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ABSTRACT 
Clusters of computers have emerged as mainstream parallel 
and distributed platforms for high-performance, high-
throughput and high-availability computing. To enable 
effective resource management on clusters, numerous 
cluster managements systems and schedulers have been 
designed. However, their focus has essentially been on 
maximizing CPU performance, but not on improving the 
value of utility delivered to the user and quality of services. 
This paper presents a new computational economy driven 
scheduling system called Libra, which has been designed to 
support allocation of resources based on the users’ quality 
of service (QoS) requirements. It is intended to work as an 
add-on to the existing queuing and resource management 
system. The first version has been implemented as a plugin 
scheduler to the PBS (Portable Batch System) system. The 
scheduler offers market-based economy driven service for 
managing batch jobs on clusters by scheduling CPU time 
according to user-perceived value (utility), determined by 
their budget and deadline rather than system performance 
considerations. The Libra scheduler ensures that both these 
constraints are met within an O(n) run-time. The Libra 
scheduler has been simulated using the GridSim toolkit to 
carry out a detailed performance analysis. Results show that 
the deadline and budget based proportional resource 
allocation strategy improves the utility of the system and 
user satisfaction as compared to system-centric scheduling 
strategies. 
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INTRODUCTION 
Clusters of commodity computers (PCs) have emerged as 
mainstream parallel and distributed platforms for high-
performance, high-throughput and high-availability 
computing [1]. They are presented together as a single, 
unified resource to the end users by middleware 
technologies such as resource management and scheduling 
system. Users submit jobs in batch to a resource 
management system queue and a centralized scheduler 
decides how to prioritize and allocate resources for jobs 
execution. To minimize the response time, the scheduling 
system strategy needs to prioritize competing user jobs with 
varying levels of priorities and importance and allocate 

resources accordingly. To perform these tasks effectively, 
schedulers require knowledge of how users value their 
computations and their quality of service requirements, 
which varies from time to time [6]; schedulers should be 
able to provide a feedback signal that prevents users from 
submitting unbounded amounts of work [8]. Unfortunately, 
the current approaches (e.g., Condor [2], PBS [9], SGE 
[11], and LSF [12]) to batch scheduling provide limited 
means for users to expresses their valuation of resources 
and quality of service requirements, if any. Also, feedback 
signals provide no incentive for users to pay attention to 
and respond to them. 

To overcome the shortcomings of the traditional system-
centric cluster management systems, we advocate the use of 
the computational economy metaphor [4][13][14][15]. 
Computational economy enables the regulation of supply 
and demand of resources. It allows the users to specify QoS 
parameters with jobs and also offers incentive to users for 
relaxing QoS requirements. This essentially means that user 
constraints such as deadline and budget are more important 
in determining the priority of a job by the scheduler rather 
than system policies such as ordering jobs according to the 
basis of submission time.  

RELATED WORK AND TECHNOLOGIES 
In our background research, we came across the following 
related work and technologies that have either influenced or 
have served as a base platform during the implementation 
and evaluation of Libra scheduler: REXEC Cluster 
Scheduler [7], Portable Batch System [9], Nimrod-G Grid 
Resource Broker [3], GridSim Toolkit [6], and PBSWeb 
[10]. 

RESOURCE MANAGEMENT AND SCHEDULING (RMS) 
THROUGH LIBRA 
Resource Management and Scheduling (RMS) is the act of 
distributing applications among computers to maximize 
their throughput. It also enables the effective and efficient 
utilization of the resources available. The software that 
performs the RMS consists of two components: a resource 
manager and a resource scheduler. The resource manager 
component is concerned with problems, such as locating 
and allocating computational resources, authentication, as 
well as tasks such as process creation and migration. The 



resource scheduler component is concerned with tasks such 
as queuing applications, as well as resource location and 
assignment.  

The Libra RMS architecture consists of clients, a server 
(that acts as mediator between the user and cluster nodes), 
and a set of cluster nodes that provide the computing horse 
power. Each cluster node runs a resource-monitoring 
daemon that maintains up-to-date information about the 
node in which it resides. A user interacts with the RMS 
environment via a client program, which could be a Web 
browser or a customized X-windows interface, through 
which job details may be provided to the server. These 
details may include information such as location of the 
executable and input data sets, where standard output is to 
be placed, system type, maximum length of run, whether the 
job needs sequential or parallel resources, and so on. In 
addition, Libra allows the users to express valuation of 
computations and QoS requirements via the parameters 
such as deadline and budget. Once a job has been submitted 
to Libra, it uses the job details and users’ QoS requirements 
to place, schedule, and run the job. 

LIBRA SCHEDULING ALGORITHM 
When users submit jobs, they must submit them with values 
for the job’s estimated run-time (assuming a stand-alone 
node), the deadline within which they require results, and 
the budget they are willing to pay to get the job done within 
this deadline. These three variables will be referred to by E, 
D, and B, respectively. The server receives such requests, 
and based on criteria to be described, either accepts or 
rejects the job (informing the user in eithercase). 

The assumptions of the algorithm are as follows: 

1) All cluster nodes are dedicated (i.e., they run only jobs 
approved by the server), and heterogenous (i.e., having the 
same hardware and software running on them). 

2) Further, the underlying operating system on the cluster 
nodes accepts a parameter that is the percentage of CPU the 
job must be allocated, and must be able to enforce this 
value (as long as the sum of all shares is less than or equal 
to 100). 

3) The estimated runtime (E) given by the user is correct for 
a standalone job running on any node of the cluster. 

Thus, users submit jobs with these three values to the 
central server (the gateway into the cluster). There is no 
mechanism for users to interact with each other, and 
bargain on the use of resources according to their 
considerations, as is provided in a grid-computing 
environment by projects like Nimrod-G. 

The server first checks whether the budget is acceptable 
based on a simple minimum cost formula. The formula we 
developed was: 
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processing cost, which can be driven by demand and supply 
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offered to the user for specifying the actual deadline. It 
offers higher incentive for users for relaxing the deadline.   

The logic of this cost function is as follows. For a specific 
job, the user must be charged on the amount of cluster 
hours he is using regardless of deadline – thus, for longer 
jobs, he will be charged more than for shorter ones. This is 
managed by the first term in the equation. The second term 
is a measure of the user’s ‘niceness’ – the relative sacrifice 
he is giving in terms of his ratio of estimate to deadline. For 
a constant estimate, if the user increases his deadline, he is 
allowing the cluster more time to handle his request, and 
hence, should be charged less than if he were giving the 
cluster less time (and hence, requesting resources more 
urgently). The sum of both these values is the actual cost to 
the user. 

If the budget submitted by the user is acceptable, each of 
the cluster’s nodes is queried to see whether they can 
complete this job within its deadline (this decision-making 
is explained below). The response by each node is either a 
rejection, or an acceptance, in which case the node also 
gives a measure of the current load it is currently servicing. 
Thus, if more than one node returns an acceptance, the least 
loaded node is the one which will finally be sent the job. 

Each node keeps track of the status of jobs running on it; 
specifically, the CPU-time they have run for so far, and 
hence, the remaining run-time for the job. Additionally, 
nodes also keep track of the time left for the job’s deadline 
to expire. With these two values (run-time left, and deadline 
left), the nodes can calculate the required CPU share that 
needs to be dedicated to the job so that it may complete its 
remaining CPU-hours within the remaining deadline. For 
instance, if a job has a remaining run-time of 2 CPU-hours, 
but a deadline of 4 realtime-hours, the node needs to 
allocate at least 50% of the CPU to the job over the next 4 
hours for it to finish within the deadline.  
Assuming it accepts the newly requested job, the node 
calculates the total requirement of the CPU by all of its 
jobs. If and only if the summation of all jobs’ CPU 
requirements is less than or equal to 100%, the job is 
acceptable, and the node informs the server of this. Also, 
the node sends the server the value of total CPU percentage 
as it just calculated (which is the required load on the node 
if the newly requested job is sent to this node). 

If none of the nodes can run the job, the server informs the 
user that its deadline could not be met by any node, and 
hence the user must try later, or try again with a more 
relaxed deadline. However, if there is one or more node that 
can run the job, the job is sent to the least loaded node 
which responded with an acceptance. The node receives the 
job, and dispatches it, along with the CPU share 
requirement, to the operating system. Periodically 
(depending on the CMS and the OS), the node receives a 
value of CPU-time completed from the OS, and updates its 
internal book-keeping with this new value. If the job has 



run more or less than it was supposed to in this time, the 
node may request the OS to update its CPU share with a 
new value as calculated taking into account the new values 
of run-time left and deadline left.  

Thus, by ensuring that each node is keeping within the CPU 
time requirements, the Libra scheduler is able to guarantee 
that jobs will be completed within their deadline; if any new 
job is to be dispatched to any node, it will only be allowed 
if, by virtue of its load requirements, its load requirements 
are possible to be met along with the other jobs running on 
the node. 

IMPLEMENTATION 
The implementation and evaluation of Libra scheduler and 
its algorithm is achieved by leveraging existing software 
infrastructure. The Libra scheduler has been implemented 
as an add-on package for PBS resource management 
system. The PBSWeb interface has been enhanced to 
support Libra’s mechanism to allow users to express their 
valuation of computations and QoS requirements. The 
performance of the scheduling algorithm has been evaluated 
through simulation using the GridSim toolkit. 

Libra with PBS 
For actual performance of the Libra algorithm, we 
implemented Libra in Portable Batch System (PBS). The 
implementation tested successfully on a cluster of 4 nodes, 
with job acception, rejection, and completion easily 
repeatable and verifiable. 

Libra with PBSWeb 
For making our cluster more user-friendly and accessible, 
we designed an efficient front-end for the PBS-Libra engine 
using PBSWeb, an interface add-on to PBS developed at 
the University of Alberta. The PBSWeb interface was 
modified to work with Libra, included the provision for E, 
D and B with the job parameters.  

Libra Simulation Using the GridSim Toolkit 
For simulation purposes we looked to the GridSim toolkit 
that allows modeling and simulation of parallel and 
distributed system entities for evaluation of scheduling 
algorithms. Although, it has been developed to simulate 
scheduling on grids (multiple users competing for 
heterogeneous resources), we have been able to use it 
simulate scheduling on clusters with minimal effort. 

PERFORMANCE EVALUATION 
The majority of the evaluation was carried out using 
GridSim. The only result that was sufficiently different 
from what we expected was that two jobs (carrying out 
mathematically intensive graphical ray-tracing) running 
simultaneously on a node ran faster when timeshared than 
when run sequentially one after the other. Our assumption 
was that timesharing increases overhead via context 
switching; however, we hypothesize that the offsetting 
factor is that timesharing increases the throughput of the 
CPU because each job can use a different resource 
simultaneously (e.g., disk I/O along with math calculations).   

Generating 2 batches of jobs (100 jobs, 200 jobs) of 
different sizes with deadlines and budgets, we ran the same 
data on clusters of 10 and 20 nodes and compared the 
results obtained using two different scheduling policies: 
Libra and FIFO (First In First Out). 

The 1st batch with 100 jobs/experiments is formulated as 
follows. Arrival times were spread randomly over the 
experiments, ranging from t=1 to t=102 simulation time. 
Length of the jobs ranged randomly from 1000 MIs to 
10900 MIs. 80% of the jobs were with a budget of b=1000, 
the other 20% had random amounts ranging from b=1000 to 
b=12000. Deadlines again ranged randomly from d=1 to 
d=1200. 

The 2nd batch with 200 jobs/experiments is formulated as 
follows. Arrival times were spread randomly over the 
experiments, ranging from t=1 to t=208 simulation time. 
Length of the jobs ranged randomly from 1000 MIs to 
10900 MIs. 80% of the jobs were with a budget of b=1000, 
the other 40% had random amounts ranging from b=1000 to 
b=12000. Deadlines again ranged randomly from d=1 to 
d=1200. 

The results based on applying these input data to both Libra 
and PBS’ default FIFO scheduling policy are summarized 
in Table 1.  Job completion in Libra implies that the job 
was first accepted and then completed within the deadline; 
if the job was rejected, it counts as not having completed 
within the deadline. Job completion in PBS’s FIFO is 
simply whether or not the job managed to complete within 
the user’s given deadline, as there is no job admission 
control in FIFO’s policy (hence, no possibility of job 
acceptance/rejection), and no sensitivity to user deadline. 

No. of Jobs 
Completed in Time 

No. of Jobs Not 
Completed in Time No. of 

Jobs 
No. of 
Nodes 

PBS FIFO Libra PBS FIFO Libra 

10 77 86 23 14 
100 

20 86 90 14 10 

10 95 102 105 98 
200 

20 165 177 35 23 

Table 1: No. of jobs accepted and rejected by PBS FIFO 
and Libra scheduling strategies. 

 

The results showed that in all four cases the Libra 
proportional share algorithm performs better than the PBS’s 
FIFO algorithm, in that it completed more jobs within the 
deadline. Although there isn’t much of a difference between 
the two algorithms when the cluster is large and the 
workload is small, this does not mean that this is always the 
case. We see that as the workload increases the difference 
between the number of jobs successfully completed 
between the two increases.    



CONCLUSION AND FUTURE WORK 
There is a great scope for economy-based scheduling in 
HPC as HPC resources are shared among many users. 
Hence, the allocation of resources based on the amount they 
pay and the deadline within which they require results is 
more relevant to them. Thus, architectures that incorporate 
such constraints would optimize user utility by completing 
jobs within this budget and deadline. 

The algorithm we developed can be improved much further. 
A simple extension could be that instead of time-sharing 
resources on one node, each node should be dedicated to 
each job (with more urgent jobs pre-empting already-
running jobs if by doing so more jobs can be handled within 
their deadlines), and all calculations of whether jobs can be 
finished within their deadlines should be carried out with 
that in mind. This model benefits from minimized context 
switching; however, it disallows the simultaneous use of 
different resources by timeshared jobs. In addition, the 
entire structure of user-based parameters needs to be tested 
‘in the wild’, with real users submitting jobs on such a 
system. This would aid in fine-tuning the current system to 
users’ requirements, as well as in discovering new user 
parameters, unaccounted for in Libra. 

Future work can focus on developing new deadline and 
budget driven algorithms for scheduling applications 
created using the parameter-sweep model (where one 
program is to be run repeatedly using different parameters 
every time), and parallel applications. In addition, different 
pricing strategies driven by supply-and-demand for 
resources and economic models need to be investigated. 
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