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Abstract—Cloud data centres (CDCs) are the backbone infras-
tructures of modern digital society, but they also consume huge
amounts of energy and generate heat. To manage CDC resources
efficiently, we must consider the complex interactions between
diverse workloads and data centre components. However, most
existing resource management systems rely on simple and static
rules that fail to capture these complex interactions. Therefore,
we require new data-driven Machine learning-based resource
management approaches that can efficiently capture the interde-
pendencies between parameters and guide resource management
systems. This review describes the in-depth analysis of the exist-
ing resource management approaches in CDCs for energy and
thermal efficiency. It mainly focuses on learning-based resource
management systems in data centres and also identifies the need
for integrated computing and cooling systems management. A
taxonomy on energy and thermal efficient resource management
in data centres is proposed. Furthermore, based on this taxonomy,
existing resource management approaches from server level, data
centre level, and cooling system level are discussed. Finally,
key future research directions for sustainable Cloud computing
services are proposed.

Index Terms—Cloud Computing, Energy Efficiency, Thermal-
aware Workload Management, Sustainable Computing, Machine
Learning

I. INTRODUCTION

C
LOUD computing has changed the way computing ser-

vices are delivered to end-users by providing flexible

and on-demand access to resources with a pay-as-you-go

model [1], [2]. Cloud computing follows the principle of

providing computing resources as utility services (e.g., water

and electricity). This unique and flexible service delivery

model ensures that individuals and businesses can easily

access the required computing services. By default, Cloud

workloads require continuous, always-on, and 24×7 access to

its deployed services. For instance, the Google search engine is

expected to achieve an almost 100% availability rate [3]. Sim-

ilarly, Amazon AWS witnesses thousands of Elastic Compute

Note: This work is done when first author was working at University of
Melbourne, Australia

(EC2) instances created [4] in a day through their automated

APIs, thus requiring CDCs to support such critical demand.

According to Gartner, by 2022, 60% of organisations will use

an external Cloud service provider [5], and by 2024, Cloud

computing alone will account for 14.2% of total global IT

spending [6].

Cloud computing services are broadly categorised into three

types. First, the Infrastructure as a Service (IaaS) model

offers computing, storage, and networking resources either in

virtual or physical form. Second, the Platform as a Service

(PaaS) model offers tools for rapid application development

and deployment, such as middleware platforms, Application

Programming Interfaces (APIs), and Software Development

Kits (SDKs). Third, the Software as a Service (SaaS) model

offers direct access to application software to the users, and

the software is developed and managed by service providers

completely.

All of these service paradigms rely on the data centres to

deliver the resources required for the applications and users

seamlessly. Cloud Data Centres (CDCs) are massive network-

based infrastructures managed in runtime by Resource Man-

agement Systems (RMS). Fig. 1 shows an abstract view of data

centre infrastructure and its resource management system. The

DCs host thousands of servers, networking equipment, and

cooling systems. Servers and networking equipment provide

the required computational resources for cloud users, and

the cooling system helps to remove the heat generated by

the computing resources. An RMS in the data centre is a

software platform that manages different subsystems in the

data centre through various tasks, such as resource monitoring,

provisioning, workload scheduling, and placement. It also

controls power and cooling management knobs. Some public

cloud service providers build their own in-house RMS, while

many private and public clouds use open-source systems such

as OpenStack1.

1https://www.openstack.org
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Fig. 1: An abstract view of a CDC. It shows high level view

of an RMS tasks required to manage the CDCs resources and

user workloads (adapted from [7]).

To meet the demand for Cloud services, major Cloud

services providers such as Amazon AWS2, Microsoft Azure3,

and Google Cloud4 are deploying many hyper-scale data

centres in multiple regions worldwide. There are over 8 million

data centres globally, ranging from private small-scale to

hypers-scale DCs, and they are growing at 12% annually

[8]. As they grow in number and size, they consume more

energy and face massive energy challenges. CDCs consume

an estimated 2% of global electricity generated [9] and rely

on fossil-fuel-based or brown energy sources that emit 43

million tons of CO2 per year and increase at 11% annually

[10], leaving high carbon footprints. Therefore, improving the

energy efficiency of Cloud data centres is vital for sustainable

and cost-effective Cloud computing. DCs’ tremendous growth

has introduced massive energy challenges. If not addressed,

data centres may consume up to 8000 terawatts of power by

2030 in the worst case. However, if best practices are adopted

across the Cloud computing stack, this energy consumption

can be reduced to around 1200 terawatts [11] (see Fig. 2). To

achieve this best-case scenario, energy-efficient practices are

needed in various levels of data centre resource management

platforms (such as optimised use of computing and cooling

resources). Hence, addressing this energy problem and achiev-

ing sustainability, both environmentally and economically, is

crucial.

2https://aws.amazon.com/
3https://azure.microsoft.com/
4https://cloud.google.com/

Fig. 2: Estimation of Data Centre Energy Consumption

by 2030 [11]

A data centre is a complex cyber-physical system (CPS)

that consists of thousands of rack-mounted physical servers,

networking equipment, sensors, cooling systems, and other

facility-related subsystems. It consumes up to 30-40 kW per

rack and generates a lot of heat, posing a serious challenge

for efficient and reliable resource and energy management. In

particular, the main power consuming subsystems in CDCs are

the computing and cooling systems, which together account

for 85% of total energy consumption in a data centre, with

each of them significantly contributing [12] to the total power

consumption. Therefore, there is a essential requirement for

integrated Energy and Thermal-aware Resource Management.

Traditionally, cooling system management and computing

system management are done separately by the facility man-

agement team and the IT administrator, respectively. However,

optimising one system may have a negative impact on the other

system. For example, increasing resource utilisation in com-

puting may create hotspots, and thus increase cooling energy

costs. Therefore, managing these subsystems independently

may result in energy inefficiencies in the data centres even

if they are individually optimised for energy efficiency. The

advancement in IoT and smart systems [13] has enabled many

mechanical systems associated with cooling to be controlled

or configured through software systems [14]–[16]. Hence, it is

crucial to apply resource management techniques holistically

to optimise both computing and cooling systems and avoid

conflicting trade-offs between these two subsystems.

Resource management in data centres is highly challenging

due to the complex interactions between subsystems and

the heterogeneous characteristics of workloads. Manual

fine-tuning of the controllable parameters by resource

management systems is infeasible. For example, “Just 10

pieces of equipment, each with 10 settings, would have 10

to the 10
th power, or 10 billion possible configurations, a

set of possibilities far beyond the ability of anyone to test

for real” [17], [18]. Moreover, these large-scale systems

often have nonlinear relationships between their parameters.

However, optimising data centre operation requires adjusting
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the hundreds of parameters in different subsystems where

heuristics or static solutions are ineffective.

Therefore, to cope with the complexity of data centre

infrastructures and the dynamic nature of cloud workloads,

Machine Learning (ML)-based resource management methods

are vital. In parallel, integrated resource management of the

computing and cooling systems is necessary to balance the

trade-offs between these two subsystems and achieve signifi-

cant energy efficiency in CDCs [7]. There have been many

efforts in this direction using ML for systems focusing on

optimising different computing systems [19]. For instance,

ML-centric Cloud [20], developed Resource Control (RC), a

general ML and prediction serving system that provides insight

into the Azure compute fabric resource manager’s workload

and infrastructure. Similarly, Google has used ML models to

optimise the efficiency of its data centres by adjusting the

different knobs of the cooling system, thus saving a significant

amount of energy [21]. These use cases demonstrate the

feasibility and benefits of learning-based solutions in different

aspects of resource management in clouds. Moreover, even a

1% improvement in data centre efficiency can save millions

of dollars per year and reduce the carbon footprint [22].

The rest of the paper is organised as follows: Section II

provides overview of ML-based RMS in CDCs. Section III

and Section IV review the existing methods for energy and

thermal management in data centres based on the taxonomy,

respectively. Section V explains the integrated resource man-

agement solutions for energy and thermal efficiency. Section

IV-C describes different cooling systems in a data centre,

including air and liquid cooling systems. Section VI outlines

the future research directions. Finally, Section VII concludes

the paper.

II. BACKGROUND: ML-BASED RESOURCE MANAGEMENT

SYSTEMS IN CDCS

Machine learning (ML) is naturally used in Computer

Vision (CV) and Natural Language Processing (NLP) prob-

lems due to its ability to identify patterns from the complex

input data. ML algorithms are classified into supervised and

unsupervised learning, depending on the input data preparation

and training methods. ML methods itself can be broadly

used for numerical prediction- regression models, and for

categorization based on class labels,- classification modes, as

well for developing advanced control systems- Reinforcement

Learning (RL) controllers.

As data center complexities increase, ML algorithms are

required to perform a variety of RMS tasks. For instance, as

illustrated in Figure 3, the left side of the Figure 3 indicates

the high level RMS Tasks in a CDC (also see Figure 1).

Please note that, these tasks indicate primary functionality

of an CDCs middleware system; there could be other tasks

based on data center and workload requirements. Similarly,

the right side of the Figure indicates list of all possible ML

tasks an RMS could require in its decision making process.

For example, the Resource Provisoner can invoke resource

estimation models to predict the required amount of computing

Fig. 3: List of RMS Tasks and ML Tasks and ML Methods.

resources for a workload. The RMS can also be guided by

power consumption and SLA violation prediction models,

depending on the optimization objectives.

Much advanced ML applications such as RL can be used

to develop controller systems. An RMS can be modeled as a

decision engine with a list of actions designed to satisfy spe-

cific objectives. Such approaches are increasingly being used

in CDCs for cooling system knob configuration, scheduling,

and power management systems. Although Figure 3 provides

an overview of how ML can be leveraged to develop highly

optimised RMS systems for today’s complex CDCs, it is not

exhaustive.

III. TAXONOMY OF ENERGY MANAGEMENT IN CDCS

Many researchers have focused on increasing the energy

efficiency of data centres with various resource management

techniques. These techniques cover an individual server to geo-

distributed data centres. Taxonomy on the data centre’s energy

management solutions is presented in Fig. 4. We categorise

these solutions into two broad categories, i.e., single server

level and data centre level solutions. Accordingly, we identify

the essential techniques used in these two categories and

briefly review their methods.

A. Server Level

In a computing server, the CPU predominantly consumes

a significant amount of energy. Modern rack-mounted data

centre servers consume more than 1000 watts of power.

Hence, managing this high power consumption is a chal-

lenging task. This server-level power management has been

mostly left to the operating system and its device drivers that

communicate with underlying hardware signals and manage

the server power. Server-level power management can be

broadly categorized into two levels, static and dynamic power

management. Static power management deals with minimising

leakage power, while dynamic power management deals with

regulating active runtime power based on utilization level.

1) Static Power Management: The silicon chip has static

power consumption, which is independent of the usage level.

Static power mainly accounts for the leakage of current inside

active circuits. To some extent, static power consumption
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Fig. 4: Taxonomy of Energy Management in Cloud Data Centres

is unavoidable; however, it can be minimized with better

design and processes. There are many solutions from a lower

level from circuit level and architectural techniques [23]. The

general approach in managing leakage is with different sleep

states of CPUs when the system is idle. For instance, Intel X86

architecture has (C0-C4) sleep states indicating C0 is an active

state, while C4 is a deep sleep state where most of the CPUs’

components are turned off to avoid static power consumption.

This processor’s sleep state management is usually done in

reactive manner at Operating System’s (OS) kernel level. If

a processor core is idle predefined time interval, a kernel

governor changes the sleep state.

Application of ML: However, existing reactive static power

management approaches could be vastly improved using the

ML-based solutions with proactive strategies. For instance,

Chung et al. [24] proposed a power management technique

for an arbitrary number of sleep states, which turns of idle

processors based on idle period clustering and adaptive learn-

ing trees. Instead of predefined interval, they estimate the

adaptive intervals based on recent history, saving the energy

consumption. Similarly, Lu et al. [25] introduce RAMZzz, a

memory system design which is based on rank-aware energy-

saving optimizations, in memory systems. It groups pages

with similar access patterns into the same rank, allowing

for dynamic page migrations to optimize access locality and

employs adaptive state demotions with a prediction model to

increase the energy efficiency. These studies indicates that ML

has been widely getting used at very low level management

of hardware devices.

2) Dynamic Power Management (DPM): A large part of

silicon chip-based computing elements, either in CPU or GPUs

spend on dynamic power. Dynamic power represents runtime

energy based on workload utilisation level. CPUs operate at

different frequencies to regulate the dynamic power. If the

operating frequency of a CPU is the highest, then its dynamic

power consumption will also be higher. The frequency is

regulated based on utilisation level and workload requirements

to increase their speedup. Dynamic Voltage Frequency Scaling

(DVFS) is a popular technique to regulate the dynamic power

in modern systems [26]. The dynamic power can be defined

as below:

Pdynamic α V
2
F (1)

In Equation 1, F is the frequency, and V is the supply

voltage to the processor. Based on the frequency, the voltage

is regulated, and some frequency ranges usually have a similar.

If a CPU should be at its highest speed or frequency should

be set to a higher level, thus consuming more power. The

operating system scales frequency based on its workload and

application demands in runtime.

The DVFS-based optimizations are employed using appli-

cation metrics, VM-level metrics, or even data-center level

utilization metrics [27], [28]. A few studies proposed DVFS

techniques at the data center level. These solutions include

DVFS-aware VM scheduling, consolidation [27], [28], place-

ment of application based on DVFS capabilities [29], and data

centre level task scheduling by synchronizing the frequency

scaling among multiple machines [30]. All of these works use

heuristic based solutions.

Application of ML: ML-based techniques widely used in

DPM optimisations. The Authors in [31] proposed ML-based

CPU and GPU DVFS regulator for compute-heavy mobile

gaming applications that coordinates and scale frequencies

with performance and energy improvements. Similarly, in one

of our recent study, we explored how ML-algorithms can

help us to dynamically configure GPUs clock frequency based

on workload requirements such as deadline [32]. Here, we

used popular GPU benchmarks Rodinia and Polybench and

collected profiled data which includes hardware level counters.

This collected data is further used develop ML regression mod-

els to estimate power consumption and execution time across

configurable memory and streaming processors frequencies.

These models are further used to guide a scheduling algorithm

to execute application within predefined deadline with minimal

energy consumption.

B. Data Centre Level

A significant amount of energy efficiency can be achieved

when data centre-level platforms incorporate energy-efficient

resource management policies. Distributed data centre appli-

cations span hundreds of machines in geo-distributed data
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centres; hence, providing energy efficiency holistically across

data centre resources and applications is more feasible and

yields better results. In this section, we discuss important

techniques for data centre-level energy-efficient solutions.

1) Energy-aware Provisioning: Cloud data centres offer

computing resources in terms of Virtual Machines (VMs) or

containers. Allocating the required amount of resources for the

application need is vital to satisfy the SLAs. However, over-

provisioning of resources may yield higher energy consump-

tion and monetary cost to the users, while under-provisioning

will potentially violate the SLAs. Many researchers have pro-

posed energy-aware resource provisioning techniques. Authors

in [33] investigated energy-aware resource allocation for sci-

entific applications. The proposed system EnReal leverages the

dynamic deployment of VMs for energy efficiency. Similarly,

Li et al. [34] proposed an iterative algorithm for energy-

efficient VM provisioning for application tasks. Beloglazov

et al. [35] propose various heuristic algorithms for resource

allocation policies for VMs defining architectural principles.

Application of ML: Mehiar et al. [36] offered cluster-

ing and prediction-based techniques; they used K-means for

workload clustering and stochastic Wiener filter to estimate the

workload level of each category and accordingly allocate re-

sources for energy efficiency. Recently Microsoft has proposed

Resource Control (RC) [20], where they trained ML models

to output predictions like VM lifetime, CPU utilisation, and

maximum deployment of VMs. These predictions use various

resource management problems for better decision-making,

including resource provisioning with the right container size

for applications. With increasing availability of data in cloud

platforms in regard to user workload behaviours, and usage

patterns, ML will be key technique to estimate right amount

of computing powers required for user requests.

2) Energy-aware Scheduling: Scheduling is a fundamental

and essential task of a resource management system in Cloud

data centres. It addresses the following question, given an

application or set of VMs (considering the application runs

inside these isolated VMs), when and where to place these

VMs/applications among available physical machines? This

decision depends on several factors, including application start

time, finish time, and required SLAs. In addition, workload

models, whether an application is a long-running (24 ×7) web

application, or a scientific workflow model of which it’s tasks

need to be aware of precedence constraints, or applications

based on IoT paradigm that is predominantly event-driven.

Although one can optimise numerous scheduling parameters,

many recent studies have focused on energy optimisation as a

priority in Cloud data centre scheduling.

Chen et al. [37] propose energy-efficient scheduling in un-

certain Cloud environments. They propose an interval number

theory to define uncertainty, and a scheduling architecture

manages this uncertainty in task scheduling. The proposed

PRS1 scheduling algorithm based on proactive and reactive

scheduling methods optimises energy in independent task

scheduling. Similarly, Huang et al. [38] investigate energy-

efficient scheduling for parallel workflow applications in

Cloud. Their EES algorithm tries to slack non-critical jobs to

achieve power saving by exploiting the scheduling process’s

slack room. Energy-efficient scheduling using various heuris-

tics for different application models has been a widely studied

topic in literature [39]–[41].

Application of ML: A vast number of study explored

application of ML in data centre scheduling. Some solutions

rely on predictive models and then use them in scheduling

algorithms, while other techniques model scheduling as a com-

plete learning-based problem using Reinforcement learning

(RL). Berral et al. [42], adopt ML-based regression techniques

to predict CPU load, power, SLAs and then use these in

scheduling for better decisions. These solutions still use some

level of heuristics with integrated prediction models. However,

RL-based scheduling is designed to learn and take action in a

data centre environment without explicit heuristics. Cheng et

al. [43] proposed DRL-based provisioning and scheduling for

application tasks in the data centre.

3) Energy-aware Consolidation: Cloud data centres are

designed to handle the peak load to avoid potential SLA

violations or overload conditions. Hence, the resources are

oversubscribed to manage such an adverse situation. However,

this oversubscription leads to resource underutilisation in gen-

eral. It is estimated that Cloud data centres’ utilisation level is

around 50% on average. Underutilisation of resources is the

main factor in the data centre’s energy inefficiency as idle or

lower utilised servers consume significant energy (up to 70%

[44]). Thus, it is necessary to manage workloads under such

oversubscribed and underutilised environments. To that end,

consolidation has been a widely used technique to increase

energy efficiency. It aims to bring the workloads (VMs and

containers) from underutilised servers and consolidate them on

fewer servers, thus allowing the remaining servers to be kept in

sleep/shut down mode to save energy. Many challenges exist

in consolidation, including maintaining VM affinity, avoiding

overutilisation, minimising SLA violation, and reducing appli-

cation downtime due to workload migrations.

Beloglazov et al. [35] proposed various heuristics to consol-

idate the workload and answer the question, including which

VMs to migrate, where to migrate and when to migrate to

reduce potential SLA Violation. Many other solutions have

broadly focused on energy efficiency along with optimising

different parameters (cost reduction, failure management, etc)

while consolidating workloads in the data centre [45], [46].

Application of ML: ML-based solutions are predominantly

used in consolidation [47], [48]. Hsieh et al. [48] studied

VM consolidation to reduce power cost and increase QoS.

They predict the utilisation of resources using the Gray-

Markov-based model and use the information for consoli-

dation. Similarly, the authors [47] also use prediction for

consolidation. They predict memory and network usage and

perform consolidation of VMs in a data centre along with

CPU. Few researchers have also used RL in energy-aware

consolidation [49], [50]. Basu et al. [50] proposed Megh—

a system that learns to migrate VMs in the data centre using

RL. It proposes the dimensionality reduction technique using
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dimensional polynomial space with a sparse basis to minimise

the state space in their problem. Their system has shown that it

achieves better energy efficiency and cost reduction compared

to existing heuristics.

4) Power Capping: Data centres are designed to handle

peak power consumption based on the workload and cooling

system requirements. Hence, in general, data centres are under-

provisioned with power. This power capping on data centre

servers restricts the amount of energy available to individ-

ual servers even though they can consume their maximum

limit, thus providing the required speed for workloads [51].

Managing resources and workload effectively in these power-

constrained environments is necessary. It is essential to avoid

power inefficiencies in limited power allocated across servers

to achieve power proportional computing [52].

In this regard, different power capping mechanisms at the

Cloud data centre level are studied. The authors [53] proposed

a fast decentralised power capping (DPC) technique to reduce

latency and manage power at the individual server. Dynamo

[54] is the power management system used by Facebook data

centres, which has hierarchical power distribution. The lowest

level leaf controller regulates power in a group of servers.

This leaf controller, based on a high-bucket-first heuristic,

determines the amount of energy to be reduced in each server

to meet the power cap limits to which it is constrained. It

also considers workload priorities and avoids potential perfor-

mance degradation due to its power capping. Controlling peak

power consumption is also a widely studied approach [55]

by designing a feedback controller, which periodically reads

system-level power and configures the highest power state of

servers, keeping the server within its power budget. Authors

in [56] studied optimal power allocation in servers, which

accounts for several factors, including power-to-frequency,

the arrival rate of jobs, and maximum and minimum server

frequency configuration. They have shown that allocating full

power may not always result in the highest speed as expected.

Some techniques have also explored enabling data centre

service providers to dynamically manage the power caps by

participating in an open electricity market and achieve cost

and energy efficiency [57].

Application of ML: Kumbhare et al. [58] propose a predic-

tion based power over subscription in cloud data centres. they

predictions of workload performance criticality and virtual

machine (VM) resource utilisation and use this information to

over subscribe the resources and increase overall utilisation.

With Random Forest (RF) and Gradient Boosting (GB) models

are used to predict the workload criticality and VM utilisation

and use per VM power capping controller to limit its resource

usage based on these predictions. However, due to the close

interconnection between power capping effect on CPU speed,

thermal dissipation and also the presence of heterogeneity

in servers and workloads, data centre level power capping

workload management is a difficult task to achieve [59] as

compared to other energy efficiency methods that are discussed

in this paper.

5) Renewable Energy Management: Data centres consume

colossal energy and contribute significantly to greenhouse gas

emissions (CO2). Data centre service providers continuously

increase renewable or green energy (solar, wind) usage with

minimal carbon footprints to decarbonise the data centres.

However, green energy usage in the data centre is extremely

challenging due to its intermittent nature of availability. In

contrast, the Cloud data centre needs an uninterrupted power

supply since Cloud workloads tend to run 24× 7. Therefore,

managing workloads under the uncertain availability of renew-

able energy is a challenging research problem.

Several resource management techniques explored maximis-

ing renewable energy in data centres. They include workload

shifting and placement across geo-distributed data centres

[60]–[62] based on their carbon efficiency. Besides, delaying

job execution if an application can tolerate the QoS [63] and

job dispatching or load balancing workloads to match the

available renewable energy at different data centres [64] are

some popular techniques in this regard.

Application of ML: ML-based algorithms are promising

in renewable energy management, as predicting the available

green energy based on an environmental condition is crucial

in resource management tasks [65]–[67]. For instance, re-

searchers from Google developed [68] carbon aware workload

scheduling strategies for batch processing jobs by predicting

the next day’s available renewable energy from their energy

sources. Similarly, Authors in [69] explores forecasting the

carbon intensity of geographically distributed data centres

and provides temporal shifting of workloads to minizime

overall carbon footprints of workload execution. Along with

prediction models, RL methods are also used to solve opti-

misation problems in increasing green energy usages in data

centres by mapping renewable energy sources and physical

machines [66].

IV. TAXONOMY OF THERMAL MANAGEMENT IN CDCS

Similar to energy management, thermal management tech-

niques span from an individual server to data centres. A

taxonomy on thermal management solutions is presented in

Fig. 5. This section categorises these techniques into two broad

categories, i.e., micro-level or single server level and macro-

level or data centre-level thermal management techniques.

We describe and review existing approaches and ML-based

approaches used in these two categories.

A. Server Level

To achieve optimal performance, especially in modern chips

with very high power densities, thermal constraints are the

most critical challenges. Hence, it is essential to operate

processors within the predefined Thermal Design Power (TDP)

limit [70]. The servers consume an enormous amount of

energy and dissipate it as heat. It is crucial to keep processor or

CPU temperature within the TDP limit to avoid damage to the

processor’s silicon components, and prevent from catastrophic

device failures. Modern rack servers reach peak temperatures

up to 90-100◦C.
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Fig. 5: Taxonomy of Thermal Management in Cloud Data

Centres

Like DVFS in energy management, its corresponding ther-

mal dissipation is regulated in servers by controlling the

amount of power consumed. Dynamic Thermal Management

(DTM) [71] is a popular thermal management technique at

the individual server level which regulates Multiprocessors

Systems-on-chip (MPSoCs) power consumption, and perfor-

mance. This is done at the operating system level by closely

communicating with underlying hardware interfaces. If a

server’s temperature is potentially exceeding the predefined

TDP, the operating system takes actions by employing thermal

throttling mechanisms to reduce energy consumption, thus

reducing the CPU speed. Moreover, techniques like dynamic

application scheduling [72], [73], onboard fan speed config-

uration [74] can also be employed for energy and thermal

efficiency at the server level.

Application of ML: Recently, ML-based solutions have

been applied to optimise temperature management at the indi-

vidual server level. For example, Iranfar et al. [75] investigated

how to proactively estimate the required number of active

cores, operating frequency, and fan speed. Accordingly, the

system is configured to achieve reduced power consumption

and thus regulating corresponding server temperature. Al-

though power consumption and CPU temperature are highly

correlated, many other factors affect the thermal behaviour of

servers including OS-level scheduling policies and compute-

heavy applications. Therefore, analysing such resource man-

agement policies and workload behaviour through profiling,

bench-marking, and then modelling through ML [32], is

crucial for the design of future operating systems. As our focus

is entirely on cloud data centres, we delve into more details

on data centre level solutions in this regard.

B. Data Centre Level

A typical large-scale CDCs hosts thousands of servers.

CDCs servers are arranged in rack-layout, where each rack

(e.g., standard 42U rack) can accommodate 10-40 blade

servers based on vendor-specific dimensions. This high density

of equipment makes the data centre one of the highest-

energy-density physical infrastructures. Dissipated heat from

these rack servers can result in the data centre’s ambient

temperature reaching extremely high. Thus, cooling systems

in data centres make sure that the data centre temperature

is within the threshold. Many approaches exist, optimising

different parameters to reduce cooling energy. In this section,

we review and describe data centre-level thermal management

techniques.

1) Cooling System Configurations: Traditional rack layout

data centres have a Computer Room Air Conditioning (CRAC)

cooling system that blows cold air to the racks across the

data centre (more details of cooling technologies can be

found in Section IV-C). The entire cooling system efficiency

requires multiple parameters to be configured in the design

and operational phase. In the design phase, efficiency can be

increased by better physical layout and vent designs to reduce

heat re-circulations. While runtime cooling energy efficiency

can be increased by fine-tuning the fan speeds of CRAC

systems and cold air supply temperature, which determines the

cooling system energy consumption [76]–[78]. In this section,

we focus on runtime cooling system optimisation.

Fan Speed Management: Within the CRAC system, fans are

used to regulate the airflow rate within the data centre. It is

important to note that these fan speeds are separate from the

onboard server’s fan equipped to eject heat from CPU to the

outside of the server cabinet. Increasing airflow requires higher

fan speeds, thus consuming more energy. Hence, regulating

fan speed optimally can save a significant amount of cooling

power. However, this depends on the status of the data centre

and its temperature level. Many researchers have proposed

solutions to optimally configure the CRAC’s fan speed based

on cooling load [76], [79] by monitoring thermal load in the

data centre and accordingly varying fan speeds dynamically

to reduce energy consumption.

Supply Temperature Management: CRAC system blows

cold air to racks through vented floor tiles in the data centre

to take out dissipated heat. Passing colder air requires higher

energy consumption as chillers in CRAC consume energy to

supply cold air. Hence, the inaccurate configuration of supply

air temperature significantly affects cooling energy costs in

the data centre. For a safer operation, the American Soci-

ety of Heating, Refrigerating and Air-Conditioning Engineers

(ASHRAE) [80], recommends supply air temperature in the

data centre to be in the range of 17-27 ◦C. Thus, it is beneficial

to set the supply temperature closer to 27 ◦C. However, most

data centres are overcooled as the supply temperature in the

data centre is set to a much lower temperature conservatively,

leaving energy inefficiencies in the cooling system. Setting a

higher supply air temperature requires careful handling of peak

temperature in data centres.

Many solutions have been proposed to raise the supply air

temperature. Zhou et al. [81] have shown that significant power

saving can be achieved when the workload is managed effi-

ciently and allows the supply air temperature to be increased.

In essence, to raise the supply air temperature, the data centre’s

peak temperature should be minimised. It can be done through

various means, including thermal aware workload scheduling

and avoiding thermal imbalance in the data centre.

Application of ML: In one of the earlier studies, Google

used ML for cooling system optimisation in their data centres
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[21]. The study employed a neural network framework to

model and predict the Power Usage Effectiveness (PUE),

which is the ratio of the total building energy usage to the

IT energy usage. It used historical data from servers and other

cooling systems, such as server IT load, server temperature,

cooling set points, outside temperature, and more. The study

analysed the effect of PUE on various configurations and

provided feedback for system administrators to fine-tune the

configurations efficiently, such as the number of dry coolers

running, water pump speed, and the number of process water

pumps. With the abilities of ML models to capture the

complex nonlinear behaviour between parameters of different

subsystems, they have high potential in modelling of the CDC

cooling systems and help administrators increase the energy

efficiency by adjusting the knobs.

2) Thermal-aware IT Workload Management: Thermal

aware workload management include many sub tasks such as

workload scheduling, workload consolidation, and workload

dispersion, among others. These tasks significantly affects

the thermal bheaviours of a data centre. For instance, if

the workload scheduling strategy results in peak temperature

in the data centre, it generates a higher thermal load, thus

increasing cooling costs. To address this, many researchers

have proposed thermal-aware scheduling methods in Cloud

data centres. Some solutions are proactive, which intends

to avoid adverse temperature effects beforehand. In contrast,

some scheduling policies follow reactive approaches. If a tem-

perature violation is found, workloads are rescheduled to other

nodes; however, the reactive scheduling method may result

in higher QoS violations for applications due to rescheduling

and migration. Mhedheb et al. [82] investigated load and

thermal aware scheduling in Cloud that optimises temperature

and load while scheduling tasks in data centres. Sun et al.

[83] proposed thermal-aware scheduling of HPC jobs. They

have used analytical models to estimate server temperature

and model heat recirculation in the data centre. Proposed

thermal-aware job assignment heuristics have shown increased

performance with thermal balancing. Furthermore, authors in

[84] have further extended thermal aware batch job scheduling

across geo-distributed data centres.

Similarly, thermal-agnostic workload consolidation and dis-

persion triggers adverse temperature effects. Hence, balancing

the workloads efficiently is necessary to achieve better effi-

ciency. Consolidation is a widely used technique to optimise a

computing system’s energy consumption. However, aggressive

consolidation leads to the creation of hotspots that further

increases cooling cost. Hence, thermal-aware consolidation is

necessary to balance the computing and cooling system energy

consumption. A few studies have proposed solutions for this

[85]–[87] to balance the temperature response due to workload

placement during the workload consolidation. In contrast to

to consolidation, the workload dispersion technique aims to

spread out workloads evenly across the data centre’s servers

[88], preventing peak utilisation in normal conditions. Al-

though it minimises peak temperature, it significantly increases

the computing system energy due to resource under-utilisation.

Hence, there should be a balance between consolidation and

workload dispersion techniques to achieve cooling system

efficiency.

Application of ML: Many of the existing works have em-

ployed machine-learning-based techniques in thermal-aware

scheduling. Xiao et al. [89] presented a power and thermal-

aware VM management framework based on machine learn-

ing, which relied on used Q-learning model to find optimal

host configuration (power states) based on workload character-

istics and cooling system’s working state. The framework also

enforced an efficient load-balancing policy to achieve a better

trade-off between energy efficiency and performance. Simi-

larly, many works have explored efficient distribution of ap-

plication workload and also consolidation of VMs to increase

resource utilisation and avoid thermal hotpots [90]–[92]. These

works either develop temperature prediction model, aiding

scheduling algorithms or develop controllers based on RL

framework.

3) Thermal Modelling: Thermal modelling in data centres

plays a vital role in resource management. Thermal modelling

includes capturing thermal behaviour in a data centre and

accurately estimating server temperature. Thermal models that

predict accurately and fastly are useful aids in scheduling,

configuring cooling systems and other resource management

techniques. However, temperature prediction is a difficult

problem. Server ambient temperature in a data centre depends

on multiple factors, including CPU heat dissipation, inlet

temperature and complex heat recirculation effects. There

are mainly three types of thermal modelling techniques in

data centres: (1) Computational Fluid Dynamic (CFD)-based

models; (2) Analytical models; and (3) Predictive models.

The CFD models accurately capture the room layouts, and heat

recirculation effects and accurately estimates temperature in

the data centre [93]–[95]. However, they are computationally

expensive, and even a single calibration requires models to be

run for multiple days. Hence, they are incapable of using them

for fast online resource management decisions. On the other

hand, analytical models depends on modelling data centre

and workloads based on mathematical frameworks [83], [96].

They represent cooling, computing and workload elements

with formal mathematical models and build a framework to

establish relationships between all elements [83]. Although

they are fast in temperature estimation, their accuracy is

compromised due to their rigid static models.

Application of ML: ML-based predictive models use actual

measurement data from the data centre to predict the accurate

temperature of the server. These data-driven models, once

trained, are accurate and quickly deliver the results in runtime.

Moreover, they can automatically model the physical layout,

air conditioning and the heat generated by Cloud data centres.

Unlike CFD, where each of these needs to be modelled

explicitly, this is a huge benefit. To that end, Wang et al.

[97] proposed a server temperature prediction model using the

Artificial Neural Network (ANN) based ML technique. Results

have shown that it can accurately predict the temperature in

data centres. In addition, some studies have explored using
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machine learning models to identify temperature distribution

[98] and to predict server inlet temperature [99].

The drawback of the ML-based model is that the model is

only applicable to the data centre which the data is collected

from. This means data need to be collected for each data centre

extensively. However, this is not a massive disadvantage as

such data need to be collected to monitor the data centres’

health.

C. Cooling Technologies for Thermal Management in Data

Centres

When servers/IT equipment uses electricity for their op-

erations, the electrical energy is transferred as heat. This

heat will be drawn across the server cabinet by the rear-

mounted server fans allowing heat to transfer from the server’s

components to the outside ambient environment. Many tech-

nologies are employed to take out this heat from the data

centre environment and keep the data centre’s operational

temperature within its threshold. These cooling technologies

can be broadly categorised into two categories, including air

and liquid cooling technologies.

1) Air Cooling: Air cooling is a widely used data centre

cooling technology due to its inexpensive and flexible de-

sign and operational conveniences. In rack-layout-based data

centres, the dissipated heat from servers is extracted from

the cooling system’s environment. The Computer Room Air

Conditioning (CRAC) is a cooling system responsible for

monitoring and managing the temperature in the data centre

[100]. The CRAC blows cold air through the perforated tiles

under the racks of a data centre. The cold air passes from the

bottom to the top of the rack taking out the dissipated heat

from rack equipment sand this hot exhaust air is pushed to the

intake of the CRAC units to the ceiling of the room, where

it is taken out of the room. This allows the separation of hot

exhaust air from cold inlet air. The CRAC unit then transfers

the hot exhaust air via a coil to a fluid using refrigerant.

Many data centres also equip Computer Room Air Han-

dler (CRAH), where chilled water is used as fluid [100].

These fluids remove the heat from the data centre environment.

The CRAC/CRAH continuously blow cold air using constant-

speed fans, and this returns cold-air temperature, also called

inlet temperature. It is configured to manage the dynamic

thermal threshold in the data centre. It directly controls the cost

of cooling in general. Lower the inlet temperature higher will

be the cooling energy cost due to the increased energy required

to transfer the lower temperature air from CRAC/CRAH.

The American Society of Heating, Refrigerating and Air-

Conditioning Engineers (ASHRAE) [80], a leading technical

Committee in cooling system technology, recommends that the

device inlet be between 18-27°C for the safe operation of the

environment. The design goal of any data centre operators

will be to provide an inlet temperature close to 27 °C to

reduce the cooling cost. However, the safer operation threshold

should be maintained while configuring this parameter. Many

works have looked into optimising this parameter using dif-

ferent techniques by minimising the peak temperature [96] by

balancing the workloads [92] and optimally configuring other

parameters [101] of the cooling system.

Some modern systems also use evaporative [102] and

air side economisers/ free cooling techniques [103]. In the

evaporative technique, instead of fluid refrigerant, the hot air

carried from the data centre is directly exposed to water.

Water evaporates, taking out the heat from the hot air. Cooling

towers are employed to dissipate the excess heat to the outside

atmosphere. However, it doesn’t require expensive CRAC or

CRAH units but needs a large amount of water, a limiting

factor in many data centre locations. On the other hand, air-

side economisers or free cooling methods use outside free

air for direct cooling instead of depending on the fluids to

cool down the hot air extracted from CRAC/CRAH. This

saves a huge amount of cooling costs. Nonetheless, these

techniques vastly depend on the weather and geographical

condition where the data centre is located, and thus they are

used in limited computing infrastructures in practice.

2) Liquid Cooling: The recent advancement in data centre

cooling technology has seen the adoption of liquid cooling

as it is more efficient than air cooling, in general, [104]. The

liquid cooling system also effectively avoids heat mix-up and

heat re-circulation issues, which is a common problem in air

cooling techniques.

Direct liquid cooling. In this system, liquid pipes are used

to deliver liquid coolant directly to the heat sink present in the

server’s motherboards. The dissipated heat from the server is

extracted to heat the chiller plant from these pipes, where the

chilled water loop takes out the heat extracted from servers.

Immersion cooling. The computing system (servers and

networking equipment is directly immersed in a non-

conductive liquid. The liquid absorbs the heat and transfers

it away from the components [105]. In some cases, equipment

is arranged in isolated cabinets and immersed in tanks or

cabinets are directly immersed in natural water habitats such as

lakes/oceans. For instance, Microsoft has tested an underwater

data centre with their project Natick [106], which allows them

to operate the data centre in an energy-efficient manner by

leveraging heat-exchange techniques with outside water. This

technique is commonly used in submarines. This experimental

project shows that immersion cooling is viable in large-scale

computing systems with a group of servers sealed into large

submarine cabinets.

Some other techniques have also been explored but are

rarely used in large-scale settings, such as Dielectric fluid,

where server components are coated with a non-conductive

liquid. The heat is removed from the system by circulating

liquid into direct contact with hot components, then through

cool heat exchangers. Such methods are not widely adopted yet

in practice. The common issue with rack-level liquid cooling

is a lack of standardisation and specifications among multi-

vendors. However, due to its energy efficiency compared to

air cooling, it is expected that liquid cooling will become

mainstream in future data centre cooling systems.
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Fig. 6: Taxonomy of Integrated Energy and Thermal

Management in Cloud Data Centres

V. TAXONOMY OF INTEGRATED ENERGY AND THERMAL

MANAGEMENT IN CDCS

Traditionally cooling systems and computing systems are

optimised individually. However, these two subsystems in the

data centre are closely interdependent and optimising one

system often have a opposite effect on others. Hence, the

joint optimisation of two subsystems is beneficial, but it is

challenging task that requires capturing complex dynamics of

data centre workloads and physical environments. Fig. 6 shows

a taxonomy of existing resource management solutions in

integrated management of both computing and cooling energy.

Workload Management. A few studies have proposed

solutions, including workload scheduling and cooling system

optimisation as a multiobjective optimisation problem and

accordingly configure different parameters to minimise en-

ergy consumption holistically [107], [108]. Other techniques

include CRAC fan speed management by interplaying with

IT load and its heat dissipation, configuring supply air tem-

perature, and distributing the workload to minimise peak

temperature, among many others.

Knobs Configurations. Wan et al. [109] studied holistic

energy minimisation in data centres through a cross-layer opti-

misation framework for cooling and computing systems. This

energy minimisation problem is formulated as a mixed-integer

nonlinear programming problem. To solve this problem, the

authors proposed a heuristic algorithm called JOINT, that dy-

namically configures parameters (such as server frequency, fan

speed, and CRAC supply air temperature) based on workload

demand and minimises computing and cooling system energy

holistically.

Li et al. proposed [110] joint optimisation of computing

and cooling systems for energy minimisation in data cen-

tres by modelling IT systems interactions (load distributions)

and their corresponding thermal behaviour, i.e., heat transfer.

The proposed analytical models for load distribution across

rack servers minimise computing and cooling system energy,

thereby configuring different knobs of two systems while

ensuring the required throughput and resource constraints of

workloads.

Power Budget Shifting. Power budget shifting is another

important resource management technique in the Join optimi-

sation of these two systems. Using available power to trade

between two systems in runtime can increase energy efficiency

and resource utlisaiton. PowerTrade [111] is a technique that

trades off data centre computing systems’ idle power and

cooling power with each other to reduce total power. Over-

provisioning is necessary for such conditions to accommodate

extra workload and use excessive power obtained.

Application of ML: ML techniques have also been

explored in the joint optimisation of computing and cooling

systems. Recent advancements in RL have made it possible to

learn different policies by interacting with the environments

and learning from experience. RL techniques can be more

adaptive and automatically understand the interdependence’s

of parameters. Ran et al. [112] used DRL and designed a hy-

brid action space that optimises the IT system and the airflow

rate of the cooling system. Furthermore, the proposed control

mechanism coordinates both the IT system’s workload and

cooling systems for energy efficiency. Similar techniques can

be found in other studies [43], [113]. Careful design of state

management, action, and rewards are important for applying

RL techniques to data centres’ holistic energy management.

VI. FUTURE RESEARCH DIRECTIONS

The sustainability in CDCs can be achieved by tackling

some key issues that demand careful investigation and solu-

tions. We need to fundamentally rethink how the data centres

are currently managed, from hardware level optimisation to

geo distributed data centre management. According to [11],

if energy-aware approaches are implemented in CDCs, we

can reduce total energy consumption in data centres up to

80% from the expected worst case scenario (Fig. 2). In the

following, we identify key future research directions that

should be pursued in this direction in order to reduce the

energy footprints of CDCs and briefly explain them.

A. Standardisation and Tools for AI-centric RMS

One of the main barriers in adopting AI or ML solutions in

data centre RMS is the lack of standardisation and tools. ML

solutions need a lot of data. Currently, distributed systems,

including Cloud systems, produce huge amounts of data from

different computing layers. Standard methods and semantics

are needed to collect, monitor, and interpret these data to

accelerate the adoption of AI-centric models. Moreover, soft-

ware tools and libraries need to be developed specifically

for resource management systems, which will easily integrate

policies into existing systems.

B. Hardware Software Co-design for ML-driven Resource

Management

Computing servers and their components are tightly bound

to operating systems that use simple rules to manage resources.

This makes it hard to integrate new resource management

policies that use ML to optimise hardware performance, be-

cause different vendors do not have common interfaces that

can communicate with software. To solve this problem, we

need a hardware-software co-design approach that allows us

to develop and implement new resource management policies

on hardware resources in an interoperable way.
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C. Moving from ”time-to-solution” to ”Kw-to-solution”

Software development paradigms, platforms, and algorithms

aim to enhance the execution speed of applications, but

ignore their energy consumption. Hence, a paradigm shift

is required from ”time-to-solution” to ”Kw-to-Solution” in

software development and deployment. We also need new tools

and programming constructs that enable software developers

to assess and minimize the energy cost of their application

logic, while preserving high speed. ML methods can offer

valuable techniques for achieving this goal, such as learning

energy-efficient code patterns, optimizing code performance,

and adapting to different hardware configurations.

D. Resource Management in Emerging Cloud Workload Mod-

els using ML

Cloud computing is evolving from partially managed to

fully managed services with application execution models

like Serverless computing. Serverless computing lets us build

applications with multiple stateless microservices. Cloud ser-

vice providers handle the lifecycle of these microservices or

stateless functions with guaranteed automatic scalability. This

creates new challenges in pricing and managing thousands

of stateless application services. ML-driven solutions, such as

predicting user requests to cache ”Hot” functions and reduce

serverless function latency, or identifying resource interference

among different user functions with classification methods, are

some of the promising ways to address these challenges.

E. ML-Driven Holistic Resource Management

Cloud data centres consist of computing, networking, stor-

age and cooling systems that are interdependent and crucial for

ensuring service reliability. ML-driven resource management

can detect these interdependencies and optimize the resources

in a holistic manner to minimize energy consumption. A

promising approach is to develop new algorithms and plat-

forms that adjust parameters across different subsystems and

balance tradeoffs.

F. Decarbonising Cloud Computing using ML

Cloud data centres are a major source of CO2 emissions

due to their dependence on fossil fuel-based energy sources. To

decarbonise Cloud systems, many service providers are invest-

ing in renewable energy. However, the adoption of renewable

energy sources is limited by their intermittent availability.

Therefore, new solutions are needed to address the challenges

of energy storage and workload management under uncertain

energy supply. One promising direction is to use ML models to

forecast the amount of renewable energy available at different

Cloud data centre locations for a given time period. This

prediction can enable the planning and execution of workloads

in data centres that have more renewable energy, and thus

reduce the reliance on fossil fuels.

G. Data-Driven Methods for Sustainable Multi-tier Comput-

ing Platforms

Multi-tier computing paradigms, such as Edge/Fog comput-

ing, have emerged to support IoT applications with distributed

computations from the network edge to remote clouds. These

paradigms pose new challenges for resource and application

management, as they require low latency response and en-

tail moving Cloud services from centralised locations to the

network edge. Moreover, these paradigms involve more het-

erogeneous and energy-constrained environments than remote

Clouds. Therefore, new solutions and approaches are needed

for effective application and resource management under these

conditions. ML methods can offer promising techniques for

addressing these challenges, such as learning optimal resource

allocation strategies, predicting workload patterns, and adapt-

ing to dynamic environments.

VII. CONCLUSIONS

Cloud computing platforms enable the development of

highly connected resource-intensive applications, but they also

require massive, heterogeneous, and complex data centres

as their backbone infrastructure. Managing the energy and

thermal aspects of such data centres is a challenging task, as

the existing rule-based or heuristics solutions are not adequate

to cope with the scale, heterogeneity, and dynamicity of the

Cloud environment. Therefore, we need data-driven AI solu-

tions that can leverage the data, learn from the environment,

and make optimal resource management decisions. In this

paper, we have explored leveraging AI-centric solutions for

energy and thermal management in Cloud data centres. We

have proposed a taxonomy for classifying different resource

management techniques. We have also surveyed the state-of-

the-art techniques and highlighted their strengths and limi-

tations. Finally, we have suggested some promising future

research directions
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