state of VMs was predicted by computing exponen-
tial weighted moving average (EWMA) based on past
behaviors of VMs. Nguyen et al. [17] presented VM consoli-
dation method based on prediction of multiple resource uti-
lization for power efficient data centers. There was always a
risk of SLA violation and resource wastage due to predic-
tion errors. To avoid that problem, Yu et al. [18] presented
stochastic load balancing, in which probabilistic distribution
of prediction errors were padded to the predicted output. In
addition, to handle improper VM migrations occur due to
overloaded servers and inefficient resource utilization,

Fig. 1. From Google cluster trace: Snapshot of 24 hours resource utiliza-
tion percentage on randomly chosen VM.

TABLE 1
Notations

Symbols Explaination terms

Ao, Ag availability offered, availability guaranteed
a, b, V server uptime, downtime, penalty cost
p, q, r number of input, hidden, output nodes
N number of neural networks
L, F mutant vector, current vector
m, Cr mutation rate, crossover-rate
} mutation scheme selection parameter
x new offspring for next generation or epoch
G mutation selection probability
d number of offspring that successfully

reached next generation
k size of data samples for specific prediction

interval
za and zp actual and predicted output
C, n VM allocation, number ofC
g status of server
v mapping of VM on server
b mapping between user and server
L size of neural network
W size of VM= CPU �Memory
Os, Ov list of overloaded server, list of VMs on Os

cij cost of moving ith VM to jth server
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hotspot (overloaded servers) were identified and a heuristic
algorithm was proposed to decide VM migrations from hot-
spot to underutilized servers and fairly allocate VMs on
available servers. Later, an energy-efficient VM prediction
and migration framework was proposed in [4] where Wie-
ner filter was used for prediction of resource usage and
EWMA based safety margins were appended to the pre-
dicted output to avoid the SLA violation due to errors in
prediction. An Online VM placement for raising cloud
provider’s revenue was proposed in [19] that employed
First-Fit and Harmonic Algorithms(HA) for online VM
placement and Decreased Density Greedy algorithm to han-
dle SLA violation where HA outperformed FF for energy-
efficient VM placement. Recently, Saxena et al. [20] have
proposed a workload and security threats prediction based
resource allocation model that considers network traffic and
previous resource utilization before workload distribution
on user VMs.

2.2 Overload Handling Techniques

VMs migration have been used in [21], [22] after detection of
server overloads. This approach causes delay in execution
of user’s application and leads to SLA violation. To over-
come this limitation, threshold-based VM migration is pre-
sented in [23] where migration process is triggered before
actual occurrence of overload on the basis of threshold
value of server utilization. The threshold value can be set
statically or depending upon workload fluctuations [23].
However, this technique might trigger unnecessary VM
migrations because exceeding threshold value does not
always lead to overloading of server and also under-utilized
servers are not addressed that causes wastage of resources
and power. To tackle these limitations, overload avoidance
techniques were introduced on the basis of prediction of
resource demands in [4], [17]. The prediction helps to esti-
mate unseen over/under-load situation and decide VM
migration. Energy aware VM migration is presented in [4],
[24]. Dabaggh et al. [4] considered the energy consumed
during VM migration and suggested to migrate VM from
overloaded server to already active server and turn-ON
selected inactive server only if migration is impossible on
all the active servers. However, they ignored the traffic
management and network bandwidth cost required during
VM migration. Meng et al. [25] studied the effect of network
resources while optimizing VM migration on host machines
[26] and proposed a two-tier approximation algorithm to
solve traffic-aware VM mapping problem that resulted into
increased throughput and decreased communication cost.

Unlike existing works, OP-MLB framework provides a
pragmatic solution of complex and challenging elastic
resource management problem by developing and incorpo-
rating all the needed operations at unified platform and
allowing interaction among them to optimize and tune/
learn together to bring overall performance improvement of
cloud data center.

3 FRAMEWORK OVERVIEW

The proposed OP-MLB framework incorporates three
phases viz. task assignment, online VM prediction and load
balancing to provide concrete and optimal solution to the

problem of elastic resource management in cloud environ-
ment as shown in Fig. 2. These three phases work in collabo-
ration by interacting with each other. In the first phase,
applications {Application1, Application2; . . . ; ApplicationM }
submitted by the users {User1, User2; . . . ; UserM } are
divided into sub-units called as tasks {T1, T2; . . . ; Tz}, which
are assigned to computing instances’ called as VMs {VM1,
VM2; . . . ; VMQ} for execution. The application model consid-
ered in the proposed framework is made up of a collection
of independent tasks and it is known by many names: Bag
of Tasks (BoT), Task Farming, Parameter Sweep, and SPMD
(Single Program and Multiple Data) model. The applica-
tions created using this model are very common in scientific
and commercial domains such as molecular docking for
drug discovery [27] and investment risk analysis [28].

During second phase, VMs loaded with user’s task per-
form task execution as well as predict resource utilization
for the next interval concurrently. The allocated VMs are
shown in filled blocks whereas vacant blocks specify de/
un-allocated VMs. Every active VM carries distinct online-
predictor depending on its configuration to forecast
resource utilization information. Additionally, each server
has its own load analyzer, that aggregates the predicted
resource usage information of each VM and detects the
occurrence of over/under-load beforehand. If the predicted
resource usage is greater than the resource capacity of the
server, then overload is detected and accordingly needed
operations are performed to mitigate its effect in third
phase.

In the third phase, load balancing is achieved by perform-
ing VM assignment and migration to improve resource uti-
lization by effective handling of over/under-loaded servers.
The load analyzer informs cluster manager about the
expected load at respective server in the cluster periodically,
which utilizes this information during VM allocation on the
selected server by applying the multi-objective VM

Fig. 2. OP-MLB framework.
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placement optimization. The over/under-load situation
detected by the online predictor is applied to perform neces-
sary VM migration and balance the entire workload in the
cluster. All the idle servers are shut-down to scale down the
power consumption. The detailed description of each phase
is given in subsequent sections.

4 TASK ASSIGNMENT

Consider a data center having P servers such as S 2
fS1; S2; . . . ; SPg, where M users have purchased different
types of VMs to execute their applications on Q VMs such
as v 2 fv1; v2; . . . ; vQg. Suppose an application AM of Mth

user is represented as fT1; T2; . . . ; Tzg 2 AM , where Tz

denotes zth task of the application. The tasks are scheduled
on the basis of their resource requirement by applying
Eq. (1) that selects most appropriate VM for execution of ith

task (Tr
i ) where, r represents resources like CPU, memory

etc. and vrS , v
r
M , vrL and vrXL are small, medium, large and

extra-large type of VMs. The type of VMs can be extended
to any number of type offered at particular data center. If
the resource requirement of ith task (Tr

i ) is lesser or equals
to the resource capacity of vS , then small type of VM is
assigned to it. Likewise, if ðvrS < Tr

i � vrMÞ, then vM is
selected for the task execution and so on

VMsel: ¼
vS; ðTr

i � vrSÞ
vM; ðvrS < Tr

i � vrMÞ
vL; ðvrM < Tr

i � vrLÞ
vXL; ðotherwise:Þ

8>><
>>: r 2 CPU;mem: (1)

SLA is a mutual agreement between the CSP and the cloud
client that guarantees availability (Ag) of services, through-
put and response time etc. The negotiated SLA terms are
monitored with respect to ’availability’, which is computed
as shown in Eq. (2) where Ao and Ag are availability offered
and availability guaranteed respectively. The variables a
and b are uptime and downtime of server respectively. The
uptime means server is available for task execution on allo-
cated VM and downtime states failure of task execution due
to unavailability of server. Therefore, SLA violation (SLAv)
can be defined using Eq. (3)

Ao ¼ 1� b

a
(2)

SLAv ¼ No; Ag � Ao

Yes; ðotherwise:Þ
�

: (3)

The SLA violation experienced due to unavailability
of small, medium, large and extra-large types of VMs
are represented as vSLAv

S , vSLAv
M , vSLAv

L and vSLAv
XL respec-

tively. The realized penalty cost depends on amount of
SLA violation i.e., difference between Ag and Ao and rel-
ative standard penalty cost associated with small (VS),
medium (VM ), large (VL) and extra-large (VXL) type of
VMs as shown in Eq. (4)

penalty ¼
ðAg �AoÞ �VS; vSLAv

S

ðAg �AoÞ �VM; vSLAv
M

ðAg �AoÞ �VL; vSLAv
L

ðAg �AoÞ �VXL; vSLAv
XL

8>>><
>>>:

: (4)

5 ONLINE RESOURCE PREDICTOR

Consider a neural network (NN) represented as p� q � r,
where p, q and r stands for a number of neurons in input, hid-
den and output layers respectively and NN connection
weights are represented as F which are randomly generated
in the range of [0, 1] as shown in Fig. 3. It receives combination
of historical and live resource usage information from its host
VM which is normalized to generate and feed p input values
such as {d1, d2; . . . ; dp} into input layer of NN. The training of
NN begins with the randomly generated N different neural
networks each of size L ¼ ðpþ 1Þ � q þ ðq � rÞ ¼ qðpþ rþ
1Þ ) qðpþ 2Þ as r ¼ 1. One additional input is added to input
neurons as a bias value. It forecasts VM resource utilization
by extracting and correlating the patterns generated from the
input data during learning/training process. Since the work-
load arrival at VM is dynamic, an Auto Adaptive Differential
Evolution (AADE) learning algorithm is developed for
dynamic and adaptive optimization of network weights.

AADE algorithm consists of five key operations viz. ini-
tialization, evaluation, mutation, recombination (or cross-
over) and selection. It begins with initialization of N
networks of size L, number of maximum generations
(Gmax), mutation rate (m) and crossover rate (Cr). These net-
works are evaluated by applying a fitness function i.e., Root
Mean Squared Error (RMSE) as stated in Eq. (5) where m is
number of data samples, za and zp are actual and predicted
outputs (or resource utilization) respectively. Since accuracy
is inversely proportional to RMSE, the learning objective is
to minimize the fitness function

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

m

Xm
i¼1
ðza � zpÞ2

s
: (5)

In order to explore the search space in multiple directions and
generate new solutions with better fitness value, mutation and
crossover operators are applied during iterative optimization
process. Three mutation strategies opted for proposed work
are: DE=best=1 ðMS1Þ, DE=current� to� best=1 ðMS2Þ
and DE=rand=1 ðMS3Þ. The mutation strategies MS1, MS2

shown in Eqs. (6) and (7) tend to be greedy as they exploit the
best individual to generate mutant vectors while MS3 stated in
Eq. (8) is applicable for raising population diversity,

Fig. 3. Online VM resource predictor system.

SAXENA ETAL.: OP-MLB: AN ONLINE VM PREDICTION-BASED MULTI-OBJECTIVE LOAD BALANCING FRAMEWORK FOR RESOURCE... 2807

Authorized licensed use limited to: University of Melbourne. Downloaded on January 22,2023 at 05:52:43 UTC from IEEE Xplore.  Restrictions apply. 



Lj
i ¼ Fj

best þ mi � ðFj
r1 �Fj

r2Þ (6)

Lj
i ¼ Fj

i þ mi � ðFj
best �Fj

iÞ þ mi � ðFj
r1 �Fj

r2Þ (7)

Lj
i ¼ Fj

r3 þ mi � ðFj
r1 �Fj

r2Þ; (8)

where m is mutation rate, Lj
i and Fj

i depict i
th mutant and

current vectors respectively, of jth iteration. The term Fj
best

is the best solution found till jth generation and r1, r2 and
r3 are mutually distinct random numbers in the range [1,
N]. To decide the mutation scheme for current iteration, a
random vector i.e., mutation selection probability (msp) is
generated in the range [0, 1] for each network and updated
during learning process. The mutation scheme selection
parameter (}) chooses most suitable mutation scheme based
on the value of mspi (where 1 � i � N) as given in Eq. (9),
where G1, G2 and G3 are the probabilities for opting theMS1,
MS2 andMS3 mutation schemes respectively.

} ¼
MS1; Ifð0 < mspi � G1Þ
MS2; IfðG1 < mspi � G1 þ G2Þ
MS3; otherwise

8<
: : (9)

In reported experiments, initially G1 = G2 = 0.33, G3 = 0.34, so
that each mutation scheme get equal chance of selection.
Later on, these probabilities are updated by computing the
ratio of total number of successful candidates which have
reached next generation through respective mutation strat-
egy and total number of candidates generated.

Thereafter, uniform crossover is applied to mutant vector
(Lj

i) and its corresponding current target vector (Fj
i) to pro-

duce new solutions called as offspring (xj
i) by applying

Eq. (10) where < is randomly generated number in the
range [0, 1] for each gene in the chromosome (or vector).
The crossover-rate is randomly generated in the range [0, 1]
with mean value of 0.5 and standard deviation 0.1 during
each generation. If the value of < is smaller than ith gene
crossover-rate (Crji), crossover is successful and ith genes
swap between mutant and current vectors, else previous
solution proceeds in the next generation

x
j
i ¼ Lj

i Ifð< 2 ð0; 1Þ � CrjiÞ
Fj

i otherwise.

�
(10)

Finally, the successful candidates are selected on the basis of
fitness value (i.e., least RMSE score) using Eq. (5). The popula-
tion for next generation is selected by applying survival of fit-
test concept stated in Eq. (11), whereFjþ1

i is selected candidate
for next generation, xj

i is solution generated after crossover
and Fj

i is current solution. Algorithm 1 gives operational sum-
mary of AADE training process for online resource prediction

Fjþ1
i ¼ x

j
i ðfitnessðxj

iÞ � ðfitnessðFj
iÞÞ

Fj
i ðotherwise:Þ

�
: (11)

Error-Driven Padding (EDP). Although the proposed
on-line predictor is capable of anticipating resource
demands with closer precision, still 100 percent accuracy
cannot be ensured for highly dynamic resource
demands. These errors may cause over/under-load and
SLA violations. In order to overcome the occurrence of

these issues, error-driven precaution margins are pad-
ded with predicted resource demand. At tth instance,
EDP is computed as EDPt ¼ ð1� rÞ �EDPt�1 þ r�
RMSE where 0:5 < r � 1. Furthermore, it is to be noted
that during EDP computation, more weightage is given
to most recent error to improve the accuracy of predic-
tion. Therefore, the improved predicted output becomes
zp þ EDPt.

6 LOAD MANAGEMENT

Load balancing includes two main processes (i) VMs place-
ment on servers and (ii) VM migration, discussed in the fol-
lowing subsections.

6.1 VM Placement

Assume SC
i and SM

i are CPU and memory capacity of ith

server. If server Si is active then gi ¼ 1, means one or more
VMs are placed on it, otherwise, it is idle (gi ¼ 0). If server Si

hosts VM vj, then vji ¼ 1 else it is 0. For jth VM (vj), CPU and
memory utilization are represented as vCj and vMj respectively.
The CSP always seeks an optimal VM placement that maxi-
mize resource utilization and minimize power consumption
and network traffic to achieve maximum return-on-invest-
ment (ROI). Therefore, multi-objective VM placement prob-
lem is formulated as stated in Eq. (12)

XP;Q
i¼j¼1

vji ¼Minf
XP;Q
i¼j¼1

vji � ðPW;Com;�RUÞ
 !

; (12)

where PW , Com and RU are power consumption, commu-
nication cost and resource utilization respectively of jth

server. Each VM allocation is feasible only if it satisfies the
following constraints given in Eq. (13)

Algorithm 1. AADE Training for Online Prediction ( )

1: Initialize Cr, m, Gmax, G1=G2=0.33, G3=0.34
2: Initialize N networks of size L randomly.
3: Evaluate each network on training data by computing

Eq. (5)
4: for each generation jth 2 Gmax do
5: Generate vectormsp for N networks 2 [0,1]
6: for each ith network do
7: Generate r1 6¼ r2 6¼ r3 6¼ i 2 ½1; N �
8: if 0 < mspi � G1 then
9: Apply Eq. (6)
10: else if G1 < mspi � ðG1 þ G2Þ then
11: Apply Eq. (7)
12: else
13: Apply Eq. (8)
14: end if
15: Perform uniform crossover
16: end for
17: Evaluate updated network by using Eq. (5)
18: Select participants for next generation using Eq. (11)
19: Update G1, G2, G3 after fixed number of generations
20: end for
21: Select network with least RMSE to predict output (zp)
22: returnzp
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XQ
j¼1

vrj � vji � Sr
i r 2 CPU;Mem: (13)

To accomplish this multi-objective VM placement, follow-
ing objective models are designed:

6.1.1 Resource Utilization

The resource utilization of data center can be obtained using
Eqs. (14), (15), where R is number of resources. Though in
formulation, only CPU (C) and memory (M) are considered,
it is extendable to any number of resources

RUdc ¼
Z t2

t1

RUC
dc þRUM

dc

jRj �PP
i¼1 gi

 !
dt (14)

RUr
dc ¼

XP
i¼1

PQ
j¼1 vji � vrj

Sr
i

r 2 CPU;Mem; etc: (15)

6.1.2 Communication Cost

Let bik denotes mapping between server Si and user uk, if a
user (uk) owns VMs on server (Si), then bik ¼ 1 otherwise 0.
The total number of users having inter-dependent VMs are
computed as

PM
k¼1
PP

i¼1 bik. The communication cost model
is shown in Eq. (16) where jU j is total number of active users
and Comdc is communication cost of data center which is
minimized. The inter-dependent VMs are preferably allo-
cated at minimum number of servers to reduce communica-
tion cost among inter-dependent VMs

Comdc ¼
Z t2

t1

PM
k¼1
PP

i¼1 bik
jU j � 100

 !
dt; 8

XP
i¼1

bik > 1: (16)

6.1.3 Power Consumption

From existing literature [29], power consumption for ith

server can be formulated as PWi and total power consump-
tion PWdc during time-interval [t1, t2] is shown in Eq. (17)

PWdc ¼
Z t2

t1

XP
i¼1
ð½PWi

max � PWi
min� �RU þ PWi

idleÞ
 !

dt;

(17)

where RU is resource utilization, PWi
max, PWi

min and
PWi

idle are maximum, minimum and idle state power con-
sumption for ith server.

6.1.4 Optimized VM-Allocation Approach

The proposed multi-objective VM allocation approach con-
sists of four consecutive stages namely initialization, fitness
evaluation, crossover and selection as shown in Fig. 4.

The VM allocations are represented as chromosomes (C)
and the step-by-step procedure is given in Algorithm 2. First,
n random VM allocations are initialized as Ci (step 1) which
represents ith VM placement, subject to ði � nÞ. To evaluate
fitness of each chromosome, cost function hðCgÞ is computed,
where fRU

Cg
, fCom

Cg
, fPWCg

are cost values associated to resource
utilization, communication cost, power consumption and can
be evaluated by computing Eqs. (14), (16) and (17) respectively
(step 2). A pareto-front module is called in step 3 to generate

Cfront i.e., chromosome with best fitness value that satisfies
each objective non-dominantly using concept of NSGA-II [30].
The Ci dominates Cj if its cost values are better than Cj on
atleast one objective and same or better on other objectives.
Further, steps 5-12 repeat for all n chromosomes of each gener-
ation where one-point crossover (Cr) and mutation (m) opera-
tions are applied to generate new offspring in steps 6-9, to
explore the entire search space for better solution by migrating
VMs from non-optimal to selected optimal server, where cp is
randomly generated crossover-point. The resultant solutions
may be infeasible with respect to VM allocation constraints,
which are turned into feasible solutions by re-arranging them
in step 10 and multiple objective cost function is evaluated in
step 11. Again, the fitness of offspring solutions (COff ), are
evaluated (step 13) and optimal solutions for next generation
(Cgþ1) are selected by calling Pareto� frontðÞ in step 14.

Algorithm 2. VM Placement ()

1: Initialize n random VM allocations {C1;C2; . . . ;Cn}2 C
2: ½fRU

C ; fCom
C ; fPW

C � ¼ hðCÞ
3: ½Cfront ¼ Pareto� frontðCÞ�,Cbest  Cfront½0�
4: for g ¼ 1; 2; . . . ; Gmax do
5: for each i=(1,2,...,n) do
6: rn ¼ randomð1; nÞ, cp ¼ randomð1; P Þ
7: CCr1 ¼ ½Cið1 : cpÞ;Crnðcpþ 1 : pÞ�
8: CCr2 ¼ ½Crnð1 : cpÞ;Ciðcpþ 1 : pÞ�
9: COff ¼ ½CCr;mðCCr1Þ;mðCCr2Þ�
10: COff=Feasible VM Allocation(COff )
11: ½fRU

COff
; fCom

COff
; fPW

COff
� ¼ hðCOffÞ

12: end for
13: Cg ¼ ½Cg;COff �
14: ½Cgþ1 ¼ Pareto� frontðCgÞ�
15: end for

Fig. 4. Multi-objective VM allocation strategy.
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6.2 VM Migration

The VMs allocation is re-optimized during consecutive
prediction intervals by migrating VMs from predicted
under/over-utilized to optimal servers. The cost of VM
migration mainly depends on size of VM and network
bandwidth [31]. In OP-MLB, largest resource capacity
VM is chosen for migration from overloaded server to
allow efficient resource utilization while mitigating the
effect of current overload and need of VM migration in
the near future. To allow network aware VM migration,
inter-dependent VMs are shifted closer to each other
which reduces total network traffic and VM migration
cost. The selection of destination server is energy-efficient
also because it first tries to shift migrating VM (vmig) to
already active server in closer location and switch to
nearby inactive server only if the migrating VM cannot be
shifted to any active server. The necessary constraint for
VM migration is that required resource capacity of vmig

must be lesser than available resource capacity of destina-
tion server Sj as defined in Eq. (18), where, r represents
resources like CPU, memory

vrmig � Sr
j r 2 CPU;Mem: (18)

Moreover, to further reduce power consumption, the VMs
running on under-utilized servers migrate to near-by
optimal server and idle servers are shutdown. It allows
consolidation of VMs with reduced power consumption
and network communication cost. The total migration
cost Mcost for period between t1 and t2 can be computed
using Eq. (19)

Mcost ¼
Z t2

t1

X
cmig:j � ðDðSk; SjÞ �WðvmigÞÞ þ

X
nj � dj

� �
dt;

(19)

where vmig 2 Ov, j 2 ½1; P �, DðSk; SjÞ is the distance or num-
ber of hops covered by vmig from source (Sk) to destination
server Sj, W ðvmigÞ = vCmig � vMmig, is the size of migrating VM,
Ov is the list of VMs on overloaded server (Sk). The first
term

P
cmig:j �DðSk; SjÞ �W ðvmigÞ signifies network energy

consumed during VM migration. The second term
P

nj � dj
specifies server state transition energy, where if ith VM is
placed at jth server after migration then cmig:j ¼ 1, other-
wise, cmig:j ¼ 0. If jth server receives one or more VMs after
migration, then nj ¼ 1 else it is 0. Similarly, if dj ¼ 0 then jth

server is already active before migration, otherwise, dj ¼
Etr where Etr is energy consumed in switching a server
from sleep to active state. In proposed work, the value of
Etr= 4260 Joules as stated in [32]. Algorithm 3 provides
operational steps of VMmigration.

7 OP-MLB: MAIN ALGORITHM AND COMPLEXITY

Algorithm 4 depicts the operational summary of OP-MLB
framework which executes periodically to process elastic
resource management. In steps 1-3, resource usage of each
VM is predicted by calling Algorithm 1, which provides
training steps for NN predictor whose time complexity
depends on size of network (L), number of networks (N),
number of input nodes (p) and Gmax that becomes
Oðp2NLGmaxÞ.

Algorithm 4. Proposed Elastic Resource Management:
Operational Summary()

1: for each ith VM on S and {S1; S2; . . . ; SP }2 S do
2: {vpred:Ci ; vpred:Mi }( Algorithm 1()+EDP
3: end for
4: CALL VM placement()
5: for tth time-interval do
6: for each jth server Sj do
7: for each ith VM on Sj do
8: {vpred:Ci ; vpred:Mi }( Algorithm 1()+EDP
9: SC

j ¼ vpred:Ci þ SC
j , S

M
j ¼ vpred:Mi þ SM

j

10: end for
11: if SC

j :Max threshold � SC
j OR SM

j :Max threshold � SM
j

then
12: Server Sj is over-loaded. OS ( Sj

13: else if SC
j :Min threshold � SC

j OR
SM
j :Min threshold � SM

j then
14: Server Sj is under-loaded, shift all VMs to nearby

ACTIVE servers subject to constraints mentioned in
Eq. (18) and shutdown it.

15: end if
16: CALL VM-migration(OS)
17: end for
18: end for
19: Repeat above steps for next time-interval

Step 4 calls multi-objective VM placement module, pro-
vided in Algorithm 2 that works on number of solutions (n),
generations (Gmax), servers (P ), VMs (Q) that calls Pareto-
optimal() based on NSGA-II, having time complexity of
Oðn2 � oÞ where o is number of objectives. Hence, overall
time complexity is Oðon2PQðGmaxÞÞ. Steps 5-18 handle
over/under-load by calling VM migration i.e., Algorithm 3.
Steps 11 and 12 prepare list of overloaded servers by using
predicted load information, given by steps 7-10. The steps
13-15 detect and handle under-loaded servers and step 16
calls Algorithm 3 to handle overloaded servers. The time
consumption depends on number of over-loads ðOSÞ, num-
ber of servers (P ) which becomes OðPOsQÞ ) OðP 2QÞ as

Algorithm 3. VMMigration (OS)

1: for each jth server Sj 2 OS do
2: Sort VMs in ascending order of resource capacity

CPU �Mem
3: vmig ( Pick the best suited VM from sorted list to

mitigate the effect of overload
4: for each ith server Si do
5: if status(ðSiÞ)=’ACTIVE’ AND Eq. (18) satisfies then
6: Shift vmigtoSi; Update status(vmig)=’Assigned’
7: end if
8: end for
9: if status(vmigÞ 6¼’Assigned’ then
10: for each kth server Sk do
11: Shift vmig to nearby SLEEPING server that satisfy

Eq. (18); status(ðSkÞ)=’ACTIVE’ and status(vmig)
=’Assigned’

12: end for
13: end if
14: Compute Migration cost using Eq. (19)
15: end for
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Os << P . Therefore, the total time complexity can be com-
puted as Oðon2N2P 2QðGmaxÞLÞ.

8 PERFORMANCE EVALUATION

8.1 Experimental Set-Up

The simulation experiments are executed on a server
machine assembled with two Intel

�
Xeon

�
Silver 4114 CPU

with 40 core processor and 2.20 GHz clock speed. The com-
putation machine is deployed with 64-bit Ubuntu 16.04 LTS,
having main memory of 128 GB. The data center environ-
ment was set up with three different types of server and four
types of VMs configuration shown in Tables 2 and 3 in
Python version-3. The resource features like power consump-
tion (Pmax; Pmin), MIPS, RAM and memory are taken from
real server IBM [33] and Dell [34] configuration where S1 is
’ProLiantM110G5XEON3075’, S2 is ’IBMX3250Xeonx3480’
and S3 is ’IBM3550Xeonx5675’. Furthermore, the experimen-
tal VMs configuration are inspired from the VM instances of
Amazon website [35].

The resource utilization for different VMs followed the
traces from three publicly available real workloads includ-
ing Google Cluster Data (GCD), PlanetLab VMs (PL) and
Bitbrains (BB) dataset. GCD has resources CPU, memory,
disk I/O request and usage information of 672,300 jobs
executed on 12,500 servers for the period of 29 days [2].
The CPU and memory utilization percentage of VMs are
obtained from the given CPU and memory usage percent-
age for each job in every five minute over period of
twenty-four hours. PL contains CPU utilization of more
than 11K VMs measured every five minutes during ten
random days in March-April, 2011 [36]. BB consists of per-
formance metrics of fast storage 1,750 VMs from a distrib-
uted data center over period of 30 days [37]. It gave
information about CPU usage percentage, disk I/O etc. We
extracted CPU and memory usage percentage from GCD
and CPU percentage from PL and BB as per their availabil-
ity for various experiments. The experiments are con-
ducted for different size of data center over a period of 24
hours for GCD and PL and 30 days for BB. Following per-
formance metrics are evaluated:

� Accuracy of Predicted vs Actual Workload.
� Resource utilization and power consumption.
� Communication cost percentage.
� Number of predicted and unpredicted overloads.
� VMmigration cost incurred during load balancing.

� Number of active servers.
� SLA compliance in terms of availability of servers.
The proposed work is compared for different perfor-

mance metrics with various state-of-art approaches includ-
ing [4], [17], First-Fit ([38], [39]), Random-Fit ([40]) and Best-
Fit ([36], [41]) heuristics. Furthermore, overall power saving
achieved with OP-MLB framework with over-subscription
compared to non-oversubscribed cloud is also presented.

8.2 Results

The performance evaluation of the proposed framework
starts with investigation of accuracy of online-prediction
system. Its effectiveness can be seen in Fig. 5 where pre-
dicted CPU usage have almost overlapped actual resource
usage for GCD, PL and BB workloads. The error score of
proposed prediction approach for prediction interval of 5
minutes on three workloads is shown in Table 4.

The reason behind such an accuracy is that proposed
neural network based predictor periodically learns and
retrains itself according to changes in live and historical
workload. In addition, the application of AADE algorithm
works on N number of solutions which explores the search
space in multiple directions and allows efficient learning of
patterns and correlations from live data which is responsi-
ble for near accurate prediction of resources.

To analyze the performance of multi-objective load bal-
ancing, numerous experiments were conducted based on
different combination of VMs and servers. The experiments
are executed with the ratio of number of VMs and servers

TABLE 2
Server Configuration

Server PE MIPS RAM(GB) Memory(GB) PWmax PWmin/PWidle

S1 2 2660 4 160 135 93.7
S2 4 3067 8 250 113 42.3
S3 12 3067 16 500 222 58.4

TABLE 3
VM Configuration

VM type PE MIPS RAM(GB) Memory(GB)

vsmall 1 500 0.5 40
vmedium 2 1000 1 60
vlarge 3 1500 2 80
vXlarge 4 2000 3 100

Fig. 5. Predicted versus actual workload.
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as 1:1. It is mentioned that resource utilization (RU) percen-
tages per VM extracted from the three workloads are used
to compute the actual resource usage of VMs under simula-
tion. For instance, if real workload trace shows 67.3 percent
of CPU usage and VM has 500 MIPS of CPU capacity then
actual CPU usage of the VM is given by the product of 67.3
percent and 500. The number of users are not mentioned in
the original datasets, therefore, we created random set of
users, who requested different number and type of VMs to
compute communication cost (Com) based on the location
of inter-dependent VMs. The number of users are taken as
60 percent of size of the data center, where each user can
hold VMs in the range between 0 and 5 with a constraint
that at any instance, the total number of VM requests must
not exceed total number of VMs of data center. Each experi-
ment was executed for 12-15 times and a mean of the
obtained results are reported. In the simulation, various per-
formance metrics were analyzed and results are shown in
Tables 5, 6 and 7 for GCD, PL and BB workloads respec-
tively. The values of minimum and maximum threshold of
CPU usage were 10 and 89 percent respectively for these
experiments. The resource utilization for each workload is
more than 63 percent, which varies between 63-64.8 percent
for GCD, 68-69.8 percent for PL and 63-65.6 percent for BB
workloads. The power consumption (PW ) has increased
with respect to the size of data center. The power consump-
tion shows various trends for the three different datasets,
depending upon the number of busy and idle servers. Since
the communication cost depends upon the placement of

inter-dependent VMs of active users, each workload shows
similar values in the range 12-16 percent. It can be observed
from the Tables 5, 6 and 7 that resource utilization depends
upon number of active servers shows slight change with dif-
ferent size of data center for each dataset. However, power
consumption and VM migration costs are increasing with
respect to the size of the data center. The values for SLA
compliance are varying according to the availability/non-
availability of servers.

The pareto-front or non-dominated solutions for 1,400
VMs placement is shown in Fig. 6 that depicts the contradic-
tory behavior of three optimization variables viz. maximiza-
tion of RU , minimization of PW and Com.

Fig. 7 shows the predicted and unpredicted overloads for
all three datasets. It is noted that there is an increase in the
number of correctly predicted overloads on the respective
servers with increase in size of data center for all the three
workloads. However, the number of unpredicted overloads
are either lesser or equal to 0.07 percent independent of size
of the data center for each experiment of every dataset. This
is due to the efficiency of prediction system that accurately
forecasts the future resource requirement. The overload pre-
diction accuracy is around 99.94 percent for GCD during the
period of 24 hours. Similarly, more than 99.91 and 99.97 per-
cent overloads are correctly forecasted for PL and BB respec-
tively. As a result, the number of VM migrations and SLA
violations get reduced during actual VMs allocation which
can be observed in Fig. 8. Since SLA violations depends upon
the availability of the server, they are indirectly varying with
respect to the number of unpredicted overloads for different
size of the data center. The number of unpredicted overloads
prompt VMmigration and unavailability of server and hence
account for SLA violation.

TABLE 4
RMSE for Different Workloads

Interval GCD (CPU) GCD (Memory) PL (CPU) BB (CPU)

5 min 0.0014 0.0035 0.0005 0.0031

TABLE 5
Performance Metrics for Google Cluster Dataset

VMs
(Users)

RU(%) PW Com(%) Mcost

ðKJÞ
SLAv
ð10�3Þð%Þ

200 (120) 64.98 8.80E+03 11.78 15.4 4.53
400 (240) 64.57 1.96E+04 12.8 169 2.44
600 (360) 64.05 2.17E+04 12.23 294 2.25
800 (480) 63.34 3.31E+04 12.34 278 3.22
1000 (600) 63.87 3.59E+04 12.32 306 5.52
1200 (720) 63.32 3.92E+04 12.25 384 3.93
1400 (560) 63.09 4.13E+04 12.4 404 5.63

TABLE 6
Performance Metrics for Planet Lab VM Traces

VMs
(Users)

RU(%) PW Com(%) Mcost

ðKJÞ
SLAv
ð10�3Þð%Þ

200 (120) 68.98 5.64E+03 10.14 55.7 2.69
400 (240) 69.57 1.94E+04 11.438 346 3.52
600 (360) 69.05 2.14E+04 11.43 389 3.24
800 (480) 68.34 3.14E+04 10.34 364 1.52
1000 (600) 69.81 3.75E+04 10.62 398 2.04
1200 (720) 68.32 3.96E+04 11.25 414 2.15
1400 (840) 69.19 4.13E+04 10.4 442 2.99

TABLE 7
Performance Metrics for Bitbrains Workload

VMs
Users

RU(%) PW Com(%) Mcost

ðKJÞ
SLAv

ð�10�3Þð%Þ
200 (120) 63.18 1.37E+03 15.78 62.4 3.12
400 (240) 63.57 2.84E+04 13.8 243 2.44
600 (360) 64.05 3.20E+04 13.23 267 3.85
800 (480) 64.34 3.31E+04 15.34 378 4.62
1000 (600) 65.87 4.59E+04 16.32 316 4.52
1200 (720) 64.32 6.92E+04 13.25 484 3.93
1400 (840) 64.32 8.20E+04 14.4 554 6.83

Fig. 6. Multi-objective Pareto Front for 1400 VMs with GCD.
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8.3 Comparative Analysis

The comparison of unpredicted overloads among proposed
and existing approaches [4] for over-subscribed cloud is
shown in Fig. 9. The reason for such comparison is that the
experiments were conducted using same dataset i.e., GCD
and experiments are executed for same period of 24 hours.
They applied Wiener Prediction (WP) scheme for overload
prediction, separately on each VM (similar to proposed
approach). Therefore, it is suitable for comparison of the
number of overload predicted by proposed prediction (PP)
approach. It can be seen that the number of unpredicted
overloads have significantly reduced in case of PP as com-
pared to Wiener prediction (WP) with safety margin (SM)
i.e., (WP+SM) and other existing approaches mentioned in
[4]. The unpredicted overloads are further reduced when
PP was combined with EDP.

The total number of active servers are compared with
another recent work [17]. The reason for such comparison
is that this work used same datasets viz. GCD and PL and
their entire experimental set-up including size of different
data center, types and configuration of VMs and physical
servers are similar to our OP-MLB Framework. Fig. 10
entails the comparison of total number of active servers

percentage for GCD and PL workloads during the entire
testing period of 24 hours for 1,400 VMs among the pro-
posed and the existing VM selection approaches, including
Static THReshold (THR), Dynamic threshold based on
Local Regression (LR), Static THReshold with Multiple
Usage Prediction (THR-MUP) and Dynamic threshold
based on Local Regression with Multiple Usage Prediction
(LR-MUP) [17]. In case of both GCD and PL workloads, the
percentage of active servers for the proposed approach is
slightly equal or more than existing approaches due to
more constrained VM placement. The proposed multi-
objective approach applies an additional, but significant
constraint of minimizing communication cost along with
maximization of resource utilization. The VM placement is
decided by the pareto-front that does not allow excessive
consolidation of VMs.

Furthermore, First Fit (FF), Best Fit (BF) and Random Fit
(RF) heuristics are chosen for comparison of proposed VM
placement because they are baseline algorithms and many
improved VM placement approaches have been developed
by modifying them. Therefore, FF [38], [39], BF [36], [41]
and RF [40] algorithms are implemented without oversub-
scription (or prediction) and with oversubscription (i.e.,
with our online NN based prediction) for comparison. In
the figures, given ahead, proposed multi-objective load bal-
ancing (MLB) strategy with oversubscription (P1) is com-
pared to FF, BF and RF with oversubscription denoted as
F1, B1 and R1 respectively. Moreover, the proposed MLB
without oversubscription (i.e., P2) is compared with FF, BF
and RF without oversubscription stated as F2, B2 and R2
respectively. The comparative resource utilization is shown
in Fig. 11, where proposed approach shows closer to [63-
65], [68-69.5] and [63-65.8] percent of resource utilization for

Fig. 7. Predicted versus Unpredicted overloads for different workloads.

Fig. 8. Analysis of proposed framework on average number of active physical machines per data center for different workloads.

Fig. 9. Comparison of total number of unpredicted overloads during
entire testing period.
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GCD, PL and BB workloads respectively. The FF, BF, RF
heuristics based load balancing schemes follows the
resource utilization trend as BF�FF�RF for each workload.
The OP-MLB shows substantial improvement in the
resource utilization as compared to existing approaches.
Specifically, it entails improvement upto 89.3 percent, 84.3
percent, 62.4 percent over R2 and 23.9 percent, 24.9 percent,
26.6 percent over B1 for BB, PL and GCD workload traces
respectively. Additionally, these graphs reveals that for
every type of VM allocation approach, application of online
resource prediction scales up and improves their overall
performance for each performance metrics (resource utiliza-
tion and power consumption).

The reason for such improved resource utilization is that
proposed MLB applies evolutionary optimization approach
that works on N number of solutions and searches for the
most optimal and feasible VM allocation, among multiple
VM allocations. On the other hand, FF, BF and random heu-
ristics are bin-packing algorithms which find out single
solution that fit according to the concept of heuristic. More-
over, it is difficult to attain pareto-optimal solution that can
satisfy (non-dominated) multiple constraints simulta-
neously with these heuristics. In addition, power consump-
tion is computed for different VM allocations by using all
the four approaches discussed above with oversubscription,
and without oversubscription. Fig. 12 shows the power

Fig. 10. Comparison of proposed framework with existing work for percentage of active servers per data center.

Fig. 11. Comparison of resource utilization trend per data center for different workloads.

Fig. 12. Comparison of power consumption per data center for different workloads.
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consumption per data center for different workloads. It was
observed that proposed approach scales down power con-
sumption upto 84.01 percent, 78.9 percent over B2 and 77.8
percent over R2 for BB, PL and GCD workloads respec-
tively. Furthermore, the power consumption by the pro-
posed approach, is reduced upto 69.67 percent with
oversubscription, as compared to without oversubscription
for BB workload.

Fig. 13 shows the comparison of overall power saving
percentage per data center for three different workloads,
which is achieved by adapting proposed framework in
oversubscribed over non-oversubscribed cloud. There is
substantial improvement in power savings which follows
the order: GCD �PL�BB. Furthermore, it is observed that
power saving percentage is highest for data center with
200 VMs and then slowly decreases with the increase in
the size of the data center and finally the power saving
becomes static and reaches between 35-42 percent inde-
pendent of size of the data center. This due to the reduction
in the number of active servers and VM migrations with
utilization of proposed framework in oversubscribed
cloud. However, maximum reduction of power consump-
tion is noticed in case of BB workloads. This is due to the
fact that there were approximately 40-45 percent of VMs in
BB dataset that shows CPU utilization percent less than 1
percent, which is correctly predicted by our online
resource forecast system and therefore, power consump-
tion is reduced with reduction in the number of active
servers.

9 CONCLUSIONS AND FUTURE WORK

In this work, elastic resource management problem is
addressed by proposing an online prediction based multi-
objective load balancing framework. The objectives of the
proposed framework are to effectively utilize the oversub-
scribed cloud environment to reduce power consumption
and raise resource utilization while minimizing risk of SLA
violation. Moreover, the communication cost aware multi-
objective load balancing was applied to minimize network
traffic within the data center. The performance evaluation
shows that the proposed work maximizes resource utiliza-
tion and minimizes performance degradation due to over-
loads, number of active servers, communication cost within
data center, SLA violations and power consumption. All the

results are supported by the simulation and experiments
executed on three different real workload traces. The com-
parison with state-of-art techniques states that the proposed
framework can significantly improve the power savings by
rightly exploiting oversubscription environment at cloud
data center. In future, the proposed framework can be
extended with more objectives like trust and reliability
based VM allocation scheme. Additionally, the tasks can be
grouped based on predicted resource utilization to allow
proactive autoscaling of VMs and improve performance of
cloud data center.
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