
Libra: An Economy-Driven Job Scheduling System for
Clusters

Jahanzeb Sherwani, Nosheen Ali,
 Nausheen Lotia, Zahra Hayat

Lahore University of Management Sciences
Sector U, DHA, Lahore, Pakistan

jahanzeb@cmu.edu

Rajkumar Buyya
Grid Computing and Distributed Systems Lab.
Dept. of Computer Science and Software Engg.

The University of Melbourne, Australia
raj@cs.mu.oz.au

ABSTRACT
Clusters of computers have emerged as mainstream parallel
and distributed platforms for high-performance, high-
throughput and high-availability computing. To enable
effective resource management on clusters, numerous
cluster managements systems and schedulers have been
designed. However, their focus has essentially been on
maximizing CPU performance, but not on improving the
value of utility delivered to the user and quality of services.
This paper presents a new computational economy driven
scheduling system called Libra, which has been designed to
support allocation of resources based on the users’ quality
of service (QoS) requirements. It is intended to work as an
add-on to the existing queuing and resource management
system. The first version has been implemented as a plugin
scheduler to the PBS (Portable Batch System) system. The
scheduler offers market-based economy driven service for
managing batch jobs on clusters by scheduling CPU time
according to user-perceived value (utility), determined by
their budget and deadline rather than system performance
considerations. The Libra scheduler ensures that both these
constraints are met within an O(n) run-time. The Libra
scheduler has been simulated using the GridSim toolkit to
carry out a detailed performance analysis. Results show that
the deadline and budget based proportional resource
allocation strategy improves the utility of the system and
user satisfaction as compared to system-centric scheduling
strategies.

Keywords
Cluster computing, scheduling, economy-driven, user value

INTRODUCTION
Clusters of commodity computers (PCs) have emerged as
mainstream parallel and distributed platforms for high-
performance, high-throughput and high-availability
computing [1]. They are presented together as a single,
unified resource to the end users by middleware
technologies such as resource management and scheduling
system. Users submit jobs in batch to a resource
management system queue and a centralized scheduler
decides how to prioritize and allocate resources for jobs
execution. To minimize the response time, the scheduling
system strategy needs to prioritize competing user jobs with
varying levels of priorities and importance and allocate

resources accordingly. To perform these tasks effectively,
schedulers require knowledge of how users value their
computations and their quality of service requirements,
which varies from time to time [6]; schedulers should be
able to provide a feedback signal that prevents users from
submitting unbounded amounts of work [8]. Unfortunately,
the current approaches (e.g., Condor [2], PBS [9], SGE
[11], and LSF [12]) to batch scheduling provide limited
means for users to expresses their valuation of resources
and quality of service requirements, if any. Also, feedback
signals provide no incentive for users to pay attention to
and respond to them.

To overcome the shortcomings of the traditional system-
centric cluster management systems, we advocate the use of
the computational economy metaphor [4][13][14][15].
Computational economy enables the regulation of supply
and demand of resources. It allows the users to specify QoS
parameters with jobs and also offers incentive to users for
relaxing QoS requirements. This essentially means that user
constraints such as deadline and budget are more important
in determining the priority of a job by the scheduler rather
than system policies such as ordering jobs according to the
basis of submission time.

RELATED WORK AND TECHNOLOGIES
In our background research, we came across the following
related work and technologies that have either influenced or
have served as a base platform during the implementation
and evaluation of Libra scheduler: REXEC Cluster
Scheduler [7], Portable Batch System [9], Nimrod-G Grid
Resource Broker [3], GridSim Toolkit [6], and PBSWeb
[10].

RESOURCE MANAGEMENT AND SCHEDULING (RMS)
THROUGH LIBRA
Resource Management and Scheduling (RMS) is the act of
distributing applications among computers to maximize
their throughput. It also enables the effective and efficient
utilization of the resources available. The software that
performs the RMS consists of two components: a resource
manager and a resource scheduler. The resource manager
component is concerned with problems, such as locating
and allocating computational resources, authentication, as
well as tasks such as process creation and migration. The

resource scheduler component is concerned with tasks such
as queuing applications, as well as resource location and
assignment.

The Libra RMS architecture consists of clients, a server
(that acts as mediator between the user and cluster nodes),
and a set of cluster nodes that provide the computing horse
power. Each cluster node runs a resource-monitoring
daemon that maintains up-to-date information about the
node in which it resides. A user interacts with the RMS
environment via a client program, which could be a Web
browser or a customized X-windows interface, through
which job details may be provided to the server. These
details may include information such as location of the
executable and input data sets, where standard output is to
be placed, system type, maximum length of run, whether the
job needs sequential or parallel resources, and so on. In
addition, Libra allows the users to express valuation of
computations and QoS requirements via the parameters
such as deadline and budget. Once a job has been submitted
to Libra, it uses the job details and users’ QoS requirements
to place, schedule, and run the job.

LIBRA SCHEDULING ALGORITHM
When users submit jobs, they must submit them with values
for the job’s estimated run-time (assuming a stand-alone
node), the deadline within which they require results, and
the budget they are willing to pay to get the job done within
this deadline. These three variables will be referred to by E,
D, and B, respectively. The server receives such requests,
and based on criteria to be described, either accepts or
rejects the job (informing the user in eithercase).

The assumptions of the algorithm are as follows:

1) All cluster nodes are dedicated (i.e., they run only jobs
approved by the server), and heterogenous (i.e., having the
same hardware and software running on them).

2) Further, the underlying operating system on the cluster
nodes accepts a parameter that is the percentage of CPU the
job must be allocated, and must be able to enforce this
value (as long as the sum of all shares is less than or equal
to 100).

3) The estimated runtime (E) given by the user is correct for
a standalone job running on any node of the cluster.

Thus, users submit jobs with these three values to the
central server (the gateway into the cluster). There is no
mechanism for users to interact with each other, and
bargain on the use of resources according to their
considerations, as is provided in a grid-computing
environment by projects like Nimrod-G.

The server first checks whether the budget is acceptable
based on a simple minimum cost formula. The formula we
developed was:

&RVW� �
(���
(�'��ZKHUH� �DQG� �DUH�FRHIILFLHQWV�

7KH� YDOXH� RI� � KDV� LPSDFW� RQ� WKH� UHVRXUFH� SULFLQJ�MRE�

processing cost, which can be driven by demand and supply

IRU� UHVRXUFHV�� 7KH� YDOXH� RI� � KDV� LPSDFW� RQ� WKH� LQFHQWLYH�

offered to the user for specifying the actual deadline. It
offers higher incentive for users for relaxing the deadline.

The logic of this cost function is as follows. For a specific
job, the user must be charged on the amount of cluster
hours he is using regardless of deadline – thus, for longer
jobs, he will be charged more than for shorter ones. This is
managed by the first term in the equation. The second term
is a measure of the user’s ‘niceness’ – the relative sacrifice
he is giving in terms of his ratio of estimate to deadline. For
a constant estimate, if the user increases his deadline, he is
allowing the cluster more time to handle his request, and
hence, should be charged less than if he were giving the
cluster less time (and hence, requesting resources more
urgently). The sum of both these values is the actual cost to
the user.

If the budget submitted by the user is acceptable, each of
the cluster’s nodes is queried to see whether they can
complete this job within its deadline (this decision-making
is explained below). The response by each node is either a
rejection, or an acceptance, in which case the node also
gives a measure of the current load it is currently servicing.
Thus, if more than one node returns an acceptance, the least
loaded node is the one which will finally be sent the job.

Each node keeps track of the status of jobs running on it;
specifically, the CPU-time they have run for so far, and
hence, the remaining run-time for the job. Additionally,
nodes also keep track of the time left for the job’s deadline
to expire. With these two values (run-time left, and deadline
left), the nodes can calculate the required CPU share that
needs to be dedicated to the job so that it may complete its
remaining CPU-hours within the remaining deadline. For
instance, if a job has a remaining run-time of 2 CPU-hours,
but a deadline of 4 realtime-hours, the node needs to
allocate at least 50% of the CPU to the job over the next 4
hours for it to finish within the deadline.
Assuming it accepts the newly requested job, the node
calculates the total requirement of the CPU by all of its
jobs. If and only if the summation of all jobs’ CPU
requirements is less than or equal to 100%, the job is
acceptable, and the node informs the server of this. Also,
the node sends the server the value of total CPU percentage
as it just calculated (which is the required load on the node
if the newly requested job is sent to this node).

If none of the nodes can run the job, the server informs the
user that its deadline could not be met by any node, and
hence the user must try later, or try again with a more
relaxed deadline. However, if there is one or more node that
can run the job, the job is sent to the least loaded node
which responded with an acceptance. The node receives the
job, and dispatches it, along with the CPU share
requirement, to the operating system. Periodically
(depending on the CMS and the OS), the node receives a
value of CPU-time completed from the OS, and updates its
internal book-keeping with this new value. If the job has

run more or less than it was supposed to in this time, the
node may request the OS to update its CPU share with a
new value as calculated taking into account the new values
of run-time left and deadline left.

Thus, by ensuring that each node is keeping within the CPU
time requirements, the Libra scheduler is able to guarantee
that jobs will be completed within their deadline; if any new
job is to be dispatched to any node, it will only be allowed
if, by virtue of its load requirements, its load requirements
are possible to be met along with the other jobs running on
the node.

IMPLEMENTATION
The implementation and evaluation of Libra scheduler and
its algorithm is achieved by leveraging existing software
infrastructure. The Libra scheduler has been implemented
as an add-on package for PBS resource management
system. The PBSWeb interface has been enhanced to
support Libra’s mechanism to allow users to express their
valuation of computations and QoS requirements. The
performance of the scheduling algorithm has been evaluated
through simulation using the GridSim toolkit.

Libra with PBS
For actual performance of the Libra algorithm, we
implemented Libra in Portable Batch System (PBS). The
implementation tested successfully on a cluster of 4 nodes,
with job acception, rejection, and completion easily
repeatable and verifiable.

Libra with PBSWeb
For making our cluster more user-friendly and accessible,
we designed an efficient front-end for the PBS-Libra engine
using PBSWeb, an interface add-on to PBS developed at
the University of Alberta. The PBSWeb interface was
modified to work with Libra, included the provision for E,
D and B with the job parameters.

Libra Simulation Using the GridSim Toolkit
For simulation purposes we looked to the GridSim toolkit
that allows modeling and simulation of parallel and
distributed system entities for evaluation of scheduling
algorithms. Although, it has been developed to simulate
scheduling on grids (multiple users competing for
heterogeneous resources), we have been able to use it
simulate scheduling on clusters with minimal effort.

PERFORMANCE EVALUATION
The majority of the evaluation was carried out using
GridSim. The only result that was sufficiently different
from what we expected was that two jobs (carrying out
mathematically intensive graphical ray-tracing) running
simultaneously on a node ran faster when timeshared than
when run sequentially one after the other. Our assumption
was that timesharing increases overhead via context
switching; however, we hypothesize that the offsetting
factor is that timesharing increases the throughput of the
CPU because each job can use a different resource
simultaneously (e.g., disk I/O along with math calculations).

Generating 2 batches of jobs (100 jobs, 200 jobs) of
different sizes with deadlines and budgets, we ran the same
data on clusters of 10 and 20 nodes and compared the
results obtained using two different scheduling policies:
Libra and FIFO (First In First Out).

The 1st batch with 100 jobs/experiments is formulated as
follows. Arrival times were spread randomly over the
experiments, ranging from t=1 to t=102 simulation time.
Length of the jobs ranged randomly from 1000 MIs to
10900 MIs. 80% of the jobs were with a budget of b=1000,
the other 20% had random amounts ranging from b=1000 to
b=12000. Deadlines again ranged randomly from d=1 to
d=1200.

The 2nd batch with 200 jobs/experiments is formulated as
follows. Arrival times were spread randomly over the
experiments, ranging from t=1 to t=208 simulation time.
Length of the jobs ranged randomly from 1000 MIs to
10900 MIs. 80% of the jobs were with a budget of b=1000,
the other 40% had random amounts ranging from b=1000 to
b=12000. Deadlines again ranged randomly from d=1 to
d=1200.

The results based on applying these input data to both Libra
and PBS’ default FIFO scheduling policy are summarized
in Table 1. Job completion in Libra implies that the job
was first accepted and then completed within the deadline;
if the job was rejected, it counts as not having completed
within the deadline. Job completion in PBS’s FIFO is
simply whether or not the job managed to complete within
the user’s given deadline, as there is no job admission
control in FIFO’s policy (hence, no possibility of job
acceptance/rejection), and no sensitivity to user deadline.

No. of Jobs
Completed in Time

No. of Jobs Not
Completed in Time No. of

Jobs
No. of
Nodes

PBS FIFO Libra PBS FIFO Libra

10 77 86 23 14
100

20 86 90 14 10

10 95 102 105 98
200

20 165 177 35 23

Table 1: No. of jobs accepted and rejected by PBS FIFO
and Libra scheduling strategies.

The results showed that in all four cases the Libra
proportional share algorithm performs better than the PBS’s
FIFO algorithm, in that it completed more jobs within the
deadline. Although there isn’t much of a difference between
the two algorithms when the cluster is large and the
workload is small, this does not mean that this is always the
case. We see that as the workload increases the difference
between the number of jobs successfully completed
between the two increases.

CONCLUSION AND FUTURE WORK
There is a great scope for economy-based scheduling in
HPC as HPC resources are shared among many users.
Hence, the allocation of resources based on the amount they
pay and the deadline within which they require results is
more relevant to them. Thus, architectures that incorporate
such constraints would optimize user utility by completing
jobs within this budget and deadline.

The algorithm we developed can be improved much further.
A simple extension could be that instead of time-sharing
resources on one node, each node should be dedicated to
each job (with more urgent jobs pre-empting already-
running jobs if by doing so more jobs can be handled within
their deadlines), and all calculations of whether jobs can be
finished within their deadlines should be carried out with
that in mind. This model benefits from minimized context
switching; however, it disallows the simultaneous use of
different resources by timeshared jobs. In addition, the
entire structure of user-based parameters needs to be tested
‘in the wild’, with real users submitting jobs on such a
system. This would aid in fine-tuning the current system to
users’ requirements, as well as in discovering new user
parameters, unaccounted for in Libra.

Future work can focus on developing new deadline and
budget driven algorithms for scheduling applications
created using the parameter-sweep model (where one
program is to be run repeatedly using different parameters
every time), and parallel applications. In addition, different
pricing strategies driven by supply-and-demand for
resources and economic models need to be investigated.

ACKNOWLEDGEMENTS
Special thanks to the members of the PBS mailing list who
gave us answers to many of our questions. We thank Shoaib
Burq and Srikumar Venugopal for their comments.

Further information on Libra and its source code is
available from the Gridbus Project: http://www.gridbus.org

REFERENCES
1. R. Buyya (ed.). High Performance Cluster Computing:

Architectures and Systems, Volume 1, Prentice Hall,
USA, 1999.

2. J. Basney and M. Livny, Deploying a High Throughput
Computing Cluster, High Performance Cluster
Computing, R. Buyya, Editor, Vol. 1, Chapter 5,
Prentice Hall PTR, May 1999.

3. R. Buyya, D. Abramson, and J. Giddy, Nimrod-G: An
Architecture for a Resource Management and
Scheduling System in a Global Computational Grid,
Proceedings of the 4th International Conference and
Exhibition on High Performance Computing in Asia-
Pacific Region (HPC ASIA 2000), May 14-17, 2000,
Beijing, China.

4. R. Buyya, D. Abramson, and J. Giddy, An Economy
Driven Resource Management Architecture for Global
Computational Power Grids, Proceedings of the
International Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA
2000), June 26-29, 2000, Las Vegas, USA, 2000.

5. R. Buyya and M. Murshed, GridSim: A Toolkit for the
Modeling and Simulation of Distributed Resource
Management and Scheduling for Grid Computing, The
Journal of Concurrency and Computation: Practice and
Experience (CCPE), Wiley Press, May 2002.

6. R. Buyya, D. Abramson, and J. Giddy, An Economy
Grid Architecture for Service-Oriented Grid Computing,
10th IEEE International Heterogeneous Computing
Workshop (HCW 2001), California, USA, April 2001.

7. B. Chun and D. Culler, REXEC: A Decentralized,
Secure Remote Execution Environment for Clusters,
Proceedings of 4th Workshop on Communication,
Architecture, and Applications for Network-based
Parallel Computing, Toulouse, France, January 2000.

8. B. Chun and D. Culler, User-centric Performance
Analysis of Market-based Cluster Batch Schedulers,
Proceedings of 2nd IEEE International Symposium on
Cluster Computing and the Grid, Berlin (CCGrid 2002),
Germany, May 2002.

9. Veridian Systems, OpenPBS v2.3: The Portable Batch
System Software, Veridian Systems, Inc., CA, Sept.
2000. http://www.openpbs.org/scheduler.html

10. George Ma and Paul Lu. PBSWeb:A Web-based
Interface to the Portable Batch System, 12th IASTED
International Conference on Parallel and Distributed
Computing and Systems (PDCS), Las Vegas, U.S.A.,
November 6-9, 2000.

11. W. Gentzsch, Sun Grid Engine (SGE): A Cluster
Resource Manager, http://gridengine.sunsource.net/

12. Platform, Load Sharing Facility (LSF),
http://www.platform.com/products/wm/LSF/

13. C. Waldspurger, T. Hogg, B. Huberman, J. Kephart, and
W. Stornetta, Spawn: A Distributed Computational
Economy, IEEE Transactions on Software Engineering,
Vol. 18, No. 2, IEEE CS Press, USA, February 1992.

14. M. Stonebraker, R. Devine, M. Kornacker, W. Litwin,
A. Pfeffer, A. Sah, and C. Staelin, An Economic
Paradigm for Query Processing and Data Migration in
Mariposa, Proceedings of 3rd International Conference
on Parallel and Distributed Information Systems,
Austin, USA, 28-30 Sept. 1994, IEEE CS Press, 1994.

15. B. Chun and D. Culler, Market-based Proportional
Resource Sharing for Clusters, University of California
at Berkeley, Computer Science Division, Technical
Report CSD-1092, January 2000.

