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Abstract—In today’s Function-as-a-Service offerings, a pro-
grammer is usually responsible for configuring function memory
for its successful execution, which allocates proportional function
resources such as CPU and network. However, right-sizing the
function memory force developers to speculate performance
and make ad-hoc configuration decisions. Recent research has
highlighted that a function’s input characteristics, such as input
size, type and number of inputs, significantly impact its re-
source demand, run-time performance and costs with fluctuating
workloads. This correlation further makes memory configuration
a non-trivial task. On that account, an input-aware function
memory allocator not only improves developer productivity
by completely hiding resource-related decisions but also drives
an opportunity to reduce resource wastage and offer a finer-
grained cost-optimised pricing scheme. Therefore, we present
MemFigLess, a serverless solution that estimates the memory
requirement of a serverless function with input-awareness. The
framework executes function profiling in an offline stage and
trains a multi-output Random Forest Regression model on the
collected metrics to invoke input-aware optimal configurations.
We evaluate our work with the state-of-the-art approaches on
AWS Lambda service to find that MemFigLess is able to capture
the input-aware resource relationships and allocate upto 82%
less resources and save up to 87% run-time costs.

Index Terms—Serverless Computing, Function-as-a-Service,
function configuration, input-awareness, constraint optimisation

I. INTRODUCTION

The serverless computing paradigm is the latest cloud-native
development model that enables application execution without
the management of underlying resources. Serverless promotes
the idea that a developer should be less concerned about
the servers or infrastructure and focus more on productivity
that adds value to the business. This shift of responsibility
means offloading resource management tasks to the cloud
service provider (CSP), such as resource allocation, applica-
tion scaling and software updates. In the serverless landscape
[1], Function-as-a-Service (FaaS) emerged as a microservices-
inspired, event-driven execution model where function(s) are
integrated with additional Backend-as-a-Service (BaaS) offer-
ings like storage, networking and database services, to set-up
an application. A serverless function is a stateless code frag-
ment, executed on-demand within lightweight virtual machines

(VM), microVMs or containers for short-term duration, and
bills its resources as per usage.

In 2014, Amazon Web Services (AWS) introduced AWS
Lambda [2], [3] as its first FaaS offering, and since then,
a range of FaaS services have emerged, including Google
Cloud Functions [4], Azure Functions [5], and many open-
source implementations such as OpenFaaS [6], Knative [7] and
OpenWhisk [8]. In addition to serverless attributes such as on-
demand scalability, zero idle-resource costs, and no resource
management, FaaS uniquely features scale-to-zero capability
where function resources are released after an extended period
of inactivity, endorsing a multi-tenant resource-sharing and
pay-per-use pricing model. FaaS has increasingly found its
relevance in a variety of use cases like video streaming
platform [9], multi-media processing [10], CI/CD pipeline
[11], AI/ML inference task [12], and Large-Language-Model
(LLM) query processing [13].

The operational model of FaaS hides the complex infras-
tructure management from end users and does not signify
the absence of servers. A serverless function still requires
resources, including computing, network and memory, for a
successful execution. In the current FaaS implementations, a
developer is responsible for requesting the right combination
of resources to guarantee successful function execution. How-
ever, service providers only expose a small set of resource
knobs, usually memory 1 with proportionally allocated CPU,
disk I/O, network bandwidth, etc. [14]. Prior studies [15] [16]
[17] have identified that a higher memory configuration speeds
up function execution and has a significant impact on its start-
up performance and costs. However, the execution speedup
is non-linear and has a diminishing marginal improvement
with increasing memory allocations [18]. With limited observ-
ability into short-running functions and unaware of function
performance, developers usually resort to speculative decisions
for memory configuration or make experience-based ad-hoc
decisions with an expectation to fulfil service level objectives
(SLO) [19]. To validate such developer behaviour, an industry

1We refer to FaaS platforms like AWS Lambda that allow developers to
provide only memory configuration and allocate CPU, network bandwidth,
etc., in a proportional fashion.



TABLE I: List of collected function metrics

Metric Name Description
request id unique function invocation ID
payload function input parameter(s)
memory size amount of memory allocated to function
memory utilisation maximum memory measured as a percentage

of the memory allocated to the function
memory used measured memory of the function sandbox
billed duration function execution time rounded to nearest

millisecond
billed mb ms total billed Gb-s, a pricing unit for function
cold start function cold start (true/false)
init duration amount of time spent in the init phase of the

execution environment lifecycle
function error any function run-time error

insight [20] reports the ease of controlling function execution
duration via memory configuration, while 47% of production-
level functions still run with the default memory configuration
without exploring the entire configuration space. Additionally,
selecting an optimal memory configuration from an exponen-
tially large search space requires a careful understanding of
the correlation between function performance and resource
requirements. Hence, configuring the function with the right
amount of memory that guarantees shorter execution times and
lower execution costs is an intricate task.

Recent research [17] [21] [22] [23] that optimise the
function resource allocation process has highlighted a drastic
impact of input parameters on its performance. Additionally,
a static memory configuration is used for concurrent function
invocations while expecting similar performance for distinct
function inputs. Therefore, setting a static memory configu-
ration for all function invocations, regardless of their input,
leads to a fluctuating performance with varying workload and
input arguments. This performance unpredictability demands
an input-argument-aware approach in determining the memory
configuration for function invocations that balances execution
cost and running time while reducing excess resource alloca-
tion. This input-based memory configuration has a two-fold
effect of providing a more autonomous developer experience
and a chance for CSPs to maximise resource utilisation and
deliver a finer-grained, cost-effective pricing model for users.
Additionally, existing efforts [17] [21] [22] [23] to configure
function resources either focus on an average-case function
execution to recommend maximum used memory/resources or
propose to re-run their solution for specific input parameters
to optimise the memory allocation process. This may lead to
higher run-time costs and resource wastage and on the other
hand, running multiple models for previously unseen input val-
ues extends the data collection process as well as increases the
model training and tuning complexity. Therefore, a solution is
warranted that captures the relationship of input parameters
with function resources to precisely model and predict the
required memory configuration for successful execution and
reducing excess resource allocation.

To this end, we present MemFigLess, an end-to-end esti-
mation and function memory allocation framework that makes
input-aware memory configuration decisions for a serverless

function. MemFigLess takes as an input the function details,
such as the representative function input arguments, expected
running time and cost SLOs and a range of memory allocations
to explore. The framework executes an offline profiling loop
to take advantage of a robust tree-based ensemble learning
technique, multi-output Random Forest Regression (RFR),
which analyses the relationship between input parameters and
other function metrics such as execution time, billed cost,
and function memory requirement. The RFR model is then
exploited in an online fashion to make an optimal selection
of memory configuration for individual function invocations.
Additionally, the framework provides a feedback loop to re-
train the model in a sliding-window manner with a new set of
collected metrics to capture the performance variation.

II. MOTIVATION

To identify and establish the effect of input parameters on a
function’s memory requirement and execution time, we exper-
iment with the industry-leading FaaS platform, AWS Lambda
[3] and conduct a large-scale initial study by deploying
three benchmark functions, 1) matrix multiplication (matmul),
2) graph minimum spanning tree (graph-mst), and 3) linpack
from [24]. A CPU-bound function, matmul, calculates the
multiplication of a n∗n matrix, whereas linpack measures the
system’s floating-point computing power by solving a dense
n by n system of linear equations. graph-mst is a scientific
computation offloaded to serverless functions that generates a
random input graph of n nodes using Barabási–Albert prefer-
ential attachment and processes it with the minimum spanning
tree algorithm. To observe the effect of payload (i.e., input
parameters) on the performance of benchmark functions, we
execute them with input set N = {n|10 ≤ n ≤ 10000, n ←
n+ 100} and vary the memory configuration of the function
M = {m|128 ≤ m ≤ 3008,m ← m + 128} MB. We
take advantage of Amazon CloudWatch [25] as a monitoring
solution to gather function-level performance metrics.

We collect relevant function metrics as described in Table
I and plot the function payload against the minimum billed
duration and minimum memory utilised in Fig. 1.

Insight 1: There is a strong correlation between the func-
tion payload and execution time that varies in proportion to
distinct memory allocations.

We find a strong correlation between the function payload
and the corresponding billed duration for all the benchmark
functions. It can be inferred from Fig. 1a - 1c that the mini-
mum billed duration, i.e., the execution time of a function, is
directly proportional to its input and has a tendency to increase
with increasing payloads at distinct memory configurations.
Therefore, we can infer that different memory configurations
lead to proportional resource allocations and thus, the function
performance, i.e., execution time, also varies in proportion to
these available resources. This complex relation of payload-
dependent execution time further aggravates the overall func-
tion run-time cost as it is calculated based on the execution
time and allocated memory.



(a) Payload vs Duration matmul function
metrics

(b) Payload vs Duration linpack function
metrics

(c) Payload vs Memory Utilisation graph-
mst function metrics

(d) Payload vs Memory Utilisation matmul
function metrics

(e) Payload vs Memory Utilisation linpack
function metrics

(f) Payload vs Memory Utilisation graph-mst
function metrics

Fig. 1: Function Metrics Insight - Payload vs Memory Utilisation vs Billed Duration

Insight 2: There is a positive correlation between the pay-
load and minimum memory utilised for successful execution
of the function, which has a direct and complex relationship
with resource wastage and run-time cost.

In Fig. 1d - 1f, we observe the effect of function payload on
memory utilisation. A higher memory utilisation is observed
for all the payload values at the lower memory allocations,
while a lower memory utilisation can be seen at higher
memory allocations for all benchmark functions. Therefore, an
under-utilised function resource depicts an inherent resource
wastage, where the function payload has a direct effect on
it. However, the relationship may not be the same for a
function and payload combination, and thus requires thought-
ful resource allocation to reduce excess resource wastage
and associated run-time costs. In addition to this, it is well
established in previous research studies [18] [23] [26] that a
function experiences a performance speed up with additional
resources and hence, a complex association exists between the
function resource allocation and pricing schemes. Therefore,
this work attempts to address the key challenges identified in
the motivation study.

III. RELATED WORK

The authors in [14] propose a multi-regression model gen-
erated on synthetic function performance data and use it to

predict execution time and estimate cost at distinct memory
configurations. Similarly, [27] explores search algorithms like
linear/binary search and gradient descent to determine the op-
timal configuration for cost-focused or balanced optimisation
goals. However, none of them considers the effect of payload
on function performance and resource demands. Additionally,
they either rely on synthetic data or perform repeated search
across configurations.

Jarachanthan et al. [28] explore the performance and cost
trade-off of the function at different configurations for Map-
Reduce-style applications. They propose a graph-theory-based
job deployment strategy for Directed Acyclic Graph (DAG)
based applications to optimize the resource configuration
parameters. Wen et al. [16] focus on multicore-friendly pro-
gramming for workflows to estimate the inter- / intra-function
parallelism based on weighted sub-SLOs. Safaryan et al. [29]
focus on the SLO-aware configuration of workflows and use
a max-heap data structure to find a configuration repeatedly.
However, these works address function workflows to either fit
a specific application style or configure function parallelism
and fall short of considering the payload effect.

The work in [30] introduces an urgency-based heuristic
method where a particle swarm optimization technique is
used for time/cost trade-off. Lin and Khazaei [31] propose a



probability-refined critical path greedy algorithm for selecting
the optimal function configuration from the profiled data. The
authors in [19] discuss the concept of CPU time sharing
and resource scaling with memory configuration to propose
a memory-to-vCPU Regression model. However, these works
model the behavior of functions and do not consider the
payload effect on function performance or assume an homoge-
neous function resource relationships. Raza et al. [18] explore
a Bayesian Optimisation (BO) based model to optimally con-
figure and place functions considering their execution time and
cost. However, they disregard the payload effect on resource
configuration and performance.

In [15], the authors establish a relationship between in-
put/output parameters and response time to predict their dis-
tribution via offline Mixture Density Networks (MDN) and
utilise online Monte-Carlo simulations to estimate best work-
flow costs. However, these estimates consider fixed memory
configuration for performance and cost prediction. Researchers
in [21] discuss a high correlation between input arguments
and memory configuration for Extract-Transform-Load (ETL)
pipeline functions using Decision Trees (DTs) and re-claim
unused memory to resize worker-node cache for locality-aware
function executions. However, this is application specific and
focuses on cache memory management. Bhasi et al. [22]
present an input-size sensitive resource manager that performs
request batching, request re-ordering and rescheduling to min-
imise resource consumption and maintain a high degree of
SLO. However, they focus on request management and discard
the opportunity of input-sensitive function configuration.

Bilal et al. [17] re-visits Bayesian Optimisation models
and Pareto front prediction, among few to discuss a com-
plex challenge of input dependency for resource allocation.
However, they primarily answer design space questions to
showcase potential opportunities for flexible resource configu-
ration. Sinha et al. [26] presents an online supervised learning
model to allocate the minimum amount of CPU resources
for individual invocations based on input characteristics and
function semantics. However, they introduce an overhead of
supervising individual invocations for SLOs in addition to
adjusting only CPU resources.

Moghimi et al. [23] criticise available function right-
sizing tools for reducing developer efficiency and explores
a characterisation-driven modelling tool that takes advantage
of parameter fitting, adaptive sampling and execution logs to
find the right function configuration. Although they consider
relative payloads while suggesting optimal configuration, they
recommend re-execution of their model for individual pay-
loads. This introduces a run-time overhead to find payload
specific configuration in terms of profiling time and costs.
Therefore, with this work we attempt to address payload-
aware function memory configuration, where other resources
are proportionally allocated, to satisfy run-time performance
constraints and make these configuration decisions online.

IV. PROBLEM FORMULATION AND ARCHITECTURE

In this section we formally describe the function configura-
tion problem and introduce the system architecture.

A. Problem Formulation
In current FaaS environments, developers must config-

ure memory settings (referring to FaaS platforms like AWS
Lambda) for their functions to ensure successful execution.
However, determining the appropriate memory configuration
is challenging due to factors like variability in function input
or payload characteristics (e.g., input size, type, and number of
inputs) and invocation frequency, which significantly impact
resource demands, run-time performance and cost. To handle
this, developers generally make ad-hoc decisions to either
configure platform defaults [20] or speculate the right-sizing
of functions based on past experience. These decisions lead to
sub-optimal resource allocations, over- or under-provisioning,
which may result in resource wastage, added run-time costs,
and throttled function performance. Additionally, FaaS plat-
forms scale a function with static resource configuration with
fluctuating workload which further makes the resource scaling
and allocation challenging.

Existing research [14] [18] [32] [26] have repeatedly accen-
tuated the complex relationship of function resource demand,
execution time guarantee and run-time cost, which is further
complicated when considering function payload [23]. There-
fore, we formulate the problem of payload-aware function con-
figuration as a multi-objective optimisation (MOO) problem
where the objective is to select a memory configuration that
guarantees a successful execution within an advertised func-
tion deadline, while reducing excess resource allocation and
run-time costs for incoming function invocations with varying
payloads. The problem can be mathematically represented as
Eq. 1, such that the constraints Eq. 2 are satisfied.

min
m∈M

G(m,P ) = (Cf (m,P ), Tf (m,P )) (1)

Subject to:

Tf (m,P ) ≤ D, (2)
Cf (m,P ) = Tf (m,P ) ∗ Cm + β ≤ B, (3)
Success(m,P ) = 1. (4)

In FaaS, a function f may expect a number of inputs,
P = {P1, . . . , Pn} where an input belongs to a range of
values Pn = {pmin

n , . . . , pmax
n }, either continuous or dis-

crete, which influences the function memory requirements
m ∈ M = {mmin, . . . ,mmax}. We define the objective of
payload-aware memory configuration to minimise the run-time
cost C(m,P ) and the function execution time T (m,P ) at
memory allocation m and payload(s) P , such that a function
executes successfully within the specified deadline D and
budget B constraints. The run-time cost Cf (m,P ) is directly
proportional to the execution time Tf (m,P ) and the cost of
memory configuration Cm plus a constant invocation amount,
β (provider dependent).
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Fig. 2: MemFigLess System Architecture

B. System Architecture

The proposed MemFigLess system architecture consists of
both offline and online components designed to optimize
memory allocation for FaaS offerings based on the payload.
The model of the proposed framework is a MAPE control
loop, i.e., Monitor, Analyse, Plan and Execute. In the online
stage, a periodic monitoring of function performance metrics
is done. It is then analysed by the resource manager via a
feedback loop to plan and execute the resource allocations
that meet the performance SLOs.

1) Offline Profiling and Training Module: This module
is responsible for profiling the functions and training the
Random Forest Regressor (RFR) model, Fig. 2a. Functions
are executed with a variety of inputs to collect data on their
performance and resource usage. Metrics such as input size,
number of inputs, memory consumption, execution time and
billed execution unit are recorded. The collected metrics are
stored in a structured format to serve as training data for
the model. A tree-based ensemble learning RFR model is
trained on the collected data to learn the relationship between
the function’s input/payload and its memory requirement and
execution time. The model captures the impact of input size
distribution on resource usage and is used for online payload-
aware memory estimation.

2) Online Prediction and Optimization Module: This mod-
ule leverages the trained RFR model to select the optimal
function memory based on the model prediction and constraint
optimisation, and invoke functions in real-time, as shown in

Fig. 2b. Incoming function requests are analyzed to extract
payloads which are fed to the trained RFR model to predict the
execution time at distinct function memory configurations. The
selected memory configurations, based on SLO constraints, are
used for online constraint optimisation, either cost or execution
time, provided by the user. This helps in reducing the potential
resource wastage and overall cost of execution.

3) Dynamic Resource Manager: This component is embed-
ded in the online prediction module to handle the invocation
and allocation of resources based on the predictions made by
the RFR model. The resource manager dynamically allocates
function resources or selects the available function instance
based on the constraint-optimised memory selection, ensuring
minimal wastage and optimal performance. A continuous mon-
itoring and feedback mechanism is also incorporated to im-
prove the accuracy and performance of the system over time.
This module can monitor and log the performance of functions
during execution within a configured monitoring window
to ensure that the model captures performance fluctuations
periodically. The gathered performance data is leveraged by
the training module to periodically re-train and improve the
RFR model predictions.

V. MULTI-OUTPUT RANDOM FOREST REGRESSION

To accurately select the memory configuration of serverless
functions, a Random Forest (RF)-based regression algorithm
can be employed. The Random Forest, initially presented by
Breiman [33], is one of the most popular supervised machine
learning (ML) algorithms and has been successfully applied
to both classification and regression in many different tasks,
such as virtual machine (VM) resource estimation [34], VM
resource auto-scaling [35] and computer vision applications
[36]. The RF algorithm uses a combination of DTs to model
complex interactions between input parameters and identify
patterns in the data. It works by training multiple DTs on
subsets of input parameters and then aggregating their predic-
tions to generate the final estimation. This method has been
demonstrated to have the ability to accurately approximate
the variables with nonlinear relationships and also have high
robustness performance against outliers. In addition, compared
to other ML techniques, e.g., Artificial Neural Networks
(ANN), Support Vector Machine (SVM), Deep Learning and
Reinforcement Learning, it only needs a few tunable parame-
ters and therefore requires low effort for offline model tuning.
Furthermore, the algorithm can handle noisy or incomplete
input data, and reduces the risk of overfitting which might
occur with other ML algorithms [37].

The RF model is an ensemble-learning method that can be
modeled as a collection of DTs. A DT makes a prediction
for the input feature vector x⃗ ∈ F , where F represents a
subset of κ-dimensional feature space [33]. A DT recursively
partitions the feature space F into L terminal nodes or leaves
that represent the region Rl, 1 ≤ l ≤ L where every possible
feature vector x⃗ may belong. Therefore, an estimation function
f(x⃗) for a DT can be summarised as Eq. 5, where I(x,Rl)
represents the indicator function of whether the feature vector



x⃗ belongs to region Rl. The function f(x⃗) indicates how the
DTs return the value of leaf corresponding to the input x⃗ and
typically learns a response variable cl for each region Rl where
x⃗ belongs, to assign an average value to that region in the
regression tree [35].

f(−→x ) =
L∑

l=1

clI(
−→x ,Rl) (5)

I(−→x ,Rl) =

{
1; −→x ∈ Rl

0; −→x /∈ Rl

(6)

However, a more interpretative representation is Eq. 7 where
cfull is the average of all learned response variables during the
training and C(x⃗, k) is the contribution of the kth, 1 ≤ k ≤ κ
feature in x.

f(−→x ) = cfull +

K∑

k=1

C(−→x , k) (7)

Therefore, the average prediction F (x⃗) for a RFR model
over an ensemble of DTs can be summarised as Eq. 8, where S
is the number of DTs, Cfull

s is the contribution of kth feature
in vector x in j-th DT.

F (−→x ) =
1

S

S∑

s=1

cfulls +

κ∑

k=1

(
1

S

S∑

s=1

Cs(
−→x , k)

)
(8)

To apply the RFR in a serverless framework, first, we need
to collect relevant function performance metrics at distinct
representative payloads. This data is gathered through a se-
ries of experiments, Sec. IV-B1, where each input parameter
is varied, and the resulting function metrics like memory
consumption are measured. Once the performance data is
gathered, we train a random forest regression model, as
outlined in Sec. IV-B1. In our problem context, the input
vector x⃗ has multiple components, which are total memory
allocation m and function payload(s), P . This RFR model
predicts the billed duration and memory utilisation, which
directly computes run-time cost and execution duration, and
function error status for determining successful execution.
These predictions align with the objectives of function run-
time cost Cf (m,P ) and execution time Tf (m,P ) while
ensuring a successful execution.

To address the conflicting objectives i.e., executing a func-
tion within a deadline, D and with a run-time budget, B,
commonly, the concept of Pareto dominance and Pareto op-
timality are used [38]. This optimisation is integrated with
online prediction module IV-B2, to select a payload-aware and
constraint-optimised memory configuration. Pareto dominance
is a method for comparing and ranking the decision vectors.
A vector x⃗u is said to dominate vector x⃗v in the Pareto sense,
if an objective vector G(x⃗u) is better than G(x⃗v) across all
objectives, with atleast one objective where G(x⃗u) > G(x⃗v),

strictly. A solution ⃗̂x is said to be Pareto optimal if there does
not exist any other solution that dominates it and then the
objective G(⃗̂x) is known as Pareto dominant vector. Therefore,
a set of all Pareto optimal solutions is called Pareto set and
corresponding objective vectors are said to be on Pareto front.

We approach our MOO by transforming the multi-objective
problem into a single objective by employing the classical
Weighted Aggregation Method (WAM), where a function
operator is applied to the objective vector G(x⃗). As a user is
responsible for providing the relative importance of objectives,
we select a linear weighted combination as the utility function
for objective optimisation. Therefore, the final optimisation
problem can be simplified as Eq. 9 where Jz represents
zth objective with a relative weight of wz and a weighted
combination of all the objectives are jointly minimised.

min−→x
Z =

z∑

1

wz ∗ Jz(−→x ) (9)

Subject to:

wz ≥ 0 ;
z∑

1

wz = 1 (10)

Once the Pareto front is obtained using the discussed MOO,
we select the memory configuration that is cheapest in terms of
resource allocation, i.e., the lowest memory configuration from
the Pareto optimal solutions and execute it via the dynamic
resource manager, Sec. IV-B3.

VI. PERFORMANCE EVALUATION

In this section, we briefly discuss the implementation along
with experimental setup, model parameters, and perform an
analysis of the proposed RFR-based framework compared to
other complementary solutions.

A. Implementation and System Setup

We setup our proposed solution using AWS serverless
services [39], such as AWS Lambda, AWS DynamoDB, AWS
Step Functions Workflow and Amazon Simple Storage Ser-
vice (S3) for an end-to-end serverless function configuration
solution. The framework can be assumed a CSP service where
users can subscribe to it for an end-to-end optimisation, based
on the desired deadline and run-time cost of the individual
function. The offline step is implemented as a Step Functions
Workflow that takes function details such as resource name,
memory configurations to explore, number of profiling itera-
tions and the representative payload(s) as a json input file.
This information is used to create and execute a function with
different payloads at distinct configurations, and collect the
performance data using AWS CloudWatch [25]. However, the
payload for different functions may be of different types and
thus, the workflow utilises the AWS S3 service to fetch any
stored representative payload. The individual workflow tasks
of creating, executing and updating the function in addition
to log collection and processing, are implemented as AWS



TABLE II: List of functions and payload value

Function Name Payload
matmul n, size of matrix
linpack n, number of linear equations to solve
pyaes {n,m}, length of message to encrypt and

number of iterations
graph-mst n, size of random graph to build
graph-bfs n, size of random graph to build
graph-pagerank n, size of random graph to build
dynamic-html n, random number to generate an HTML page
chameleon {n,m}, number of rows and columns to create

an HTML table

Lambda functions. All the functions are configured with a
15 minutes timeout, 3008 MB (maximum free tier) memory
configuration, and 512 MB ephemeral storage, to avoid any
run-time resource scarcity. The processed logs are stored in
AWS DynamoDB, a persistent key-value datastore. These logs
are utilised by RFR training function and the trained model is
placed in S3 storage for online estimation.

The online step makes use of the trained RFR model which
is also implemented as a function, assuming shorter executing
functions. The RFR model is implemented using Scikit-Learn
[40], a popular ML module in Python. This function loads the
RFR model for inference, estimates resources, performs the
optimisation and invokes the selected function configuration.
In addition, performance monitoring can be scheduled to
collect and store the logs in the key-value datastore and a
monitoring window can be setup for periodic log processing
and model re-training.

The RFR model assumes that the payloads provided in the
offline step are representative of actual payload and therefore,
inference at any anomalous/outlier value is defaulted to 3008
MB or the estimated configuration for the smallest payload
value seen. The inference model expects a function deadline
D, run-time budget B and their relative importance, wz , for
optimisation and configuration selection. Based on the initial
analysis we configure the deadline D as the mean function
execution time, and the run-time budget B as the mean
execution cost across memory and payload combination.

We perform our experimental analysis on a range of func-
tions implemented in Python v3.12, taken from serverless
benchmarks [24] and [41], including CPU/memory inten-
sive (matmul, linpack, pyaes), scientific functions (graph-mst,
graph-bfs, graph-pagerank) and dynamic website generation
(chameleon, dynamic-html). The explored functions and re-
quired payloads are listed in Table II and the experimental
payload values range between [10, 10000] with a step size
of 200, for individual variables. This step size was randomly
chosen for the experiments and must be provided by the user
for the granularity of experiments and model generation.

B. Experiments

We run the profiling step of the proposed solution with the
given function payload(s) at distinct memory configurations
to capture the relationship between payload and resource de-
mands. After the profiling step, a RFR model is trained on the
collected data, accompanied by a hyper-parameter tuning that

explores model parameters such as n estimators, max depth,
min samples split and min samples leaf via grid search and
selects the best configuration for inference. The RFR model
then estimates the memory utilisation and function execution
time to perform online optimisation and selects the best
possible payload-aware configuration to invoke functions.

We perform the payload-aware estimation and optimisation
of memory configuration for 50 payload values, within the
discussed range. We select the relative importance, wz , as 0.5
to balance the function execution time, Tf (m,P ) and run-time
cost, Cf (m,P ) constraints for this experiment. In Fig. 3, we
showcase the ability of RFR model to predict the execution
time of the functions. The proposed methodology estimated the
execution time with a R2 score of as high as 98% for linpack
and pyaes function while having R2 scores of 97%, 94% and
91% for functions such as graph-pagerank, graph-mst, graph-
bfs and dynamic-html. This statistical measure of R2 score
demonstrates the goodness of the fit by the regression model.
Additionally, we observe in Fig. 4 that for memory-intensive
functions, the RFR model is able to capture the relationship of
payload and memory with high R2 score of 96% in case of lin-
pack, 87% for graph-pagerank, 79% for matmul and as low as
73% for graph-bfs function with a mean absolute error (MAE)
of 269 MB, 36MB, 2609 MB and 192 MB, respectively. These
observations are based on the actual performance data acquired
after invoking functions with RFR estimated values. Therefore,
we can conclude from the observations that RFR model can
be utilised for predicting payload-aware function execution
time and memory utilisation. In addition, the proposed RFR-
based framework can take advantage of online estimation and
optimised solutions to invoke the respective payload-aware
configurations.

To evaluate our model’s efficiency in reducing excess re-
source allocation and higher run-time costs, we compare our
work with the following existing works -

1) COSE [18]: a Bayesian Optimisation (BO) based function
memory configuration tool that tries to select best configura-
tion at each sample which maximises the model confidence.
2) Parrotfish [23]: an online Parametric Regression based func-
tion configuration tool that selects optimal configuration while
satisfying user-defined constraints. 3) AWS Lambda Power
Tuning [32]: a recommendation and graphical tool by AWS
that performs an exhaustive search of memory configurations
to suggest a cheaper and lower execution time configuration.

For the brevity of this evaluation, we run the respective
approaches for atmost 10 payload values to find the payload-
aware optimal memory configuration for 4 functions i.e.,
graph-mst, pyaes, matmul and graph-bfs. Similar results are
reported for other functions and thus have been skipped from
this discussion. We select the function execution time as the
objective and utilise distinct payloads to predict the execution
time. However, COSE does not provide any utility or provision
to optimise for specific payloads, therefore, we run the COSE
tool to probe 20 sample points for each payload value.
On the other hand, Parrotfish samples and tries to optimise
the memory configuration based on weighted representative



(a) RFR Execution time estimates
for linpack

(b) RFR Execution time estimates
for graph-pagerank

(c) RFR Execution time estimates
for graph-bfs

(d) RFR Execution time estimates
for graph-mst

(e) RFR Execution time estimates
for chameleon

(f) RFR Execution time estimates
for dynamic-html

(g) RFR Execution time estimates
for pyaes

(h) RFR Execution time estimates
for matmul

Fig. 3: RFR Model Payload-Aware Execution Time Prediction.

(a) RFR Memory utilisation esti-
mates for linpack

(b) RFR Memory utilisation esti-
mates for graph-pagerank

(c) RFR Memory utilisation esti-
mates for matmul

(d) RFR Memory utilisation esti-
mates for graph-bfs

Fig. 4: RFR Model Payload-Aware Memory utilisation Prediction.

payloads via parametric regression. The tool recommends
the individual optimal memory configuration found i.e., the
cheapest configuration within the deadline, for that specific
run with the weighted payload(s). However, we run Parrotfish
for each distinct payload to find the optimal configuration
and ignore any interference effect of other payloads. We
also run [32] for individual payloads with a set of memory
configurations that do not raise any runtime errors.

In Fig. 5 we share the results of MemFigLess estimation
and execution as compared to COSE and Parrotfish. The
results are optimised for 1.5 times the function deadline, D
and no weight is given to the run-time cost. However, we
observe that the proposed RFR-based MemFigLess is able
to estimate and utilise the Pareto optimal results to allocate
a lower memory configuration as compared to other works,

given a function deadline. In terms of memory allocation,
MemFigLess allocates 54%, 75% and 65% less cumulative
memory as compared to Parrotfish, COSE and AWS Power
Tuning for graph-mst. Additionally, this allocation allows to
save 57%, 79% and 58% in cumulative run-time costs of
graph-mst against when run with Parrotfish and COSE selected
configuration. The gains are more visible for pyaes function,
where MemFigLess is able to save 82% additional resources
as compared to COSE leading to 84% cost benefits. Similar
results are achieved for graph-bfs where MemFigLess saved
65% and 75% resources as compared to Parrotfish and AWS
Power Tuning, and was 87% cost efficient in comparison to
COSE. For matmul function, the resource savings are approx-
imately 73% as compared to COSE and Parrotfish. Therefore,
we conclude based on the experimental analysis that the RFR-



(a) Comparison of memory alloca-
tion for graph-mst

(b) Comparison of memory alloca-
tion for pyaes

(c) Comparison of memory alloca-
tion for graph-bfs

(d) RFR Execution time estimates
for matmul

(e) Comparison of run-time cost
for graph-mst

(f) Comparison of run-time cost for
pyaes

(g) Comparison of run-time cost
for graph-bfs

(h) Comparison of run-time cost
for matmul

Fig. 5: Comparison of Memory Allocation and Run-time Costs for competing approaches

based solution is able to reduce the run-time costs and excess
resource allocation as compared to SOTA techniques, [18] [23]
[32], while satisfying the deadline constraint.

C. Discussion

We investigate a payload-aware function configuration
methodology and present MemFigLess, a RFR-based work-
flow to estimate the payload-aware optimal resource alloca-
tion schemes. The experiments are performed with distinct
functions deployed on the AWS Lambda platform and take
advantage of workflows to create the offline profiling and
training stages of MemFigLess. We assume that representa-
tive payload(s) are provided for profiling to supplement the
regression model. In addition to this, we make a heuristics-
based decision to allocate maximum memory, 3008 MB to an
unseen payload larger than the profiled limit or to configure
the memory of the smallest payload seen. This builds on the
idea [23] that if a configuration is good for an input x, then
it is also good, if not better, for inputs smaller than x.

We profile and train the functions at memory intervals of
128 MB, however, in the online inference, estimates are made
for every possible memory configuration with a step size of 1
MB, in line with [23] and [3]. This makes the inference time
complexity O(n + k log k) where n represents the number
of explored memory configurations during optimisation with
k ≤ n configurations in Pareto front calculation. As we
employ a Random Forest regression that generally requires
prior data for precise estimates, these finer estimates may
suffer in case of complex payload and resource relationships.

Therefore, the accuracy of the estimates is highly dependent
on the memory intervals and representative payloads used in
the initial profiling to capture complex resource relationships.
Furthermore, finer online inferences may suffer from increased
cold starts if the estimated configurations are largely distinct
for incoming payloads. To support this, MemFigLess intelli-
gently checks for existing functions with estimated configu-
ration to execute. However, it does not control the degree of
container reuse that utilises a warm function configuration to
avoid a cold start. In addition to this, a sequential workload is
considered for analysis in anticipation of minor performance
fluctuations owing to AWS Lambda guaranteed concurrent
invocations. With the discussed experimental assumptions and
setup, the proposed solution is able to reduce the excess
resource allocation and reduce the run-time cost of functions
in comparison to Parrotfish and COSE, which are used as is
with their defaults.

VII. CONCLUSIONS AND FUTURE WORK

In this work, we present MemFigLess, a Random Forest
regression-based payload-aware solution to optimise function
memory configuration. This solution is implemented using
AWS serverless services and deployed as a workflow. A
motivation study is conducted to highlight the importance of
payload-aware resource configuration for performance guar-
antees. We identify a strong and positive correlation between
function payload, execution time and memory configuration
to formalise the resource configuration as a multi-objective
optimisation problem. A concept of Pareto dominance is



utilised to perform online resource optimisation. We compare
the proposed solution to COSE and Parrotfish and demonstrate
the effectiveness of RFR in reducing resource wastage and
saving costs. MemFigLess is able to reduce excess memory
allocation of as high as 85% against COSE and save run-time
cost of up to 71% contrasting to Parrotfish.

As part of future work, we plan to improve MemFigLess
by exploring advanced optimisation techniques such as Evolu-
tionary algorithms and meta-heuristics to reduce the sampling
costs. Additionally, we aim to explore the integration of Re-
inforcement Learning algorithms and LLMs to reduce manual
efforts in model refinement. Furthermore, as Random Forest
regression training requires training data prior to learning, an
incremental learning approach can also be employed. Further-
more, an integration of Distributed and Federated learning
techniques can also be explored to address faster and larger
training scenarios.
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