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ABSTRACT
Background: In recent years, Large Models (LMs) have been rapidly developed, including large language models, visual foun-
dation models, and multimodal LMs. They are updated and iterated at a very fast pace. These LMs can accomplish many tasks,
e.g., daily work assistant, intelligent customer service, and intelligent factory scheduling. Their development has contributed to
various industries in human society.
Aims: The architectural flaws of LMs lead to several problems, including illusions and difficulty in locating errors, limiting their
performance. Solving these problems properly can facilitate their further development.
Methods: This work first introduces the development of LMs and identifies their current problems, including data and energy
consumption, catastrophic forgetting, reasoning ability, localization fault, and ethical problems. Then, potential solutions to these
problems are provided, including increase data and computation capability, neural-symbolic synergy, and data orientation to
human pattern.
Discussion: This work discusses developing vertical domain LMs on top of some base LMs. In addition, this work introduces
three typical real-world applications of LMs, including autonomous driving, smart industrial productions, and intelligent medical
assistance.
Conclusion: By embracing the advantages of LMs and solving their fundamental problems, many industries are expected to
achieve promising prospects in the future.

1 | Introduction

Large models (LMs) are neural networks that contain
super-large-scale parameters. They can perform tasks in areas

Abbreviations: AI, artificial intelligence; CLIP, contrastive language-image pretraining; FSD, full-self driving; GPT, generative pretrained transformer; LMs, large models.
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
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such as content generation that only human beings could per-
form in the past. They are considered to be a sign that artificial
intelligence (AI) has changed from the weak to strong [1]. As
noted in Figure 1, the first-generation AI in the 1970s focused
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on computational intelligence, concentrating on the computa-
tion tasks and data storage. Second-generation AI in the 2000s
focused on perceptive intelligence, emphasizing the recognition
and perception of tasks in different modalities. Third-generation
AI in the 2020s focused on cognitive intelligence. It focuses on
understanding and reflecting the external environment, which
perceives the external environment and realizes decision-making
and scheduling of tasks. The goal of LMs, as third-generation AI,
is to make quick decisions after sensing the external environment
to help human beings. Their development is also inspired by a
large number of milestone discoveries and inventions. The back-
propagation algorithm [2] proposed in 1984 solves the problem of
training neural networks; the universal approximation theorem
[3] proved in 1989 theoretically shows the powerful fitting ability
of neural networks, stating that once the network has a sufficient
number of neurons, it can fit any complex continuous function;
Transformer [4] proposed in 2017 can capture long and short
dependencies and achieve highly parallelized computation by
removing the loop structure; self-supervised learning proposed
in 2018 [5] addresses the problem of training on unlabeled data;
neural scaling rate in 2020 [6] reveals a positive correlation
among the number of parameters, amount of data, computa-
tional power, and performance, showing that the predictive
performance of a model improved according to a power law
with more data and a larger model. The essence of LMs is to use
powerful algorithms and large amounts of computational power
to train complex probability distribution functions from massive
amounts of data. Over the past few years, the development of
LMs experienced rapid evolution and expansion.

The development of LMs is shown in Figure 2. In the early
exploratory phase in 2018, the first generation of generative
pre-trained transformer (GPT-1) led to a new paradigm of nat-
ural language processing. Following this, GPT-2 in 2019 grew in
size and made significant progress in understanding and gener-
ating text. From 2020 to 2021, LMs entered a period of extensive
exploration. During this time, GPT-3 set a new standard with its
staggering 175 billion parameters, catalyzing the emergence of a
series of innovative LMs. Huawei’s PanGu-𝛼 excelled in text gen-
eration fields such as knowledge question answering, retrieval,
reasoning, and reading comprehension. OpenAI’s Codex demon-
strated outstanding performance in code generation and under-
standing, capable of handling multiple programming languages
and generating high-quality code. In addition, Baidu and the
Beijing Academy of Artificial Intelligence introduced Ernie 3.0
and CPM-2, further enriching the LMs ecosystem across different
domains. Ernie 3.0 showed remarkable capabilities in multilin-
gual processing, knowledge graph construction, and enhanced
language understanding, whereas CPM-2 exhibited significant
advantages in Chinese language generation and multimodal task
processing. LMs came to the emergence stage from 2022 to 2024,
with a large number of horizontal and vertical AI being devel-
oped and the diversification and specialization of LMs being wit-
nessed. ChatGPT and InstructGPT worked on understanding and
executing user commands, while GPT-NeoX and OPT innovated
in model size and training efficiency. LMs, such as ChatGLM,
BLOOM, and CodexGen2, continued to advance in multilingual-
ism, programming language understanding, and code genera-
tion. Meanwhile, multimodal models such as the successor to
DALL-E have demonstrated strong capabilities for the joint pro-
cessing of images and texts.

Overall, LMs have demonstrated rapid changes and advanced
in AI since 2018. This period witnessed model scale expan-
sion, capabilities enhancement, and application scope broad-
ening from preliminary LMs like GPT-1 to multimodal LMs
such as GPT-4o in 2024. Diverse LMs such as InstructGPT,
GPT-NeoX, and BLOOM embody technological breakthroughs
within specific domains, while LMs for multimodal tasks mark
a step toward more complex AI applications. The development
of these LMs pushes the frontiers of natural language processing
technologies and lays a solid foundation for future innovations.
With the landing application of LMs, some problems are shown,
including power consumption and catastrophic forgetting. Thus,
solving these problems can help the further development of LMs
and greatly empower their industrial applications. In addition,
the continuous improvement of the multimodal processing capa-
bility of LMs should enable their applications to autonomous
driving and other intelligent systems [7].

The rest of the paper is structured as follows. Section 2 discusses
the classification of LMs. Section 3 describes the current prob-
lems of LMs, and Section 4 gives the solutions. Section 5 intro-
duces LM’s applications. Section 6 concludes this work.

2 | Classification of Large Models

Based on their input data, LMs can be categorized into three
types: large language models, visual foundation models, and mul-
timodal LMs.

2.1 | Large Language Models

Large language models are a class of deep learning models spe-
cialized for processing natural language [8]. They are capable
of understanding, generating, and processing text by pretraining
and fine-tuning. One example is the GPT family, such as GPT-4,
which has demonstrated strong capabilities in natural language
processing tasks. GPT-4 has achieved remarkable results in many
applications, including text generation, and it can produce coher-
ent and contextually accurate paragraphs, and perform machine
translation, thereby facilitating seamless communication across
different languages. Its advanced capabilities underscore the pro-
found impact of large language models on natural language
processing.

2.2 | Visual Foundation Models

Visual foundation models are specialized for processing images
and videos [9]. They can recognize, classify, segment, and gen-
erate image content and perform well on visual tasks such as
image classification and target detection [10]. For example, Ope-
nAI has designed a text-to-video generation model named Sora.
This model is trained extensively on vast data sets to generate real-
istic or imaginative videos based on textual commands provided
by users. By leveraging advanced deep learning techniques, Sora
can interpret complex textual descriptions and translate them
into vivid and dynamic videos that capture the essence of the
described scenarios. Its ability to simulate the physical world with
precision and details demonstrates the incredible potential of
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FIGURE 1 | Development of artificial intelligence.

FIGURE 2 | Development of large models.

text-to-video generation models in various fields, including enter-
tainment, education, and virtual reality.

2.3 | Multimodal Lms

Multimodal LMs can simultaneously process multiple data
modalities [11], including text, images, and audio. These mod-
els combine linguistic and visual information to perform
task processing with learned rich representations. One of
the well-regarded multimodal language models is Contrastive
Language-Image pretraining (CLIP), which has good perfor-
mance across various visual and linguistic tasks. CLIP employs
a comparative learning approach that involves pairing images

with their corresponding textual descriptions and training the
model to recognize and associate these pairs. By leveraging this
methodology, CLIP has demonstrated remarkable proficiency in
tasks such as image captioning, text-to-image retrieval, and visual
question answering. Its ability to understand and relate visual
and linguistic information makes it a valuable tool for advancing
research in multimodal learning and fostering greater integration
between visual and linguistic data.

These three types of LMs play vital roles in AI and are closely
interconnected. Large language models and visual foundation
ones are responsible for processing natural language and image
data, and they can collaborate to solve complex multimodal tasks.
Multimodal LMs combine linguistic and visual information and
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FIGURE 3 | Energy consumption of artificial intelligence in different phases.

can process multiple data modalities simultaneously, providing
new possibilities for cross-modal intelligence tasks. In summary,
these models are mutually reinforcing each other and comple-
mentary, driving the development and advancement of AI.

3 | Current Problems of Large Models

3.1 | Data and Energy Consumption

The more model parameters there are, the more data need to be
fitted. LMs lead to excessive data consumption and computing
power due to their large number of model parameters. The num-
ber of parameters of LMs has reached the trillion level. As noted
in Figure 3, the energy consumption of AI is increasing. Hoff-
mann et al. [12] state that training data size and computational
resource consumption are proportional to the number of param-
eters. This observation highlights a crucial challenge in the field
of deep learning, where increasing the number of parameters to
improve model performance often leads to a significant increase
in both the amount of training data required and the computa-
tional resources needed for training. ChatGPT3 has 175 billion
parameters, and its training data reach 300 billion words. More
training data are required to fit models with more parameters.
High-quality text data are expected to be exhausted by 2026 [13],
posing a significant challenge for the continued advancement of
large language models.

In the training process of LMs, the selection and quality of input
data sources play a crucial role in the performance of the mod-
els. LMs rely on large-scale, diverse data sets, including differ-
ent data types such as text, images, and audio. Primary data
sources include data crawled from the Internet, publicly available
databases, social media content, and proprietary data sets. How-
ever, the diversity and openness of these data sources also pose
multiple challenges [14]. First, the accuracy and reliability of the
data may vary, especially in web-crawled data, where the propor-
tion of noise and misinformation is relatively high. Insufficient
or underrepresented data for specific groups make the model
inaccurate or even discriminatory. Second, the problem of data

representativeness causes the model to perform poorly in dealing
with particular tasks, especially when there is bias or underrep-
resentation of certain groups or topics in the training data. There-
fore, when constructing an LM, data need to be carefully selected
and cleaned to ensure that the data are diverse and of high qual-
ity, thereby leading to the LM’s high generalization ability and
reliability [15].

In addition, a deep learning model needs to consume far more
energy than humans. AlphaGo played against a human master
at Go in 2016. It needs to consume about 20,000 W of power,
whereas a human Go player’s brain power is only about 20 W. Fur-
thermore, training ChatGPT3 on large cloud data centers requires
1,287,000 kWh of electricity [16], and it consumes 560,000 kWh
of electricity daily during its problem-solving phase [17]. This
high resource requirement hinders the development of LMs, trig-
gering scholars to investigate more efficient methods, including
parameter sharing, model pruning, and quantization. Some tech-
nical solutions for creating energy-efficient and sustainable data
centers driven by AI methods are discussed in Buyya, Ilager, and
Arroba [18]. These strategies aim to optimize the model structure
for reducing model size and running costs.

3.2 | Catastrophic Forgetting

Training LMs on new tasks may impair their performance on
previous tasks by failing to remember processed data or scenar-
ios during the problem-solving phase [19]. This phenomenon is
called catastrophic forgetting, and there is no effective mech-
anism to retain the model’s learned knowledge and scenarios.
In the training phase, fine-tuning the LM with domain data
improves the model’s performance in the vertical domain. How-
ever, it may impair performance in the general domain, espe-
cially when the new training data significantly differs from the
original. The model may gradually lose its ability to accurately
predict and interpret the original data over time, leading to a
decline in performance. For instance, in unmanned driving, LMs
for interpreting and responding to environmental data may fail
to a) remember specific situations they have encountered and
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b) implement more optimized decision-making controls when
facing future similar scenarios. In such cases, the model’s inabil-
ity to effectively adapt or utilize experience can hinder its ability
to cope with new and unforeseen situations, ultimately affect-
ing the overall performance and reliability of unmanned driving
systems [20].

3.3 | Reasoning Ability

The LM’s logical reasoning ability is weak because it is a
black-box model and cannot “divide and conquer.” It performs
poorly when dealing with complex problems that require log-
ical and numerical reasoning. The inverse scale phenomenon
[21] indicates that more parameters and training data lead to
poor performance. These limitations indicate that increasing
the model size does not solve all problems, especially for tasks
requiring advanced cognitive and reasoning abilities. In addi-
tion, black-box reasoning processes are challenging to explain,
and errors are difficult to correct. Researchers are exploring inter-
pretable machine learning models that provide transparent deci-
sion processes and verifiable inference paths to address these
challenges. This includes using decision trees, causal inference
models, and open question-answering systems to enhance the
logical reasoning of the model [22].

Despite the limited logical reasoning power of LMs, they can
play an essential role in several critical aspects of the optimiza-
tion problem. First, LMs can serve as a powerful tool for problem
definition and formulation, helping one clarify the issue by trans-
lating natural language requirements into structured problem
forms, thus providing precise inputs for subsequent optimization
algorithms. In optimization strategy development, LMs can be an
assistive design tool to help select appropriate algorithmic archi-
tectures and parameter settings by analyzing the literature and
technical documents, providing rich information and best prac-
tices about optimization algorithms [23]. In addition, although
LMs are usually not directly involved in the core computation,
they can still be utilized in generating and screening candidate
solutions to evaluate and interpret candidate solutions, thus pro-
viding useful heuristic guidance [24].

3.4 | Localization Fault

LMs often cannot recognize their errors or understand why they
occur. They have difficulty in correcting them. This limitation
makes it more challenging for LMs to fix them effectively [25]. For
instance, in natural language processing tasks such as machine
translation or sentiment analysis, LMs may produce incorrect
outputs due to misunderstandings of the input text or biases in
the training data. Without the ability to self-reflect and identify
these issues, LMs cannot learn from their mistakes and evolve
over time. This underscores the importance of developing more
advanced error detection and correction mechanisms for LMs
and ensuring that they are trained on diverse and unbiased
data sets to minimize errors in the first place. This limitation
restricts their performance in a wide range of real-world appli-
cations, as they cannot ensure the robustness of the results or
point out the errors. Therefore, sophisticated feedback loops and
error analysis techniques are developed [26]. These techniques
are designed to help models accurately recognize and understand

the nature of errors when feedback is received. Thus, it enables
the model to make targeted adjustments. In addition, by combin-
ing human supervision with automatic learning mechanisms, the
models can be enhanced in recognizing and correcting errors.
This human–machine cooperative approach improves an LM’s
judgment and enhances its ability to self-adjust to deal with
unknown challenges [27].

3.5 | Ethical Problems

The rapid development of AI has raised numerous ethical prob-
lems. Algorithmic bias is one of the most pressing ethical issues in
this field [28]. LMs rely on patterns extracted from historical data
during training, which often contain preexisting societal biases
and inequalities. These biases can be reflected in the model’s pre-
diction results, influencing judgments about specific groups. For
example, AI systems in recruitment, judicial decisions, and credit
evaluations may result in discrimination against certain groups
due to historical injustices in the training data. To minimize the
effects of bias, developers need to review the data and take steps
to ensure the fairness of AI systems [29].

Privacy protection issues are becoming more prominent with the
popularity of AI and LM technologies [30]. LMs usually require a
large amount of data for training. These data may contain sensi-
tive information such as personal identity, behavior, and health
status. This is especially prominent in the healthcare industry,
where patient data are inevitably needed to train healthcare
AI models. For example, in the case of facial palsy diagnosis,
healthcare AI models require patient facial data for training [31].
Although patients sign a consent form when facial images are
taken, ensuring patient data privacy in hospitals is still a problem.
The public widely recognizes that AI technologies have the poten-
tial to revolutionize health care, leading to more accurate diag-
noses [32]. However, social issues such as privacy and diagnostic
accuracy need to be addressed, as people prefer human doctors to
diagnose their health issues.

In LMs, if the data source is not transparent or the data are
not processed properly, this may lead to the risk of user privacy
breaches. In addition, user inputs may be stored or processed
during the training or fine-tuning phase of LMs, and a lack of
transparency about how these data are handled may raise pri-
vacy concerns because users are unsure whether their inputs are
retained, how they are used, and whether a third party may access
them. Furthermore, some LMs record the content of user inter-
actions when providing their services, which could inadvertently
collect sensitive information, leading to privacy violations or data
breaches if these records are misused or stored unencryptedly.
Inadequate authorization or improper handling of private data
may lead to privacy leakage and violation of individuals’ privacy
rights. This problem has triggered ethical controversies about
data collection, storage, and use [33]. In addition, security flaws
in data storage and transmission may make these data targets
for cyberattacks. Most people are concerned about the misuse of
personal data and believe that users’ consent and right to infor-
mation should be prioritized in data use. To address these pri-
vacy challenges, it is essential to implement data anonymization,
encrypt transmission, and provide transparent privacy policies to
enhance public trust and protect user privacy.
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Finally, the issue of liability is another important ethical con-
sideration. As AI plays an increasingly important role in
decision-making, clarifying where responsibility lies becomes
particularly complex. For example, when a mechanical assem-
bly line system adjusts its processes and makes wrong decisions
due to AI, should the AI developer, user, or system itself be
held responsible? A legal framework is needed to clarify the
responsibilities and obligations of all parties in such technolo-
gies. Thus, they can be kept accountable when problems arise
[34]. Another example is that if an AI model is applied to medical
decision-making, it may cause serious consequences if it misdi-
agnoses a patient’s health issues. Therefore, in the case of appli-
cations that require accurate results, the judgment and output of
LMs need to be judged and processed by manual models.

3.6 | Fundamental Problem

3.6.1 | Network Architecture Flaws

The combination of different modules and the hierarchical struc-
ture of the LMs architecture lacks clear functional definitions
and connections to human-understandable knowledge of mech-
anisms [35]. This architecture cannot learn the causal relation-
ships for reasoning, limiting an LM’s performance in performing
complex tasks. In addition, it cannot effectively handle dynamic
changes and new situations due to poor plasticity and interop-
erability. Current LMs are based on the Transformer architecture
as the underlying model, which can handle the simultaneous text
input from a large number of users. However, if a large number
of users simultaneously input audio or even video as tokens into
a multimodal LM, it may be difficult for the LM to respond to the
users promptly. This causes queuing and waiting or even crashes
of the model, which affects the user experience [36]. Therefore,
optimizing the processing capability and architectural design of
an LM is necessary to better cope with the challenge of multi-
modal input. In addition, the stability and responsiveness of an
LM under high load conditions should be improved.

3.6.2 | Training and Reasoning Defect

Autoregressive and autoencoder are commonly used to train
LMs. The core is a back-propagation mechanism that takes the
global error as the optimization goal and iteratively updates all
parameters. This process consumes a large amount of training
data and computing power to optimize an LM’s performance on a
specific task. It is prone to overfitting and reduced model flexibil-
ity [37]. When facing new tasks, LMs often need to be adapted and
learned from the beginning, which is inefficient and imposes lim-
itations on the long-term development of LMs. Therefore, train-
ing yields all parameters that correspond to a specific task. When
learning a new task, the backpropagation mechanism updates all
parameters, leading to forgetting the old task. This catastrophic
forgetting highlights the limitations of existing models in con-
tinuous learning and adapting to new environments. There is an
urgent need to enhance the generalization ability and adaptabil-
ity of LMs by improving training and optimization strategies.

In the reasoning phase, an LM is guided by the question and
parameters obtained from training. The forward reasoning of

answering a question requires all layers and all parameters to be
involved in the computation, consuming a large number of com-
puting resources. It is estimated that the energy overhead of a
single ChatGPT interaction is more than a hundred times that of a
Google search. This implies that energy consumption becomes a
major issue in large-scale deployment and frequent use scenarios
[38]. Exploring more efficient model structures and algorithms
to reduce energy consumption [39] and maintain performance
becomes especially critical.

4 | Potential Solutions

4.1 | Increasing Data and Computation
Capability

Sutton [40] point out that all the skills of AI cannot compare to
the powerful computing power and generalized algorithms, and
the key to the progress of AI lies in the computing power and
data. Kaplan et al. [41] indicate that scale is important. More data
and bigger models bring better results. Emerging properties [42]
show that as models grow in size and data volume, LMs can sud-
denly emerge with capabilities that were not previously available.
This “emergent” capability suggests that complex behaviors and
functions can be observed, which are not visible or attainable in
smaller models. To take full advantage of these emergent proper-
ties, researchers have explored how to design and train large-scale
models more efficiently by using, for example, more advanced
optimization algorithms [43] and finer-grained parameter tun-
ing strategies. These efforts aim to advance AI technologies and
ensure that these advanced AI systems work safely and reliably
in real-world applications.

In addition, focusing only on scaling up models is unrealistic. To
better support the concurrent access of a large number of users,
a centralized data center is difficult to support. Therefore, reduc-
ing the model size while decentralizing computing to the edges
and terminals is also important. Through model optimization,
centrality, and distributed computing, LMs can be executed on
edge devices, including smartphones, devices of the Internet of
Things, and automotive computers. This meets user needs more
efficiently, enhances data privacy, and reduces latency by bring-
ing computation closer to data sources. Edge devices are often
limited by computational capability, memory, storage, and energy
consumption, and directly deploying LMs poses challenges [44].
In that case, these limitations require improving model perfor-
mance and reducing computational resource consumption. One
possible approach includes model compression techniques such
as quantization, pruning, and knowledge distillation. Quantiza-
tion reduces a model’s storage and computation requirements by
converting floating-point numbers to low-precision representa-
tions. Pruning simplifies the model structure by removing unim-
portant weights [45]. Knowledge distillation utilizes the knowl-
edge generated by an LM to train a smaller model, significantly
reducing the model’s size while maintaining its performance [46].
In addition, cloud-assisted mobile edge computing is an effective
strategy to facilitate model running on edge devices. Edge devices
can complete preprocessing, feature extraction, and other prelim-
inary work and offload complex computational tasks to the cloud,
thus reducing the burden on edge devices.
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4.2 | Neural-Symbolic Synergy

The advantages of neural networks are their abundant prior
knowledge, strong generalization, and excellent flexibility [47],
but the disadvantages are their weak inference, poor inter-
pretability, and presence of illusions [48]. Symbolic rules have
the advantage of combinability, interpretability, and strong
higher-order reasoning [49], but the disadvantage of combina-
torial explosion, noise sensitivity, and poor generalization [50].
To overcome these limitations, existing research attempts to com-
bine the strengths of these two systems to explore a new hybrid
paradigm in a complementary manner. There are five possible
combination paradigms: (A) symbolic systems as the architecture
and neural networks as a subroutine; (B) neural networks that
convert nonsymbolic inputs into symbols, which symbolic sys-
tems can process; (C) neural networks trained with symbolic rule
data to realize symbolic rule functions; (D) structural templates in
neural networks based on symbolic rules; and (E) iterative inter-
action between neural networks and symbolic reasoning. With
the above strategies, LMs can accurately simulate human cog-
nitive processes and provide higher operational flexibility and
decision quality, especially in application scenarios that require
complex reasoning.

4.3 | Data Orientation to Human Pattern

The development of neural networks draws on brain science,
creating the foundation of the current LMs. If the mechanisms
of memory representation, activation, retrieval, encoding, and
playback in brain science can be used in LM’s development, it
is expected to break the inherent defects of the current LMs.
Figure 4 shows that brain science corresponds to the develop-
ment of AI. It is shown that each breakthrough in cognitive brain
science corresponds to a breakthrough in AI.

Memory is the foundation of human intelligence. It influ-
ences the human brain’s intellectual activities, including learn-
ing, abstraction, association, and reasoning. These activities
are influenced by encoding, storage, and retrieval. Encoding
organizes and transforms external information. Learning effi-
ciency depends on memory encoding strategies [51]. Therefore,
multi-channel encoding and situational association strategies
can significantly improve learning effectiveness. Storage saves
learned knowledge in long-term memory in hierarchical cate-
gories, retaining gained knowledge such that subsequent learn-
ing can be more efficiently aided by prior experience. Retrieval
extracts information from long-term memory, consolidates mem-
ory storage, stimulates metacognitive abilities, and promotes rea-
soning, abstraction, and association. The human memory model
[52] is shown in Figure 5. Memory retrieval and activation are
the basics of intelligence. Unlike LMs, where all parameters need
to be involved in reasoning, the brain retrieves a small amount
of knowledge from long-term memory and turns it into work-
ing memory for reasoning through an activation mechanism. The
human brain contains about 1011 neurons and 1015 synapses.
They only consume 20–23 W of energy, whereas an LM of the
same size consumes up to 7.9 × 106 W of energy [53]. Thus, mem-
ory’s retrieval and activation mechanism brings inspiration for
designing machine intelligence models and representation mech-
anisms, which is expected to break through the shortcomings of
LMs that overconsume data and computing resources.

5 | Large Model’S Applications

In the technology ecosystem, LMs need to be equipped with pow-
erful natural language processing capabilities and need to be inte-
grated into a variety of applications for interoperability seam-
lessly [54]. This interoperability allows LMs to be widely used
on different platforms, thus better serving diverse user needs and
enhancing their application value. Through interoperability with
common applications, LMs can be embedded into productivity
tools, customer service systems, educational platforms, and other
scenarios to provide intelligent interaction and decision support.
Defining standardized interface protocols [55] can promote inter-
operability among LMs and general purpose applications. In that
case, LMs can be seamlessly invoked as service modules by var-
ious applications. For example, LMs can use web service tech-
nologies to handle data requests from different applications and
realize cross-platform and cross-language data exchange and pro-
cessing. In addition, the deep integration of LMs with applica-
tions is also essential. By embedding the LM software develop-
ment kit, applications can realize tighter data flow control and
real-time response. This approach reduces the latency of data
transmission. It enables the model to be customized and opti-
mized according to the specific needs of an application, further
enhancing user experience and system performance. The real-
ization of this interoperability greatly expands the application
capability of LMs, providing a more intelligent, efficient, and per-
sonalized service experience.

However, one critical aspect of developing vertical domain LMs
on top of some base LMs is ensuring the data relevance and qual-
ity for fine-tuning, as this directly impacts their performance and
accuracy. Ensuring that an LM maintains its generality while
adapting to tasks in specific domains poses a challenge during
the fine-tuning process. As the scale of the model increases, its
complexity and lack of interpretability also increases. This may
lead to difficulties in understanding and controlling the model’s
outputs in practical applications. Furthermore, LMs for vertical
domains need to be integrated with existing enterprise processes
and possess collaboration and controllability capabilities. This
requires LMs to be embeddable within existing systems, assist-
ing in upgrading specific components rather than serving as a
full replacement. Therefore, their ability to interface with existing
business personnel or systems needs to be focused when practical
applications are handled. LMs for vertical domains require atten-
tion to knowledge base maintenance and updates. Businesses
frequently change and maintain their knowledge bases, and the
materials within these knowledge bases are diverse. Ensuring
that LMs can efficiently and accurately identify relevant knowl-
edge within different knowledge base systems and subsequently
retrieve high-quality answers is a challenge that needs to be
addressed. This section introduces three typical real-world appli-
cations of LMs, including autonomous driving, smart industrial
productions, and intelligent medical assistance.

5.1 | Autonomous Driving Technologies

Autonomous driving technologies, such as automatic parking,
adaptive cruise control, and traffic congestion assistance systems,
can be used to facilitate people’s daily travel. These technologies
improve the safety and comfort of driving and effectively reduce
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FIGURE 4 | Cognitive brain science versus artificial intelligence.

traffic accidents. Automated driving has experienced the follow-
ing five steps of development [56].

1. Momentary Driver Assistance: The driver is fully respon-
sible for driving the vehicle while the system provides
momentary assistance like warnings and alerts or emer-
gency safety interventions.

2. Driver Assistance: The driver is fully responsible for driving
the vehicle while the system provides continuous assistance
with either acceleration/braking or steering.

3. Conditional Automation: The system handles all aspects of
driving while the driver remains available to take over driv-
ing if the system can no longer operate.

4. High Automation: When engaged, the system is fully
responsible for driving tasks within limited service areas. A
human driver is not needed to operate the vehicle.

5. Full Automation: When engaged, the system is fully respon-
sible for driving tasks under all conditions and roadways. A
human driver is not needed.

Humans use a dual-process system when driving, which is the
basis for humans to realize complex reasoning [57]. Dual-process
theory suggests that the human brain has dual-system syn-
ergistic mechanisms and multiple memory types that can
support complex reasoning, including logic/intuition, implica-
tion/association, and explicit/implicit. It is shown in Figure 6 that
the first intuitive thinking system is fast and does not consume
computational resources, for example, accelerating and applying
brakes. The second rational thought system is required to ana-
lyze and consume computational resources, for example, path
planning. Current autonomous driving technologies cannot sim-
ulate the first system, resulting in low efficiency. To make LMs’
decisions that can more closely resemble a human dual-process
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FIGURE 5 | Human memory model.

FIGURE 6 | Dual process theory in driving.

system, Tesla [58] proposes the Full-self Driving (FSD) system
as a new “end-to-end autonomous driving.” It uses a neural net-
work exclusively for vehicle control, which controls everything
from computer vision to driving decisions. This neural network is
trained from millions of video clips, replacing over 300,000 lines
of C++ code. Thus, it reduces the vehicle system’s reliance on
code and brings it closer to the human driver’s decision-making
process. However, the LM still struggles to remember specific
road conditions encountered in the past and cannot implement a
more optimized decision-making strategy when similar scenarios
are encountered again. Future LMs on simulating human mem-
ory systems are hopeful to solve this problem.

Driven by LMs and AI, automated driving technologies and the
smart car industry are gradually breaking through the bottleneck
of traditional technologies and ushering in a new phase of rapid
development. Using advanced AI technologies, autonomous driv-
ing systems can better cope with complex traffic environments

and improve driving safety and efficiency. With the continu-
ous investment of major technology companies and automak-
ers, autonomous driving technologies based on LMs is expected
to realize wider applications and revolutionize how we travel.
Its advancement is a revolution in the automotive industry and
should profoundly impact the future urban transportation system
and people’s daily lives.

5.2 | Smart Industrial Productions

LMs are widely applied in smart industrial productions [59]. They
support industrial text generation and industrial knowledge Q&A
to realize the generation of production handover reports, equip-
ment point inspection records, etc. Industrial multimodal LMs
accomplish helmet detection, statistics of product defective rate,
etc. They greatly improve the efficiency of workers’ traditional
manual processing. The framework of industrial LMs is shown in

9 of 15

 1097024x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3408 by R

ajkum
ar B

uyya - T
he U

niversity O
f M

elbourne , W
iley O

nline L
ibrary on [24/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



FIGURE 7 | Structure of industrial large models.

FIGURE 8 | Structure of the converter steelmaking large model.

Figure 7. Specifically, the input includes structured and unstruc-
tured mission plans, natural language, and multimodal environ-
mental information. They are input to the model layer, and an
LM is selected according to the task type. After LM processing,
small models, mechanisms, and knowledge bases are possibly
employed to make judgments about the correctness of results,
preventing erroneous instructions generated by LM from being
executed. After executing the instructions, the new state is fed
into the LM again as environmental information. This framework
is applicable to a large number of industrial scenarios.

Take the converter steelmaking scenario as an example. Accu-
rate prediction of the endpoint steel’s carbon level and temper-
ature is essential to ensure the steel-making success rate. Tradi-
tional methods use physicochemical change modeling to predict
endpoint carbon content and temperature through a mechanistic
approach. However, the accuracy of traditional prediction meth-
ods is difficult to guarantee due to the uncertainty of the reaction
in the furnace and the composition of the added pig iron. Multi-
modal LMs provide a solution because of their robust multimodal
processing capabilities. They combine flame characteristics of the
furnace with sensor data to make real-time judgments about the
carbon content and temperature in the furnace. Figure 8 shows
the structure of the converter steelmaking LM. It utilizes multi-
modal data as inputs, including textual data (furnace iron, scrap
conditions, etc.), time-series data (height of sublance, flow rate
of oxygen blowing, etc.), and furnace mouth flame video. Then,
the above multimodal data are processed, and the LM predicts
endpoint carbon content and temperature. However, the initial
training of the LM results in an inaccurate model due to the
small amount of training data. Thus, mechanisms and knowledge
related to converter steelmaking are combined to assist the LM.

Finally, as data continue to accumulate, the predictive accuracy
of the LM is further improved.

In addition to the steel industry, LMs have a wide range of appli-
cations in other industrial fields [60], such as textile, metal-
lurgy, and food industries. They can assist in optimizing a design
process, expand manufacturing intelligence, improve operation
and management, and promote the intelligence of products and
services.

5.3 | Intelligent Medical Assistance

The application of LMs in the medical field is becoming increas-
ingly prevalent. It is shown in Figure 9 that some medical proce-
dures are becoming more intelligent by introducing LM technolo-
gies into vertical healthcare domains. The construction of clini-
cal intelligence is better supported by the fusion of multimodal
data, including text, images, and time-series data. It is shown
in Figure 9 that applications include disease diagnosis and deci-
sion support, disease prediction and prevention, medical imag-
ing analysis, pharmaceutical research and development, medical
literature analysis and knowledge discovery, intelligent medical
Q&A and consultation, healthcare process optimization, medical
education and training, and hospital management. Some appli-
cations are well applied and serve the public, such as intelligent
medical Q&A and hospital management. The former can answer
people’s questions about common diseases and guide treatment
[61]. The latter can significantly reduce the queuing time in hos-
pitals and increase the public’s satisfaction with AI applications
in health care.

1. Disease Diagnosis and Decision Support: In clinical deci-
sion support, LMs provide intelligent diagnosis and

10 of 15 Software: Practice and Experience, 2025

 1097024x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3408 by R

ajkum
ar B

uyya - T
he U

niversity O
f M

elbourne , W
iley O

nline L
ibrary on [24/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



FIGURE 9 | Applications of LMs in healthcare.

treatment recommendations for physicians by integrat-
ing and analyzing vast amounts of medical literature,
guidelines, and case data. When confronted with complex
medical conditions, LMs can rapidly retrieve relevant clini-
cal trials or case studies, assisting physicians in evaluating
potential effect and risk of different treatment options,
thereby enabling more precise clinical decision-making
[62]. Furthermore, multimodal AI-assisted diagnosis can
assess patients’ disease status from multiple dimensions
and provide physicians with more diagnostic informa-
tion and reference points, which is crucial for clinical
decision-making.

2. Disease Prediction and Prevention: By leveraging the pow-
erful data processing capabilities and pattern recognition
techniques of LMs, we can conduct the in-depth analysis
of vast epidemiological data and medical records, enabling
precise predictions of disease transmission trends and risk
assessments [63]. For instance, through training on exten-
sive case data, LMs can identify subtle abnormalities in
X-rays or CT scans, assisting physicians in making more
accurate diagnoses. Furthermore, they can assess an indi-
vidual’s risk of viral infection based on their health data,
lifestyle habits, medical history, and other information, pro-
viding a scientific basis for formulating personalized epi-
demic prevention measures. Such personalized prevention
strategies help reduce the risk of epidemic transmission,

enhance the utilization efficiency of medical resources, and
alleviate the burden on the healthcare system.

3. Medical Imaging Analysis: LMs are progressively becoming
the backbone of Medical Imaging Analysis. Taking tumor
detection as an example, through training on vast amount
of imaging data, including CT and MRI, LMs can automat-
ically identify and analyze essential information, such as
tumor morphology, size, and location in images, with an
accuracy that surpasses traditional manual image review
methods. For instance, deep learning models developed
by the Google’s DeepMind team has achieved significant
results in analyzing ocular OCT images, aiding doctors in
early screening and diagnosis of ophthalmic diseases [64].
In addition, LMs can adapt to multimodal medical data,
including X-rays, CTs, MRIs, PETs, ultrasounds, pathol-
ogy slides, endoscopes, dermatoscopes, dental radiographs,
blood smears, and more, enabling identification at levels
ranging from organs to lesions, and even down to patho-
logical cells, diseased tissues, and cellular elements. In the
early detection of lung cancer, LMs can accurately iden-
tify minute lung nodules by analyzing low-dose CT scan
images, gaining precious treatment time for patients. Fur-
thermore, they can process static images and analyze time
series of imaging data, such as dynamic MRIs, providing
doctors with more comprehensive disease information.

4. Pharmaceutical Research and Development: LMs play a
significant role in new drug discovery and development.
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In drug molecule design, the successful application of
AlphaFold in protein structure prediction [65] provides
robust support for structure-based drug design. LMs have
the potential to accurately predict three-dimensional struc-
tures of proteins, assisting researchers in understanding
interaction mechanisms between drugs and targets, thereby
enabling the design of drug molecules with excellent selec-
tivity and activity. By simulating the interactions between
drugs and biomolecules, LMs can predict drugs’ potential
effects and side effects, thereby accelerating the drug screen-
ing process and reducing research and development cost.
For example, with the assistance of Huawei Cloud’s Pangu
LM [66], the screening process for drug molecules has been
dramatically accelerated, shortening the lead drug research
and development cycle from several years to approximately
1 month. The research and development cost has been
reduced by about 70%, and the super antibiotic cinnamalde-
hyde has been successfully developed.

5. Medical Literature Analysis and Knowledge Discovery:
By leveraging the powerful natural language processing
and deep learning capabilities of LMs, the ways medical
knowledge is acquired, integrated, and applied are trans-
formed. These models can efficiently process vast amounts
of medical literature data, extract essential information,
and uncover potential knowledge patterns, providing robust
support for medical research. BioBERT [67] is a bidirec-
tional encoder model based on the Transformer architec-
ture, specifically designed for biomedical text mining. By
training on a large corpus of biomedical literature, it can
understand and process specific vocabulary and concepts
in the biomedical field, making precise analysis of med-
ical literature possible. In the medical knowledge discov-
ery, LMs have demonstrated exceptional performance in
medical testing. They can understand medical questions
and guide users in deep thinking through dialogue, help-
ing them discover new medical knowledge and insights.
By constructing a medical corpus that covers multidisci-
plinary medical literature, textbooks, guidelines, reports,
patient records, and other data, LMs can excel in structured
and standardized medical knowledge question-answering
and various clinical text analysis tasks such as report qual-
ity control. They can also undertake forward-looking explo-
rations such as diagnostic predictions.

6. Intelligent Medical Q&A and Consultation: Chatbots pow-
ered by LMs can also play a significant role in medical
consultations and health inquiries. These intelligent assis-
tants can answer patients’ common questions about their
conditions, medications, and side effects, enhancing patient
experience. Furthermore, when necessary, they can direct
patients to appropriate medical facilities or specialists for
further consultation, optimizing the allocation of medical
resources.

7. Healthcare Process Optimization: In electronic health
record management, LMs can automatically extract and
organize critical information from patients’ medical histo-
ries, thereby reducing the paperwork burden on healthcare
professionals and enhancing the readability and retrieval

efficiency of the data. By leveraging natural language pro-
cessing techniques, LMs can quickly and accurately iden-
tify patients’ medical histories, allergy histories, and current
medication statuses, providing doctors with comprehensive
yet concise patient profiles [68].

8. Medical Education and Training: LMs can simulate real-
istic medical scenarios and cases, providing medical stu-
dents with immersive learning experiences. They can also
guide students to think and explore actively through dia-
logue and interaction, cultivating their clinical thinking
and decision-making abilities. Furthermore, these mod-
els can intelligently generate case studies and examina-
tion questions to direct students to complete the analysis of
related subjects. Adopting a full-scenario and full-process
application path that integrates clinical practice, data col-
lection, scientific research, and teaching creates an innova-
tive model for clinical diagnosis, data acquisition, storage
and management, database construction, scientific research
model design, and scientific research service support.

9. Hospital management: In medical documentation genera-
tion, LMs have demonstrated the ability to automatically
produce high-quality admission/discharge summaries, case
reports, surgical records, and other medical documents.
This not only enhances the accuracy and standardization
of medical documentation but also significantly reduces the
workload of healthcare professionals. Furthermore, these
models can generate personalized treatment plans and
nursing protocols based on patients’ specific conditions and
doctors’ instructions, providing patients with more precise
and efficient medical services. In ward management, LMs
can achieve intelligent bed allocation, patient tracking, and
nursing resource scheduling by integrating and analyzing
multidimensional data, including patients’ medical histo-
ries, examination and test results, and medication records.
This improves the efficiency of ward utilization and patient
satisfaction. Additionally, LMs can predict patients’ medi-
cal needs, providing timely alerts and decision support for
healthcare professionals, enhancing the hospital’s manage-
ment level and medical service quality. With technological
advancements, LMs are poised to achieve more innovations
in the field of medical assistance, continuously enhancing
the quality and efficiency of global medical services and
bringing more personalized and precise healthcare services
to society.

6 | Conclusions

The rapid development of LMs is reshaping many industries
because they can better mine the value of data to accomplish
assisted decisions. However, LMs face a number of unsolved
problems, including data and energy consumption, catastrophic
forgetting, and poor reasoning ability, which limit their appli-
cations. This paper has introduced the development of LMs.
Then, the current problems of LMs are identified, and poten-
tial solutions are discussed. Finally, the applications of LMs in
autonomous driving, smart industrial productions, and intelli-
gent medical assistance are discussed. We believe that LMs have
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a promising future and can empower the development of various
industries.
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