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Abstract—Load imbalance can lead to the emergence of strag-
glers, i.e., join instances that significantly lag behind others in
processing data streams. Currently, state-of-the-art solutions are
capable of balancing the load between join instances to mitigate
stragglers by managing hot keys and random partitioning.
However, these solutions rely on either complicated routing
strategies or resource-inefficient processing structures, making
them susceptible to frequent changes in load between instances.
Therefore, we present Ls-Stream, a data stream scheduler that
aims to support dynamic workload assignment for join instances
to lighten stragglers. This paper outlines our solution from the
following aspects: (1) The models for partitioning, communica-
tion, matrix, and resource are developed, formalizing problems
like imbalanced load between join instances and state migration
costs. (2) Ls-Stream employs a two-level routing strategy for
workload allocation by combining hash-based and key-based data
partitioning, specifying the destination join instances for data
tuples. (3) Ls-Stream also constructs a fine-grained model for
minimizing the state migration cost. This allows us to make trade-
offs between data transfer overhead and migration benefits. (4)
Experimental results demonstrate significant improvements made
by Ls-Stream: reducing maximum system latency by 49.3% and
increasing maximum throughput by more than 2x compared to
existing state-of-the-art works.

Index Terms—Distributed stream computing, Stream join,
Straggler instances, Load balancing, State migration

I. INTRODUCTION

STREAM join is one of the most critical and resource-
intensive operators in stream processing systems [1]. It

finds widespread use in various domains, including finance,
e-commerce, transportation, and healthcare [2]–[4]. In com-
parison to traditional database join operations, stream join is
more challenging due to the continuous, high-speed, and real-
time features of data streams [5]. Stream joins must merge
data from two sources for complex data analysis, placing
a significant demand on system resources [6]. Therefore,
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achieving efficient stream joins is pivotal for enhancing system
performance [7].

Efficient stream joins must meet the following fundamental
requirements: 1) Real-time: The system must quickly respond
and reflect the data’s value in a short period of time; 2)
Resource efficiency: The system must effectively leverage
available computing resources within the cluster; 3) Complete-
ness: The system must be capable of joining any pair of tuples
from two streams and producing the result exactly once.

To achieve these goals, distributed stream join systems
have explored efficient data stream schedulers to execute
complex multi-stream join procedures in parallel [8]. Based
on various tuple partitioning strategies, stream schedulers can
be categorized into two types: random partitioning and hash
partitioning.

The random partitioning strategy evenly assigns data tuples
to join instances in self-stream and broadcasts all data tuples
to join instances in other streams. Consequently, this method
balances the system load by distributing data tuples evenly
between join instances. However, due to the broadcast, this
approach leads to data tuple replication, resulting in increased
memory and communication overhead [9].

In contrast, hash partitioning strategy assigns data tuples to
join instances based on their key values. Data tuples with the
same key value are directed to the same join instance, effec-
tively mitigating the overhead caused by random partitioning.
However, real-world business scenarios often exhibit data skew
[10], leading to stragglers in hash partitioning strategies [11],
where some join instances take significantly longer than others
to process data streams.

In a ride-sharing service scenario, the stream-joining ap-
plication efficiently assigns passenger orders to nearby taxis.
Within the join instances, the passenger stream queries the taxi
driver stream to dispatch orders to taxis. Using the real-world
DiDi Chuxing datasets [12], which includes both passenger
order stream and taxi stream, the data is distributed across
100 join instances using a hash partitioning strategy. Fig. 1
shows the proportion of data processed by join instances,
highlighting uneven distribution. Fig. 2 ranks join instances
by their processed data size, revealing a highly skewed dis-
tribution of data tuples. For example, the top 10% of join
instances process 39.6% of the data tuples, while the bottom
10% process none. This skew occurs because large volumes
of data features aggregate within the same instances, resulting
in straggler issues [13]. Even with manual adjustments to data
distribution for balance, stragglers may still occur over time.

To mitigate stragglers, an adaptive load balancing strategy
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Fig. 1. Proportion of data sizes
processed by join instances

Fig. 2. Join instances ranked by
their processed data size

for distributed stream join systems is always needed [14], [15].
It is expected to dynamically adjust the resource allocation
between join instances at runtime, while considering the ob-
jectives of high performance, low cost, and high stability [16].
However, most state-of-the-art solutions [17]–[19] achieve
load balancing in stream join systems by optimizing hot keys
and employing random partitioning, incurring costly overhead
when handling frequently fluctuating load changes.

A notable approach [17] introduced a scalable distributed
stream join system to handle skewed loads. It identifies tuples
with heavy workloads within the stream join system and
evenly partitions them using a shuffling strategy, while other
tuples are partitioned using hashing. Enabling shuffle policies
in the stream join system necessitates broadcasting high-
workload tuples from the store stream and evenly partitioning
them in the join stream, resulting in unavoidable memory
overhead due to the massive replicas in storage.

The most recent work [18] implemented a non-migrating
load-balancing method for stream window join systems. It
primarily transforms some tuples of the store stream in strag-
glers to low-load join instances using a storage routing table,
enabling tuples with the same key in the store stream to be
distributed across different join instances. To ensure join result
completeness, the join routing table schedules corresponding
tuples to join instances that store the same key of tuples in a
dispersed manner. Although this approach effectively avoids
memory overhead generated by tuple replicas, it introduces
additional communication overhead. Moreover, both routing
tables become challenging to maintain and incur increased
system overhead with frequently triggered load balancing
strategies.

Another recent work [19] combined hotspot detection and
range routing strategies to mitigate stragglers and achieve
balanced load, dynamically adjusting partitioning rules based
on the unstable system load. By sampling and analyzing
data streams within the current window, it can predict the
distribution of data streams in the next window and adjust
partitioning rules accordingly. However, guaranteeing join
result completeness becomes challenging as it disregards late
data tuples.

As such, our aim is to address the aforementioned is-
sues using a lightweight data tuple scheduler. This scheduler
can determine when and how to reschedule the data tuples
at runtime based on the skewed data stream and the load

difference between stragglers and other join instances, and
minimize migration cost via a fine-grained model that adjusts
the workload allocation of stragglers.

In an attempt to achieve these objectives, we propose Ls-
Stream, a lightweight data tuple scheduler. It first collects
system information, including partition communication loads,
memory consumption, and computational demands. Then, Ls-
Stream reschedules data tuples based on an analysis of this
data. It enables one single join instance to oversee multi-
ple partitions using a two-level routing strategy, which can
effectively reduce the complexity and scale of conventional
routing systems. Additionally, Ls-Stream makes trade-offs
between state transfer overhead and migration benefits through
a fine-grained model to determine the optimal partitions for
migration. Through these strategies, Ls-Stream strives to attain
real-time processing, resource efficiency, and completeness of
join results to a significant extent.

A. Contributions

Our Ls-Stream is designed to mitigate stragglers and en-
hance the throughput and latency of distributed stream join
systems. Our contributions can be summarized as follows:

(1) Provide models for partitioning, communication, matrix,
and resource, along with the formalization of problems
including imbalanced load between join instances and
costs of state migration.

(2) Construct a two-level routing strategy for workload
allocation by combining hash-based and key-based data
partitioning. It allows for the redistribution of partitions
from stragglers to other join instances, achieving load
balance.

(3) Implement a fine-grained model for estimating the state
migration cost resulting from workload adjustments for
stragglers. It facilitates trade-offs between data transfer
costs and migration benefits.

(4) Conduct experiments on DiDi Chuxing dataset. Through
comprehensive evaluation, the proposed strategy pro-
vides promising improvements on throughput and la-
tency, compared to existing state-of-the-art works.

B. Paper organization

The rest of the paper is organized as follows: Section
II discusses related work. Section III introduces the sys-
tem model, including the partitioning model, communication
model, matrix model, and resource model, as well as the
system assumptions. Section IV formalizes the problems of
imbalanced load between join instances and the state migration
costs. Section V explains the framework of Ls-Stream and
introduces the optimization methods to address the problems
identified in Section IV. Section VI evaluates the performance
of Ls-Stream. Section VII concludes our work and presents
directions for future work.

II. RELATED WORK

Distributed stream joins can be categorized into two main
types: stream-static join and stream-stream join [20]. A stream-
static join involves joining tuples from a real-time data stream
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with pre-existing, static data records. Relevant studies pri-
marily focus on optimizing system computing efficiency. For
example, a stratified-like sampling method [20] was used
to select well-balanced representative geospatial data stream
samples for emission to join instances. Additionally, a custom
spatial data locality-aware partitioning method [21] was imple-
mented to balance load while preserving spatial data locality.

In contrast, a stream-stream join involves two dynamically
changing real-time data streams. Both streams continuously
generate new data tuples with uncertain arrival times, making
stream-stream joins more challenging than stream-static joins.
Methods designed for stream-static joins are typically not
applicable to stream-stream joins due to the incomplete views
of both streams during the joining process.

To enhance the scalability of distributed stream-stream
joins, certain studies [7], [9] introduced the Join-Matrix model.
This model routes and stores tuples from one stream to ran-
domly selected join instances while broadcasting and storing
tuples from the other stream to all join instances. However, the
Join-Matrix model increases system overhead due to redundant
tuple storage. To address this issue, the join-biclique model
was proposed [22]. Building on this model, BiStream [22],
a scalable stream join system, and BiStream-ContRand [22],
a content-aware router, were developed. BiStream uses hash
partitioning to direct tuples to appropriate join instances for
storage or joining. BiStream-ContRand uses a hybrid strategy:
it hashes stored tuples to a subgroup and randomly selects a
unit in the subgroup, while routing join tuples to all units in
that subgroup.

To address load imbalances caused by skewed data streams
in stream-stream join instances, a dynamic load balancing
strategy named FastJoin was proposed [23]. When load im-
balance occurs, this approach migrates tuples that cause heavy
load skewness to low-load join instances. The keys of migrated
tuples and their corresponding join instance are stored in
a routing table. However, frequent strategy triggering com-
plicates routing table maintenance, potentially requiring the
storage of all data tuples in the worst-case scenario.

An adaptive range partitioning strategy named Nereus was
developed for distributed stream-stream band join systems
[24]. Nereus ensures controllable partition numbers and load
balancing at minimal cost. It designs a dynamic routing
table to partition tuples in data streams, treating partitions as
processing units for storing and joining tuples. A migration
benefit model further facilitates efficient adaption to skewed
data streams. However, its effectiveness is limited for hash
partitions, restricting its broader application.

In summary, these solutions provide valuable insights for
optimizing distributed stream join systems. However, novel
approaches are needed to better balance load among join
instances, accommodate skewed data streams, and address the
unique characteristics of distributed stream join systems.

III. SYSTEM MODELS AND ASSUMPTIONS

Before addressing the issues of load imbalance between join
instances and state migration cost and introducing our pro-
posal, we first explain the partitioning model, communication

TABLE I
DESCRIPTION OF PRIMARY SYMBOLS USED IN THIS PAPER.

Symbol Description

jn Any of join instances
En Average input rate of tuple for join instance jn
jh Join instance with the heaviest load (i.e., the straggler)
µn Average tuple processing rate of the join instance jn
jl Join instance with the lowest load
LI Load imbalance degree between join instances
po One partition in join instance
W A time window (set by the user)
Rpo Resources consumption of partition po
ASTjn Average sojourn time of tuples in instance jn
Rjn Resource consumption of instance jn
mif Migration impact factor
α Threshold of load imbalance
L Average queue length in join instance jn

model, matrix model, and resource model in distribute stream
join systems. For enhanced clarity, Table I summarizes the
primary notations used throughout the paper.

A. Partitioning model

Data stream partitioning is a technique used in distributed
systems to process data streams. It involves dividing these
streams into multiple sub-streams that can be processed by
multiple nodes in a cluster [25], [26]. Its primary goal is to
enhance the system’s processing capacity and improve its relia-
bility. Let’s consider a data stream dsk = {dt0, dt1, ..., dti, ...}
in a distributed stream join system, where tuple dti in the data
stream dsk is mapped to join instances using a partitioning
function F (dsk). The partitioning function F (dsk) assigns
tuples to the appropriate join instances based on the tuples’
characteristics. As a result, the data stream dsk can be divided
into multiple sub-streams {dsk0, dsk1, ..., dskn, ..., dsk(b−1)},
and each divided sub-stream, such as dskn, is directed to join
instance jn. This relationship between dsk and dskn can be
described as follows (1).

dsk =

b−1⋃
n=0

dskn, (1)

where b denotes the number of join instances.
Efficient data tuple partitioning is to assign a tuple dt to a

specific sub-stream dskn and forward it to the join instance
jn. Therefore, the relationship between sub-streams can be
described as (2).

b−1⋂
n=0

dskn = ∅. (2)

B. Communication model

In the distributed stream join system, assume it receives
two streams, R and S, where their data tuples are forwarded
to join instances for processing through a router. This router
comprises shuffle instances and dispatcher instances. The load
of this router remains balanced as shuffle instances employ
a polling strategy to distribute tuples [27]. The dispatcher
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instances direct data tuples from streams R and S to join in-
stances J = {j0, j1, ..., jn, ..., j(b−1)}. Let the communication
load between dispatcher instance du and join instance jn be
denoted as eun, then the input rate of join instance jn can be
calculated by (3).

Irjn =

u−1∑
m=0

emn, (3)

where u denotes the number of dispatcher instances.
Given the potential for transient fluctuations in the tuple

arrival rate, we calculate the average of Irjn by (4) to ease
the impact of sudden fluctuations.

En =

∫ te
ts

Irjndt−max(Irjn)−min(Irjn)

te − ts
, (4)

where En represents the average input rate of join instance jn
within the time interval [ts, te], excluding the maximum and
minimum values of the input rate within this period. ts and te
denote the start and end times of the specified short period,
which can be defined by users.

C. Matrix model

The join operations between two input streams can be
conceptualized as a join matrix. In this matrix, the X and
Y axes represent tuples from the respective two data streams.
The collection of tuples arranged within this join matrix is
described as a tuple matrix, denoted as M . This tuple matrix
includes all possible pairs of tuples from both streams, and
these tuples are organized into partitions. Tuples from different
streams residing in the same partition undertake the Cartesian
product of R and S for the join operation. Let mi,j represent
the tuple pair at the ith row and jth column of the M matrix,
and pao denote the set of mi,j covered by partition po. The
pao ∈ Pa is represented by ⌈mi,j ,mi′,j′⌋, where mi,j and
mi′,j′ denote the upper left corner and lower right corner of
the partition, respectively.

Specifically, the tuple matrix M has these characteristics for
performing join operation [7]: interval-free, overlap-free and
results completion.

(1) Interval-free. This requires that the complete set of
partitions cover all input tuples from both R and S streams,
which can be described by (5).

o−1⋃
m=0

parm = R,

o−1⋃
m=0

pasm = S (5)

where o denotes the number of partitions, parm denotes tuples
from stream R in partition pam, and pasm denotes tuples from
stream S in partition pam.

(2) Overlap-free. This requires that tuple pair mi,j from
R and S streams is covered by the complete set of parti-
tions Pa = {pa0, pa1, ..., pao−1} at most once. If ∀pai ∈
Pa,∀paj ∈ Pa and i ̸= j, then pai ∩ paj = ∅.

(3) Results completion. This requires that all join results
in matrix M are covered by partitions Pa, which can be
described by (6).

o−1⋃
m=0

pam = M ′ (6)

Fig. 3. Example of stream join where multiple partitions are managed by one
join instance.

where M ′ denotes the area encompassing all tuples from both
streams in matrix M .

As shown in Fig. 3, data tuples from two streams are
subjected to join operations using the matrix model. In this
case, there are 12 tuples in each data stream, and these tuples
are directed to their respective partitions by the Hash function.
The X-axis of the matrix represents the key values of tuples
from the S stream, while the Y-axis represents the key values
of tuples from the R stream. The join condition for a tuple
requires the key value of a tuple from the S stream matches
that of a tuple from the R stream, and the computation area for
join results in the matrix is shaded in grey. If a tuple from one
stream does not find a matching tuple from the other stream,
it will be cached for a certain period of time until it times out
and is removed. From Fig. 3, we can observe that the tuple
matrix satisfies all the three aforementioned characteristics.
Each partition is independent and all data tuples are covered.

D. Resource model

The load of join instances primarily includes the resources
used for storing and joining data tuples from different streams.
Therefore, the resource model can be constructed based on the
instance’s consumption of memory and computing resources.
For the distributed stream join system with two input data
streams R and S, let’s define R stream as the join stream and
S stream as the store stream.

(1) Memory resource. Considering a time window W for
each tuple in both streams within join instance jn, memory
consumption is evaluated based on the number of stored tuples
from the S stream and the queue length of R stream tuples
waiting to join. The memory consumption Rm

po
for a partition

po can be calculated by (7).

Rm
po

= ST s
po

+QLr
po

(7)

Where ST s
po

denotes the the number of tuples stored from
the S stream within partition po, and QLr

po
denotes the queue

length of tuples from the R stream within partition po waiting
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to join. Furthermore, as the number of tuples stored in partition
po increases, the memory load of this partition also increases.
Hence, we use (7) to evaluate the resource consumption of
partition po.

In Ls-Stream system, there may be multiple partitions in one
instance. Therefore, the memory consumption Rm

jn
of instance

jn can be calculated by (8).

Rm
jn =

∑
po∈SP

(
ST s

po
+QLr

po

)
= En ·W

(8)

where SP denotes the set of partitions managed by the
instance jn.

(2) Computing resource. When a data tuple dt from the
R stream is emitted to the join instance jn, it is compared
with all stored tuples of the S stream within join instance jn.
Following this, it is joined with all tuples with the same key
in the S stream. Consequently, the computing load Rc

po
of

partition po can be calculated by multiplying the number of
tuples from the S stream stored in partition po with the queue
length of tuples from the R stream in partition po, as described
in (9).

Rc
po

= ST s
po
·QLr

po
(9)

Therefore, the computing load Rc
jn

of instance jn can be
calculated by (10).

Rc
jn =

∑
po∈SP

(
ST s

po
·QLr

po

)
(10)

Traditional distributed stream join systems [17]–[19], [23]
typically employ only one partition for each join instance.
In contrast, each instance in Ls-Stream manages multiple
partitions, which significantly reduces the computing area.
Let’s consider that partitions p0, p1, p2 and p3 are managed by
a single join instance jn. As depicted in Fig. 3, the computing
area pa0 of the join result matrix represents the computing
resources consumed by partition p0. The larger the computing
area pa0, the more computing resources partition p0 consumes.
From this Fig. 3, we can observe that Pa is much smaller than
the full matrix area.

Based on the above description, the resources consumed by
partition po during the time window W , denoted as Rpo , can
be calculated by (11).

Rpo
= γ ·Rm

po
+ (1− γ) ·Rc

po
, (11)

where γ is a weighting factor of memory and computing
resource consumed by partition po and 0 < γ < 1.

Then, the resource consumption Rjn of instance jn can be
calculated by (12).

Rjn =
∑

po∈SP

Rpo (12)

E. Assumptions

In distributed stream join systems, the arrival times of
data are unpredictable. The latest data tuples emitted by the
data sources may arrive late at join instances. Therefore, we
consider using sliding windows to join two data streams. We

compare the timestamp of the latest tuple emitted by the
data source with the timestamp in the stored stream, always
maintaining the window size set by the user.

We assume that: (1) The threshold for load imbalance
(explained in Section IV, with a default value of 1.0) is
set by the user before submitting a stream application. (2)
Data streams are dynamically changing, with their degree of
skewness fluctuating over time. (3) All processors in the dis-
tributed environment have the same computing power, though
the proposed model and algorithm also support settings with
heterogeneous processors.

IV. PROBLEM FORMALIZATION

In this section, we formalize the data stream scheduling
problem in distributed stream join systems, which mainly
includes the imbalanced load between join instances and the
state migration costs.

A. Imbalanced load between join instances

The skewed data stream means that a massive number
of data tuples are centrally distributed to one or more join
instances for processing in parallel [28], which results in
significantly longer data processing times for these instances
compared to the average time [29]. Consequently, stragglers
often occur in distributed stream join systems due to load
imbalance between join instances. Furthermore, unbalanced
load can become a bottleneck for processing data streams and
affect the performance of systems [30]. Unbalanced load can
pose the following risks: 1) Low resource utilization. Most
data tuple processing is concentrated on a few join instances,
causing the computing resources of others to remain idle.
2) Join instance downtime. The unbalanced load results in a
large volume of data sets being distributed to only a few join
instances, which can lead to data processing exceeding the
capacity of those instances, ultimately causing join instance
downtime.

To measure how skewed the data stream is, we introduce
load imbalance degree. It mainly prevents the resources of
join instances from becoming underutilized or overloaded by
keeping it within a proper range.

Definition 1. (Load imbalance degree). The load imbalance
degree quantifies the deviation in resource utilization among
join instances within a distributed stream processing system.
It serves as a metric to evaluate the disparity or skewness in
the distribution of data workload across these instances. The
larger the load imbalance degree LI , the more skewed the
data stream becomes.

The load imbalance degree LI is defined as the greater of
the two relative differences from the mean to the maximum
and minimum values in resource loads RJ of join instances
and can be calculated by (13).

LI = max

(
max(RJ)− R̄

R̄
,
R̄−min(RJ)

R̄

)
(13)
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Fig. 4. An example of load imbalance degree LI

where

R =
1

size(J)
·
size(J)−1∑

n=0

Rjn (14)

As shown in Fig. 4, there are two join instances j0, j1,
where j0 manages partitions p0 and p1, and j1 manages
partitions p2 and p3. In window W , the number of tuples
in the S stream for partitions p0, p1, p2, and p3 are 4, 4, 2,
and 1, respectively. The number of tuples in the R stream for
partitions p0, p1, p2, and p3 are 3, 4, 2, and 3, respectively.
According to Eq. 8, the memory resources for j0 and j1 are
15 and 8. According to Eq. 10, the computation resources for
j0 and j1 are 28 and 7. The weighting factor γ is set to 0.5 by
default, meaning memory resource and computing resource
are equally important for system performance. Based on
Eq. 12, the resource consumptions for j0 and j1 are 43 and
15, respectively. Given this information, the load imbalance
degree LI can be determined as 0.48 using Eq. 13.

Theorem 1. In a distributed stream join system, there exists a
positive mathematical relationship between the sojourn time
of tuples and resource consumption of join instances.

Proof. If the average input rate of the join instance jn is En

and the average tuple processing rate of the join instance jn is
µn, the average sojourn time ASTjn of jn can be calculated
by (15) based on the Little’s law [31].

ASTjn =
L

En
(15)

where L denotes the average queue length in the join instance
jn, and can be calculated by (16).

L =

∞∑
λ=0

λ · prλ (16)

where prλ denotes the probability of the instance jn’s existing
λ data tuples when the data stream input rate is stable. A
stable data stream input rate ensures that the number of tuples
received by each join instance per unit of time does not
exhibit significant variation, thus maintaining system stability.
Once the system stabilizes, the tuple input rate should equal
the system’s tuple processing rate. Based on the equilibrium

equation of M/M/1 model [31], [32], prλ can be calculated by
(17).

prλ =

(
En

µn

)λ

· pr0 (17)

where pr0 denotes the probability that no data tuple exists
in the instance and can be calculated by (18) based on the
probability distribution condition [31].

pr0 =
1

1 +
∞∑
λ=0

(
En

µn

)λ

= 1− En

µn

(18)

Taking equations (17) and (18) into (16), it can get the
average queue length L of instance jn by (19).

L =

∞∑
λ=0

λ ·
(
En

µn

)λ

·
(
1− En

µn

)
=

En

µn − En

(19)

Taking (19) into (15), it can get the average sojourn time
ASTjn by (20).

ASTjn =
1

µn − En
(20)

Taking (8) into (20), it can get the relationship between the
sojourn time ASTjn and the resources load by (21).

ASTjn =
W

W · µn −Rm
jn

(21)

There is a negative mathematical relationship between re-
source consumption Rjn and the data processing rate µn of
instance jn, with W as a constant. Therefore, the sojourn time
ASTjn of the instances will increase as resource consumption
grows. Excessive resource consumption may cause the tuple
processing rate of the instance to be lower than the input
rate, i.e., µn < En, leading to an elongation of instance jn’s
sojourn time until it eventually becomes unresponsive due to
the accumulation of a large number of data tuples within the
instance. Consequently, it can be inferred from this theorem
that stragglers in join instances take longer time to process
data streams.

The reason for stragglers consuming more resources is that
a substantial number of tuples with the same characteristics are
concentrated within the same instance, which leads to longer
system latency and lower throughput. Therefore, the system’s
performance depends on instances with the heaviest load, i.e.,
stragglers. Based on Theorem 1, the objective function for
this problem is LI ≤ α, where α represents the threshold for
load imbalance. α ensures that the load difference between join
instances remains within an acceptable range, mitigating the
impact of stragglers on system performance while optimizing
resource utilization in instances with low loads.
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B. State migration costs

The state of instance jn is a temporary cache for certain
data tuples from R and S streams, and these tuples will
be removed after performing the join operation. According
to the resource model, it is evident that the state size of
join instance jn is closely correlated with its resource load.
Therefore, when dealing with load imbalances between
instances, we can migrate some of the state from the instance
jh with the heaviest load (i.e., straggler jh) to the instance
jl with the lowest load. This migration involves selecting a
subset SK from the full set FS = {dt0, dt1, ..., dtc−1} of
data tuples in the straggler jh, with the aim of minimizing
the load difference between instances, where SK ⊂ FS.
However, finding an optimal solution within a finite time
is challenging because the selection of key values is an
NP-complete problem [23].

Definition 2. (Resource benefit). The resource benefit is the
impact on load distribution caused by migrating certain tuples
from the straggler instance to the lest-loaded instance.

The resource benefit ∆R can be calculated by (22).

∆R =
(
Rjh
−Rjl

)
−
(
R

′

jh
−R

′

jl

)
=

(
Rjh −R

′

jh

)
+
(
R

′

jl
−Rjl

) (22)

where R
′

jh
and R

′

jl
respectively denote the load of straggler

jh and instance jl after performing the migration operation.
Stream join operation is carried out within each partition.

Consequently, the load of each instance consists of the re-
sources consumed by multiple partitions. When a migration
operation is executed, an optimal combination of partitions
is determined to achieve load balance. Then, ∆R can be
simplified as (23).

∆R = 2 ·
(
Rjh −R

′

jh

)
(23)

Definition 3. (Latency benefit). The latency benefit is
determined by the difference between the latency increment
and the latency decrement, which respectively represent the
changes in processing time for data tuples in straggler and
least-loaded instance before and after migration.

Based on the equation (19), the latency benefit lb can be
calculated by (24).

lb =
(
ASTjh −AST

′

jh

)
+
(
ASTjl −AST

′

jl

)
=

µ
′

h − µh + Eh − E
′

h

(µh − Eh) ·
(
µ

′
h − E

′
h

) +
µ

′

l − µl + El − E
′

l

(µl − El) ·
(
µ

′
l − E

′
l

) (24)

where AST
′
, µ

′
and E

′
respectively denote the average

sojourn time of tuples, the average tuple processing rate and
the average input rate of the instance after performing the
migration operation.

Definition 4. (Migration impact factor). The migration
impact factor measures the benefit derived from performing
the migration operation and should aim to minimize the

number of data tuples migrated.

The migration impact factor mif can be described by (25).

mif =
∆R+ lb

card(SK)
(25)

where card(SK) denotes the cardinal number of the set SK.
It is evident that a larger migration impact factor mif results
in lower migration costs and a more balanced load between
instances.

So, the objective function of state migration costs can be
described as (26).

min (mif) (26)

subject to {
LI < α

R
′

jh
≥ R

′

jl

(27)

where the first condition is that the migrated data volume must
maintain resource load imbalance within a tolerable range.
The second condition is that the migrated data volume must
ensure the jh instance’s resource load remains higher than the
jl instance’s.

V. LS-STREAM: ARCHITECTURE AND ALGORITHMS

Based on the above analysis, we propose a lightweight data
tuple scheduler, called Ls-Stream, for stream join systems.
Implemented on top of Apache Storm platform, Ls-Stream
inherits all the features of Apache Storm and is capable of
supporting one-time stream processing. In this section, we in-
troduce Ls-Stream’s architecture and algorithms for balancing
load between join instances and minimizing migration costs.

A. System architecture

As shown in Fig. 5, the system architecture of Ls-Stream
consists of three main components: dispatcher, join instances
and controller.

The dispatcher component plays a pivotal role in achieving
load balancing between instances. It can be customized by im-
plementing the CustomStreamGrouping interface on Apache
Storm [23], [24]. Its primary function is to dispatch data tuples
to partitions within join instances using the routing table.
Skewed data streams can result in substantial load disparities
among partitions, leading to an unbalanced load between in-
stances. To rectify this imbalance, the deployment of partitions
needs adjustment. When the load between instances becomes
uneven, the routing table can be updated by the controller
component. The dispatcher identifies the partitions to be
migrated and blocks the data tuples within them. Subsequently,
the dispatcher transmits migration information to the join
instances via the control stream.

Join instances are composed of multiple partitions, with
each partition serving as a processing unit for storing and
joining data tuples. This partition approach effectively reduces
the computing area required for join operations and accelerates
the retrieval of stored data tuples from the S stream. Join
instances receive two primary types of data streams: data
stream containing tuples from R and S streams, and control
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Fig. 5. Architecture of Ls-Stream

stream conveying information about migrating partitions from
straggler jh to least-loaded instance jl. When straggler jh re-
ceives migration information, it initiates the migration of these
specified partitions, guided by the migration benefits computed
by the controller component. During data migrations, we reuse
the data transmission channels provided by Apache Storm.

The controller is primarily responsible for collecting load
information and conducting data analysis based on this in-
formation. It consists of the following four main stages: (1)
Load Monitoring. It periodically tracks the tuple input rates
of partitions from both R and S streams within instances
using a counter. (2) Skewness Calculation. The degree of
skewness between instances is computed based on the load
information. If an imbalance is detected, the process proceeds
to the next step. (3) Migration Plan Generation. Considering
the uneven load, the controller determines which partitions
should be migrated from straggler jh to the least-loaded
instance jl to minimize migration costs. (4) Routing Table
Update. Based on the migration plan, the controller generates a
new routing table and synchronizes the dispatcher’s router with
the updated table. The controller does not significantly impact
the performance of the stream join system, as it operates in
isolation from the join instances.

In comparison to traditional distributed stream join systems,
Ls-Stream offers several advantages: (1) Traditional solutions
construct a routing table to redirect migrated data tuples, which
can lead to scalability issues as the routing table size grows
with the number of migrated tuples. Ls-Stream, however,
constructs its routing table based on partitions, ensuring its
size remains independent of the number of migrated tuples.
(2) In traditional solutions, each instance maintains the state
data for a single partition. Consequently, when tuples from
R streams engage in join operations, querying globally stored
tuples within the instance becomes necessary. In contrast, Ls-
Stream allows each instance to manage state data for multiple

partitions, effectively reducing the required computing area for
joining tuples.

B. Balance load between join instances

Unbalanced load distribution between join instances can
lead to certain instances becoming overloaded and acting as
system bottlenecks, while others remain underutilized or even
idle, resulting in inefficient resource allocation. Therefore, in
the face of the challenge posed by massive data, a well-
balanced load strategy is crucial for enhancing the perfor-
mance of distributed stream join systems. This strategy aims to
distribute data evenly across multiple join instances, reducing
system latency and enhancing system availability. It should
exhibit the following characteristics: (1) High concurrency. It
should evenly distribute the workload among join instances
and maximize system throughput. (2) Lightweight. Its load
balancing algorithm should not consume excessive system
resources, avoiding constraints on system performance. (3)
High reliability. Data tuples should be routed to the correct
join instance for processing, ensuring the completeness and
reliability of data state.

Assume there exist join instances J =
{j0, j1, ..., jn, ..., j(b−1)} in the distribution stream join
system. To balance load between these join instances, the
data tuples {dt0, dt1, ..., dti, ...} from upstream instances
will be grouped according to the dynamic routing table. The
table mainly maps the relationship F (dti) between partitions
P = {p0, p1, ..., pm, ..., p(t−1)} and instances J , which can
be described by (28).

F (dti) = pm → jn (28)

where F (dti) denotes that the tuple dti will be emitted to the
partition pm in instance jn, and pm can be calculated by (29).

pm = Hash(dti(Key))%card(P ), (29)
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Fig. 6. Routing table of Ls-Stream

where dti(Key) denotes the key of tuple dti and card(P )
denotes the cardinal number of the partition set P .

Based on the above description, emitting a data tuple from
an upstream instance to a join instance mainly includes two
steps: First, calculate the partition number to which the tuple
will be emitted using (29). Second, consult the routing table to
identify the corresponding join instance for the given partition
number. As shown in Fig. 6, the routing table primarily
comprises partition numbers and instance numbers. Each join
instance manages the data state of multiple partitions from
the S stream. During join operations on data tuples from the
R stream, only the state of the relevant partition in the S stream
is accessed, significantly narrowing the search scope.

In cases where the load disparity between join instances fails
to meet the condition LI ≤ α, a significant load imbalance
occurs within the distributed stream join system. Consequently,
it becomes necessary to dynamically adjust the deployment of
partitions. As depicted in Fig. 6, partition 2 is migrated from
join instance 0 to join instance 1 to rebalance the load between
these two instances. Migration costs will be discussed in the
next subsection. The process of mitigating the load imbalance
between join instance 0 and join instance 1 encompasses the
following four steps: (1) Notify the routing table to block the
emission of tuples from partition 2. (2) Migrate partition 2
from join instance 0 to instance 1. (3) Modify the instance
number corresponding to partition 2 in the routing table from
0 to 1. (4) Release the previously blocked data tuples.

To balance the load between join instances, it is highly
likely that the join instance hosting a partition may change,
leading to the reallocation of online partitions. Notably, the
size of Ls-Stream’s routing table remains constant, regardless
of the increasing number of migrated tuples, as the number of
partitions remains unchanged.

C. Minimize migration costs

To achieve the balanced load between join instances, it
is necessary to emigrate some partitions from stragglers.
However, the migration of partitions comes at costs. To reduce
these migration costs, we aim to minimize the migration
impact factor by modeling the selection of partitions within

a straggler as a combinatorial optimization problem. Solving
combinatorial optimization problems, often NP problems, is
typically better suited to heuristic algorithms. In this paper, we
use the simulated annealing algorithm [33] to find an optimal
solution.

There are several partitions SP = {p0, p1, ..., pu−1} within
the straggler jh, where SP ⊆ P , P is the set of all partitions,
and u represents the number of partitions managed by the
straggler jh. We mark migrated partitions as 1 and non-
migrated partitions as 0, and initialize certain partition markers
randomly as the initial solution. Moreover, new solutions are
generated iteratively within this algorithm, and must satisfy
conditions (30) and (31). Otherwise, the algorithm proceeds
to the next iteration.

R
′

jh
−R

R
< α

⇒
Rjh −

∑
po∈MP

Rpo
−R

R
< α

⇒Rjh −
∑

po∈MP

Rpo
< R · (1 + α)

(30)

R
′

jh
−R

′

jl
> 0

⇒Rjh −
∑

po∈MP

Rpo
−

Rjl +
∑

po∈MP

Rpo

 > 0

⇒Rjh −Rjl > 2 ·
∑

po∈MP

Rpo

(31)

where MP denotes the set of partitions to be emigrated and
MP ⊆ SP .

Next, we need to compare the migration impact factor mif
of the new solution with the old one. If the new solution
has a higher mif than the old one, the new solution is
more valuable for migration. Otherwise, a probability equation
Pe(mifnew,mifold, T ) will be used to decide whether the
new solution replaces the old one. Pe(mifnew,mifold, T ) can
be calculated by (32).

Pe(mifnew,mifold, T ) = e
mifnew−mifold

T (32)
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where T denotes the temperature in the simulated annealing
algorithm. This temperature parameter is to calculate the
transition probability. A higher initial temperature increases
the the probability of obtaining a high-quality solution, but it
also prolongs the time taken for computation.

The algorithm for minimizing migration costs is described
in Algorithm 1.

Algorithm 1: Minimize migration costs.

Input: Rjh ,Rjl ,R,SP ;
Output: MPold;

1 Initialize the temperature T and the minimum
temperature Tmin;

2 Initialize empty sets MPold and MPnew;
3 Initialize the temperature drop rate η;
4 for each po in SP do
5 po(flag)← Random number from {0, 1};
6 if po(flag) = 1 then
7 MPold.add(po);
8 end
9 if Rjh −

∑
po∈MPold

Rpo
> R · (1 + α) ||

Rjh −Rjl < 2 ·
∑

po∈MPold

Rpo
then

10 MPold.delete(po);
11 po(flag) = 0;
12 Break;
13 end
14 end
15 while T > Tmin do
16 for i = 0 to card(SP )− 1 do
17 Randomly select a partition pj from SPold;
18 pj(flag) = 1− pj(flag);
19 Generate the new MPnew and SPnew;
20 if Rjh −

∑
po∈MPnew

Rpo < R · (1 + α) ||

Rjh −Rjl > 2 ·
∑

po∈MPnew

Rpo
then

21 mifnew ← calculate the migration impact
factor of MPnew;

22 if mifnew > mifold ——
random(0.0, 1.0) <
Pe(mifnew,mifold, T ) then

23 MPold ←MPnew;
24 mifold ← mifnew;
25 SPold ← SPnew

26 end
27 end
28 end
29 T = T · η;
30 end
31 return MPold

The input of algorithm 1 includes the load Rjh of join
instance jh with high resource consumption, the load Rjl of
join instance jl with low resource consumption, the average
load R of join instances and the partitions set SP managed by
instance jh. The output of algorithm 1 is the set of partitions

TABLE II
SOFTWARE CONFIGURATIONS OF LS-STREAM.

SoftWare Version

Ubuntu Ubuntu 20.04 64bit
Storm Apache-Storm-1.2.4

Zookeeper Zookeeper-3.5.7
JDK Jdk1.8

Python Python 2.7.2
MySql MySql 5.6

to be emigrated, denoted as MPold. Step 1 to step 3 initializes
the data required by this algorithm. Step 4 to step 14 generates
initial solution. Step 17 to step 19 generates new solution. Step
21 calculates the migration impact factor of the new solution.
Step 22 to step 26 generate acceptance probability according
to the current temperature and the difference between the
new and old solutions, and update the old solution. The time
complexity of algorithm 1 is O (log T · card (SP )), where
card(SP ) is the size of the set SP .

In algorithm 1, to minimize migration costs, the join in-
stance with highest load can determine which partitions will
be emigrated by combinatorial optimization. This algorithm
enables the system to maximize migration benefits and min-
imize migration size to achieve load balancing between join
instances.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of Ls-Stream
system. The experimental setup is first discussed, followed
by the analysis of impact of skewed data streams on system
performance, results and parameter settings.

A. Experimental setup

The Ls-Stream framework is implemented on the top of
Apache Storm and deployed on Ubuntu 20.04 operating sys-
tem. The cluster consists of 20 computers with 2 as nimbus
nodes and 18 as supervisor nodes. Each computer is equipped
with an Intel(R) Xeon(R) X5650 CPU (dual-core, 2.4 GHz),
2GB of RAM, and a 100 Mbps Ethernet interface card. The
zookeeper cluster is deployed on three computers which are
multiplexed with the supervisor. Detailed software configura-
tions are shown in Table II.

We compare BiStream, BiStream-ContRand [22], and
FastJoin [23] under identical experimental conditions, includ-
ing the dataset, data stream rate, number of instances per
component, number of resources, and other relevant factors.
To evaluate the performance of Ls-Stream system, we utilize
a large-scale real-world dataset provided by DiDi Chuxing
GAIIA Initiative [12] and synthetic datasets [23] following
the Zipf distribution. The DiDi Chuxing real-world dataset
includes two kinds of data streams: order stream for passengers
and driving track stream for taxis. The passenger order stream
includes order ids (String type), timestamps (Long type), and
GPS locations (Double type, Double type), while the driving
track stream includes taxi ids (String type), GPS locations
(Double type, Double type), and timestamps (Long type). The
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Fig. 7. Load imbalance degree on
various datasets

Fig. 8. System bottlenecks on vari-
ous skewed datasets

Fig. 9. System latency on various
skewed datasets

Fig. 10. System bottlenecks with
different number of nodes

query workload involves matching every tuple in the passenger
order stream with all tuples in the driving track stream.
These data were collected by DiDi in Chengdu, China, during
November 2016. The objective of the stream join application
is to efficiently dispatch passenger orders to the nearby taxis.
The aggregation logic of the join instance is to query all taxis
nearby the passenger. However, finding an optimal dispatch
of passenger orders is challenging. To simplify this problem,
we utilize the Hilbert curve to convert GPS locations of
passengers and taxis into one-dimensional data, and adopt this
one-dimensional value as the key for stream join.

To generate varying degrees of skewness in the experimental
datasets, we set the Zipf coefficient [18] of synthetic datasets
to 0.2, 0.4, 0.6, 0.8, and 1.0, denoted as Zipf0.2, Zipf0.4,
Zipf0.6, Zipf0.8, and Zipf1.0, respectively. The Zipf coefficient
determines the skewness level of the synthetic datasets. A
larger Zipf coefficient indicates more skewed datasets. These
synthetic datasets are generated in a similar way to the
approach described in [18], [23].

We design three distinct experiments, focusing on load
imbalance, system performance, and parameter configurations.
Firstly, we employ synthetic datasets to present the impact of
load imbalance across join instances on system performance
under stable data streams. Secondly, real-world datasets are
applied to evaluate system performance and latency under
varying computing resources and different numbers of join
instances. Thirdly, we revisit synthetic datasets to investigate
how adjusting the load imbalance thresholds affects system
efficiency.

B. Load imbalance degree
Load imbalance degree LI measures the skewness of a data

stream. In this experiment, the impact of different LI values
on system performance is evaluated using various synthetic
datasets. 20 join instances are evenly deployed across the
cluster, with the trigger load balancing factor α set to 1.0. This
setting triggers the balancing load strategy when the imbalance
degree between join instances exceeds 1.0.

Given a stable input rate of 5,000 tuples/s, Ls-Stream
effectively balances the load among join instances when the
system reaches a stable state. As shown in Fig. 7, the load
imbalance degree remains stable for Ls-Stream and FastJoin
across different skewed data streams. However, for BiStream
and BiStream-ContRand, the load becomes increasingly unbal-
anced as the data stream skewness intensifies. Ls-Stream and

FastJoin outperform BiStream and BiStream-ContRand in load
balancing by effectively adapting to skewed input streams and
evenly distributing resources among join instances. BiStream-
ContRand exhibits a lower load imbalance degree compared
to BiStream because it divides join instances into subgroups
and balances the load within these subgroups. However, it still
demonstrates a higher load imbalance degree than Ls-Stream
due to its inability to address the load imbalance between these
subgroups.

Given an increasing data stream rate and an increment of
500 tuples/s, the system bottleneck (i.e., maximum through-
put) may be affected by skewed data streams. As shown in
Fig. 8, the maximum bottleneck of BiStream and BiStream-
ContRand is observed at 29,500 tuples/s and 28,500 tuples/s
on Zipf0.2, respectively. The minimum bottleneck of BiStream
and BiStream-ContRand is noted at 11,000 tuples/s and 14,500
tuples/s on Zipf1.0, respectively. Moreover, the bottleneck of
both decreases with increasing Zipf coefficients. However, Ls-
Stream and FastJoin maintain a stable bottleneck across vary-
ing data stream skewness. Although Ls-Stream and FastJoin
exhibit a similar load imbalance in Fig. 7, Ls-Stream’s system
bottleneck is superior to that of FastJoin, attributed to Ls-
Stream’s lightweight router design. Moreover, this experi-
ment also demonstrates that Ls-Stream and FastJoin exhibit
a bottleneck similar to BiStream and BiStream-ContRand on
Zipf0.2 because the load imbalance degree remains below
the threshold α, preventing Ls-Stream and FastJoin from
triggering the load balancing strategy.

Given a stable input rate of 5,000 tuples/s, the system
latency can be affected by data streams with different degrees
of skewness. As shown in Fig. 9, the latency of both BiStream
and BiStream-ContRand systems increases as the Zipf coef-
ficients rise. In contrast, Ls-Stream and FastJoin maintains a
stable latency despite varying degrees of skewed data streams.
In this experiment, Ls-Stream achieves a reduction in max-
imum system latency by 49.3% and 39.2% compared with
BiStream and BiStream-ContRand, respectively, indicating its
more efficient load balancing across join instances. The latency
difference between Ls-Stream and BiStream-ContRand widens
as data streams become more skewed. In addition, Ls-Stream
achieves a reduction in maximum system latency by 18.1%
compared with FastJoin. The lightweight router and the coarse-
grained partition management of Join instances contribute to
Ls-Stream’s lower latency.

In summary, the above experiments reveal two points:
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Fig. 11. System bottlenecks with
different number of join instances

Fig. 12. System latency under stable
data rate

Fig. 13. System latency with differ-
ent number of join instances

Fig. 14. System bottlenecks with
different load imbalance thresholds

(1) The performance of system worsens as the data stream
skewness intensifies. It is primarily due to the concentration
of most tuples on a single join instance for processing. (2)
Ls-Stream demonstrates a significant improvement on the sys-
tem performance. This improvement can be attributed to Ls-
Stream’s dynamic load balancing across join instances through
the lightweight routing table at runtime, thereby minimizing
system latency and maximizing throughput.

C. Performance results

The experiments evaluate Ls-Stream’s performance on the
real-world dataset, focusing on two metrics: system throughput
and system latency.

(1) System throughput. Throughput assesses the system’s
resistance to load. It represents the number of tuples processed
by the system per second, serving as an important metric for
measuring system performance. A higher system throughput
signifies better data processing capabilities. The experiments
will evaluate the system bottleneck (i.e., maximum through-
put) considering the resource count and parallelism of join
instances.

When using 28 join instances and varying the count of com-
pute nodes, Ls-Stream consistently exhibits higher maximum
throughput compared to BiStream, BiStream-ContRand and
FastJoin. This distinction becomes increasingly apparent with
a larger deployment of nodes for join instances. As shown
in Fig. 10, when deploying join instances across 6 nodes,
the maximum throughputs of BiStream, BiStream-ContRand,
FastJoin and Ls-Stream stand at 9,500 tuples/s, 11,500 tu-
ples/s, 13,000 tuples/s and 15,000 tuples/s, respectively. This
results in differences of 5,500 tuples/s, 3,500 tuples/s and
2,000 tuples/s, respectively. However, with 14 nodes deploying
join instances, their respective maximum throughputs reach
15,500 tuples/s, 19,500 tuples/s, 21,500 tuples/s, and 25,500
tuples/s, showing discrepancies of 10,000 tuples/s, 6,000 tuples
and 4,000 tuples/s, with Ls-Stream outperforming BiStream,
BiStream-ContRand and FastJoin.

With the number of nodes set to 14 and varying counts of
join instances, Ls-Stream consistently outperforms BiStream,
BiStream-ContRand and FastJoin in terms of maximum
throughput. More specifically, Ls-Stream has a better bottle-
neck improvement across any join instance counts. As shown
in Fig. 11, when the number of join instances is under 48,
the throughput of BiStream, BiStream-ContRand, FastJoin and

Ls-Stream increases along with the number of join instances.
At this stage, Ls-Stream improves system throughput by more
than 52%, 27% and 6%, respectively, compared to BiStream
, BiStream-ContRand and FastJoin. However, with a fixed
number of node resources and an increase in join instances
exceeding 48, their throughput declines due to the resource
consumption incurred by join instances.

In summary, compared to BiStream, BiStream-ContRand
and FastJoin, Ls-Stream exhibits higher throughput and greater
improvements under identical resource and join instance con-
ditions. This is attributed to Ls-Stream’s lightweight design to
effectively balance the load between join instances, maximiz-
ing the system’s throughput utilization.

(2) System latency. System latency refers to the time interval
from the input of data tuples into the system to their complete
processing, serving as an important metric for evaluating
system performance. Low latency implies faster responses
to user requests, thereby enhancing user experience. This
experiment assesses system latency under a consistent data
stream rate across varying number of join instances.

Given a stable input rate of 4,500 tuples/s, Ls-Stream
exhibits shorter latency compared to BiStream, BiStream-
ContRand and FastJoin. As shown in Fig. 12, the average
latencies for BiStream, BiStream-ContRand, FastJoin, and Ls-
Stream are 10.3 ms, 8.5 ms, 7.2 ms, 5.4 ms, respectively,
after the system stablizes. Ls-Stream respectively reduces the
average latency by 47.5%, 36.4%, and 25%, compared with
BiStream, BiStream-ContRand and FastJoin. This experiment
clearly shows that Ls-Stream maintains lower average latency
than BiStream, BiStream-ContRand and FastJoin under stable
input rate.

Given the data input rate of 3,000 tuples/s, for different
number of join instances, the average latency of Ls-Stream
is shorter than that of BiStream, BiStream-ContRand and
FastJoin. As the number of join instances increases, the latency
of BiStream, BiStream-ContRand, FastJoin, and Ls-Stream
continues to decrease. However, Ls-Stream exhibits better
latency improvements under any number of join instances.
As shown in Fig. 13, Ls-Stream reduces the average operator
latency by 35.8%, 23.8% and 18%, respectively, compared to
BiStream, BiStream-ContRand and FastJoin.

In summary, based on the above experiments, it’s evident
that similar to system throughput, Ls-Stream also exhibits
shorter average latency and greater improvement under dif-
ferent number of join instances. This is attributed to Ls-
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Fig. 15. System latency with different load imbalance thresholds

Stream’s ability to balance the load between connected in-
stances through lightweight routers and to accelerate tuple
processing rates through coarse-grained partition management
of Join instances.

D. Parameter setting.

A proper parameter enables join instances to process data at
their best, which is important for improving the performance
of distributed stream join systems. This experiment aims to
assess the impact of load imbalance threshold α on system
performance using different synthetic datasets.

Given an increasing data stream rate with increment of 500
tuples/s, the system bottleneck can be affected by varying
threshold values of α. When the skewness of data stream
is greater than the threshold α, Ls-Stream triggers the bal-
ancing strategy to improve the system bottleneck. However,
when the load imbalance degree of data stream is less than
threshold α, Ls-Stream degrades to standard hash partitioning.
As shown in Fig. 14, When the Zipf coefficient of the
synthetic dataset is 0.4, the maximum throughput of system
stabilizes after threshold 2. This stabilization occurs because
the load imbalance degree of Zipf0.4 (1.5) remains below 2.
When the Zipf coefficient of the synthetic dataset is 0.8, the
maximum throughput of system continues to decline, as the
load imbalance degree of Zipf0.8 (5.3) consistently exceeds
threshold α.

Given a data input rate of 3,000 tuples/s, system latency
can be affected by different threshold values. If threshold α
is less than the load imbalance degree of data streams, the
system latency increases with rising threshold value. However,
if threshold α is greater than the load imbalance degree of data
streams, the system latency remains stable. As shown in Fig.
15, When the Zipf coefficient of the synthetic dataset is 0.6,
the system latency increases until reaching threshold 4, after
which it stabilizes.

These scenarios highlight that if the threshold setting is
higher than the load imbalance degree of data streams, the
load balancing strategy of Ls-Stream will not be effective.
Therefore, selecting an appropriate parameter setting is impor-
tant for enhancing system performance. From the experimental
results above, it can be seen that the threshold should not
be excessively high. Optimal adjustment of the threshold α
within the [1,2] range proves beneficial as it ensures a balanced

sensitivity to skewness, effectively minimizing unnecessary
and frequent activation of load rebalancing strategies.

VII. CONCLUSIONS AND FUTURE WORK

Skewed data streams often lead to uneven loads among
join instances, which can adversely affect system performance.
Existing state-of-the-art solutions typically rely on complex
routing strategies or resource-inefficient processing structures,
making them vulnerable to dynamically skewed data dis-
tributions. To address these challenges, we introduced Ls-
Stream, a data tuple scheduler designed to mitigate stragglers
in distributed stream join systems. Our proposed strategy
evenly distributes workloads across join instances, adapting to
skewed data streams, while balancing data transfer costs and
migration benefits. We have implemented Ls-Stream on top of
the Apache Storm platform. Experiments demonstrate excel-
lent performance improvement across various skewness levels
of both synthetic and real-world datasets, and present huge
advantage over existing solutions in both system throughput
and latency.

In our future work, we aim to integrate auto-scaling ca-
pabilities within the Ls-Stream system to dynamically adjust
the number of join instances, further enhancing overall system
performance. Additionally, we plan to extend the application
of the proposed data tuple scheduler to single data streams
and to support tumbling windows for processing data streams,
broadening its versatility and applicability.
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