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Abstract. Recently many large scale computer systems are built in order to meet
the high storage and processing demands of compute and data-intensive applica-
tions. MapReduce is one of the most popular programming models designed to
support the development of such applications. It was initially created by Google
for simplifying the development of large scale web search applications in data
centers and has been proposed to form the basis of a ‘Data center computer’ This
paper presents a realization of MapReduce for .NET-based data centers, including
the programming model and the runtime system. The design and implementation
of MapReduce.NET are described and its performance evaluation is presented.

1 Introduction

Recently several organizations are building large scale computer systems to meet the
increasing demands of high storage and processing requirements of compute and data-
intensive applications. On the industry front, companies such as Google and its com-
petitors have constructed large scale data centers to provide stable web search services
with fast response and high availability. On the academia front, many scientific research
projects increasingly rely on large scale data sets and powerful processing ability pro-
vided by super computer systems, commonly referred to as e-Science [15].

These huge demands on data centers motivate the concept of Cloud Computing [9]
[12]. With clouds, IT-related capabilities can be provided as service, which is accessi-
ble through the Internet. Representative systems include Google App Engine, Amazon
Elastic Compute Cloud (EC2), Majrasoft Aneka, and Microsoft Azure. The infrastruc-
ture of Cloud Computing can automatically scale up to meet the requests of users. The
scalable deployment of applications is typically facilitated by Virtual Machine (VM)
technology.

With the increasing popularity of data centers, it is a challenge to provide a proper
programming model which is able to support convenient access to the large scale data
for performing computations while hiding all low-level details of physical environ-
ments. Within all the candidates, MapReduce is one of the most popular programming
models designed for this purpose. It was originally proposed by Google to handle large-
scale web search applications [8] and has been proved to be an effective programming
model for developing data mining and machine learning applications in data centers.



Especially, it can improve the productivity of junior developers who do not have re-
quired experiences of distributed/parallel development. Therefore, it has been proposed
to form the basis of a ‘data center computer’ [5].

The .NET framework is the standard platform of Microsoft Windows applications
and it has been extended to support parallel computing applications. For example, the
parallel extension of .NET 4.0 supports the Task Parallel Library and Parallel LINQ,
while MPI.NET [6] implements a high performance library for the Message Passing
Interface (MPI). Moreover, the Azure cloud service recently released by Microsoft, en-
ables developers to create applications running in the cloud by using the .NET Frame-
work.

This paper presents a realization of MapReduce for the .NET platform, called MapRe-
duce.NET. It not only supports data-intensive applications, but also facilitates a much
wider variety of applications, even including some compute-intensive applications, such
as Genetic Algorithm (GA) applications. In this paper, we describe:

• MapReduce.NET: A MapReduce programming model designed for the .NET plat-
form using the C] programming language.

• A runtime system of MapReduce.NET deployed in an Enterprise Cloud environ-
ment, called Aneka [12].

The remainder of this paper is organized as follows. Section 2 gives an overview
of MapReduce. Section 3 discusses related work. Section 4 presents the architecture
of MapReduce.NET, while Section 5 discusses the scheduling framework. Section 6
describes the performance evaluation of the system. Section 7 concludes.

2 MapReduce Overview

MapReduce is triggered by the map and reduce operations in functional languages,
such as Lisp. This model abstracts computation problems through two functions: map
and reduce. All problems formulated in this way can be parallelized automatically.

Essentially, the MapReduce model allows users to write map/reduce components
with functional-style code. These components are then composed as a dataflow graph to
explicitly specify their parallelism. Finally, the MapReduce runtime system schedules
these components to distributed resources for execution while handling many tough
problems: parallelization, network communication, and fault tolerance.

A map function takes a key/value pair as input and produces a list of key/value pairs
as output. The type of output key and value can be different from input:

map :: (key1, value1)⇒ list(key2, value2) (1)

A reduce function takes a key and associated value list as input and generates a list
of new values as output:

reduce :: (key2, list(value2))⇒ list(value3) (2)

A MapReduce application is executed in a parallel manner through two phases. In
the first phase, all map operations can be executed independently from each other. In
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the second phase, each reduce operation may depend on the outputs generated by any
number of map operations. All reduce operations can also be executed independently
similar to map operations.

3 Related Work

Since MapReduce was proposed by Google as a programming model for developing
distributed data intensive applications in data centers, it has received much attention
from the computing industry and academia. Many projects are exploring ways to sup-
port MapReduce on various types of distributed architecture and for a wider range of
applications. For instance, Hadoop [2] is an open source implementation of MapReduce
sponsored by Yahoo!. Phoenix [4] implemented the MapReduce model for the shared
memory architecture, while M. Kruijf and K. Sankaralingam implemented MapReduce
for the Cell B.E. architecture [11].

A team from Yahoo! research group made an extension on MapReduce by adding
a merge phase after reduce, called Map-Reduce-Merge [7], to perform join operations
for multiple related datasets. Dryad [10] supports an interface to compose a Directed
Acyclic Graph (DAG) for data parallel applications, which can facilitate much more
complex components than MapReduce.

Other efforts focus on enabling MapReduce to support a wider range of applica-
tions. MRPSO [1] utilizes the Hadoop implementation of MapReduce to parallelize a
compute-intensive application, called Particle Swarm Optimization. Researchers from
Intel currently work on making MapReduce suitable for performing earthquake simu-
lation, image processing and general machine learning computations [14]. MRPGA [3]
is an extension of MapReduce for GA applications based on MapReduce.NET. Data-
Intensive Scalable Computing (DISC) [13] started to explore suitable programming
models for data-intensive computations by using MapReduce.

4 Architecture

MapReduce.NET resembles Google’s MapReduce, but with special emphasis on the
.NET and Windows platform. The design of MapReduce.NET aims to reuse as many
existing Windows components as possible. Fig. 1 illustrates the architecture of MapRe-
duce.NET. Its implementation is assisted by several component services from Aneka.
Aneka is a .NET-based platform for enterprise and public Cloud Computing [12]. It
supports the development and deployment of .NET-based Cloud applications in public
Cloud environments, such as Amazon EC2. We used Aneka to simplify the deployment
of MapReduce.NET in distributed environments. Each Aneka node consists of a con-
figurable container, hosting mandatory and optional services. The mandatory services
provide the basic capabilities required in a distributed system, such as communications
between Aneka nodes, security, and membership. Optional services can be installed to
support the implementation of different programming models in Cloud environments.
MapReduce.NET is implemented as an optional service of Aneka.
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Fig. 1: Architecture of MapReduce.NET.

Besides Aneka, WinDFS provides a distributed storage service over the .NET plat-
form. WinDFS organizes the disk spaces on all the available resources as a virtual stor-
age pool and provides an object-based interface with a flat name space, which is used
to manage data stored in it. To process local files, MapReduce.NET can also directly
communicate with CIFS or NTFS. The remainder of this section presents details on the
programming model and runtime system.

Table 1: APIs of MapReduce.NET
class Mapper
{

void Map(MapInput < K, V> input)
}

class Reducer
{

void Reduce(IReduceEnumerator input)
}

4.1 MapReduce.NET APIs

The implementation of MapReduce.NET exposes APIs similar to Google MapReduce.
Table 1 illustrates the interface presented to users in the C] language. To define map/reduce
functions, users need to inherit from Mapper or Reducer class and override correspond-
ing abstract functions. To execute the MapReduce application, the user first needs to
create a MapReduceApp class and set it with the corresponding Mapper and Reducer
classes. Then, input files should be configured before starting the execution and they
can be local files or files in the distributed store.

The type of input key and value to the Map function is the object, which is the root
type of all types in C]. For reduce function, the input is organized as a collection and
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the data type is IEnumerator, which is an interface for supporting an iterative operation
on the collection. The data type of each value in the collection is also object.

With object, any type of data, including user-defined or system build-in type, can
be accepted as input. However, for user defined types, users need to provide serializa-
tion and deserialization methods. Otherwise, the default serialization and deserialization
methods will be invoked.

4.2 Runtime System

The execution of a MapReduce.NET application consists of 4 major phases: Map, Sort,
Merge and Reduce. The overall flow of execution is illustrated in Fig. 2. The execution
starts with the Map phase. It iterates the input key/value pairs and invokes the map
function defined by users on each pair. The generated results are passed to the Sort and
Merge phases, which perform sorting and merging operations to group the values with
identical keys. The result is an array, each element of which is a group of values for each
key. Finally, the Reduce phase takes the array as input and invokes the reduce function
defined by users on each element of the array.
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Fig. 2: Computation of MapReduce.NET.

The runtime system is based on the master-slave architecture with the execution
of MapReduce.NET orchestrated by a scheduler. The scheduler is implemented as a
MapReduce.NET Scheduler service in Aneka, while all the 4 major phases are im-
plemented as a MapReduce.NET Executor service. With Aneka, the MapReduce.NET
system can be deployed in cluster or data center environments. Typically, it consists of
one master machine for a scheduler service and multiple worker machines for executor
services.

The 4 major phases are grouped into two tasks: Map task and Reduce task. The Map
task executes the first 2 phases: map and sort, while the Reduce task executes the last 2
phases: merge and reduce. The input data for the map function is split into even-sized m
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pieces to be processed by m map tasks, which are evenly assigned to worker computers.
The intermediate results generated by map tasks are partitioned into r fragments, and
each fragment is processed by one reduce task.
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Fig. 3: Dataflow of MapReduce.NET.

The major phases on the MapReduce.NET executor are illustrated in Fig. 3.
Map Phase. The executor extracts each input key/value pair from the input file. For

each key/value pair, it invokes the map function defined by users. The result generated
by the map function is first buffered in the memory. The memory buffer consists of
many buckets and each one is for a different partition. The generated result determines
its partition through a hash function, which may be defined by users. Then the result is
appended to the tail of the bucket of its partition. When the size of all the results buffered
in the memory reaches a predefined maximal threshold, they are sent to the Sort phase
and then written to the disk. This saves space for holding intermediate results for the
next round of map invocations.

Sort Phase. When the size of buffered results exceeds the maximal threshold, each
bucket is written to disk as an intermediate file. Before the buffered results are written
to disk, elements in each bucket are sorted in memory. They are written to disk by the
sorted order, either ascending or descending. The sorting algorithm adopted is quick
sort.

Merge Phase. To prepare inputs for the Reduce phase, we need to merge all the
intermediate files for each partition. First, the executor fetches intermediate files which
are generated in the Map phase from neighboring machines. Then, they are merged to
group values with the same key. Since all the key/value pairs in the intermediate files
are already in a sorted order, we deploy a heap sort to achieve the group operation.
Each node in the heap corresponds to one intermediate file. Repeatedly, the key/value
pair on the top node is picked, and simultaneously the values associated with same key
are grouped.

Reduce Phase. In our implementation, the Reduce phase is combined with the
Merge phase. During the process of heap sort, we combine all the values associated
with the same key and then invoke the reduce function defined by users to perform the
reduction operation on these values. All the results generated by reduce function are
written to disk according to the order by which they are generated.
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4.3 Memory Management

Managing memory efficiently is critical for the performance of applications. On each
executor, the memory consumed by MapReduce.NET mainly includes memory buffers
for intermediate results, memory space for the sorting algorithm and buffers for input
and output files. The memory management is illustrated in Fig. 3.

The system administrator can specify a maximal value for the size of memory used
by MapReduce.NET. This size is normally determined by the physical configuration of
machines and the memory requirement of applications.

According to this maximal memory configuration, we set the memory buffer used
by intermediate results and input/output files. The default value for read/write buffer of
each file is 16MB. The input and output files are from the local disk. Therefore, we use
the FileStream class to control the access to local files.

The memory buffer for intermediate results is implemented by using the MemoryS-
tream class, which is a stream in memory. All the results generated by map functions
are serialized and then append to the tail of the stream in memory.

5 Scheduling Framework

This section describes the scheduling model for coordinating multiple resources to ex-
ecute MapReduce computations. The scheduling is managed by the MapReduce.NET
scheduler. After users submit MapReduce.NET applications to the scheduler, it maps
Map and Reduce tasks to different resources. During the execution, it monitors the
progress of each task and migrate tasks when some nodes are much slower than others
due to their heterogeneity or interference of dominating users.

Typically, a MapReduce.NET job consists of m Map tasks and r Reduce tasks. Each
Map task has an input file and generates r result files. Each Reduce task has m input
files which are generated by m Map tasks.

Normally the input files for Map tasks are available in WinDFS or CIFS prior to job
execution, thus the size of each Map input file can be determined before scheduling.
However, the output files are dynamically generated by Map tasks during execution,
hence the size of these output files is difficult to determine prior to job execution.

The system aims to be deployed in an Enterprise Cloud environment, which es-
sentially organizes idle resources within a company or department as a virtual super
computer. Normally, resources in Enterprise Clouds are shared by the owner of re-
sources and the users of idle resources. The latter one should not disturb the normal
usage of resource owner. Therefore, with an Enterprise Cloud, besides facing the tra-
ditional problems of distributed system, such as complex communications and failures,
we have to face soft failure. Soft failure refers to a resource involved in MapReduce
execution having to quit computation due to domination by its owner.

Due to the above dynamic features of MapReduce.NET application and Enterprise
Cloud environments, we did not choose a static scheduling algorithm. On the con-
trary, the basic scheduling framework works like the work-stealing model. Whenever
a worker node is idle, a new Map or Reduce task is assigned to it for execution with
special priority on taking advantage of data locality.
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The scheduling algorithm starts with dispatching Map tasks as independent tasks.
The Reduce tasks, however, are dependent on the Map tasks. Whenever a Reduce task
is ready (i.e. all its inputs are generated by Map tasks), it will be scheduled according to
the status of resources. The scheduling algorithm aims to optimize the execution time,
which is achieved by minimizing Map and Reduce tasks respectively.

6 Performance Evaluation

We have implemented the programming model and runtime system of MapReduce.NET
and deployed it on desktop machines of several student laboratories in Melbourne Uni-
versity. This section evaluates its performance based on two benchmark applications:
Word Count (WC) and Distributed Sort (DS).

All the experiments were executed in an Enterprise Cloud consisting of 33 machines
located in 3 student laboratories. For distributed experiments, one machine was set as
master and the rest were configured as worker machines. Each machine has a single
Pentium 4 processor, 1GMB memory, 160GB hard disk (10GB is dedicated for WinDFS
storage), 1 Gbps Ethernet network and runs Windows XP.

6.1 Sample Applications

The sample applications (WC and DS) are benchmarks used by Google MapReduce
and Hadoop. To implement the WC application, users just need to split words for each
text file in the map function and sum the number of appearance for each word in the
reduce function. For the DS application, users do not have to do anything within the
map and reduce functions, while MapReduce.NET performs sorting automatically.

The rest of this section presents the overhead of MapReduce.NET. First, we show
the overhead caused by the MapReduce programming model in a local execution. Then
the overhead of MapReduce.NET in a distributed environment is reported.

6.2 System Overhead

MapReduce can be regarded as a parallel design pattern, which trades performance to
improve the simplicity of programming. Essentially, the Sort and Merge phases of the
MapReduce runtime system introduce extra overhead. However, the sacrificed perfor-
mance cannot be overwhelming. Otherwise, it would not be acceptable. We evaluate the
overhead of MapReduce.NET with local execution. The input files are located on the
local disk and all 4 major phases of MapReduce.NET executes sequentially on a single
machine. This is called a local runner and can be used for debugging purposes.

For local execution, both sample applications were configured as follows:

• The WC application processes the example text files used by Phoenix [1] and the
size of raw data 1GB.
• The DS application sorts a number of records consisting of a key and a value, both

of which are random integers. The input data includes 1,000 million records with
1.48GB raw data.
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The execution time is split into 3 parts: Map, Sort and Merge+Reduce. They cor-
respond to the time consumed by reading inputs and invoking map functions, the time
consumed by the sort phase(including writing intermediate results to disk) and the time
consumed by the Reduce tasks. In this section, we analyze the impact of buffer size for
intermediate results on the execution time of applications. In particular, the experiments
were executed with different sizes of memory buffer for intermediate results. The size
of memory buffer containing intermediate results was set to be 128MB, 256MB and
512MB respectively and the results for both applications are shown in Fig. 4.
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Fig. 4: Cache Impacts of MapReduce.NET.

First, we can see that different types of application have different percentage dis-
tribution for each part. For the WC application, the time consumed by the reduce and
merge phases can even be ignored. The reason is that the size of results of WC is com-
paratively small. On the contrary, the reduce and merge phases of the DS application
incur a much larger percentage of total time consumed.

Second, out of our expectation, increasing the size of the buffer for intermediate re-
sults may not reduce the execution time for both applications. On the contrary, a larger
buffer increases the time consumed by sorting because sorting more intermediates at
one time needs deeper stack and more resources. A larger memory buffer generates
fewer intermediate files, but each is characterized by a larger size. The read/write buffer
of each input/output files is configured per file, and the default value is 16MB. There-
fore, with a larger buffer for intermediate results in the Map and Sort phase, the Reduce
phase consumes longer time because the overall size of of input file buffers is smaller.
However, a larger memory buffer does not have significant impacts on the Map phase.

6.3 Overhead Comparison with Hadoop

This section compares the overhead of MapReduce.NET with Hadoop, an open source
implementation of MapReduce in Java. Hadoop is supported by Yahoo! and aims to
be a general purpose distributed platform. We use the latest stable release of Hadoop
(version 0.18.3).
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Fig. 5: Overhead Comparison of Hadoop and MapReduce.NET.

To compare the overhead, we run the local runner of Hadoop and MapReduce.NET
respectively with the same input size for both applications. The size of buffer for inter-
mediate results was configured to be 128MB for both implementations. The configura-
tion of WC and DS applications are the same as Section 6.2. The JVM adopted in our
experiment is Sun JRE1.6.0, while the version of the .NET framework is 2.0. The results
are shown in Fig. 5. MapReduce.NET performs better than Hadoop for both applica-
tions. Specifically, both Map and Merge+Reduce phase of MapReduce.NET consumes
less time than Hadoop, but more time than Hadoop in the Sort phase.

Reasons for this are:(a) the deserialization and serialization operations achieved
by MapReduce.NET is more efficient than Hadoop; (b) the Merge phase of Hadoop
involves extra IO operations than MapReduce.NET. In particular, for the Map phase,
the major overhead of both applications consists of invocation of deserialization of raw
input data and map functions combined with reading disk operations. According to our
experiments, however, we did not find significant performance difference of disk IO
operations by using JRE1.6.0 and .NET 2.0 over Windows XP. In the Merge+Reduce
phase, the major overhead includes serialization, deserialization and reading and writing
disk. Hadoop splits the large input files into a number of small pieces(32 pieces for WC
and 49 pieces for DS) and each piece corresponds to a Map task. Then, Hadoop first has
to merge all the intermediate results for the same partition from multiple Map tasks prior
to starting the combined Merge and Reduce phase. MapReduce.NET does not require
this extra overhead. Therefore it performs better than Hadoop in the Merge+Reduce
phase.

In the Sort phase, the sorting algorithm implemented by Hadoop is more efficient
than its corresponding implementation in MapReduce.NET. Both MapReduce.NET and
Hadoop implement the same sorting algorithm, hence identifying the difference in per-
formance between two implementations implies a deep investigation involving the in-
ternals of the two virtual machines.

6.4 System Scalability

In this section, we evaluate the scalable performance of MapReduce.NET in a dis-
tributed environment. Applications were configured as follows:
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• WC: We duplicated the original text files used by Phoenix [1] to generate an exam-
ple input with 6GB raw data, which is split into 32 files.

• DS: sorts 5,000 million records in an ascending order. The key of each record is
a random integer. The total raw data is about 7.6GB, which is partitioned into 32
files.
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Fig. 6: Scalability of MapReduce.NET in Aneka Environment.

Fig. 6 illustrates the scalable performance result of the WC application. The Map
task execution time consists of the map and sort phases which include the time from
starting the execution to the end of execution for all Map tasks. The Reduce task execu-
tion time consists of overhead of network traffic, the merge phase and the reduce phase
invoking reduce functions on all the worker machines. We can see that the map and sort
phases dominate the entire execution of the WC application.

Unlike the WC application, the DS application has a nearly uniform distribution of
execution time for Map and Reduce tasks, as shown in Fig. 6. The network traffic also
incurs a substantial percentage of the entire execution, because the intermediate results
are actually the same as the original input data.

For both applications, the performance increases as more resources are added to
the computation. Therefore, MapReduce.NET is able to provide scalable performance
within homogenous environments when the number of machines increases.

7 Conclusions

This paper presented MapReduce.NET, a realization of MapReduce on the .NET plat-
form. It provides a convenient interface to access large scale data in .NET-based dis-
tributed environments. We evaluated the overhead of our implementation on Windows
platforms. Experimental results have shown that the performance of MapReduce.NET
is comparable or even better (for some cases) than Hadoop on WindowsXP. Further-
more, MapReduce.NET provides scalable performance in distributed environments.
Hence, MapReduce.NET is practical for usage as a general purpose .NET-based dis-
tributed and Cloud computing model. In the future, we endeavor to integrate MapRe-
duce.NET with the Azure Cloud Platform.
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