Check for
Updates

MemoriaNova: Optimizing Memory-Aware Model Inference for Edge
Computing

RENJUN ZHANG, Shanghai Jiao Tong University, Shanghai, China
TIANMING ZHANG, Shanghai Jiao Tong University, Shanghai, China

ZINUOQO CAI, Shanghai Jiao Tong University, Shanghai, China

DONGMEI LI, Beijing Institute of Microelectronics Technology, Shanghai, China
RUHUI MA, Computer Science, Shanghai Jiao Tong University, Shanghai, China
BUYYA RAJKUMAR, The University of Melbourne, Melbourne, Australia

In recent years, deploying deep learning models on edge devices has become pervasive, driven by the increasing demand
for intelligent edge computing solutions across various industries. From industrial automation to intelligent surveillance
and healthcare, edge devices are being leveraged for real-time analytics and decision-making. Existing methods face two
challenges when deploying machine learning models on edge devices. The first challenge is handling the execution order of
operators with a simple strategy, which can lead to a potential waste of memory resources when dealing with directed acyclic
graph structure models. The second challenge is that they usually process operators of a model one by one to optimize the
inference latency, which may lead to the optimization problem getting trapped in local optima.

We present MemoriaNova, comprising BTSearch and GenEFlow, to solve these two problems. BTSearch is a graph state
backtracking algorithm with efficient pruning and hashing strategies designed to minimize memory overhead during inference
and enlarge latency optimization search space. GenEFlow, based on genetic algorithms, integrates latency modeling and
memory constraints to optimize distributed inference latency. This innovative approach considers a comprehensive search
space for model partitioning, ensuring robust and adaptable solutions. We implement BTSearch and GenEFlow and test them
on eleven deep-learning models with different structures and scales. The results show that BTSearch can reach 12% memory
optimization compared with the widely used random execution strategy. At the same time, GenEFlow reduces inference
latency by 33.9% in distributed systems with four-edge devices.

Additional Key Words and Phrases: Deep Learning, Edge Computing, Memory Optimization, Distributed System, Inference
Latency Optimization

1 Introduction

The artificial intelligence paradigm has experienced significant advancement and widespread applications across
various domains. Deep learning (DL) methods [45] have achieved state-of-the-art results in many machine
learning applications [38], such as object detection, image classification, and face recognition [22]. Traditionally,
the inference task [33] of DL models occurs on high-performance cloud servers, necessitating large data transfers
and incurring substantial time overhead. To address this challenge, deploying models on edge devices near
data sources becomes common [10]. Consequently, researchers explore distributed inference mechanisms that

Authors’ Contact Information: Renjun Zhang, Shanghai Jiao Tong University, Shanghai, China; e-mail: renjun_zhang@sjtu.edu.cn; Tianming
Zhang, Shanghai Jiao Tong University, Shanghai, China; e-mail: zhang_tianming@sjtu.edu.cn; Zinuo Cai, Shanghai Jiao Tong University,
Shanghai, China; e-mail: kingczn1314@sjtu.edu.cn; Dongmei Li, Beijing Institute of Microelectronics Technology, Shanghai, China; e-mail:
lidm772@163.com; Ruhui Ma, Computer Science, Shanghai Jiao Tong University, Shanghai, China; e-mail: ruhuima@sjtu.edu.cn; Buyya
Rajkumar, The University of Melbourne, Melbourne, Victoria, Australia; e-mail: rbuyya@unimelb.edu.au.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page.
Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).

© 2024 Copyright held by the owner/author(s).

ACM 1544-3973/2024/10-ART

https://doi.org/10.1145/3701997

ACM Trans. Arch. Code Optim.

HTTPS://ORCID.ORG/0009-0002-3022-5174
HTTPS://ORCID.ORG/0009-0001-9530-8344
HTTPS://ORCID.ORG/0000-0001-9373-8474
HTTPS://ORCID.ORG/0000-0002-5462-5773
HTTPS://ORCID.ORG/0000-0001-9592-8490
HTTPS://ORCID.ORG/0000-0001-9754-6496
https://orcid.org/0009-0002-3022-5174
https://orcid.org/0009-0001-9530-8344
https://orcid.org/0009-0001-9530-8344
https://orcid.org/0000-0001-9373-8474
https://orcid.org/0000-0002-5462-5773
https://orcid.org/0000-0001-9592-8490
https://orcid.org/0000-0001-9754-6496
https://orcid.org/0000-0001-9754-6496
https://doi.org/10.1145/3701997
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3701997&domain=pdf&date_stamp=2024-10-28

2 .« R.Zhangetal.

distribute inference workloads across multiple edge devices to mitigate latency [34]. Beyond reducing network
transmission load, deploying DL models at the edge confers additional benefits [39]. These include reduced
latency, enhanced privacy and security, improved reliability, and offline capability. These advantages make edge
deployment an attractive option for various applications requiring real-time or near-real-time processing and
decision-making capabilities.

However, inference tasks are often computationally intensive, and the limited resources of edge devices
can exacerbate overall latency. For example, in a smart home, the camera processes real-time video data and
recognizes visitors. Subsequently, the camera sends the visitor information to the smart speaker, which provides
voice announcements based on the recognition results and performs corresponding actions as instructed by
the homeowner, such as opening the door or sending an alert. Meanwhile, environmental sensors continuously
monitor indoor air quality, temperature, and humidity, adjusting the operation of air conditioners or humidifiers
based on the analysis results to ensure a comfortable and healthy home environment. These devices require
complex deep learning models for inference, which exceeds the capabilities of a single device.

Although distributed inference [28] has attracted much attention, several challenges remain to be solved. The
first challenge is addressing the memory constraint of edge devices during model distribution. Edge devices [44]
such as intelligent surveillance cameras [5], intelligent door locks [11], smart TVs [9], and smart speakers [30]
typically have limited memory. In contrast, several sources of memory overhead exist when conducting distributed
inference. A DL model can be abstracted as a directed acyclic graph (DAG), which means there may be more than
one reasonable operator execution order of the model. According to [40], operator execution order influences the
lifetime of intermediate tensors of the model, leading to variable memory overhead. Besides, partitioning a model
involves operator partition while an operator’s type and partition number cause additional memory overhead.
Existing methods like [48] and [46] only consider latency optimization; not memory constraints. HMCOS [40]
reduces the memory footprint of inference tasks by adjusting operator execution order but only on a single
GPU. Moreover, traversing the topological sorting of directed acyclic graphs is a P-Complete (PC) problem
mathematically [2]. Efficiently conducting this search remains a challenging problem.

The second challenge lies in determining a suitable model partition configuration to minimize inference latency.
Common distributed strategies for model partitioning encompass horizontal, vertical, and hybrid partitioning.
We delve into addressing model partitioning issues under the hybrid partitioning strategy, which considers both
horizontal and vertical partitioning, along with the interdependence among operators. This process involves
considerations of dimension, partition number, and proportions. The partitioning of operators impacts both
computing and communication time, thereby influencing overall inference latency. Moreover, the decision on
operator partitioning affects the following adjacent operators. Thus, partitioning a model for reduced inference
latency presents a complex optimization problem. Unfortunately, existing solutions often provide coarse-grained
approximations. For instance, [46] and [16] address the operator partition problem individually, which may not
guarantee optimal results. These methods typically focus on a single operator partition dimension. Additionally,
[16] employs an approximation method to transform the optimization problem into a linear program, which
introduces errors and diminishes effectiveness.

To address the challenges mentioned above during the optimization of inference latency of DL models on
memory-constrained distributed edge devices, we conduct a memory-time cost analysis of operator partitioning
in model parallelism and propose two optimization methods, namely BTSearch and GenEFlow. BTSearch graph
state backtracking algorithm traverses all topological sorting in a DAG structure model. It guarantees to find the
optimal operator execution order of a DL model. The result execution order has minimal overall memory overhead
without considering operator partition, which enlarges the search space for operator partition optimization. We
apply an efficient pruning strategy on BTSearch. The strategy prunes the branches with no potential for better
results according to the state of the computation graph. GenEFlow is a GA-based method aiming to optimize the
inference latency while satisfying the memory constraints of the edge devices. We model the partition decision

ACM Trans. Arch. Code Optim.

MemoriaNova: Optimizing Memory-Aware Model Inference for Edge Computing « 3

of the whole model as a chromosome and consider different operator partition dimensions, thus constructing
a more comprehensive search space. GenEFlow can search for the optimal solution from a global perspective
through these designs. Moreover, we use constraint violation parameters to guarantee memory constraints.

Our main contributions are as follows: (1) We analyze the memory-time cost of operator partitioning and
operator execution order in model parallelism. Specifically, we examine the available partitioning methods
for each operator and their memory overhead, calculating the memory consumption for different partitioning
methods to determine the optimal partitioning method for each operator. Additionally, we analyze the impact
of operator execution order on memory, finding that adjusting the execution order under memory constraints
reduces the maximum memory overhead and increases the available memory space per device. (2) We propose
the BTSearch, which employs efficient pruning strategies to optimize the execution order of operators in DL
models with DAG structures. BTSearch reduces the overall memory overhead and provides a more extensive
search space for optimizing inference latency. (3) We introduce the GenEFlow method, which optimizes inference
latency for distributed edge devices without altering the model computation results. GenEFlow models the model
partition decision as a chromosome and employs GAs for optimization. GenEFlow considers two dimensions of
operator partitioning and covers a more extensive search space, offering a more comprehensive search space and
robust solution than traditional methods. (4) We merge BTSearch and GenEFlow into MemoriaNova and validate
it on eleven deep-learning models. Our results demonstrate significant improvements in memory optimization
and inference latency reduction. Specifically, BTSearch achieves up to 12% overall memory optimization, while
GenEFlow reduces model inference latency by 33.9% in our distributed edge device system.

2 Background and Motivation
2.1 Operator Partition Methods and Memory Overhead Analysis

2.1.1 Operator Partition Optimization. Operator partition optimization [41] is vital for efficient model inference
[4] on edge devices. It breaks down complex tasks into smaller distributable operators across multiple devices,
reducing inference latency and maximizing resource utilization. Determining the correspondence among the
input data, operator parameters, and output data becomes necessary to accomplish this objective. The convolution
operator’s partitioning along the feature map’s high dimension is illustrated in Figure 1a, with no processing
done on the channel dimension, remaining consistent with the original operator.

After partitioning, the output tensors are executed on different devices, each storing a copy of the operator
parameters (Kernel). The input tensor is partitioned according to the convolution computation rules, resulting in
a small amount of duplicate data, as shown in the gray area in Figure 1a. Following this partitioning process, the
subsequent equation provides the calculation formula for the input data range when partitioning the feature map’s
high dimension for the convolution operator. If output tensor’s high dimension range is [xs, X,), corresponding
input tensor range is given by:

[%s xS =P, (x,—1) XS +Kp — P] (1)

Where S represents the Stride, P represents the Padding, and K}, represents the height of the convolution
kernel.

2.1.2 Analysis of Memory Overhead in Operator Partitioning. Partitioning operators [27] impact computation time
and memory. Concurrently, parallel execution [20] reduces computation time but may raise memory overhead.
Additionally, partitioning strategy [29] and device setup determine the balance between time and memory. While
parallel execution reduces the computation time by distributing the workload, it may introduce additional memory
overhead due to data duplication and synchronization requirements across devices. The choice of partitioning
strategy and device configuration plays a crucial role in determining the trade-off between computation time and
memory overhead. Figure 1b shows convolutional output channel partitioning, where kernels partition without

ACM Trans. Arch. Code Optim.

4 « R.Zhangetal

Stride Pad :
— I Teosemeenee- -

Devicel EBH}

Input
Device2 HHE : Output
Output N
Kernel
Input Kernel
(a) Convolution Operator Partition Along the Di- (b) Convolution Operator Partition Along the Di-
mension of Feature Map Height. mension of Output Channel.
Fig. 1. Convolution Operator Partition Along Two Dimensions.
Table 1. Operator Partition Method and Memory Consumption.
Operator Partition Method Sources of Memory Overhead
. fmh Convolution kernel
Convolution
cout Input tensor
Pool fmh None
Element-wise addition (Add) fmh None
Matrix multiplication (Gemm) len None

redundant data. Each device retains a copy of the input tensor. Various partitioning methods result in different
memory overheads due to input tensor and kernel memory footprints.

To determine the optimal partitioning method, we perform memory calculations for the obtained operator
execution order. We consider different partitioning optimization methods from a memory perspective. The
partitioning optimization methods for various types of operators and the resulting memory overhead are shown
in Table 1. In the table, "cout” stands for "Channel out," and "fmh" stands for "Feature map height" "len" represents
the length of the vector. The operators listed in Table 1 are the leading operators for the slicing operation. The
activation layer is merged into the convolution operator. Due to the direct transfer of the corresponding data to
the connected device before the start of the calculation for each operator and the absence of tensor reshaping
operations, operators that reorder tensor data have their execution process combined into the data communication
phase. The lack of a symbol in Table 1 indicates that partitioning the operator will not incur additional memory
overhead. The memory analysis and the handling of the partitioning overhead for convolutional operators are
particularly beneficial, given that convolutional operators typically have a large parameter size in DL models.

Taking the convolution operator as an example, we introduce the method for determining its partitioning.
Assuming there are n devices in the distributed system, each device has an available memory limit:

M=[my,my,...,my] (2)

ACM Trans. Arch. Code Optim.

MemoriaNova: Optimizing Memory-Aware Model Inference for Edge Computing « 5

Tq[1, 64, 224, 224] T, [1,128, 112, 112]
>

Conv1 Conv2
[64, 3,3, 3] "|1128, 64,3, 3]

Input tensor T — > Sum —> Outputtensor T,
[, 3, 224, 224] [, 128, 112, 112]

T3[1, 128,112, 112]
Conv3

[128,3,3,3]

Fig. 2. Example of the Impact of Operator Execution Order on Memory Footprint.

The total available memory limit for each device is:

Mpuy = Z m; 3)
i=1

For the current convolution operation Conv, memory allocationincludes M, for input, M,,,; for output, Mie,per
for parameters, and My;p.,s for intermediate tensors. The operator is partitioned into k; partitions along the
output channel dimension, respecting device memory limits. We have:

Mothers + k1 * Mip + Mierner + Mour < Mfull (4)

The current convolution operator is partitioned along the height dimension of the output tensor feature map,
with the number of partitions being k. Similarly:

Mothers + Min + kZ * Miernel + Mour < Mfull (5)

Based on the current operator parameters and the current state of the computation graph, we can calculate the
values of k; and k,, then round them down to yield the final results. When k; < k;, we adopt output channel
(cout) partitioning for the current convolution. Otherwise, we assume feature map height (fmh) partitioning.

2.2 Analysis of Operator Execution Order on Memory Overhead

In DL model inference, the operator arrangement in computational graphs impacts memory usage. Sequential
execution causes fluctuating memory footprints, especially in models with multi-branch structures. Variability
arises from memory allocation for tensors, parameters, and results. Memory remains constant for simpler
models with one input/output tensor. However, complex models with multi-branch structures introduce memory
management challenges. Different operator execution orders impact memory overhead, emphasizing the need for
efficient topology sorting. Optimization can reduce memory overhead, leading to smoother inference processes.
The following example illustrates this process.

The model in Figure 2 demonstrates a single-input, single-output model with four operators and two branching
data flows. There are three valid execution sequences that conform to topological sorting: Order1 = [Convl,
Conv2, Conv3, Sum]; Order2 = [Conv1, Conv3, Conv2, Sum]; Order3 = [Conv3, Conv1, Conv2, Sum]. Operator
execution orders are shown in Figure 3 as (a), (b), and (c).

For a float32 data type, the memory space for tensor Tj is calculated as follows: Mem(Ty) = 1 X 3 X 224 X
224 x 4/1024 = 588KB. Similarly, the memory space occupied by tensors T; to T, is 12544KB, 6272KB, 6272KB,

ACM Trans. Arch. Code Optim.

6 + R.Zhangetal.

To

(a) Execution Order1 (b) Execution Order2 (c) Execution Order3

Fig. 3. Three Different Execution Orders of the Example Model.

Table 2. Memory Footprint Analysis of Different Operator Execution Orders (Metric: KB).

Execution

Sequence M;; Mg M; M,s M; M3 M; M.y M; Memory
Order1 588 13139 13132 19692 6860 13146 12544 12544 6272 19692
Order2 588 13139 13132 19418 18816 25376 12544 12544 6272 25376
Order3 588 7329 6860 19411 18816 25376 12544 12544 6272 25376

and 6272KB, respectively. Based on the earlier analysis of memory overhead during the operator execution
process, we divide the entire inference process into several execution stages and interval stages. The execution
stage represents the process where an operator is actively performing computations. In contrast, the interval
stage corresponds to the period when one operator has completed execution, and the execution of the next
operator has not yet commenced. Memory overhead during execution and interval stages is denoted as M, and
M;, respectively. The memory overhead analysis for all valid operator execution orders of the example model in
Figure 2 is provided in Table 2. The values in the table round to the nearest whole integer.

Taking Order1 as an example, the inference process proceeds as follows: (1) Before the execution of the first
operator, only the input tensor T is present in memory, with a memory overhead of M;; = M(T;) = 588KB;
(2) During Conv1’s execution, memory usage is M1 = M(Ty) + M(Ty) + M(Convlgerner) = 13139KB; (3) Before
the execution of the second operator Conv2, the intermediate result tensors to be stored in memory are T
and T, with a memory overhead of M;; = Tp + Ty = 588 + 12544 = 13132KB; (4) During the execution of the
second operator Conv2, in addition to the memory space required for Conv2 computation, tensor Ty needs
to be additionally saved. The memory overhead is calculated as M., = M(T;) + M(T;) + M(Conv2xerner) +
M(Ty) = 12544 + 6272 + 641283 = 3/256 + 588 = 19692KB; (5) Before the execution of the third operator
Conv3, the intermediate result tensors to be stored in memory are Ty and T, with a memory overhead of
M;s = M(Tp) + M(T;) = 588 + 6272 = 6860KB; (6) During the execution of the third operator Conv3, in addition
to the memory space required for Conv3 computation, tensor T, needs to be additionally saved. The memory
overhead is calculated as M3 = M(Ty) +M(T3) + M(Conv3gerner) + T = 588+6272+31283%3/256+6272 = 13146KB;
(7) Before the execution of the fourth operator Sum, the intermediate result tensors to be stored in memory are
T, and T3, with a memory overhead of M;y = M(Ty) + M(T5) = 6272 + 6272 = 12544KB; (8) During the execution
of the fourth operator Sum, assuming an in-place addition method where the input and output tensors share the
same memory space, the memory overhead is calculated as Mgy = T, + T3 = 6272 + 6272 = 12544KB; (9) After the
completion of all operators’ computations, the output tensor T, needs to be stored in memory, with a memory
overhead of Mjs = T, = 6272KB.

ACM Trans. Arch. Code Optim.

MemoriaNova: Optimizing Memory-Aware Model Inference for Edge Computing « 7

In Order1, the maximum memory overhead is 19692KB. Order2 and Order3 are similar to Order1, and their
maximum memory overhead is 25376KB. Hence, optimizing memory usage by adjusting the order of operator
execution is crucial in limited memory scenarios. This minimizes overhead, increases memory space, and reduces
computation time, especially for intensive tasks like partitioning operators. Efficient topology sorting becomes
pivotal in managing memory overhead and enhancing model performance in constrained environments. Therefore,
adjusting execution order impacts memory overhead, highlighting the importance of efficient topology sorting
for improved performance. Even with similar maximum overhead for Order2 and Order3, differences in local
memory overhead exist. Computation time improvement in inference tasks can involve sacrificing memory space
via operator slicing. Additionally, the number, method, and ratio of sliced sub-operators cause computation
time and additional memory overhead. Adjusting operator execution order under limited memory can reduce
maximum memory overhead, increase available memory space, and reduce computation time through operator
slicing.

3 Design
3.1 Overview

This section introduces MemoriaNova, a comprehensive approach designed to optimize DL models for edge
devices. Within MemoriaNova, we present two core algorithms: BTSearch and GenEFlow. BTSearch focuses on
exploring the computational graph of the target DL model to identify the optimal operator execution order, thereby
expanding the search space for GenEFlow. Subsequently, based on hardware specifications and the determined
execution order, GenEFlow utilizes the information acquired from BTSearch to optimize the model’s parallel
configuration. This process aims to minimize inference latency while adhering to the memory constraints of
each device. Figure 4 provides an overview of our methodology, illustrating the seamless integration of BTSearch
and GenEFlow to achieve enhanced DL performance.

3.2 BTSearch: A Backtracking Algorithm for Optimizing Model Operator Topological Sorting

To reduce the memory overhead from the sequence of operator executions, we bring up BTSearch. BTSearch
is a graph state backtracking algorithm that aims to find an operator execution order that minimizes memory
overhead and widens optimization opportunities for operator slicing efficiency gains.

The computational graph of a DL model can be represented as G = {V, E}, where V is vertices and & is edges.
An edge ¢;; € & signifies a connection, implying op; precedes op; during inference. Sorting all operators ensures
no path from op; to op;, termed topological sort. Computing sorts for a graph is a P-Complete (PC) problem,
typically requiring exponential time. In the worst-case scenario, it requires exponential time to traverse all
topological sorts of a directed acyclic graph. Fortunately, multi-branch DL models typically exhibit a concatenated
parallel structure, where the topological structure comprises several small-scale parallel structures. The fact
results in a relatively smaller number of possible topological sorts. For ease of algorithm description, the following
definitions are provided.

DEFINITION 3.1 (OPERATOR STATE). In the process of an inference task for a DL model, the state of an operator is
defined as a boolean variable, indicating whether the operator has completed its computation. For example, b; denotes
the state of the operator op;.

DEFINITION 3.2 (COMPUTATIONAL GRAPH STATE). In the process of an inference task for a DL model, the states of
all operators in the computational graph constitute the current state of the graph, denoted as Stateg = by, by, ..., by
(where N is the number of operators in the computational graph).

We aim to optimize operator execution to maximize available memory during model inference, expanding
efficiency optimization opportunities. The evaluation metric Metric(Order;) sums the memory overhead of each

ACM Trans. Arch. Code Optim.

8 + R.Zhangetal.

BTSearch N

5P oo

Operator Execution
Model Order

GenEFlow \

2o |
B0 HHR iy

D, [[]

\ Model Parallel Configuration

i Deployment
i Hardware(Information Distributed Edge Devices

b

Fig. 4. System Overview.

operator in a topological order: Metric(Order;) = Z?Izl (Mem gy — Memg?”). Smaller metric values signify better
performance.

The pseudocode for BTSearch is shown in Algorithm 1. BTSearch’s input is the computation graph of a DL
model, and its output is the optimal topological order under a certain metric condition. BTSearch perform a
backtracking iteration on the graph that has not yet started computing. Based on the current state of the graph,
all legal next states are derived and recursively processed in sequence. As the main steps, BTSearch initializes the
graph state and the current local order first. And then, it calls the backtracking algorithm to obtain the optimal
order.

BTSearch’s backtracking recursive function first determines the recursion exit. If all operators have been
executed, i.e., Stateg = true, true, ..., true, it is necessary to check whether the metric value of the currently found
topological order is better. If so, update the current best result. Then, the function returns. Parse the current graph
state. Based on the current graph state, the status of each operator, the list of currently executable operators, and
the tensor information stored in memory can be parsed. Loop through the current list of executable operators.
For each operator in the list, assume the operator is chosen as the next to be executed, add it to the current local
order list, and update the graph state. Recursively call the backtracking function with the parameters updated in
the previous step. Finally, the regional order list and graph state were restored to the state before the last operator
was chosen.

ACM Trans. Arch. Code Optim.

MemoriaNova: Optimizing Memory-Aware Model Inference for Edge Computing « 9

Algorithm 1: BTSearch
Data: DL model computation graph.

Result: Optimal order of operator execution for memory optimization.
1 Function Main():
// Initialize the graph state and current local order. Initialize the state marking
dictionary and the parsing function dictionary.
2 GraphState« InitialState, CurrentOrder« [], StateMark« {}, ParseMark« {};
3 MemMetric«— 0, BestMemMetric« 0;
4 Recursive(GraphState, CurrentOrder);

5 return BestExecuteOrder;

¢ Function Recursive(GraphState, CurrentOrder, MemMetric):

7 if All element in GraphState is true and MemMetric > BestMemMetric then
8 ‘ Update BestMemMetric and ExecutionOrder;

9 end

// Pruning.

10 if GraphState in StateMark and MemMetric < StateMark[GraphState] then
11 ‘ return;
12 else

13 ‘ Update StateMark;
14 end

15 Executable, CurrentMem«— ParseState(GraphState);

16 foreach operator in Executable do

17 Update GraphState and CurrentOrder;

18 Recursive(GraphState, CurrentOrder, MemMetric + CurrentMem);
19 Downgrade GraphState and CurrentOrder;

20 end

The graph state parsing function calculates the list of currently executable operators and the memory overhead
based on the current graph state for all operators in the graph that still need to be executed loop through. Identify
all directed edges that have the operator as the endpoint; for each such edge, increment the in-degree of that
operator by one. Finally, Check the in-degree of all operators, adding operators with an in-degree of zero to the
list of executable operators. Additionally, the input tensors of all operators with an in-degree of zero are set as
intermediate result tensors, and the memory overhead of all intermediate result tensors is calculated based on
the current graph state.

3.2.1 Pruning Optimization Based on State Marking. During backtracking, repeated state transitions may lead to
the same graph state. As the backtracking is depth-first, if a certain state recurs, all subsequent iterations from
that point have been processed, indicating subsequent local optimal solutions. The graph state updates with each
recursive call, enabling the following optimization: Maintain a state marking dictionary outside the function
to record encountered graph states and their local metric values. Before the loop, check if the state is recorded
in the state-marking dictionary. If the state is recorded, prune if the current metric exceeds the recorded value;
otherwise, continue execution as usual. Finally, update the dictionary after the loop.

3.2.2 Hash Optimization for the Parsing Function. Even with previous optimization, redundant computations may
occur during backtracking. Hash optimization eliminates redundant computations by recording graph states and

ACM Trans. Arch. Code Optim.

10 « R.Zhangetal.

parsing results in a dictionary. Check if parsing results exist in the dictionary; if found, return them; otherwise,
compute and register the results.

3.2.3 Time Complexity Analysis. The algorithm has an exponential time complexity of O(2") for general directed
acyclic graphs. In practice, most deep learning models exhibit a topology characterized by a series-parallel
graph. In such a graph, it is assumed that the structure consists of N parallel graphs concatenated, with each
parallel graph containing M branches and each branch comprising K nodes. After pruning, each serial subgraph
is processed only once. Best-case time complexity per subgraph is O(M * K), while the worst-case is O(KM),
and overall complexity is O(N * M * K) ~ O(N % KM). In practice, with limited branches and operators in serial
subgraphs, the algorithm’s execution time is acceptable.

3.3 GenEFlow: GA-Based Model Parallel Scheduling Optimization Method

To decrease the inference latency of the target model by optimizing the model parallel schedule, we devise
GenEFlow, a GA-based method, to optimize model parallel schedules to reduce inference latency. GenEFlow
operates in a router-edge devices setup, considering broadcast and point-to-point communication. It abstracts
model operator partition optimization as a chromosome configuration. Furthermore, GenEFlow constructs a
search space, defines an objective function, and iteratively refines configurations using GAs. It ensures legal
configurations and employs a GA Solution to minimize model inference latency in distributed systems.

3.3.1 Search Space Construction. We optimize the model’s slicing configuration using a GA instead of optimizing
operators individually. Operators execute synchronously, involving data transfer and computation stages. An
operator’s execution time is linearly related to its scale. By uniformly partitioning operators, parallel execution
time decreases. Memory constraints guide the maximum splits per operator. Memory calculations inform optimal
partitioning methods, detailed in Table 1. The computation of convolutions, typically large, benefits from efficient
partitioning, reducing memory overhead.

Chromosome Encoding. Based on the current graph state, k; and k; are calculated from relevant parameters.
If k; < k;, partitioning occurs along output channels (cout). Otherwise, it’s along feature map height (fmh).
Chromosome encoding for all operators’ partitioning configurations is necessary to invoke GAs. For a single
operator op;, its partitioning encoding vector is defined as:

fi = [X(),X1, cees xn] (6)

The encoding vector needs to satisfy the following constraints:

x; € Nyie[o0,...,n] (7)
X =0 ®)

Xn = length 9)

X0 <x1<...%, (10)

Where length is the size of the operator along the partitioning dimension, and n is the number of edge devices
in the system. The partitioning encoding vector assigns tasks to devices based on output tensor indices, which
are crucial for constraint calculations. Note that when x;_; = x;, it signifies that device d; will not be assigned the
computation task for the current operator. This characteristic is used in the subsequent calculation of constraint
violation parameters.

From the partitioning vector of a single operator, where each partitioning operator corresponds to a single
gene in the GA’s chromosome representation, the chromosome encoding for the entire model’s partitioning
configuration can be obtained as:

-

X = [x1,%, ..., %N] (11)

ACM Trans. Arch. Code Optim.

MemoriaNova: Optimizing Memory-Aware Model Inference for Edge Computing « 11

Lho 20 30 Lho
Conv2_1
Conv1_1 —> =
- Comv3 1 ——> Sum.1
m (21 >
T Convi_2 > Conv2_2 T“\A 4 T
0 —> | 32 3 Sum_2
; 22
/' i Conv3_3
Comv13 ——3 comv2 3 / \ Sum_3 2
Lhs 23 L33 Lhs

Fig. 5. lllustration of the Relation Between Chromosome Encoding and Model Partition Configuration of the Example Model.

Through chromosome encoding analysis, we form a comprehensive search space. It fulfills distributed system
memory needs and encompasses varied operator partitioning configurations. This space is denoted as a set:

{X} s.t. (7),(8),(9),(10) (12)

In Section 3.2, considering the example model, Figure 5 illustrates the relationship between chromosome
encoding and model partitioning configuration. With 3 devices, operators execute in Orderl: Convl, Conv2,
Conv3, Sum. In the figure, x; ; denotes the partitioning vector elements for the i-th operator. The range [x; j_1, x; ;)
assigns computation to the j-th device. If x; j_; = x; ;, it implies device j isn’t involved in operator i computation.

3.3.2 Objective Function. The GA adopted in GenEFlow is a single-objective optimization GA, and the opti-
mization target is the single inference latency. Therefore, for any given valid chromosome encoding, it must be
mapped to inference latency. This mapping is the optimization objective function.

Device Modeling Optimization and Communication. In our distributed edge device system, each of the n
edge devices is linked via a router. Two communication methods are employed: point-to-point and broadcast.
Point-to-point involves direct communication between two devices through the router. Broadcast sends data from
one device, transmitting it to multiple devices through the router. This modeling mirrors real-world scenarios
like interconnected smart home devices.

Chromosome Encoding to Inference Time Mapping. The algorithm calculates inference latency by processing
operators sequentially in a deep-learning model. Its execution phase is divided into data synchronization and
computation phases. The predecessor operators of the operator op; are defined as pred(op;). For any op; €
pred(op;), there exists an edge ej; in the computation graph G. Similarly, the successor operators of the operator
op; are defined as succ(op;). For any op; € succ(op;), there exists an edge e;; in the computation graph G. During
data synchronization, the algorithm determines the distribution of output tensors from predecessor operators to
calculate data transfer amounts. The operator type and its partitioning method have an impact on communication
mode (broadcast or point-to-point). This information is encapsulated in the chromosome X for inference latency
calculation.

Calculation of Data Transfer Quantity. Algorithm 2 outlines the optimization objective function. The func-
tion GetCommMem(OPID,)?) computes the transfer parameter matrix Comm. Comm[i][j] indicates the data
amount transferred from the i-th predecessor operator to device d;. The function initializes Comm with 0s and
iterates over predecessor operators and devices, computing data transfer based on operator types and partitioning
vectors X.

Algorithm 3 computes the communication data volume for a given operator and device pair. For the predecessor
operator op; and device di of the current operator op;, when type(op;) = Cono, there are several cases as follows:

(i) If op; adopts cout partitioning, data from op; is synchronized to all devices. The total transferred parameters
amount to My, (0p;), incrementing all Comm|[j] elements.

ACM Trans. Arch. Code Optim.

12 « R.Zhangetal.

Algorithm 2: Optimization Objective Function

Data: DL model operator partitioning configuration vector X = [x1,x2...,xn], model computation graph G, and
hardware information for distributed edge devices D.
Result: Execution time of inference tasks under the current configuration
1 FinishTime« 0;

2 foreach x; € X do

3 TmpTime« 0;

4 Comm «—GetCommMem(i,)-f, G);

5 foreach di. € D do

6 CommTime« 0,CompTime« 0;

7 CommNumeé— 0;

8 foreach op; € pred(op;) do

9 if Use Broadcast Mode then

10 CommNum += Comm|[j][k];

11 break;

12 else

13 ‘ CommNum += Comm|[j] [k];

14 end

15 end

16 CommTime«—CommNum / D .Bandwidth;
17 CompTime« Yj(x; — X k—1,0Pi);

18 DeviceTime«CommTime + CompTime;
19 if DeviceTime > TmpTime then

20 ‘ CommOpTime; = CommTime;

21 end

22 TmpTime = max(TmpTime, DeviceTime);
23 end

24 FinishTime += TmpTime;
25 end

26 return FinishTime;

(ii) If op; uses fmh and op; cout partitioning, devices need partial feature map data. Data transfer is computed
based on feature map indices; excluding portions saved on dy. Transferred data amount: Moy (0p ;) X Ceomm/ C_—;ul e
(x = x]).

(iii) If both op; and op; use fmh partitioning, the data required by op; on di as input and currently not held by
the current device di needs to be transferred from other devices to di. As for the transferred data, it is calculated
as Mou: (0pj) X Hcomm/H}u”, where Heomm = max(x} — x{, max(0, x — x) + max(0,x]_, — x/)).

The communication volume for convolutional operators is depicted in Figure 6. Cases (a) and (b) represent
Case (i), while (c) and (d) correspond to Cases (ii) and (iii). In (c) and (d), the characteristic of convolution
determines that there may be duplicated data in Input;, marked by shaded areas. For other scenarios, M;¢eq in
op;’s output and My, on di are computed. Data to be transferred is M;,ceq — Mpo1q. Broadcast communication is
used if data is required by multiple devices, considering a single transmission’s data volume.

Communication Time and Computation Time. According Algorithm 2, the total data communication volume
for op; transmitted in device k is CommNum+ = Comm/[j][k], where op; is the predecessor operator of op;, and

ACM Trans. Arch. Code Optim.

MemoriaNova: Optimizing Memory-Aware Model Inference for Edge Computing + 13

Algorithm 3: GetCommMem: Function for Obtaining Communication Data Volume

Data: Operator ID, vector for partitioning configuration of DL model operators X = [x1,x2...,xn], computation
graph of the model G, and hardware information for distributed edge devices D.
Result: Communication Data Volume Matrix Comm
1 foreach op; € pred(op;) do

2 comme— [0] = n;

3 foreach d;. € D do

4 Calculate My,e.q and My,;4 according to the type(op;) and the partition method of op; and op;
5 comm[di] += Mpeeq — Mpo1as

6 end

7 Comm|j] «—comm;

s end

9 return Comm;

Output;_| Inputj

Outputj_1 Inputj ____Outputj_y

iiDy

(a) fmh-cout (b) cout-cout (c) cout-fmh (d) fmh-fmh

Fig. 6. Data Communication of Convolution Operator with Different Partition Methods. Output;_1 is the output tensor of
operator i — 1, Input; is the input of convolution operator i. D1 and D3 are distributed devices.

Comm|j][k] indicates the data amount transferred from the i-th predecessor operator to device d;. Then, the
total communication time of operator op; is calculated as CommTime«CommNum / © Bandwidth.

We assume that for a specific operator and device, the execution time is linearly related to the size of the input
or output feature map. Therefore, a linear function Y; can be used to calculate the computation time of operator
op; on device di as CompTime = Y;(x; — Xi -1, 0p;). Here, x; . — x; k1 represents the part of the operator split
on device d; corresponding to the partitioned dimension.

Therefore, the time expense for this operator op; on device k is DeviceTime = CommTime + CompTime, and
the longest time spent on each device for operator op; is the time cost TmpTime; of this operator. Summing
up, all operators’ time yields the total inference latency FinishTime. When calculating the time cost of each
operator op;, the communication time CommOpTime; generated by this segment is the communication time of
that operator. Summing up the communication times of all operators gives GenEFlow the total communication
time.

3.3.3 Constraint Violation Parameters. We utilize the high-performance GA library Geatpy [19] to implement
the optimization iteration process. In the iteration process of Geatpy, The constraint conditions considered
are: Legitimacy of chromosome parameters; (ii) Legitimacy of the total memory in the distributed system; (iii)
Legitimacy of memory on each device in the distributed system.

ACM Trans. Arch. Code Optim.

14 + R.Zhangetal.

Only the chromosomes (model partitioning configurations) that pass all three legitimacy checks are considered
legal. Constraint violation parameters define the degree of violation for a specific constraint in the optimization
problem. For example, assuming a constraint in the optimization problem is a < b, the constraint violation
parameter corresponding to this constraint is a — b. The larger this value, the higher the degree of constraint
violation.

Legitimacy of Chromosome Parameters. For the chromosome X = (%1, %2, . .., XN], where X = [x10, Xi1, - - s Xin],
it corresponds to the partitioning configuration of the i-th operator in the execution sequence. The parameters in
it need to satisfy the constraint conditions given by (7), (8), (9), and (10). The constraint condition (7) is ensured
by specifying that the parameters within the chromosome are integers when defining the optimization problem,
and there is no need to add it to the constraint violation parameters. Constraint condition (8) corresponds to two
constraint violation parameters.

COLi = X1, CU2i = —Xi (13)

Similarly, constraint condition (8) corresponds to two constraint violation parameters:

CUs; = X, — length, cvy; = length — x; (14)

length is the size of op; in the corresponding partitioning dimension. Constraint condition (10) corresponds to
n constraint violation parameters:

CUsjj = Xij_1—Xij,j €[1,2,...,n] (15)

Legitimacy of the Total Memory in the Distributed System. In Section 3.3.1, we discussed the impact of
the total available memory in the distributed system on the upper limit of the number of partitions in the
model partitioning configuration. Assuming the upper limit of the number of partitions for op; is kmax, then op;
corresponds to a constraint violation parameter:

n
CUg; =N — ZI} —min(n, kmax),i € [1,2,...,N] (16)
j=1
Where,
0 Xij1=Xij1
I = { e (17)
1 Xi,j-1 * Xi,j-1

Legitimacy of Memory on Each Device in the Distributed System. During inference, each operator’s execution
on devices must adhere to device memory limits. Given the fixed execution order and result tensor storage on
devices, memory consumption per operator on each device is derived from model partitioning configuration
X. Assume device memory limits as Mjjmirs = [Mj1, Mo, . . ., M,], where Mj; denotes the i-th device’s available
memory: For the operator op;, it has a total of n constraint violation parameters on various devices:

cvyij = Mejij+ Moij — Myj, j € [1,2,...1] (18)

The memory consumption during operator execution on device d; is denoted as M ;;, and M, ;; represents the
memory consumed by other tensors on d; during op; execution. Based on the analysis in Section 3.2, it can be
inferred that the memory overhead of operators during execution is always greater than or equal to that of the
intermediate stages. Therefore, it is only necessary to ensure that the execution phase complies with the memory
constraints.

The vector representing the constraint violation parameters for a single operator is given by:

cv; = [cvy,i, cvzi, CU3 4, €O, CO5 1,

(19)
-+ 5 CU5in, CU6 3, CU7i15 -+ «» CU7,in]

ACM Trans. Arch. Code Optim.

MemoriaNova: Optimizing Memory-Aware Model Inference for Edge Computing + 15

The vector representing the constraint violation parameters for the entire model is:

CV = [cvy, cvp, . .., con] 20

3.3.4 GA Solving. The model parallel scheduling problem seeks to minimize inference latency by optimizing
partition vectors for each operator in the distributed system. GAs are well-suited for this nonlinear optimization
task. However, conventional crossover operations may disrupt superior chromosomes, affecting overall perfor-
mance. Therefore, we adopt a single-objective GA with an elite preservation strategy. This approach initializes a
large population and computes fitness based on latency. A new population is generated through crossover and
mutation operators, preserving privileged individuals. The process continues until convergence or a specified
generation limit is reached, resulting in optimized model parallel scheduling.

4 Evaluation

This section mainly presents the experimental results and analysis of the previously mentioned methods, di-
vided into six parts. In Section 4.1, we introduce the configurations and settings of both the simulated and real
environments. In Section 4.2, we select multiple DNN models and LLMs to evaluate the memory optimization
effectiveness of BTSearch compared to other methods. In Section 4.3, we compare the inference latency opti-
mization of GenEFlow with other methods under the same configuration. The experiments assess the model
inference efficiency of these methods without considering memory constraints. In Section 4.4, we set different
device memory limitations to validate the minimum memory requirements for model inference optimization
and evaluate the optimization effects of various methods. In Section 4.5, we evaluate the inference latency of
GenEFlow across multiple models by altering the number of devices and heterogeneous configurations, analyzing
how these factors impact model inference latency. In Section 4.6, we compare the inference latency optimization
of GenEFlow with other methods in a real environment.

4.1 Experimental Setup

Experiment Plat forms. The parameters of the experimental platform and simulation configuration are shown
in Table 3. Our experiments are conducted in two distinct environments. The first scenario is a simulated
environment using a local PC (CPU*8 @2.5GHz, 32GB RAM) to mimic edge devices with varying performance
levels by limiting the number of CPU cores and floating-point computational performance (CFLOPS). In this
setup, four simulated devices are configured with a communication bandwidth of 2000 Mbps, each having 50
MB of memory, with CFLOPS values set to [1.0, 1.0, 0.8, 0.8]. The second scenario is a real environment where
GenEFlow optimization experiments are performed on a platform consisting of one desktop PC, one Jetson TX2,
one Raspberry Pi 3B (RPi3),; and one Raspberry Pi 4B (RPi4). An SE109 (2.5 Gbps) is used for wired connections
and configuration, with the communication bandwidth limited to 2000 Mbps.

Experiment Models. We select VGG13 [35], ResNet50 [13], InceptionV3 [37], MobileNetV3 [14], SqueezeNet
[18], GoogLeNet [36], and RegNet [31] as the models. The models are pre-trained models sourced from Py-
Torch.hub. They are converted to the .onnx format using the torch.onnx.export() command from PyTorch.
Moreover, we also evaluate our framework on three large language models (LLMs), BERT [7], GPT-2 [23], and
Qwen2 [24]. For running CNN models, the input data shape is [1, 3, 224, 224], and for LLMs, the input data shape
is [1, 128].

4.2 Memory Optimization Analysis during Inference Process

This experiment aims to validate the memory optimization method proposed in Section 3.2. The comparison of
the method with different baselines is shown in Table 4.

ACM Trans. Arch. Code Optim.

16 « R.Zhangetal.

Table 3. Hardware Information Used in the Simulation Environment and Simulation Configuration.

Simulation Configuration ‘ Hardware Information
Parameter Value ‘ Hardware Model Information CFLOPS
Number of CPU*8 @2.5GHz

Devices 4 PC 32GB 0.24
Jetson GPU*1 @1.12GHz,
Memory (MB) (50, 50, 50, 50] CPU*6 @1.4GHz 0.50
TX2
38GB
Bandwidth . CPU*4 @1.5GHz
(Mbps) 2000 RPi4 4GB 0.80
CFLOPS [1.0, 1.0, 0.8, 0.8] RPi3 CPU ‘ig&zGHZ 1.00

Table 4. Comparison of Cumulative Memory Overhead During the Execution Process of Each Operator (MB).

Model Random PEFT Greedy BTSearch

VGG13 194.17 194.17 194.17 194.17
ResNet50 395.35 394.97 390.37 390.37
InceptionV3 483.10 471.36 460.07 437.22
MobileNetV3 27.78 27.78 27.78 27.78
SqueezeNet 70.41 70.41 70.41 70.41
EfficientNet-b0 236.88 236.88 236.88 236.88
GoogLeNet 159.58 156.27 151.02 139.71
RegNet 694.39 698.51 695.92 692.86
GPT-2 1000.88 1000.88 1000.88 1000.88
BERT 703.91 701.91 673.03 646.03
Qwen2 20590.18 20481.18 20179.93 19224.75

The adopted baselines are as follows: (i) Random, which randomly selects an executable operator each time;
(ii) PEFT [1], a heuristic algorithm optimizing for inference efficiency; (iii) Greedy [21], which selects the
operator with the largest input tensor to execute each time, aiming to minimize memory consumption as much
as possible.

BTsearch consistently achieves optimal results across all models. All methods yield the same for VGG13 and
GPT-2 with a single valid topological order. Similarly, models like MobileNetV3, SqueezeNet, and EfficientNet-50,
despite having branching structures, result in identical outcomes due to simplified operators. However, ResNet-50,
InceptionV3, GoogLeNet, BERT, and Qwenz2 variations occur. PEFT optimizes execution time, favoring larger-scale
operators early in the order. Greedy selects operators based on input tensor size, outperforming PEFT. BTSearch
guarantees optimal results by exploring all legal topological orders. Compared to random selection, BTSearch
achieves up to a 12% improvement. To illustrate BTSearch’s efficacy, we use GoogLeNet to compare memory
overheads under Random and BTSearch. As shown in Figure 8, while initial stages show minimal optimization
due to fixed orders, subsequent multi-branch DAG structures benefit from optimized execution, reducing memory
usage and expanding optimization possibilities for inference latency.

ACM Trans. Arch. Code Optim.

MemoriaNova: Optimizing Memory-Aware Model Inference for Edge Computing « 17

Table 5. Comparison of Efficiency of Memory Optimization Methods.

Model Op Num Random (ms) PEFT (ms) Greedy (ms) BTSearch

Time (ms) Pruned Searched

ResNet50 71 1.03 2.02 2.03 5.98 20 20
InceptionV3 108 7.01 6.98 7.01 3435.12 1387509 1529
GoogLeNet 71 2.99 2.99 2.99 1530.76 336654 2666

RegNet 94 3.00 2.99 3.44 4.99 28 3
GPT-2 159 39.41 39.47 39.37 50.84 0 1
BERT 173 23.48 23.04 22.49 130.57 11021 46
Qwen2 283 293.99 302.92 302.83 2351.12 496743478 225

Next, we analyze the efficiency of the BTSearch algorithm. In models with multiple valid operator execution
orders, compare the execution times of different methods. In addition, a comparison is made between the pruning
frequency of the BTSearch algorithm and the total number of complete topological orderings searched. The
comparative data is shown in Table 5.

From the table, Random, PEFT, and Greedy optimize memory quickly, with time complexity O(N) for N model
operators. BTSearch, despite higher time complexity, completes optimization and reaches the millisecond level of
10° milliseconds, which is acceptable for fixed hardware environments and single inference tasks. Because the
BTSearch method aims to optimize memory consumption, GenEFlow is provided with a broader search space
to support more complex models and computational tasks. The “Pruned" and “Searched" columns in BTSearch
show pruned and total searched orderings, respectively. BTSearch efficiently prunes orders that do not meet
requirements based on graph states. Pruning reduces the search space significantly, considering fewer complete
orderings, and is especially effective when executed before many DAG operators start. Due to the lack of complex
branching structures in GPT-2, the number of pruned orderings by BTSearch is 0. For the BERT and Qwen2
models, due to their complexity and the large number of operators, BTSearch prunes and searches a more
significant number of orderings, resulting in better optimization. This approach ensures BTSearch navigates a
manageable number of orderings, enhancing efficiency for complex models like InceptionV3, GoogLeNet, BERT,
and Qwen2.

4.3 Acceleration Optimization Analysis during Inference Process

The experiment evaluates the GenEFlow algorithm for model inference efficiency, excluding memory constraints.
Inter-device bandwidth is limited to 2000Mbps, and memory limits per device are set to 5000MB, eliminating
memory impact. GenEFlow parameters include a single-objective GA, elite preservation, 250,000 population
size, 50 max iterations, le-6 convergence threshold, and ten max convergence generations. These settings aim to
optimize model partitioning for efficient distributed inference.

The GA search space upper bound S, as shown in Table 6, can be expressed as: S = Hﬁ\]fmh(kfmhi +1)P 1 x

I—[j\’“"“‘ (keout; + 1P 1x H;Vle" (Kien, + 1)P~1. Where kemh; represents the output tensor size of the operators split
by feature map height (fmh). kcout; represents the output channel size of the operators split by output channels
(cout). kien, represents the tensor size of the operators split by output length (len). D represents the number of
distributed devices. Additionally, Nimn represents the number of operators split by feature map height (fmh).
Neout represents the number of operators split by output channels (cout). Nie, represents the number of operators

split by output length (len). The table shows that the GPT-2, BERT, and Qwen2 models have a large search space

ACM Trans. Arch. Code Optim.

18 « R.Zhangetal.

Nimh

Table 6. GA Search Space Upper Bound Calculation. Here, Kmp represents [1,7" (kfmp, + NP1 Keout represents

]_[N“"“‘(kcoutj + 1)9_1, and K|, represents]_[fj;” (Ken, + l)D_l.

Jj=1
Model D lg(Kfmh) lg(Kcout) lg(Klen) 19(5)
VGG13 4 142.0 74.9 0.0 216.9
ResNet50 4 351.0 576.0 0.0 927.0
InceptionV3 4 601.0 1100.0 0.0 1701.0
MobileNetV3 4 352.0 394.0 0.0 746.0
SqueezeNet 4 246.0 117.0 0.0 363.0
EfficientNet-b0 4 537.0 728.0 0.0 1270.0
GoogLeNet 4 647.9 409.76 0.0 1057.6
RegNet 4 256.0 647.0 0.0 904.0
GPT-2 4 0.0 0.0 2318.1 2318.1
BERT 4 0.0 0.0 2522.2 25222
Qwen2 4 0.0 0.0 41259 41259

due to their higher number of operators (Op Number). Consequently, the upper bounds of the search space for
these models are much higher compared to models like VGG13 and ResNet50.

The comparison in Figure 7 illustrates GenEFlow’s superior inference latency without memory constraints. It
outperforms CoEdge [46] by up to 33.9%. GenEFlow incurs minimal computational overhead and partitions each
layer individually, enhancing its efficiency. In contrast, CoEdge optimizes layers individually, yielding inferior
results holistically. Model size strongly correlates with inference latency. GenEFlow excels in optimizing complex
models but produces similar results to CoEdge for smaller models like SqueezeNet. The slight dip in GenEFlow’s
performance for InceptionV3 may stem from longer chromosome encoding and inadequate population size,
leading to local optima. The Efficient-b0 model, with minimal computational overhead, favors DeepThings, which
achieves marginally better results than GenEFlow.

As shown in Figure 9, it compares the data transfer volume in the final operator scheduling obtained by the
EfficientNet-b0 model under the GenEFlow and CoEdge methods. Compared to CoEdge, GenEFlow notably
reduces communication by analyzing data transfer volumes, which is attributed to its holistic optimization
objective encompassing computation and communication processes. The GA fosters offspring with lower latency,
indirectly minimizing data communication during distributed inference.

Table 7 compares the optimization time for each method in this experiment. Except for GenEFlow, all methods
optimize the operators sequentially, resulting in faster optimization speeds at the second level. In contrast, the
GenEFlow algorithm takes significantly longer, ranging from 1.7 to 36.4 hours. This is mainly due to using a
genetic algorithm, which involves a lot of computation. In this experiment, the number of distributed devices
is fixed at 4, so the chromosome encoding length in the GenEFlow algorithm is proportional to the number of
model operators. Therefore, models with a more significant number of operators require more time for population
initialization and individual fitness evaluation within the population.

4.4 Optimization Effect Analysis under Memory Limitation Conditions

We aim to validate the optimization effects of different methods on model inference efficiency while considering
memory constraints. We set various device memory limitations to verify whether the optimization methods meet
the specified memory constraints. If the memory requirements are met, the inference acceleration effects of each
model under memory constraints are analyzed as shown in Table 8.

ACM Trans. Arch. Code Optim.

MemoriaNova: Optimizing Memory-Aware Model Inference for Edge Computing + 19

300 —— Average Objective Value —— Average Objective Value
290 Best Objective Value 400 Best Objective Value
280 400
380 m
270 E 350
3 260 3 z
2 3 360 S
) * 300
8
240 340 8250
s
230 =
£ 200
220 a— 320 £
o 10 20 30 40 o 5 10 15 20 25 Local DeepThings CoEdge GenEFlow
Generation Number Generation Number
(a) VGG13 (b) ResNet50 (c) InceptionV3
— Average Objective Value
Best Objective Value
110
60
— —~300
@ M
é 50 100 g
I B 2250 }
3 40 B o
© 90 ®
= =200
830]
15 8 g
o o
L20 K 150
£ £
Local DeepThings CoEdge GenEFlow 0 10 20 30 40 Local DeepThings CoEdge GenEFlow
Generation Number
(d) MobileNetV3 (e) SqueezeNet () EfficientNet-b0
140 —— Average Objective Value 620 —— Average Objective Value |
Best Objective Value Best Objective Value
135 600
130 -
580 Es8
1% g oy
2 £ 560 56
5
s 540 § 4
110 g
520 £2
105 -
0 5 10 15 20 25 2 4 6 8 10 12 14 16 Local DeepThings CoEdge GenEFlow
Generation Number Generation Number
(g) GoogLeNet (h) RegNet (i) BERT
@ M
E 4 E 14
o 312
c c
225 2
° 810
v o
220 2 g
o o
E 15 “E 6
Local DeepThings CoEdge GenEFlow Local DeepThings CoEdge GenEFlow
(j) GPT-2 (k) Qwen2

Fig. 7. Comparison of Inference Latency Among Different Models.

Prioritizing the adjustment of operator partitioning, GenEFlow optimizes inference memory overhead, facili-
tating efficient task execution even under stringent memory constraints. Memory thresholds are directly linked
to the scale of model operators. CoEdge and GenEFlow minimize computational overhead, significantly reducing
memory consumption compared to local and DeepThings’ deployment methods. Tight memory constraints limit

ACM Trans. Arch. Code Optim.

20 + R.Zhangetal.

=
o

—— Random —— GenEFlow
BTSearch CoEdge

o ®

IS

Memory Footprint (MB)

4
f[\
3 |

/A
2 V \/ \f\\ ~ A/\
‘/\/\/\\'N \/\l V\A/\JV A 0] A’A/Arhﬂ,\ﬂmu\-ﬂ\m*'\’m AR L)

0 10 20 30 40 50 60 70 0 20 40 60 80 100
Index of Operator in Execution Order Index of Operator in Execution Order

N}

Communication Data Amount (MB)

Fig. 8. Memory Footprint Trace of Operators. Fig. 9. Comparison of Data Communication.
Table 7. Comparison of Time Consumption of the Optimization Process (s)

Model DeepThings CoEdge GenEFlow

VGG13 1.05 9.95 6371.59
ResNet50 1.28 9.97 20123.58
InceptionV3 2.26 9.97 21380.50
MobileNetV3 1.43 8.55 12351.91
SqueezeNet 1.02 7.65 12442.12
EfficientNet-b0 0.99 7.33 38615.78
GoogLeNet 243 10.50 18248.82
RegNet 1.90 9.93 25876.56
BERT 1.05 48.41 108210.81
GPT-2 1.99 50.03 131025.18
Qwen2 5.98 60.02 232352.55

partitioning methods, reducing GenEFlow’s search space and potential acceleration. GenEFlow adapts to varying
memory constraints by considering device memory limits during GA application. Other methods lack memory
consideration and remain fixed at specific thresholds, limiting their applicability and latency reduction even with
increased memory availability.

4.5 Heterogeneous Device Scalability and Inference Latency Analysis

We evaluate GenEFlow’s inference latency on VGG13, ResNet50, MobileNetV3, and EfficientNet-b0 models
by changing the number of devices and heterogeneous device configurations. The communication bandwidth
is 2000MB/s, the memory limit for each device is 5000MB, the number of distributed devices is four, and the
floating-point operations per second (CFLOPS) of the devices for each device is set to 0.5. Figure 10 shows that as
the number of devices increases, the inference latency of the models first increases and then decreases, reaching
the lowest latency when the number of distributed devices grows to four. When the number of distributed
devices exceeds four, the inference latency gradually increases because the increase in communication time
between devices outweighs the reduction in computation time due to distributed inference. We then fixed the
number of devices to four and varied the CFLOPS values of each device to test the inference latency of models
under heterogeneous device configurations. As shown in Figure 11. "Heterogeneous Configuration” refers to the

ACM Trans. Arch. Code Optim.

MemoriaNova: Optimizing Memory-Aware Model Inference for Edge Computing « 21

Table 8. Comparison of Inference Latency of Different Models Under Memory Constraints (ms). The memory limit is applied
to each device. X indicates that the inference task cannot be completed under this memory limit. - indicates that increasing

memory will not improve the optimization effect.

Model Memory Local DeepThings CoEdge GenEFlow ‘ Model Memory Local DeepThings CoEdge GenEFlow
10MB X X 242.48 217.26 5MB X X X 315.54
20MB X X - N 10MB X 370.83 329.04 -
VeG13 30MB x 277.23 - - ResNet50 15MB x - - -
40MB 311.80 - - - 20MB 435.98 - - -
5MB X X X 304.52 0.5MB X X 52.52 31.38
. 7MB X X 296.12 301.60 . 1MB X X - -
InceptionV3 —\p x 361.52 - - MobileNetV3 1.5MB X 49.62 - -
15MB 397.52 - - - 2MB 46.10 - b -

2.5MB X X 72.08 72.78 5MB X X 305.96 218.38

5MB X X - 72.37 . 10MB X X - 214.40
SqueezeNet 7.5MB % 7418 B B EfficientNet-b0 15MB % 211.80 B B
10MB 74.23 - - - 20MB 210.18 =~ - -

2MB X X X 105.40 10MB X X X 512.33
3MB X X 113.81 103.99 20MB X 565.79 592.79 -
GoogleNet 5\p x 136.63 - - RegNet 30MB X ? - -
7MB 140.03 - - - 40MB 651.06 - - -

1MB X X X 5.84 5MB X X 30.65 26.23
1.5MB X X X - 10MB X X - -

BERT 2MB X 7.33 7.15 - GPT-2 15MB X 31.79 - -
2.5MB 8.83 - - - 18MB 32.06 - - -
10MB X X X 10.59

Qwen2 20MB X X 12.82 -
30MB X 13.26 - -
40MB 13.59 - - -

350 350 —— Vogl3
ResNet50
s | —#— MobileNet v3
300 300 —4— SqueezeNet
n —— Vggl3 %
ResNet50
Eas0 o Vemlenetys 250
O —a— SqueezeNet. [9)
2 <
2200 3200
K K] '\O—o——.\"'—'
[()
150 frtereer e S 150
o L
Q Q
€ 100 € 100
—_— *
50 frrrfom 50 e ——
‘—__‘\‘_‘l—l/’/‘ x* A
1 2 3 4 5 6 1 2 3 4 5 6 7

Device Number Heterogeneous Configuration

Fig. 10. Compare the Inference with Different Numbers of Fig. 11. Compare the Inference with Heterogeneous Config-

Devices. uration.

CFLOPS settings of the four devices. Configurations 1 through 7 correspond to the following CFLOPS settings:
1 (0.8, 0.8, 0.8, 0.8), 2 (0.8, 0.8, 0.8, 0.5), 3 (0.8, 0.8, 0.5, 0.5), 4 (0.8, 0.5, 0.5, 0.3), 5 (0.5, 0.5, 0.5, 0.3), 6 (0.5, 0.5, 0.3,
0.3), and 7 (0.3, 0.3, 0.3, 0.3). As the CFLOPS values decrease, the overall inference time of the models tends to
decrease, particularly for the VGG13 and ResNet50 models, where the reduction in latency is most significant in
Configurations 6 and 7.

ACM Trans. Arch. Code Optim.

22 « R.Zhangetal.

== Local
DeepThings

= CoEdge

= GenEFlow

g
)

Inference Acceleration (Normalized to 1)
o o
B ©

0.4+ T T T T T
Inception v3 ResNet50 Vggl9 SqueezeNet MobileNet v3

Fig. 12. Comparison of Inference Acceleration on Heterogeneous Edge Devices.

4.6 Analysis of Inference Acceleration on Heterogeneous Edge Devices

In a real environment, we compare the inference acceleration effects of different baselines on the models
InceptionV3, ResNet50, Vgg19, SqueezeNet, and MobileNetV3. Each operator of these models can be executed
individually in all hardware configurations. The baseline methods include: (1) Local, where inference tasks
are performed individually on each core and the average is taken as the result; (2) DeepThings, as described
previously; (3) CoEdge, as described previously. Figure 12 shows the inference acceleration effects under different
hardware configurations, with the results normalized to GenEFlow: From the results, it can be seen that GeneFlow
is able to achieve optimal inference latency optimization in most cases. Therefore, on heterogeneous edge devices,
the GeneFlow method can significantly enhance the inference performance of the models.

5 Related Work

Optimizing DL models for deployment on edge devices. Deploying DL models on edge devices poses
challenges due to limited resources. Lightweight models like MobileNets [15], Single Shot Detector [26], YOLO
[32], and SqueezeNet [18] are designed for edge deployment, utilizing techniques such as filter decomposition and
specialized convolution filters to reduce computations while maintaining accuracy. Model compression methods,
including parameter quantization, pruning, and knowledge distillation, aim to minimize accuracy loss in existing
models. DeeploT [43] offer pruning methods for IoT devices, enabling immediate deployment on edge devices.
Knowledge distillation trains smaller models to mimic larger ones, while Fast Exiting provides approximate
classification results by utilizing initial layer computations. Techniques like AdaDeep [25], and DeepMon [17]
combine compression methods to meet the accuracy and resource constraints. These methods aim to reduce
model complexity for efficient inference on distributed edge devices while preserving computational integrity.

Distributed DL inference optimization. Deploying DL inference tasks across distributed systems involves
optimizing efficiency through various strategies [47]. In the simplest approach, individual model operators are
distributed across devices for sequential execution [3], enhancing throughput via pipeline formation. Guo et
al.[12] adopt hierarchical optimization, employing a GA to vertically partition models and reduce pipeline latency.

In scenarios where devices execute tasks serially, pipeline design aims to enhance computational throughput
[6]. Alternatively, parallel execution partitions models into sub-models deployed across devices, leveraging
internal parallelism for improved resource utilization and reduced latency.

DeepThings [48], proposed by Zhao et al., adopt a classic model horizontal partitioning approach, dividing the
model into independent sub-models to fully utilize each device’s computational resources without inter-device
data transmission overhead.

Zeng et al. introduce CoEdge [46], which partitions model operators without overlap to minimize computational
overhead. CoEdge employs inter-device communication for overlapping input data, dividing each operator

ACM Trans. Arch. Code Optim.

MemoriaNova: Optimizing Memory-Aware Model Inference for Edge Computing + 23

execution phase into data transfer and execution phases. However, while efficient, CoEdge’s optimization process
may lead to suboptimal solutions due to its greedy approach. EdgeFlow [16] extends the theoretical analysis for
heterogeneous distributed edge devices by considering data transfer and computation phases during operator
partitioning. It converts partitioning problems into linear programming and adopts a greedy approach to achieve
local optimality. However, EdgeFlow may need to pay more attention to the impact of operator execution orders
on performance, potentially leading to suboptimal solutions.

Optimization utilizing a model’s directed acyclic graph structure. The optimization method utilizing DAG
structures organizes tasks or dependencies into directed acyclic graphs to streamline computational processes
efficiently. IOS [8] allowed parallel execution of operators within stages, employing a dynamic programming
algorithm to find optimal execution schedules. However, its coarse optimization granularity limits scalability to
distributed devices. HMCOS [40] optimized memory usage by simplifying DAG structures through a hierarchical
perspective, reducing memory overhead during inference. AGO [42] partitioned computation graphs into sub-
graphs, optimizing operator execution efficiency for specific convolution operators. While effective, it’s limited
to certain convolution types and complex DAG handling. PEFT [1] scheduled DAG tasks onto heterogeneous
devices, considering earliest start times and device completion times. However, it must address task division
possibilities and may not fully optimize memory usage. Applying PEFT directly to DL models’ DAG structure
may underutilize device resources and provide suboptimal memory optimization results.

6 Conclusion and Future Work

We propose MemoriaNova, a framework that includes two innovative algorithms, BTSearch and GenEFlow, for
optimizing memory and inference latency in distributed deep learning on edge devices. The BTSearch method
optimizes the cumulative memory overhead of models structured as DAGs. Through meticulous exploration
of the operator execution order, BTSearch effectively minimizes memory usage during model inference. This
application significantly enhances memory efficiency and enlarges the latency optimization search space. Our
experimental results demonstrate that BTSearch achieves up to a remarkable 12% reduction in memory overhead.
GenEFlow targets the optimization of communication latency in distributed inference tasks from a holistic model
perspective. It strategically configures operator placements by leveraging GAs to minimize communication delays
across distributed edge devices and offering a comprehensive search space for model partitioning. Our empirical
evaluations indicate that GenEFlow achieves impressive results, with a 33.9% reduction in inference latency. With
the popularity of large language models, our future work will consider how to deploy large language models with
higher memory requirements in memory-constrained edge devices and optimize their inference performance.

Acknowledgments

This work was supported by Shanghai Key Laboratory of Scalable Computing and Systems, and National Key
Laboratory of Ship Structural Safety. Corresponding author is Ruhui Ma.

References

[1] Hamid Arabnejad and Jorge G. Barbosa. 2014. List Scheduling Algorithm for Heterogeneous Systems by an Optimistic Cost Table. IEEE
Transactions on Parallel and Distributed Systems 25, 3 (2014), 682-694.

[2] Graham Brightwell and Peter Winkler. 1991. Counting linear extensions. Order 8 (1991), 225-242.

[3] Zinuo Cai, Zebin Chen, Zihan Liu, Quanmin Xie, Ruhui Ma, and Haibing Guan. 2023. RIDIC: Real-Time Intelligent Transportation
System With Dispersed Computing. IEEE Transactions on Intelligent Transportation Systems (2023).

[4] Zinuo Cai, Zebin Chen, Ruhui Ma, and Haibing Guan. 2023. SMSS: Stateful Model Serving in Metaverse with Serverless Computing and
GPU Sharing. IEEE Journal on Selected Areas in Communications (2023).

[5] Antonio Carlos Cob-Parro, Cristina Losada-Gutiérrez, Marta Marrén-Romera, Alfredo Gardel-Vicente, and Ignacio Bravo-Muiioz. 2021.
Smart Video Surveillance System Based on Edge Computing. Sensors 21, 9 (2021).

ACM Trans. Arch. Code Optim.

24 « R.Zhangetal.

[6] Jacqueline M Cole. 2020. A design-to-device pipeline for data-driven materials discovery. Accounts of chemical research 53, 3 (2020),
599-610.

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for
language understanding. arXiv preprint arXiv:1810.04805 (2018).

[8] Yaoyao Ding, Ligeng Zhu, Zhihao Jia, Gennady Pekhimenko, and Song Han. 2021. Ios: Inter-operator scheduler for cnn acceleration.
Proceedings of Machine Learning and Systems 3 (2021), 167-180.

[9] Khasim Vali Dudekula, Hussain Syed, Mohamed Igbal Mahaboob Basha, Sudhakar Ilango Swamykan, Purna Prakash Kasaraneni,
Yellapragada Venkata Pavan Kumar, Aymen Flah, and Ahmad Taher Azar. 2023. Convolutional Neural Network-Based Personalized
Program Recommendation System for Smart Television Users. Sustainability 15, 3 (2023), 2206.

[10] Mohammad Goudarzi, Marimuthu Palaniswami, and Rajkumar Buyya. 2022. Scheduling IoT applications in edge and fog computing
environments: a taxonomy and future directions. Comput. Surveys 55, 7 (2022), 1-41.

[11] Jalalu Guntur, S Srinivasulu Raju, T Niranjan, Sai Kiran Kilaru, Rakesh Dronavalli, and N Surya Seshu Kumar. 2023. IoT-Enhanced Smart
Door Locking System with Security. SN Computer Science 4, 2 (2023), 209.

[12] Xiaotian Guo, Andy D. Pimentel, and Todor Stefanov. 2023. Hierarchical Design Space Exploration for Distributed CNN Inference at
the Edge. In Machine Learning and Principles and Practice of Knowledge Discovery in Databases. Springer Nature Switzerland, Cham,
545-556.

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual Learning for Image Recognition. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[14] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu, Ruoming Pang,
Vijay Vasudevan, Quoc V. Le, and Hartwig Adam. 2019. Searching for MobileNetV3. arXiv:1905.02244 [cs.CV]

[15] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig
Adam. 2017. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017).

[16] Chenghao Hu and Baochun Li. 2022. Distributed Inference with Deep Learning Models across Heterogeneous Edge Devices. In IEEE
INFOCOM 2022 - IEEE Conference on Computer Communications. 330-339.

[17] Loc N Huynh, Youngki Lee, and Rajesh Krishna Balan. 2017. Deepmon: Mobile gpu-based deep learning framework for continuous

vision applications. In Proceedings of the 15th Annual International Conference on Mobile Systems, Applications, and Services. 82-95.

Forrest N. Iandola, Song Han, Matthew W. Moskewicz, Khalid Ashraf, William J. Dally, and Kurt Keutzer. 2016. SqueezeNet: AlexNet-level

accuracy with 50x fewer parameters and <0.5MB model size. arXiv:1602.07360 [cs.CV]

[19] Jazzbin J. 2020. Geatpy: the genetic and evolutionary algorithm toolbox with high performance in python.

[20] Amanda Jayanetti, Saman Halgamuge, and Rajkumar Buyya. 2024. Multi-Agent Deep Reinforcement Learning Framework for Renewable
Energy-Aware Workflow Scheduling on Distributed Cloud Data Centers. IEEE Transactions on Parallel and Distributed Systems (2024).

[21] Dieter Jungnickel. 2013. The Greedy Algorithm. Springer Berlin Heidelberg, Berlin, Heidelberg, 135-161.

Yassin Kortli, Maher Jridi, Ayman Al Falou, and Mohamed Atri. 2020. Face Recognition Systems: A Survey. Sensors 20, 2 (2020).

[23] Jieh-Sheng Lee and Jieh Hsiang. 2020. Patent claim generation by fine-tuning OpenAl GPT-2. World Patent Information 62 (2020),
101983.

[24] Zehan Li, Xin Zhang, Yanzhao Zhang, Dingkun Long, Pengjun Xie, and Meishan Zhang. 2023. Towards general text embeddings with
multi-stage contrastive learning. arXiv preprint arXiv:2308.03281 (2023).

[25] Sicong Liu, Yingyan Lin, Zimu Zhou, Kaiming Nan, Hui Liu, and Junzhao Du. 2018. On-demand deep model compression for mobile
devices: A usage-driven model selection framework. In Proceedings of the 16th annual international conference on mobile systems,
applications, and services. 389-400.

[26] Wei Liu, Dragomir Angueloy, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C. Berg. 2016. SSD:

Single Shot MultiBox Detector. In Computer Vision — ECCV 2016, Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling (Eds.). Springer

International Publishing, Cham, 21-37.

Yura Malitsky and Matthew K Tam. 2023. Resolvent splitting for sums of monotone operators with minimal lifting. Mathematical

Programming 201, 1 (2023), 231-262.

[28] Thaha Mohammed, Carlee Joe-Wong, Rohit Babbar, and Mario Di Francesco. 2020. Distributed inference acceleration with adaptive
DNN partitioning and offloading. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications. IEEE, 854-863.

[29] Xiaonan Nie, Xupeng Miao, Zhi Yang, and Bin Cui. 2022. Tsplit: Fine-grained gpu memory management for efficient dnn training via

tensor splitting. In 2022 IEEE 38th International Conference on Data Engineering (ICDE). IEEE, 2615-2628.

Jeongeun Park, Donguk Yang, and Ha Young Kim. 2023. Text mining-based four-step framework for smart speaker product improvement

and sales planning. Journal of Retailing and Consumer Services 71 (2023), 103186.

Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, and Piotr Dollar. 2020. Designing Network Design Spaces. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

Joseph Redmon and Ali Farhadi. 2017. YOLO9000: Better, Faster, Stronger. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR).

(18

=

—
oo
oo

—

[27

—

(30

[t

[31

—

(32

—

ACM Trans. Arch. Code Optim.

https://arxiv.org/abs/1905.02244
https://arxiv.org/abs/1602.07360

(33]

(34]

(35]

(36]

(37]
(38]

(39]

(40]

[41]

(42]

(43]

[44]
(45]
[46]

(47]

(48]

MemoriaNova: Optimizing Memory-Aware Model Inference for Edge Computing « 25

Wei-Qing Ren, Yu-Ben Qu, Chao Dong, Yu-Qian Jing, Hao Sun, Qi-Hui Wu, and Song Guo. 2023. A survey on collaborative DNN
inference for edge intelligence. Machine Intelligence Research 20, 3 (2023), 370-395.

Hongjian Shi, Weichu Zheng, Zifei Liu, Ruhui Ma, and Haibing Guan. 2023. Automatic Pipeline Parallelism: A Parallel Inference
Framework for Deep Learning Applications in 6G Mobile Communication Systems. IEEE Journal on Selected Areas in Communications
(2023).

Karen Simonyan and Andrew Zisserman. 2015. Very Deep Convolutional Networks for Large-Scale Image Recognition.
arXiv:1409.1556 [cs.CV]

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and
Andrew Rabinovich. 2015. Going Deeper With Convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR).

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. 2016. Rethinking the Inception Architecture for
Computer Vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Athanasios Voulodimos, Nikolaos Doulamis, Anastasios Doulamis, Eftychios Protopapadakis, et al. 2018. Deep learning for computer
vision: A brief review. Computational intelligence and neuroscience 2018 (2018).

Zhiyu Wang, Mohammad Goudarzi, Mingming Gong, and Rajkumar Buyya. 2024. Deep Reinforcement Learning-based scheduling for
optimizing system load and response time in edge and fog computing environments. Future Generation Computer Systems 152 (2024),
55-69.

Zihan Wang, Chengcheng Wan, Yuting Chen, Ziyi Lin, He Jiang, and Lei Qiao. 2022. Hierarchical Memory-Constrained Operator
Scheduling of Neural Architecture Search Networks. In Proceedings of the 59th ACM/IEEE Design Automation Conference (San Francisco,
California) (DAC °22). Association for Computing Machinery, New York, NY, USA, 493-498.

Yuanjia Xu, Heng Wu, Wenbo Zhang, and Yi Hu. 2022. EOP: efficient operator partition for deep learning inference over edge servers.
In Proceedings of the 18th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments (Virtual, Switzerland) (VEE
2022). Association for Computing Machinery, 45-57.

Zhiying Xu, Hongding Peng, and Wei Wang. 2023. AGO: Boosting Mobile Al Inference Performance by Removing Constraints on Graph
Optimization. In IEEE INFOCOM 2023 - IEEE Conference on Computer Communications. 1-10.

Shuochao Yao, Yiran Zhao, Aston Zhang, Lu Su, and Tarek Abdelzaher. 2017. Deepiot: Compressing deep neural network structures for
sensing systems with a compressor-critic framework. In Proceedings of the 15th ACM conference on embedded network sensor systems.
1-14.

Abbas Yazdinejad, Behrouz Zolfaghari, Ali Dehghantanha, Hadis Karimipour, Gautam Srivastava, and Reza M Parizi. 2023. Accurate
threat hunting in industrial internet of things edge devices. Digital Communications and Networks 9, 5 (2023), 1123-1130.

Chuanlong Yin, Yuefei Zhu, Jinlong Fei, and Xinzheng He. 2017. A deep learning approach for intrusion detection using recurrent
neural networks. Ieee Access 5 (2017), 21954-21961.

Liekang Zeng, Xu Chen, Zhi Zhou, Lei Yang, and Junshan Zhang. 2021. CoEdge: Cooperative DNN Inference With Adaptive Workload
Partitioning Over Heterogeneous Edge Devices. IEEE/ACM Transactions on Networking 29, 2 (2021), 595-608.

Rui Zhang, Xuesen Chu, Ruhui Ma, Meng Zhang, Liwei Lin, Honghao Gao, and Haibing Guan. 2022. OSTTD: Offloading of splittable
tasks with topological dependence in multi-tier computing networks. IEEE Journal on Selected Areas in Communications 41, 2 (2022),
555-568.

Zhuoran Zhao, Kamyar Mirzazad Barijough, and Andreas Gerstlauer. 2018. DeepThings: Distributed Adaptive Deep Learning Inference
on Resource-Constrained IoT Edge Clusters. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 37, 11 (2018),
2348-2359.

Received 1 March 2024; revised 10 August 2024; accepted 19 September 2024

ACM Trans. Arch. Code Optim.

https://arxiv.org/abs/1409.1556

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Operator Partition Methods and Memory Overhead Analysis
	2.2 Analysis of Operator Execution Order on Memory Overhead

	3 Design
	3.1 Overview
	3.2 BTSearch: A Backtracking Algorithm for Optimizing Model Operator Topological Sorting
	3.3 GenEFlow: GA-Based Model Parallel Scheduling Optimization Method

	4 Evaluation
	4.1 Experimental Setup
	4.2 Memory Optimization Analysis during Inference Process
	4.3 Acceleration Optimization Analysis during Inference Process
	4.4 Optimization Effect Analysis under Memory Limitation Conditions
	4.5 Heterogeneous Device Scalability and Inference Latency Analysis
	4.6 Analysis of Inference Acceleration on Heterogeneous Edge Devices

	5 Related Work
	6 Conclusion and Future Work
	Acknowledgments
	References

