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 A B S T R A C T

Context: With the acknowledged benefits of microservices architectures, such as scalability, flexibility, 
improved maintenance, and deployment, legacy software systems are increasingly being reengineered into 
microservices. Recently, a plethora of methods, techniques, tools, and evaluation criteria for reengineering 
software systems into microservices have been proposed without being systematized.
Objectives: The objective of this work is to conduct an in-depth systematic literature review to identify and 
analyze methods, techniques, and tools for reengineering software systems into microservices and the ways 
for evaluating such reengineering initiatives and their results.
Methods: A systematic literature review of works on reengineering software systems into microservices was 
performed, yielding 117 primary studies. The review focused on addressing key research questions concerning 
the evolution of microservices reengineering, methodologies employed, tools available, and the challenges 
faced in the reengineering process. We used a taxonomy development method to systematize knowledge in 
these areas.
Results: The analysis revealed multiple reengineering approaches: static, dynamic, hybrid, and artifact-
driven. Significant evaluation criteria identified include coupling, cohesion, and modularity. Key paradigms 
for microservices reengineering, such as domain-driven design and interface analysis, were identified and 
discussed. The study also highlights that incremental and iterative transitions are favored in practice.
Conclusion: This study provides a structured overview of the current state of research on reengineering 
software systems into microservices. It highlights challenges in existing reengineering methodologies. Fu-
ture directions include validating behavioral equivalence of original and reengineered systems, automating 
microservices generation, and refining database layer partitioning. The findings emphasize the need for 
further work to enhance the reengineering process and evaluation of the transition between monolithic and 
microservices architectures.
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1. Introduction

Modernizing software systems is essential to obtain the benefits 
of the latest technical capabilities [9]. Monolithic, legacy mainframe-
based software systems are an increasingly obsolete technology that 
suffers from scalability, maintainability, availability, and efficiency 
problems [10–13]. Therefore, there is an imperative need to modernize 
such systems to obtain better performance and improve the overall 
developer and user experience [14].

A wave of migration of monolithic software to object-oriented plat-
forms was observed at the end of the previous millennium [15]. Later, 
service-oriented architectures (SOAs) emerged, and legacy software 
systems began moving towards service-oriented architectures [16]. In 
an SOA, software systems are modular, with distributed modules having 
clearly defined interfaces [17]. But these services are not independent 
services [18]. As opposed to the logically related operations in an SOA, 
the microservice architectural style emerged promising to distribute 
applications via fine-grained, loosely coupled, and highly cohesive 
autonomous components communicating via well-defined, lightweight 
protocols managing local, synchronized databases, achieving high scal-
ability, availability, and efficiency [12,13].

The tightly coupled nature of legacy software systems reduces their 
scalability and maintainability. Often, making a change in one class 
affects several other classes. Hence, it increases complexity and devel-
opment time [19]. Decomposing legacy systems into small independent 
units increases the maintainability [20]. Microservices were first dis-
cussed in 2011 [13]. In addition to addressing the aforementioned 
drawbacks of conventional software architectures, microservices enable 
independent development and deployment of services, flexibility in 
horizontal scaling in the cloud environment, and support for efficient 
development team management [21]. Due to their multiple advantages, 
companies like Google, Netflix, Amazon, Uber, and eBay upgraded to 
microservice-based systems.

Companies often have a substantial investment in their corporate 
business systems and cannot afford to redevelop them entirely. Instead, 
a legacy system can be converted into a microservice system by incre-
mentally extracting microservices from it. This approach has several 
advantages. Firstly, it makes the best use of the company’s existing 
investment in the original system, which is often considerable and 
spans several decades. Secondly, the complexity of a legacy system 
and the effort, time to market, and resource constraints (e.g., human 
resources) required to reimplement it from scratch can be prohibitive. 
Finally, only certain system parts may be suitable for migration, while 
2 
others cannot benefit from or even will degrade when moved to the 
new architectural style. For example, functionality that is infrequently 
used, such as annual financial reporting, is probably best implemented 
in the head office’s mainframe. Hence, the ability to extract specific 
services for reengineering and redeployment as microservices while 
leaving other functionalities unchanged is essential.

Several studies [1–8] have been conducted to review the works on 
microservices identification. Schmidt and Thiry [1] reviewed
model-driven engineering and domain-driven analysis approaches to 
identify potential microservices. Schröer et al. [2] analyzed the tech-
niques for identifying microservices during the requirement analysis 
and design phases with the evaluation techniques of identified mi-
croservices. Cojocaru et al. [3] discussed the quality assessment criteria 
for microservices automatically decomposed from monolithic appli-
cations. Quality-driven approaches in migration, quality attributes 
analysis, and quality-driven process implementation were reviewed 
by Capuano and Muccini [4]. Ponce et al. [5] conducted a rapid 
review study of migration techniques, the types of systems to which 
the proposed techniques are applied, methods for validating the mi-
gration techniques, and the challenges associated with such migra-
tions. Fritzsch et al. [6] analyzed existing architectural refactoring 
approaches in the context of decomposing a monolithic application 
architecture into microservices and how they can be classified concern-
ing the techniques and strategies used. The approaches to modernizing 
legacy software were discussed by Wolfart et al. [7]. They defined 
a road map for modernizing legacy systems with microservices that 
includes motivations, understanding and decomposing legacy systems, 
execution, validation, monitoring, and infrastructure aspects of the 
modernizing process. A taxonomy of service identification approaches 
that combine the inputs used for service identification, the process 
followed, the output of service identification, and the usability of 
service identification was developed by Abdellatif et al. [8].

Existing studies have been limited both in scope and in the num-
ber of reviewed works. The various aspects of redesigning monolithic 
software systems by extracting discrete functions from them that could 
be re-implemented as microservices, including service discovery ap-
proaches and techniques, tools that support reengineering, data used 
to inform migration processes, evaluation methods for the resulting 
microservice systems, and challenges and limitations of the existing 
reengineering approaches were not in the focus of previous studies. 
A comparison of existing studies is provided in Table  1. Thus, our 
research herein aims to provide a comprehensive review of previous 
studies, contribute to a better understanding of microservice discovery 
techniques regarding software architectural properties, and recommend 
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Table 1
A comparison of existing literature reviews on reengineering of software systems into microservices.
Literature review LR [1] LR [2] LR [3] LR [4] LR [5] LR [6] LR [7] LR [8] This

study Research
question(s)
addressed
in this
study

Review period/year 2013–
2019 2020 1998–

2018
2016–
2022 2019 2018 2020 2019 2023

Number of reviewed papers 27 31 29 58 20 10 62 41 117

Comparison of research questions
What are the techniques/approaches/patterns for legacy
software reengineering? RQ2.1 & RQ2.3
What types of systems have the existing reengineering
techniques been applied to? RQ2.1

What tools are used for reengineering monolithic systems
into microservices? RQ2.2

What inputs/outputs are used by the existing
reengineering techniques? RQ2.4

What driving forces/evaluation criteria are used for the identified
microservices? RQ2.5

How reengineering processes/techniques are
validated? RQ2.5

What quality-driven/assessment criteria are used for
reengineering? RQ2.5

What quality attributes are analyzed, and how have they
been implemented for reengineering? RQ2.5

What are the challenges of reengineering legacy
software systems into microservices? RQ3

What usability aspects, advantages, and disadvantages/
limitations are highlighted? RQ3

What are the roles and responsibilities involved in
the identification of microservices? N/A

 Addressed  Partially addressed  Not addressed.
future research directions for migrating monolithic software systems to 
microservices architectures.

Our study below is based on 117 papers. It reveals that static (44%), 
dynamic (12%), hybrid (12%), and artifact-driven (32%) techniques 
are the major classes of approaches for microservices identification 
and extraction. Source code structure analysis that involves inheritance 
attributes and structural interactions analysis is a widely used static 
analysis technique. Dynamic analysis, however, is an under-explored 
area. It often relies on instrumented logs. Hybrid approaches combine 
the aspects of static and dynamic techniques. Artifact-driven techniques 
rely on domain-driven designs (DDD) and additional software arti-
facts. We have further observed two main techniques for microservices 
identification, namely system modeling and microservices extraction. 
Prominent studies [19,21–38] have been identified for each class of 
techniques. Input/output and tools used by the studies, the level of 
automation, and various evaluation techniques were thoroughly re-
viewed to address all the aspects of microservice extraction. Moreover, 
core design principles, such as domain-driven design, workflow anal-
ysis, feature analysis, semantic analysis, repository analysis, interface 
analysis, and runtime analysis, were identified. Finally, we discuss 
further insights into the limitations and future directions in the area 
of microservices-based software system reengineering.

The remainder of the paper proceeds as follows. Section 2 de-
scribes the research methodology followed in this work. Sections 3
and 4 present and discuss the results of our literature review. Finally, 
Section 5 states concluding remarks.

2. Systematic literature review process

In this work, we followed the guidelines for performing a systematic 
literature review in software engineering proposed by Kitchenham 
and Charters [39] and further refined by Kitchenham and Brereton 
[40]. Existing literature review studies [1–8] were identified by first 
performing an initial search for survey and literature review papers in 
3 
the area of interest and then including all additional secondary studies 
identified when searching for the relevant primary studies. Table  1 
compares the existing literature reviews. If a study has declared a 
specific review period or year, it is specified in the review period/year 
row. Otherwise, the study year has been provided to indicate that the 
review period cannot go beyond that year. If a study mentions the 
number of reviewed papers, it is indicated in the number of reviewed 
papers row. The research questions listed in the first column of Table  1 
are the research questions addressed in the existing studies. We merged 
similar research questions and rephrased them to ensure the consistent 
use of terminology. The table summarizes which research questions 
are fully, partially, or not addressed in the existing literature reviews. 
Review LR [1] focuses on semi-automated approaches to reengineering 
and, thus, partially addresses the question of what techniques/ap-
proaches/patterns are used for legacy software reengineering. Reviews 
LR [2], LR [3], LR [4], and LR [6] listed in Table  1 have addressed 
only certain aspects of the problem. Reviews LR [5], LR [7], and LR [8] 
are extensive literature reviews on the topic. Note that LR [5] is not a 
systematic literature review. The scope of LR [7] is different from our 
research since it is focused on defining a road map for modernizing 
legacy systems. Finally, Review LR [8] focuses on service identification 
instead of microservice identification and reengineering.

Our analysis indicates that works on the identification and reengi-
neering of microservices reached their peak between 2020 and 2022, as 
shown in Fig.  2. In particular, 69% of the studies were conducted dur-
ing these years. Since the majority of existing literature review studies 
have been conducted in or before 2020, our study has a better coverage 
of the relevant works. As the existing literature reviews are limited in 
scope, objectives, and coverage, it is, therefore, essential to analyze 
and systematize existing works comprehensively, spanning different 
techniques, system modeling approaches, and evaluation strategies to 
understand the state-of-the-art, research gaps, and promising avenues 
for future work. Hence our work seeks to address this gap.
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2.1. Research questions

Our literature review was conducted to examine existing methods, 
techniques, and tools for reengineering software systems into microser-
vices, understand the limitations of the existing approaches, and iden-
tify fruitful avenues for future work. Consequently, we formulated the 
following research questions to guide our study.

RQ1 How did research on the reengineering of software systems into 
microservice-based systems develop over time?

RQ2 What approaches are used to reengineer software systems into 
microservice-based systems, and how are reengineered systems 
evaluated?

RQ2.1 What classes of approaches (e.g., static and dynamic) 
exist?

RQ2.2 What tools exist and which level of automation do they 
support?

RQ2.3 Which techniques/algorithms are used?
RQ2.4 How is data (e.g., software logs) used?
RQ2.5 How are the reengineered systems evaluated?

RQ3 What are the challenges and limitations of existing methods 
for reengineering software systems into microservice-based sys-
tems?

Our research questions were defined to maximize the coverage of the 
questions addressed in the early studies (cf. the first column in Table 
1) and to understand and refine them further. The last column in 
Table  1 maps the research questions addressed in our work onto the 
questions studied elsewhere. However, our study does not consider the 
last question listed in the table. Due to the typical roles involved in 
the software development lifecycle, we excluded this aspect from our 
study.

2.2. Search protocol and selection criteria

All the publications analyzed in this study were retrieved from five 
databases widely used to index publications in the areas of computer 
science and software engineering: Web of Science,1 Scopus,2 ScienceDi-
rect,3 ACM Digital Library,4 and IEEE Xplorer Digital Library.5 These 
databases provide good coverage of primary sources from high-quality 
academic journals and peer-reviewed conferences [41].

To maximize the chances of identifying papers that can contribute 
to answering the research questions of this study, we used these key-
words: ‘‘microservice’’, ‘‘reengineer’’, ‘‘redesign’’, ‘‘refactor’’, ‘‘rearchi-
tect’’, ‘‘migrate’’, ‘‘discover’’, and ‘‘identify’’. The keyword ‘‘microser-
vice’’ was included as the study focuses on microservices systems. 
Keywords such as ‘‘reengineer’’, ‘‘redesign’’, ‘‘refactor’’, ‘‘rearchitect’’, 
and ‘‘migrate’’ were selected as this work focuses on reengineering 
software systems into microservice-based systems. Lastly, the keywords 
‘‘discover’’ and ‘‘identify’’ were added to address the objective of iden-
tifying microservices. The search query used for the Web of Science 
database is listed below:

(TS = (microservice* AND (reengineer* OR re-engineer* OR re-
design* OR re-design* OR discover* OR identify* OR refactor* OR 

1 https://clarivate.com/webofsciencegroup/solutions/web-of-science.
2 https://www.scopus.com/.
3 https://www.sciencedirect.com/.
4 http://portal.acm.org/.
5 https://ieeexplore.ieee.org/.
4 
rearchitect* OR re-architect* OR migrate*))) AND (WC = (Computer 
Science)) AND (DT = (Article OR Book Chapter OR Proceedings 
Paper)) AND (LA = (English)).

To guide the selection of primary studies to include in our review, 
we defined the inclusion and exclusion criteria listed in Table  2. 
These criteria were applied to assess the suitability of each study for
inclusion.

Fig.  1 summarizes our search process for selecting primary studies, 
including the number of papers identified in each stage. The initial 
search for relevant papers over the five databases was conducted on 
the 23rd of January 2023.

To ensure the full coverage of works relevant to this study on 
the date the search was conducted, we did not impose restrictions on 
the publication dates of the retrieved references. In this initial search, 
4843 references were retrieved. As a paper can be indexed by several 
databases, we removed duplicate references to result in 2441 distinct 
references. To determine their relevance to our study, all the references 
were evaluated against the inclusion and exclusion criteria from Table 
2 using a checklist-based scoring procedure. Papers on legacy system 
refactoring, requirements for refactoring, refactoring techniques, and 
evaluation of reengineered systems were included for further analysis. 
Studies not related to our research questions, for example, papers on 
networks and deployment of microservice-based systems, non-peer-
reviewed studies, studies not related to software systems, or not in 
English, were excluded from further processing. At the end of this stage, 
220 papers were identified as potentially relevant for our literature 
review. The inclusion/exclusion decisions were taken based on paper 
titles and abstracts. Hence, papers with unclear exclusion decisions 
were kept for further full text analysis. The full text read of 220 
papers revealed 107 relevant studies. During the review of the papers 
selected for full-text analysis, relevant references were noted. These 
references were analyzed in the snowballing stage, and relevant works 
were included in the study. Both forward and backward searching on 
references were performed. Ten additional papers were included in 
the snowballing stage. Consequently, the presented search process has 
resulted in the identification of 117 primary studies.

2.3. Data extraction and synthesis

To systematize the knowledge extracted during the in-depth analysis 
of the primary studies, we followed a method for taxonomy develop-
ment by Nickerson et al. [42]. It is an iterative approach to identifying 
concepts and their characteristics and grouping them into dimensions. 
The method guides the evaluation of the developed taxonomies for 
usefulness, like the completeness and robustness of the developed 
taxonomy dimensions. After defining the classification criteria com-
patible with the research questions, the selected primary studies were 
analyzed in-depth, and relevant insights were extracted and recorded 
in a spreadsheet for subsequent analysis.

2.4. Quality assessment

To ensure the rigor and credibility of our study, the author team 
provided guidance and oversight of all stages of the literature review 
process. Multiple review iterations were conducted to enhance the qual-
ity of decisions and minimize errors. The team collaboratively selected 
the digital libraries, helped refine keywords to retrieve a sufficient 
number of relevant papers, and helped establish the selection criteria. 
Additionally, the entire team reached a consensus on the classification 
criteria before data extraction began and reviewed the results to ensure 
consistency and reliability.

https://clarivate.com/webofsciencegroup/solutions/web-of-science
https://www.scopus.com/
https://www.sciencedirect.com/
http://portal.acm.org/
https://ieeexplore.ieee.org/
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Table 2
Inclusion and exclusion criteria.
 Criterion type Criterion definition  
 Inclusion 1. Study is on legacy software system reengineering

2. Study is on requirements for reengineering of legacy software systems
3. Study is on a technique for evaluating functional consistency of a reengineered 
software system
4. Study is on a technique for evaluating the performance of a microservice system
5. Study is on using software logs for legacy software system reengineering
6. Study is on an approach for evaluating microservices

 

 Exclusion 1. Study is not related to software systems
2. Study is on microservice system deployment, self-adjusting models, Quality of 
Service, or scalability
3. Study is on networks or load testing, security, and fault tolerance of software 
systems
4. Study does not present sufficient technical details to contribute to at least one 
research question addressed in this literature review
5. Study did not undergo a peer-review process, for example, published in a 
non-reviewed journal or conference papers, theses, books and book chapters, and 
doctoral dissertations
6. Study is a literature review
7. Study is not in English

 

Fig. 1. Overview of the stages and results of our literature selection process.
Table 3
Paper classification details.
 Type of study Number of papers 
 Software system migration studies 83  
 Case studies and industry interviews 30  
 Greenfield development 4  

3. Results

This section elaborates on the findings of the literature review based 
on the research questions. Appendix lists the primary studies selected 
for this literature review. Table  3 summarizes the classification of the 
selected 117 papers. The majority of the papers (71%) explain legacy 
system migration strategies, whereas most of the remainder of the 
papers (25%) focus on industry interviews and case studies. A small 
number of papers (4%) discuss greenfield development, where new sys-
tem implementation in a microservice-based architecture is considered. 
The greenfield development was included in the analysis since it is 
applied in the context of artifact-based microservices extraction.

3.1. (RQ1) how did research on the reengineering of software systems into 
microservice-based systems develop over time?

The first study on software systems reengineering into microser-
vices was published in 2016. Manual, semi-automated, and automated 
techniques for migrating systems are discussed in the literature. Man-
ual techniques are completely human-oriented, whereas appropriate 
5 
modeling, extraction, and visualization tools assist people during semi-
automated system reengineering projects. In contrast, automatic tech-
niques produce possible microservice recommendations from various 
inputs, e.g., source code, software logs, and software design artifacts. 
These recommendations can then form the basis for system reengineer-
ing.

Fig.  2(a) depicts the progression of automation levels in the tech-
niques examined across the surveyed studies over time. A significant 
proportion of the studies (38%) concentrated on semi-automated iden-
tification methods. Manual approaches are similarly prevalent, com-
prising 37% of the total studies. In recent years, there has been a 
notable shift towards automated approaches, which now account for 
the remaining 25% of the studies.

The identified approaches for decomposing software systems into 
microservices are classified as static, dynamic, artifact-driven, and 
hybrid analyses. In static analysis, program source code, database 
schemata, and source code repository histories are used to provide 
insights into the system under study. By contrast, dynamic analysis 
considers execution time details like software system and server event 
logs, and runtime monitoring. The artifact-driven approaches are based 
on system artifacts like UML and data flow diagrams, architectural 
documents, use cases and user stories, ubiquitous language, and do-
main models. Domain-driven design (DDD) and task-driven (functional-
driven) design patterns are a subset of artificial-driven approaches. 
Finally, the hybrid approach can combine static, dynamic, and artifact-
driven approaches.

Fig.  2(b) illustrates the numbers of different microservice identi-
fication approaches published over time. Most of the existing studies 
are based on static system analysis (44% of studies). The artifact-
driven analysis is the second most used technique for software systems 
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Fig. 2. Number of studies over time.

reengineering (32%). The studies of dynamic and hybrid approaches 
are less frequent, with each approach comprising only 12% of the total 
studies.

3.2. (RQ2) what approaches are used to reengineer software systems into 
microservice-based systems, and how are reengineered systems evaluated?

In this section, we discuss the identified approaches for reengineer-
ing software systems into microservices systems.

3.2.1. (RQ2.1) what classes of approaches exist?
The approaches used to analyze monolithic applications for their 

reengineering into microservices systems can be broadly classified into 
three main categories: static, dynamic, and artifact-driven analysis. 
An additional hybrid approach is identified, consolidating the main 
approaches.

The artifact-driven approaches use software artifacts like require-
ments, design diagrams, UML diagrams, data flow diagrams, business 
processes, use cases, user stories, domain models, and other design 
artifacts to identify bounded contexts for microservices. Each such 
bounded context implements a small, highly cohesive, loosely cou-
pled behavior [43]. These contexts are then accepted as microservice 
candidates.

The static analysis approaches are based on analysis of source code, 
database schema, and histories of source code repositories. These ap-
proaches use dependencies between classes, like inheritance, extended 
class relationships, similarities between classes and database tables, and 
dependent commits in code repositories.
6 
In contrast, the dynamic analysis approaches use runtime informa-
tion to identify microservices. For example, they use runtime monitor-
ing, execution time data correlations, and system-generated logs.

Lastly, the hybrid analysis techniques combine principles from the 
approaches discussed above. Often, a hybrid approach results from 
extending one ‘‘pure’’ approach with some feature of an approach of 
a different type. For example, a static analysis technique can bor-
row ideas of software log analysis to complement its microservice 
identification decisions.

Fig.  3 shows categories and subcategories of the three main ap-
proaches. The leaf nodes in the figure correspond to relevant study 
IDs, which are detailed in Appendix. A comprehensive analysis of the 
categories and subcategories follows.
Artifact-driven analysis

An artifact-driven analysis uses various system representations to 
examine requirements, features, use cases, classes, and components of 
the system. The main categories of artifact-driven approaches, defined 
by the types of analyzed artifacts, are detailed below:

• Domain models/languages: Domain models and languages play a 
crucial role in software engineering by representing relation-
ships between classes or entities. For example, UML diagrams 
provide abstract visualizations of the software system. The term 
domain language, also known as ubiquitous language, refers to 
the consistent terminology used to describe business operations 
and is essential for capturing terms from legacy systems [44]. 
Use cases describe user interactions with the system, while user 
stories outline specific system features. Architecture Description 
Language (ADL) and Unified Modeling Language (UML) are com-
monly used to define and visualize the system’s architecture. 
These artifacts help identify service boundaries and are typically 
analyzed manually to determine the scopes and candidates for 
microservices.

• Business processes: A business process comprises activities coor-
dinated within an organizational and technical environment to 
achieve a specific business goal [45]. In software systems, the de-
pendencies between business processes—such as data, structural, 
semantic, and control dependencies—can be analyzed to gain in-
sights into their interactions. These dependencies are represented 
as matrices, which serve as input to identify microservices.

• Data flow diagrams: A data flow diagram (DFD) graphically rep-
resents the flow of data within a system, detailing how business 
functions or operations process inputs into outputs [46]. It con-
sists of processes (activities or functions that transform data), data 
stores (repositories where data is stored), data flows (paths show-
ing how data moves between components), and external entities 
(sources or destinations of data outside the system). DFDs play a 
key role in microservice identification by mapping dependencies 
between processes and data stores. These dependencies are an-
alyzed through the construction of dependency matrices, which 
help identify highly correlated processes and components. Alter-
natively, custom algorithms are used to examine the relationships 
between processes and data stores, aiding in the identification of 
microservices.

• System features and functions: System requirements, features, and 
functionalities are used to identify microservices [47]. The system 
functionalities are analyzed or divided into sub-tasks that cannot 
be divided further to identify the dependencies. Based on these 
dependencies, connected groups of functionalities are identified 
as candidate microservices.

• Domain semantics: Semantic analysis involves a detailed exam-
ination of various software artifacts to derive meaningful in-
sights [48,49]. In the context of microservice identification, these 
techniques analyze the extracted vocabularies of system terms—
such as domain-specific keywords, entity names, and operation 
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Fig. 3. Classification of approaches.
descriptions. Similarity calculations are performed on these vo-
cabularies to identify related system entities and operations that 
share commonalities, enabling the grouping of these elements 
into potential microservices.

Static analysis
Static analysis is one of the most commonly discussed approaches 

for microservice identification in the literature. Static analysis tech-
niques rely on analyzing artifacts derived from source code, databases, 
and version control systems. Next, we provide details on these tech-
niques.

Source code analysis involves examining various components of a 
system, including classes that represent entities, core functions imple-
menting business logic, communication APIs, and user interface (UI) 
components. The analysis leverages the structure and semantics of the 
source code, as well as custom approaches, to identify and extract 
potential microservices. These methods aim to group related func-
tionalities into cohesive and independent services by studying these 
information elements in the source code:

• Structural inheritance: Structural inheritance analysis examines 
source code packages, classes, method-level dependencies, and 
class inheritance hierarchies to uncover relationships within the 
system. This analysis often involves constructing an abstract syn-
tax tree (AST) of the source code, which is then used to generate 
system dependency graphs. In these graphs, classes and methods 
are represented as vertices, while their dependencies form the 
edges. Dependency graphs and ASTs are typically generated using 
static analysis tools, with further details provided in Table  5. 
Additionally, the class hierarchy is analyzed by examining ex-
tended (inherited) and implemented classes to identify structural 
relationships that may guide microservice identification.

• Structural interaction: Structural interaction analysis focuses on the 
interconnections between classes and methods in source code to 
identify microservice boundaries. This process begins by analyz-
ing APIs and other entry points, such as UI calls, to determine a 
7 
set of execution paths. These paths, along with their subpaths and 
interconnected segments, are examined to understand data usage 
and dependencies. Call graphs, which map method invocations 
within the source code, are also utilized to identify intercon-
nected components. These graphs can be either context-sensitive, 
where different calls are annotated with unique identifiers to 
distinguish paths through the same code sections, or context-
insensitive, which lack such distinctions [23]. Additionally, object 
reference relationships, including information flows that trigger 
the creation of object instances, are analyzed to uncover related 
classes and methods. These interconnected components form the 
foundation for identifying potential microservices.

• Semantics: These approaches examine the similarity between the 
words (terminology) in the source code and derive the co-related 
classes as possible microservice candidates. This type of approach 
is also known as domain-related service decomposition. The core 
assumption for the approaches from this category is that related 
features use similar terminology at the implementation level. 
Specifically, semantic approaches employ these techniques in 
their analysis:

– Natural language processing (NLP) and information retrieval 
(IR) techniques are commonly used to extract semantic 
details. These techniques filter source code to exclude pro-
gramming language keywords and space characters. Then, 
word tokenization, stop word removal, stemming, word 
enrichment using the synonyms from existing word dictio-
naries, and tf–idf calculations are performed. Brito et al. 
[25] use ASTs instead of source code to exclude the library 
dependencies to identify the terms of the system.

– Topic modeling is another approach used for semantic analy-
sis. Stop word removal and stemming are applied to remove 
insignificant terms and reduce multiple variations of identi-
cal terms from the source code. After identifying the unique 
bag of words, topic modeling classifiers like Latent Dirichlet 
Allocation (LDA) and Seeded Latent Dirichlet Allocation 
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(SLDA) are applied to group the lexical terms into clusters. 
These clusters are either directly identified as microservices 
or further processed using graph-based modeling.

– Unique term analysis identifies distinct keywords in the 
source code and constructs a word frequency matrix for 
each class. This matrix is then used to calculate cosine sim-
ilarity, which quantifies the semantic relatedness between 
two classes based on the overlap of their term distributions. 
By identifying classes with high relatedness, this analysis 
helps uncover potential groupings or dependencies that can 
inform microservice identification.

• Custom analysis: These methods leverage additional elements of 
the source code to identify microservices, as outlined below:

– Business logic in the source code is analyzed to identify 
core business functions, which can then be grouped into 
microservices based on their roles and dependencies.

– Persistence layer of the application is examined to identify 
entities associated with data sources, along with the Create, 
Read, Update, and Delete (CRUD) operations performed 
on them. This analysis is often conducted in conjunction 
with data source analysis to understand the relationships 
between data and services.

– Reverse engineering is another custom analysis technique 
where reverse engineering tools are used to extract the 
underlying system architecture. This extracted architecture 
is then analyzed to apply dependency analysis, helping 
identify related partitions within the system.

– Programming language annotations are used to identify key 
components in the source code. For example, Java annota-
tions like @EJB, @Controller, and @Entity help pinpoint 
key classes and components, which can then be grouped 
into microservices based on their functionality and depen-
dencies.

– API specification techniques involve analyzing API docu-
mentation, such as those following OpenAPI standards,6 to 
examine semantic similarities. This information is then used 
to infer potential microservices based on the relationships 
and dependencies between APIs.

Database analysis involves examining tables, relationships, and entity 
mappings used by Object-Relational Mapping (ORM) frameworks to 
understand how data is structured within the system. In the context 
of microservices, the ‘‘database per microservice’’ pattern is often rec-
ommended to ensure each service has its own dedicated data store, 
which promotes data autonomy and scalability [23,50]. When iden-
tifying microservices, it is crucial to analyze the persistent entities, 
such as database tables, that are associated with each service, as these 
entities play a key role in defining the boundaries and responsibilities 
of microservices. Specifically, these elements are studied:

• Schema and tables: The primary approach to database analysis 
involves examining tables, their attributes, and the relationships 
between them, including key constraints and triggers.

• Stored procedures: In legacy systems, business logic is often im-
plemented in the database layer, typically as stored procedures, 
due to performance concerns and network overhead. This practice 
results in the mapping of stored procedures to business functions, 
which is another valuable technique for data source analysis.

• Queries and business objects: Validating SQL queries and their 
associated business objects is crucial for microservice identifi-
cation. This involves analyzing the information derived from 

6 https://spec.openapis.org/oas/v3.1.0.
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SQL queries, as well as the relevant entities and attributes ac-
cessed through these queries, to identify potential microservice 
boundaries.

• Topics: Topic modeling applied to database tables is another 
technique for data source analysis. In this method, each table is 
treated as a document, with its properties serving as the docu-
ment’s attributes. The lexical similarity between these documents 
is then calculated, allowing for the grouping of related tables into 
highly cohesive partitions, which can be identified as potential 
microservices.

Version control systems maintain a history of source file changes 
through collections of code commits, along with associated author 
information. Evolutionary coupling, which involves analyzing commit 
histories to identify correlated classes within the change logs, helps 
identify relationships between components based on their modification 
patterns. Consecutive commit analysis, a subcategory of evolution-
ary coupling, examines changes across multiple classes in consecutive 
commits to group them accordingly.

Additionally, evolutionary coupling graphs aggregate commits over 
different time periods. In these graphs, vertices represent classes, and 
edges are drawn between classes that are modified together within a 
single commit. This approach is known as logical coupling [21]. Lastly, 
the contributor coupling graph maps developers to the changes they 
have made in the source code. Since effective team organization is a 
key factor in successful microservice migration [21], this analysis helps 
extract system changes from the perspective of contributors.
Dynamic analysis

The final category of identified approaches is dynamic analysis. 
In a dynamic analysis approach, the software system is treated as a 
black box, where the produced outputs are analyzed based on the 
provided inputs to identify recurring patterns and execution traces. 
Three subcategories fall under dynamic analysis, as discussed below:

• Server logs: Server access log analysis plays a crucial role in the 
reengineering of web applications, where web server access log 
files are examined to identify frequently invoked URIs. Server 
logs, such as those from Apache Tomcat,7 and WildFly8 provide 
detailed information on access URIs, request and response times, 
and response sizes. These logs are analyzed by examining the 
frequency of URIs and response sizes and times, which helps 
group requests into potential candidate microservices.

• System logs: Most existing studies that conduct dynamic analysis 
rely on system log analysis. Instrumenting the source code using 
aspect-oriented programming (AOP) is a log collection technique 
in which an agent is integrated into the source code to capture 
logs based on the operations performed by the system. These logs 
are subsequently provided as inputs to a process mining tool, 
like Disco,9 or analyzed further to identify frequent execution 
traces, processes, and dependencies. The validity of this approach 
depends on the extent of coverage of actions performed on the 
instrumented system. To enhance the coverage of operations, use 
cases, functional tests, unit tests, and user simulations have been 
employed.

• Runtime monitoring : Runtime monitoring has been defined as an-
other class of dynamic analysis approaches. In such an approach, 
the system is observed during execution time, and collected infor-
mation is used for system reengineering. Kieker,10 Elastic APM,11 
and dynatrace12 are the tools used for this purpose.

7 https://tomcat.apache.org/.
8 https://www.wildfly.org/.
9 https://fluxicon.com/disco/.
10 https://kieker-monitoring.net/.
11 https://www.elastic.co/.
12 https://www.dynatrace.com/.
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Table 4
Tools and levels of automation; automated (A) and partially automated (PA).
 Study ID Level of automation Available artifacts
 1 PA https://github.com/ServiceCutter/ServiceCutter  
 11 A https://github.com/miguelfbrito/microservice-identification  
 24 PA https://github.com/AnuruddhaDeAlwis/NSGAII  
 25 PA https://github.com/AnuruddhaDeAlwis/Subtype  
 26 PA https://github.com/AnuruddhaDeAlwis/NSGAIIFOROptimization  
 29 PA https://github.com/utkd/cogcn  
 37 PA https://github.com/Rofiqul-Islam/logparser  
 39 PA https://github.com/wj86/FoSCI  
 42 A https://www.ibm.com/cloud/mono2micro  
 51 PA https://github.com/loehnertz/Steinmetz

https://github.com/loehnertz/semantic-coupling
 

 52 PA https://github.com/tiagoCMatias/monoBreaker  
 55 A https://essere.disco.unimib.it/wiki/arcan  
 61 A https://github.com/socialsoftware/mono2micro  
 70 A https://github.com/HduDBSI/MsDecomposer  
 77 PA https://github.com/RLLDLBF/FeatureTable  
 79 PA https://gitlab.com/LeveragingInternalArchitecture/IdentificationApproach  
 86 PA https://github.com/gmazlami/microserviceExtraction-backend

https://github.com/gmazlami/microserviceExtraction-frontend
 

 89 A https://drive.google.com/drive/folders/1TQaS8etLr-32d0RXwC1Le-IOMVaDBcSS  
Furthermore, a hybrid approach can integrate several artifact-
driven, static, and dynamic analysis techniques. However, in such 
an approach, one technique is often dominant. For instance, static 
analysis may be performed first, and the extracted data can then be en-
hanced with dynamic analysis details for further investigation [43,51,
52]. Alternatively, artifact-driven analysis may serve as the dominant 
technique, with static analysis providing additional insights [53].

3.2.2. (RQ2.2) what tools exist, and which level of automation do they 
support?

In the existing studies, two types of tools have been identified: 
tools developed during the studies of microservice reengineering (in 
line with the concept in the study) and existing tools to support 
different stages of the reengineering process, e.g., call graph generation 
and log analysis. The existing migration frameworks, their levels of 
automation, and freely available source code/tools are listed in Table 
4. Frameworks that provide microservice recommendations based on 
primary inputs, like source code, log files, and system artifacts, are con-
sidered automated. The studies with tools involved in different stages 
of the migration process, like data extraction and system modeling, are 
categorized as partially automated.

Multiple categories of tools are available based on the approaches 
used to examine the monolithic system. There are tools for the static 
analysis of software systems, database administration, runtime mon-
itoring, visualization, architectural validation, and load simulations. 
These tools, technologies used, and respective study IDs are listed in 
Table  5. Moreover, a comparison between existing tools utilized to 
extract microservices has been made in a separate study by Lapuz 
et al. [54]. Ren et al. [55] used their tool EasyAPM to record the 
operation data and parameter information through the instrument on 
the JDBC and data access class libraries. Other supportive tools used 
for testing, clustering, and other specific purposes are listed in Table  6. 
The purpose column indicates the use of these tools in different steps 
in the system modeling and microservices extraction process.

3.2.3. (RQ2.3) which techniques/algorithms are used?
The identified techniques can be broadly categorized into two types: 

system modeling techniques and microservice extraction techniques. 
The system modeling techniques are used to interpret or model soft-
ware systems, creating their abstract representations, while microser-
vice extraction techniques are applied to identify the microservices 
within the interpreted systems, thereby defining boundaries of potential 
microservices. Identified system modeling and extraction techniques 
9 
Fig. 4. Classification of legacy system modeling techniques.

are summarized in Figs.  4 and 5, respectively. Leaf nodes in the figures 
refer to the relevant study IDs.
System modeling techniques
Graph-based modeling is the prominent technique for modeling legacy 
systems, refer to Fig.  4. The vertices in such graphs can be com-
ponents, system entities, classes, methods, business processes, entry 
points, execution traces, database tables, and system functionalities. 
Edges can be either weighted or non-weighted. Undirected weighted 
edges are frequently used in the system graphs. The existence of an 
edge and its weight are based on the strength of the relationship 
between two vertices. Structural relationship graphs are constructed 
based on the number of dependencies, method calls, and coupling 
scores. Dependencies and method calls are directly derived from ASTs, 
call graphs, and dependency graphs. Moreover, structural relationships 
can be prioritized by assigning weights based on their types, e.g., gener-
alization, aggregation, implementation, association, instantiation, and 
method invocation [56].
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Table 5
Tools for monolithic system analysis.
 Purpose Tool/Library Details Technology Study IDs  
 

Static analysis
(source code)

Java call graph
(open source)

Reads jar files to collect the method
calling sequences. Dynamic Analysis is possible
but is used only in static context.
(https://github.com/gousiosg/java-callgraph)

Java 13, 111, 112  

 Java parser/Symbol
Resolver
(open source)

Constructs abstract syntax tree for structural
dependency extraction.
(https://javaparser.org/)

Java 11, 33  

 Mondrian
(open source)

Performs static source code analysis
(https://github.com/Trismegiste/Mondrian)

PHP 27, 28  

 WALA
(open source)

Analyzes project class hierarchies and
generates call graphs.
(https://github.com/wala/WALA)

Java, JavaScript 53, 57  

 Soot
(open source)

Models source code to analyze, instrument,
optimize, and visualize applications.
(https://soot-oss.github.io/soot/)

Java, Android 29, 53  

 Doop & Datalog
(open source)

Conducts static analysis of source code
using Datalog engine.
(https://plast-lab.github.io/doop-pldi15-tutorial/)

Java, Android 53  

 JackEE
(open source)

Provides static analysis of Java Web applications
with enterprise framework support. Additional
parameter is used for Doop framework to run JackEE.
(https://github.com/plast-lab/doop)

JEE applications 53  

 Spoon
(open source)

Parses source code into abstract syntax
tree for further analysis.
(https://spoon.gforge.inria.fr/)

Java 61  

 Structure 101
(commercial)

Validates software architectures by visualizing
their structures from source code. 
(https://www.sonarsource.com/structure101/)

Java, .Net, C/C++ 2, 46, 71, 111  

 Sonargraph
Architect
(commercial)

Offers architecture checks, duplicate code 
detection, virtual refactorings, cyclic dependency
resolution, and comparison with previous versions. 
Suppors Git repository mining.
(https://www.hello2morrow.com/products/)

C#, C/C++, Java,
Python 3

77  

 Semantic analysis
(source code)

ANTLR
(open source)

Parses the source code to generate grammar for
language recognition.
(https://www.antlr.org/)

Java, C#, Python, Go,
C++, Swift, JavaScript,
TypeScript

97  

 

Static analysis
(database)

SchemaSpy
(free software)

Generates Web-based visual representations
by analyzing database metadata. 
(https://schemaspy.sourceforge.net/)

Java-based tool 2, 71, 72  

 DBeaver
(free and commercial 
versions)

Provides tools for database administration
and schema analysis.
(https://dbeaver.io/)

MySQL, Maria DB,
PostgreSQL, SQLite

46  

 JSqlParser
(open source)

Parses SQL statements and translates them into
hierarchies of Java classes.
(https://github.com/JSQLParser/JSqlParser)

Java, SQL 61  

 

Dynamic analysis

Kieker
(open source)

Monitors and analyzes runtime behavior of
software systems.
(https://kieker-monitoring.net/)

Java, .Net, C, VB 13, 39, 88, 108  

 Elastic APM
(commercial)

Supports real-time monitoring, performance analysis
of incoming requests/responses, database queries,
cache invocations, and external calls.
(https://www.elastic.co/solutions/apm)

Java-based Web, Data
access frameworks, 
application servers, 
messaging frameworks,
AWS

2, 72  

 Disco
(free and commercial
versions)

Analyzes event logs to identify call graphs
and enables automated process discovery.
(https://fluxicon.com/disco/)

Log files of software
systems

2, 24, 25, 26, 72 

 ExplorViz
(open source)

Provides runtime monitoring and visualization
of software systems
(https://explorviz.dev/)

Applied to Java-based
systems

46  

 django-silk
(open source)

Profiles and inspects the django framework,
analyzing HTTP requests and database queries.
(https://github.com/jazzband/django-silk)

Python django
framework-based tools

52  
Static dependency graphs are generated by static analysis tools. 
Subsequently, the coupling scores are often calculated manually based 
on the pre-defined parameters. Depending upon the four categories 
of cohesiveness, compatibility, constraints, and communication, 16 
coupling criteria have been defined by Gysel et al. [31]. A priority 
10 
and score can be defined for each criterion that contributes to the 
final edge weight of the graph. Semantic similarity-based graphs are 
based on tf–idf (term frequency–inverse document frequency) or topic 
modeling. Once the tf–idf is calculated, a vector with the frequency of 
each word distribution in the class is obtained. The cosine similarity 
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Table 6
Additional tools used for system analysis.
 Purpose Tool Details Technology Study IDs 
 Testing Jmeter

(open source)
Provides load simulation
(https://jmeter.apache.org/)

Java 6, 7, 108 

 Gatling
(commercial)

Provides stress testing
(https://gatling.io/)

Java, Kotlin, Scala 16  

 Reverse 
engineering

MoDisco
(open source)

Provides model-driven reverse engineering of the source code
(https://wiki.eclipse.org/MoDisco/)

Java, JEE, XML 31, 99  

 Topic modeling GuidedLDA
(open source)

Provides topic modeling using latent Dirichlet allocation 
(https://guidedlda.readthedocs.io/en/latest/)

Python 55  

 Clustering SciPy
(open source)

Provides hierarchical clustering and generates dendograms
(https://www.scipy.org/)

Python 61, 111  

 Optimization 
algorithm

Jmetal
(open source)

Supports multi-objective optimization algorithms NSGA II 
and NSGA III
(https://jmetal.sourceforge.net/)

Java 82, 96  

 Document 
enrichment

WordWeb,
WordNet
(public 
dictionary)

Lexical databases to identify synonyms for topic modeling
(https://wordnet.princeton.edu/)

Word dictionary 58  

 Lines of code 
count

CLOC
(open source)

Blank, comment, and physical lines counting
(https://github.com/AlDanial/cloc)

Java, C, Python 12  
between two vectors is calculated, capturing the degree of similarity 
between two data points. A high degree of similarity defines the closely 
related classes.

Probabilistic Latent Semantic Analysis (PLSA), Latent Dirichlet Allo-
cation (LDA), Latent Semantic Analysis (LSA), and Non-negative Matrix 
Factorization (NMF) are four classes of algorithms used for topic mod-
eling. Latent Dirichlet Allocation (LDA) and Seeded Latent Dirichlet 
Allocation (SLDA) are commonly used to identify the topic distribution 
within the source code. LDA is a probabilistic topic model. It is an 
unsupervised model, whereas SLDA is a semi-supervised variant of 
LDA. SLDA accepts the list of keywords as input that stimulates the 
expected topics. LDA uses high coherence and fewer overlaps between 
the concepts to derive clusters of concepts [57]. Once the clusters are 
identified, cosine similarities between the clusters are calculated to 
define the edge weights in the graph representation.

In dynamic analysis-based graphs, edges represent runtime frequen-
cies of method invocations and execution traces, while evolutionary 
coupling graphs define edges based on correlations between classes 
in commits and contributors involved in their development. Examples 
of graph models include classes or components as vertices with topic 
modeling strengths as edge weights, domain entities as vertices con-
nected by coupling scores as edge weights, call graphs where vertices 
represent classes or methods and edges represent execution calls and 
their frequencies, system entities and entry points as vertices with 
method calls as edges, system classes or entities as vertices connected 
by evolutionary coupling edges based on revision history, classes as 
vertices with edges denoting contributors involved in their develop-
ment, runtime graphs with classes or methods as vertices and edges 
representing invocation relationships and frequencies, and architectural 
graphs generated by reverse engineering tools.
Matrix/table-based modeling represents a software system as a map-
ping of its attributes and components captured in a matrix with the 
number of occurrences as entries to classify the co-related attributes 
further. Once matrices are constructed, similarity measures are used 
to identify related components that can define microservices. Either 
classes, methods, database tables/entities, use cases, micro-tasks (tasks 
that cannot be decomposed further), or business processes are used in 
the computations of the frequencies of executions, sub-type/reference 
relationships, coupling, and cohesion values to determine the rela-
tionship between elements. Semantic similarity analysis uses classes 
against unique word matrices. Then, cosine similarity determines the 
semantic similarity between the classes. Example matrix/table-based 
11 
modeling techniques include use-case-to-use-case similarity and use-
case-to-database-entity similarity matrices, subgraph similarity matri-
ces, class-to-database-object matrices, class-subtype (subtype relation-
ships between classes) matrices, class-reference-type matrices, micro-
tasks-to-data-object matrices, business process dependency matrices, 
structural similarity matrices (structural relationships between classes 
in a matrix format), conceptual similarity matrices (semantic similarity 
between classes in a matrix format), read/write operations between 
primitive types (further non-decomposable functions) and data storage, 
user story coupling and cohesion matrices, BPMN structural and data 
dependency matrices, feature tables, and use case to business process 
mapping tables.
URI-based modeling is an approach to modeling web applications. Web 
applications operate on a request/response base, where features are 
requested via URI calls, and responses are redirected to the relevant 
clients. Application servers like Tomcat and WildFly record logs with 
the request/response details. These details are used to infer models of 
the applications and identify the frequent URI calls that can be isolated 
as separate services for better performance. Mean request/response 
time (MRRT) and response size are used as indicators of network 
overhead and resource utilization.
Domain element-based modeling is another approach used to repre-
sent software systems. This approach uses data flow diagrams, UML 
diagrams, system capability models, and context maps to represent 
the software systems. This is a manual approach with detailed system 
diagrams with fine-grain information and capabilities that are analyzed 
to identify bounded contexts.
Execution trace modeling uses software logs to identify the actual 
methods/classes invoked during the runtime of the software systems. 
The collection of active execution traces defines the overall behavior 
of the system. In addition, inactive paths can be identified in the 
runtime traces analysis [35]. Multiple techniques have been used in the 
literature to investigate these execution traces. One approach is provid-
ing the software logs into the runtime trace analysis tool, e.g., Disco 
process mining tool [19]. Tool-generated execution call graphs can 
be used to analyze and extract the co-related classes/methods man-
ually [19] or programmatically identify the subtypes and common 
subgraphs [52]. Execution traces can be further modeled and reduced 
to identify functional atoms, which are coherent and minimal func-
tional units [29], identify direct/indirect call patterns in execution 
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Fig. 5. Classification of microservice extraction techniques.
traces [35], and analyze class and method level execution traces based 
on system functionalities [30].
Semantic-based modeling is used to model the system based on lin-
guistic information. Identifying system topics based on the application 
domain [58], generating a vocabulary tree to illustrate the system 
terminology [49], and examining the system subject and operations to 
group the terms used in the API specifications [28,59] have been done 
in semantic-based modeling.
Microservices extraction techniques

Fig.  5 illustrates the microservice extraction techniques identified in 
the study. Following the modeling of the system using the aforemen-
tioned techniques, the extraction process is conducted to identify po-
tential microservice candidates. Clustering is used as the predominant 
extraction technique.

Graph-based extraction is the leading technique due to the
widespread use of graph-based modeling. Hierarchical clustering is 
used when the number of clusters is not given as an input. In contrast, 
K-means clustering is used when prior knowledge of the number of 
desired clusters (microservices) is available. The advantage of param-
eterizing the number of clusters is the ability to analyze the service 
decomposition with any possible number of services. It can be used for 
a better understanding of the system and coupling between the parts of 
the system [31]. Two variations of hierarchical clustering that are used 
are agglomerative clustering and divisive clustering. Agglomerative 
clustering starts with data points and iteratively generates the clusters, 
whereas divisive clustering starts with the complete dataset and splits it 
into clusters. Furthermore, temporo-spatial clustering and collaborative 
clustering are also used, implemented as adaptations of hierarchical 
clustering and specifically hierarchical agglomerative clustering,

Community detection studied in large-scale networks has been ap-
plied for microservice extraction from graph models. For instance, 
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Girvan–Newman deterministic [60] and Epidemic Label Propagation 
(ELP) non-deterministic [61] algorithms were applied to discover mi-
croservices. ELP algorithm takes in the number of clusters as an input 
parameter. Louvain and fast community detection algorithms are based 
on maximizing modularity within a given network. Louvain algorithm 
is an unsupervised algorithm. It is based on modularity maximiza-
tion and does not require the number of communities or the size 
of the communities as input [25]. Among the algorithms evaluated 
for microservice detection, including MCL, Walktrap, Louvain, label 
propagation, Infomap, and Chinese Whispers, it was observed that the 
Louvain algorithm demonstrated the highest performance in supporting 
the identification of microservices [33].

Hierarchical agglomerative clustering is used to analyze matrix/
table-based models of systems. DBSCAN is a density-based clustering 
algorithm that aims to group elements that are densely packed in the 
search space and identify noisy elements that do not fit into any clusters 
using two concepts, which are neighborhood distance and the minimum 
number of elements in a neighborhood [26].

The Non-dominated Sorting Genetic Algorithm II (NSGA II) and 
Non-dominated Sorting Genetic Algorithm III (NSGA III) are multi-
objective optimization algorithms. A multi-objective optimization algo-
rithm aims to provide optimal solutions while achieving global optima 
when multiple conflicting objectives, e.g., coupling, cohesion, and mod-
ularity, are to be considered [51]. Two studies have compared the 
performance of NSGA II and NSGA III and identified that NSGA III does 
not consistently outperform NSGA II in microservice discovery [62,63].

Several custom extraction techniques have been identified in the 
literature. Manual and expert analysis are basic extraction techniques, 
with artifact-driven approaches being the most widely used manual 
microservice identification approaches.
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Table 7
Inputs and outputs of artifact-driven approaches.
 Study IDs Input and intermediate representation Output  
 1 JSON-based representation of SSA to identify nano entities to 

generate a graph with coupling as the edge weight.
Entities grouped into clusters to represent 
microservices (service cuts).

 

 7 Component-attribute dataset. Use case to use case (U to U) and use 
case to database entity (U to DB) relationship matrix to generate 
the similarity matrix between use cases.

Candidate microservices with use case 
grouping.

 

 8 Microservice Discovery Table (MDT) with requirement, features, 
and stored procedure mapping.

MDT augmented with information on 
microservices, entities, and rules.

 

 21 Business processes and dependencies (control, semantic, data, and 
organizational) and dependency score matrix.

Groups of cohesive activities.  

 40 Ubiquitous language, business operations, data operations, domain 
models, database schema, and design documents.

Bounded contexts obtained after DDD 
pattern analysis, business operation, and 
data dependency analysis.

 

 41 System responsibilities obtained and ubiquitous language. Identified candidate microservice 
boundaries.

 

 48 Data flow diagram (DFD) of the system. Set of decomposable DFDs and grouping of 
DFDs as microservices.

 

 50 System functionalities—mapping between business requirements and 
system services. Task dependency matrix for clustering.

Task decomposition as clusters to represent 
microservices.

 

 54 Class model derived from UML diagrams—boundary (interface), 
control (business logic), and entity (mapped to database table).

Entities separated as microservices.  

 59 Set of business processes (BPs) to generate the dependency matrix. Set of clusters derived from dependency 
matrix.

 

 69 Data flow diagrams (DFD) as the input. Relationship matrix 
between primitive functions and data storage for extraction.

Primitive functions grouped into 
microservices.

 

 73 BPEL of the system converted to Subject–Verb–Object table to 
obtain system vocabulary trees.

System operations grouped as microservices 
derived from vocabulary trees.

 

 74 Use case, requirements, and functionalities. From use cases, 
generate operation/relation table.

Manually identified microservices from the 
visualization of the operation/relation table.

 

 75, 115 Product backlog’s user stories. Decomposed microservices, backlog 
diagram, and quality matrices.

 

 76 Architecture Domain Language (ADL) to identify bounded context 
from ADL.

Converted and deployable system with 
database and repository per microservice.

 

 77 Feature cards and feature table. Feature partitions identified as 
microservices based on mapping rules.

 

 92 Business processes converted to structural and data dependencies 
relationship matrix.

Clustered processes as microservices.  

 116 System requirements to derive graph-based representation of 
problem domain and correlation as vertices and edges.

Clustered problem domains as microservices. 
3.2.4. (RQ2.4) how is data used?
Next, we discuss the inputs and outputs of existing approaches for 

reengineering software systems into microservices.
The artifact-driven approaches use artifacts like UML diagrams, 

Data Flow Diagrams (DFD), use cases, user stories, and architectural 
documents as inputs. Most existing artifact-driven reengineering ap-
proaches are manual. However, several existing studies convert system 
artifacts to computer-readable formats or intermediate representations 
and use them to identify candidate microservices. After such (semi-
)automatic identification, recommended microservice candidates are 
delivered as output. Such outputs can have visual representation or be 
given as clusters of elements. Table  7 summarizes formats of inputs and 
outputs used by the artifact-driven approaches. This table only covers 
studies with clearly identified input and output details.

Study 1 is a semi-automated approach that takes System Speci-
fication Artifacts (SSA), such as UML and ER diagrams, use cases, 
security zones, and entities, in JSON-based machine-readable format as 
input. Study 7 uses use-case-to-use-case and use-case-to-database-entity 
relationship matrices to generate a similarity matrix, which serves 
as a basis for microservice identification. As input, ⟨component — 
attribute⟩ data matrix is used, where components can be the use cases 
of the system, and attributes are its properties. Study 8 uses business 
requirements, features, and stored procedure/business logic mapping 
for features as input. Then, a microservice discovery table (MDT) is 
created with system requirements, corresponding features of interest in 
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the source code, and the stored procedures that implement the business 
logic. This table is then used as the ground for microservice discovery. 
The control, semantic, data, and organizational dependencies between 
business processes represented in a matrix format with a dependency 
score matrix are used in Study 21 as input to the microservice extrac-
tion. Studies 40, 41, 48, 54, 75, and 76 use domain artifacts, such as 
UML, DFD, ADL, BPEL, and use case diagrams as input. Studies 40 and 
41 produce bounded contexts identified as microservice candidates as 
outputs. Studies 58 and 68 follow the same pattern and produce DFD 
and entity groping, respectively, as output. In contrast, the results of 
Study 75 and Study 115 are a set of matrices and microservices. The 
matrices indicate the quality measures of extracted microservices in 
terms of complexity, coupling, cohesion, interface count, and estimated 
development time. Study 76, as output, provides a converted and 
deployable system with a repository and database per microservice. 
In Study 50, business requirements and functionalities are divided 
into task levels, and a dependency matrix is created for microservice 
identification. Studies 59, 69, and 92 use matrix-based representations 
derived from business processes, while DFDs are used to extract the 
microservices. A table-based representation of domain artifacts is in-
put to Studies 73, 74, and 77. Business Process Execution Language 
(BPEL) models are used in Study 73 to derive the subject–verb–object 
relationship table. This table is used as a vocabulary to identify system 
operations. These system operations are used as output microservices. 
In Study 74, use cases are used to construct operation/relations tables 
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for requirements and functionalities. This table visually represents the 
identified microservices and is the output of the approach. Study 77 is 
grounded in system features. It has additional input of feature cards, 
assigning weight to features. Microservice candidates are produced, 
resulting from feature table analysis using predefined rules.

The inputs of static analysis approaches are source code, database 
artifacts, and code repository histories. Most studies represent the 
source code as graph- or matrix-based abstractions, which are then 
used to discover microservices. Specifically, graph or matrix-based 
clustering, genetic, and community detection algorithms are used. As 
output, these approaches often provide clusters that define candidate 
microservices. Table  8 summarizes the details of inputs and outputs 
used by static analysis approaches. Again, only the studies with detailed 
descriptions of the inputs and outputs are included in the table.

Inputs and outputs of the dynamic analysis approaches are detailed 
in Table  9. These approaches often perform statistical studies over the 
system’s performance data before identifying its constituent parts or 
microservices. System logs are usually collected using instrumented 
source code. The latter is also used to conduct use cases and functional 
testing of the original and reengineered systems.

3.2.5. (RQ2.5) how are the reengineered systems evaluated?
Once the microservice extraction process is completed, the migrated 

system can be evaluated from various perspectives. From a functional 
viewpoint, the migrated system must retain all the essential features 
and functions provided by the legacy system. Additionally, the perfor-
mance of the system should meet acceptable standards post-migration. 
The system should also maintain key quality attributes, such as mod-
ularity, loose coupling, high cohesion, and appropriate granularity. 
The literature highlights several techniques for evaluating reengineered 
systems, including manual expert evaluations, prototype implementa-
tions, industrial case studies, cross-system comparisons, and property 
assessments.

The basic approach for validating the refactored system is via expert 
opinions, which can be carried out directly by experts evaluating the 
refactored system or indirectly by comparing the resulting system with 
expert-extracted solutions. Prototyping is another approach in which 
the proposed reengineering technique is applied over one or multiple 
open-source systems. In contrast, in industrial case studies, a migration 
approach is evaluated based on industry applications. Cross-system 
evaluation is a highly used technique in which the proposed solution 
gets cross-compared with the available state-of-the-art techniques to 
check if the new solution is superior. Property measuring is another 
widely used technique. Properties like modularity, quality of decom-
position, and runtime performance of the original and reengineered 
systems are calculated and compared. Moreover, a few studies have 
considered hyperparameter optimization [26,59], where reengineering 
technique configurations are evaluated for performance tuning.

The properties used to measure the quality of the reengineered 
systems can broadly be categorized into six categories: runtime perfor-
mance, modularity, coupling, cohesion, independence of functionality 
and evolvability, and quality of decomposition. These categories and 
the studies in each category are summarized in Fig.  6.
Runtime performance

Runtime performance analyzes the properties of the reengineered 
system during the execution phase and compares them with the corre-
sponding properties of the monolithic application. In this context, the 
efficiency gain is the proportion of the total time taken by the legacy 
system to process all the requests compared to the total time taken by 
the corresponding microservices system to process the same requests.
Modularity

Modularity measures the quality of the clusters and how well com-
ponents of a system can be distinguished, decomposed, and recom-
bined. Structural modularity measures the soundness of the clusters 
from the structural viewpoint, while conceptual modularity measures 
14 
Fig. 6. Classification of evaluation techniques.

the conceptual soundness of the clusters. The mean cluster factor 
analyzes the interconnectivity and intraconnectivity of the clusters or 
microservices. Feature modularity is a measure of feature distribution 
across the system derived from the notion of the single responsibility 
per microservice. The predominant feature number is the number of 
occurrences of the most common feature divided by the sum of all 
feature occurrences. Feature modularization is the sum of the predom-
inant feature number in every microservice divided by the number of 
distinct features. In most of the studies, modularity calculation has been 
conducted based on the method by Newman and Girvan [60].
Coupling

Coupling measures the level of interaction between services. Struc-
tural coupling refers to the structural relationships between services. 
Afferent coupling quantifies the responsibility of a service by measuring 
the number of classes in other services that depend on the classes within 
the service. Efferent coupling indicates the extent to which the classes 
in a service depend on the classes in other services. The instability index 
is calculated as the ratio of efferent coupling to the sum of afferent and 
efferent coupling, reflecting a service’s resilience to changes in other 
services. Internal coupling measures the degree of direct or indirect 
dependencies between classes within a microservice, while external 
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Table 8
Inputs and outputs of static approaches.
 Study IDs Input and intermediate representation Output

 11 Source code, AST, and topic-based strength between components as a graph. Components partitions as microservice candidates.  
 27 Source code and SQL queries are represented as classes to business object relationship 

matrix, cosine similarity matrix with semantic similarity between classes and subtypes, and 
reference relationship matrices generated by analyzing the class relationship graph 
generated by the Mondrian tool.

Classes partitioned into clusters as microservices.  

 28 Classes to business object relationship matrix, cosine similarity matrix with the semantic 
similarity between methods, method call relationship matrix.

Methods partitioned into clusters as microservices.  

 29 Source code represented as a graph with classes as nodes and edges as calls between the 
classes. Classes and entry point matrix, classes vs. number of common entry points matrix, 
and class inheritance matrix.

Cluster assignment matrix.  

 31 Source code to MoDisco tool to get the system model as AST. Visual representation of EJB clusters and 
microservices.

 

 32 Source code and repository represented as a graph. Classes/interfaces as vertices, static and 
evolutionary coupling as edges.

Set of clusters as microservice candidates.  

 33 Source code, database, set of proposed microservices in JSON format. Source code as 
abstract syntax tree for structural data extraction.

Database and source code refactored as 
microservices.

 

 44 Source code as a set of programs and data (data access write, read operations) represented 
as a graph.

Visualization as the list of programs and data 
using city metaphor.

 

 51 Source code and repository history represented as static, semantic, and evolutionary 
coupling graphs.

Classes of clusters as microservices.  

 53 System dependency graph of source code and database. Graph communities as recommended microservices. 
 55 Source code is the input to the Arcan tool that creates a system dependency graph. Semantics of the migrating project with Java 

classes as microservices.
 

 58 Database tables and table attributes for topic detection. Clusters of tables as microservices.  
 61 System functionalities and persistent domain entities. Clusters of domain entities as microservices.  
 66 Structural similarity and semantic similarity matrix. Classes grouped into microservices and outlier 

classes.
 

 67 Classes in the source code. Classes grouped into microservices based on 
dependencies.

 

 70 Open API specification based API details to generate API similarity graph. API clusters as microservices.  
 79 Source code for reverse engineering to obtain layered architecture metamodel for class 

clustering based on structural and data similarity.
Clusters of classes as microservices.  

 80 Source code represented as class dependency graph. Visualization of graph clusters as microservices.  
 85 Open API specification based API details and reference vocabulary details to calculate 

semantic similarity.
API mappings as microservices.  

 86 Source code to derive logical, semantic, and contributor coupling graphs. Clusters of classes as microservices.  
 87 Open API specification based API details to extract operation names for semantic similarity. Clustered operation names as recommended 

microservices.
 

 89 Source code to analyze static and semantic relationships using machine learning techniques 
to generate graph-based representation of the system.

Clusters of classes as microservices.  

 90 Source code to extract the methods and code embedding model using neural network 
model (code2vec) and cluster based on semantic similarity.

Clusters of classes as microservices.  

 91 Source code and database to generate dependency graph of classes, facades, and database 
tables as vertices and call relationships as edges.

Identified microservice candidates from 
dependency graph.

 

 93 Call graph of the source code with entry points and database access points. Clusters created around the detected seed classes.  
 96 Source code with indicators that should not be parsed, a list of features and related 

execution of the legacy system and the number of microservices to be identified.
The candidates as individual graphs and the 
associated legacy system code.

 

 97 Source code semantic descriptors in Extended Backus–Naur Form (EBNF). Identified microservices in EBNF format.  
 99 Source code model after extracting by MoDisco tool with service cuts (from Study 1) to 

train the AI-based application.
Mapping between microservices and methods in 
the source code.

 

 101 Source code as a graph with methods/entities as vertices and the number of invocations of 
methods/entities as edge weight.

Clustered methods/entities as microservices.  

 109 Graph-based representation of the source code constructed by using the AST and call graph 
of the source code.

Candidate microservices identified by combining 
highly coupled classes in the graph.

 

 111 Call graph generated from the source code. Set of clusters as candidate microservices.  
 112 Source code classes/methods identified by Java call graph and repository history to 

generate similarity matrix of related classes/methods.
Set of clusters as candidate microservices.  

 117 Database and source code classes mapping to calculate semantic similarity. Set of graph-based clusters as microservices.  
15 
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Table 9
Inputs and outputs of dynamic approaches.
 Study IDs Input and intermediate representation Output  
 2 Log files collected after AOP-based instrumentation 

feed into the Disco tool to obtain graphical 
representation of processes.

Multiple decomposition options with matrix-based 
ranking for solution selection.

 

 5 Web server access logs to analyze URI invokes. URI frequency and mean request response time 
(MRRT)-based clusters.

 

 6 Web server access logs to analyze URI invokes. Response size- and time-based clusters.  
 13 Monitoring logs generated using Kieker with full 

business operations coverage.
Method invocation logs with time and frequency 
as inputs for a node attribute network.

 

 24 System logs with major functionality and use case 
coverage.

Call graph generated using the Disco tool, 
combined with static analysis results of business 
objects and operations for clustering.

 

 25 System logs with major functionality and use case 
coverage.

Call graph generated using the Disco tool, 
combined with business objects to identify 
single-entry-single-exit (SESE) regions to derive 
frequently executed patterns (FEPs).

 

 26 Execution logs collected by simulating user 
behavior using Selenium scripts.

Call graphs related to executions.  

 39 Collected execution traces using the Kieker tool 
with a predefined functional test suite.

Grouped functional atoms after applying NSGA-II 
on identified functional atoms from execution 
traces.

 

 42 Use case-based runtime logs to identify direct and 
indirect call relationships to generate a similarity 
matrix between classes.

Clustered set of class partitions based on similarity. 

 43 Use case-based logs collected from instrumented 
source code to generate a calling context tree.

Classes as clusters derived after combining 
dynamic data with static information.

 

 46 Live monitoring and visualization using the 
ExploreViz application.

Identified bounded contexts by static analysis and 
ExploreViz visual results.

 

 52 Operational data (entry points, classes, queries) 
collected using the Silk tool.

Classes as clusters after combining results with 
system static data.

 

 57 System logs to analyze statistics and invoke 
relationships to generate the call graph with 
dynamic tracing frequencies.

Clustered microservice partitions.  

 72 Collected traces after AOP-based instrumentation 
to feed into the Disco tool.

Microservices identified after visually inspecting 
the tool-generated call graphs.

 

 83 Data on the frequency of method invokes collected 
by instrumenting the source code.

Identified microservice boundaries after combining 
with static details of the source code.

 

 88 Log files generated after instrumenting the source 
code and executing test cases.

Identified microservices after execution traces 
analysis.

 

 100 Traces collected from the software system. Set of class/package interactions as microservices.  
 108 Execution traces to derive an object call 

relationship matrix.
Clusters of classes as microservices.  
coupling assesses the dependencies between a class in a candidate 
microservice and external classes. The absolute importance of a service 
(AIS) is defined as the number of clients that invoke at least one oper-
ation of the microservice interface. Similarly, the absolute dependence 
of a service (ADS) refers to the number of other microservices that 
invoke at least one operation of the service. Finally, interdependence 
represents the total number of dependent service pairs.
Cohesion

Cohesion measures the degree of interconnectedness of a service. 
It represents the number of static calls within a server over all the 
static calls. Relation cohesion is the number of internal relationships, 
including inheritance, method invocations, access to class attributes, 
and access via references. Cohesion at the message level (CHM) defines 
the cohesiveness of interface messages, while cohesion at the domain 
level (CHD) is the cohesiveness of services measured using the similar-
ity of functions. Lack of cohesion is the number of pairs of services 
that do not have interdependence. Density is the degree of internal 
co-relation of each microservice.
Independence of functionality and evolvability

A microservice should be independent and support flexible changes 
in the system that do not affect other services. Therefore, functional 
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independence is an essential characteristic of microservices. Interface 
number is the average number of interfaces published by a microser-
vice. The percentage or number of calls between two microservices is 
measured as the interaction number or interpartition call percentage. 
Operation number (OPN) is the number of operations provided by 
the microservice. Internal and external co-change frequency is the 
frequency of entity changes inside and outside the microservices cal-
culated based on the revision history. The frequency of external calls 
is measured as the fraction of the number of calls over the number 
of classes in a microservice. In addition, the fraction between exter-
nal change frequency (across services) and internal change frequency 
(within services) is known as the REI ratio. Ideally, changes inside 
a service should be higher than those across the services. Therefore, 
the value is expected to be less than one. Smaller values indicate the 
services tend to evolve independently [29].
Quality of decomposition

The measures from this category assess the quality of the functional 
distribution across the microservices. This distribution can be, for 
instance, in terms of use cases, operations, or classes. Business context 
purity indicates business use case distribution across the services. It is 
defined as the mean entropy of business use cases per partition. DB 
Transaction purity measures the distributed transactions. This measure 
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Table 10
Evaluated applications.
 Application Study IDs Technology

 JPetStore 7, 11, 13, 39, 42, 53, 57, 66, 80, 88, 90, 108, 115, 116 Java  
 Acme Air 6, 7, 29, 53, 66, 80, 93 Java  
 Cargo Tracking System 1, 7, 48, 49, 77, 80, 115 Java  
 Daytrader 29, 43, 53, 55, 57, 66, 93 Java  
 Springblog 39, 80, 88, 90, 113 Java  
 Jforum 39, 88, 89, 90 Java  
 Apache Roller 39, 88, 90 Java  
 Spring boot pet clinic 44, 66, 89, 93 Java  
 E-commerce system 49, 58 Java  
 Microservices event sourcing 66, 70 Java  
 Kanban board 66, 70 Java  
 TFWA (Teachers Feedback Web Application) 5, 7 Java  
 Train Ticket Microservice Benchmark 12, 88 Java  
 Plants by WebSphere 29, 53 Java  
 SugarCRM 24, 25, 26, 27 PHP  
 ChurchCRM 24, 25, 26, 27 PHP  
prioritizes decomposition with dedicated databases per microservice. 
Per each DB table, calculate the partitions that access the table to 
get the entropy. Smaller entropy values indicate high transactional 
purity [23]. The degree of even distribution of the classes among the 
microservices has been measured in non-extreme distribution. Code 
redundancy rate is the code volume difference between the original 
and migrated systems over the original code. Domain redundancy rate 
measures the duplication of responsibilities. The team size of each 
service is defined as the number of functions provided by the partition. 
Reuse is measured by the relationship between identified services and 
the legacy system users, e.g., API calls and UI interactions. Analysis 
needs to be conducted in the migrated system to calculate this property.
Other measures

MoJoSim and MoJoFM are used to evaluate a microservice-based 
architecture against a reference architecture, e.g., against an expert-
identified architecture. It is calculated by measuring the minimum 
number of operations, e.g., moves or joins, required to transform the 
identified microservice architecture to the reference architecture [32,
64]. API division accuracy [65] is a measure to calculate the efficiency 
of API identification. It calculates the accuracy by relating the correctly 
identified API against all APIs. The cluster-to-cluster coverage (c2ccvg) 
measures the degree of overlap of the implementation-level entities 
between two clusters [64].

Certain studies [26,59] perform hyperparameter optimization to ex-
plore multiple alternative decompositions to identify optimal ones with 
respect to the properties discussed above. Furthermore, the Silhouette 
coefficient (SC) is used to evaluate the performance of the clustering 
algorithms [59,66].

Existing applications have been used to implement and evaluate 
the proposed reengineering solutions. Most of the reengineered systems 
were Java-based, with limited PHP systems identified. Applications 
reengineered in at least two works are listed in Table  10.

Extensive evaluations have been conducted in several studies, where 
the proposed solution was assessed against existing migration frame-
works, benchmarked against established applications, or subjected to 
comprehensive prototyping and property calculations. The evaluation 
criteria employed by key studies are presented in Table  11.

3.3. (RQ3) what are the challenges and limitations of existing methods for 
reengineering software systems into microservice-based systems?

This section discusses challenges associated with microservices mi-
gration. Deciding to embark on a legacy system migration project poses 
several organizational challenges, including:

• Defining strategic goals: Business owners and analysts must set 
clear strategic goals and decide whether to pursue microservices 
migration. This requires identifying and clarifying the business 
and technical drivers behind the migration [67,68].
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• Organizational restructuring : Microservices migration often neces-
sitates changes in organizational structure [67,69]. Large teams 
need to be split into smaller, specialized teams capable of man-
aging microservices. Hierarchical organizations may require sig-
nificant restructuring to support this transition effectively.

• Resource and cost management : Preparing resources and manag-
ing migration costs are critical challenges. This includes costs 
for human resources, hardware, and tools, as well as expenses 
related to design, development, and infrastructure setup. Orga-
nizations must also identify and train key developers to handle 
the reengineered systems [67,70].

Moreover, various technical challenges associated with microservices 
migration have been identified, as summarized below:

• Lack of expert knowledge and tools: Migration to microservices of-
ten requires specialized expertise in DevOps and cloud technolo-
gies. Organizations must establish continuous integration (CI) and 
continuous delivery (CD) pipelines and adopt DevOps practices 
during the migration process [67,69].

• Design decisions: Making design decisions and modifying the
legacy system is challenging due to the complexity of exist-
ing software and the lack of comprehensive design documenta-
tion [68].

• Deployment and operational challenges: Migrating to microservices 
introduces a complicated deployment process, increased opera-
tional overhead, difficulties in debugging and testing, and higher 
resource utilization [70].

• Database decomposition: Splitting the centralized database layer 
into distributed components can lead to data inconsistencies be-
tween services [71].

• Managing statefulness: In microservice architectures, managing 
state is more complex than in monolithic systems due to their 
distributed nature. Stateful systems produce outputs dependent 
on previous interactions, posing significant challenges in ensuring 
consistent state management [71].

Several limitations were identified in the current migration frame-
works. The primary limitation is the lack of a standardized mechanism 
for ensuring optimal migration and assessing the quality of decompo-
sition. Furthermore, depending on the approach employed, identified 
limitations across various service migration systems are outlined in Ta-
ble  12; the last column mentions study IDs in which the corresponding 
limitations were stated.

4. Discussion and future directions

This section discusses the insights we inferred from this literature 
review. Specifically, we discuss the insights into the artifact-driven, 
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Table 11
Cross-system evaluation frameworks.
 ID Name Evaluation type Details

 1 Service cutter Prototype and case 
study

Evaluated the approach with cargo tracking system and trading system.  

 6 Compared with 
legacy system

ACME air web application compared in monolith and microservices versions.  

 7 Green micro Cross comparison Cross compared with FoSCI, CoGCN, Mono2Micro, MEM, Service Cutter, API, DFD, and 
Business process analysis.

 

 11 Topic modeling Case study Evaluated using 200 Java Spring applications selected from GitHub for property calculations.  
 13 Cross comparison Evaluated against Fosci, DFD approach and distributed source code representation.  
 25, 26, 27 Compared with 

legacy system
Compared Sugar CRM and Church CRM legacy and microservice versions.  

 28 Compared with 
legacy system

Compared Dolibarr open-source enterprise management system legacy and microservice 
versions.

 

 29 Co_GCN Prototype Evaluated using Daytrader, Plants by websphere, Acme-Air, and Diet App  
 39 FOSCI Cross comparison Compared with LIMBO, WCA, and MEM approaches.  
 42 Mono2Micro Cross comparison Compared with FOSCI, CO_GCN, and Munch approaches.  
 48 DFD Cross comparison Cross compared with Service cutter and API analysis approach.  
 49 Knowledge graphs Prototype Evaluated the approach with E-commerce application and cargo tracking system.  
 51 Steinmetz Case study Evaluated properties using 14 applications.  
 53 CARGO Cross comparison Evaluated against Mono2Micro, CoCGN, MEM, and FOSCI.  
 61 Case study Applied the approach to 121 monolith applications for comparison.  
 66 Hierarchical DBSCAN Benchmark and 

cross comparison
Evaluated existing microservices projects — Spring PetClinic, Microservices Event Sourcing, 
and Kanban Board Cross compared with Bunch, CoGCN, FOSCI, MEM, and Mono2Micro 
frameworks.

 

 70 API graph Benchmark and 
cross comparison

Evaluated existing microservices projects Kanban, Money Transfer, Piggy Metrics, Microservices 
Event Sourcing, and Sock Shop Cross compared with Service Cutter.

 

 77 Feature table Cross comparison Evaluated against DFD, Service Cutter, API analysis frameworks.  
 85 Interface analysis Prototype Precision and recall properties evaluated using Cargo tracking system.  
 86 MEM Case study Evaluated 21 projects for logical, semantic, and contributor coupling.  
 87 Benchmark Evaluated existing microservices projects Kanban Board, and Money Transfer app. Amazon Web 

Services and PayPal evaluated using OpenAPI specifications.
 

 88 FOME Cross comparison Evaluated LIMBO, WCA, and MEM frameworks.  
 89 Case study and 

cross comparison
Evaluated against existing Service Cutter and topic modeling frameworks. Five applications 
including PetClinic JForum 3, and Compiere applications evaluated for accuracy.

 

 90 Case study and 
cross comparison

Evaluated against FOME and multi-objective evolutionary search frameworks. Property 
evaluated in JPetStore, SpringBlog, Jforum, Roller applications.

 

 108 Log2MS Case study and 
cross comparison

Evaluated against FOSCI and Mono2Micro frameworks. Property evaluated in four applications 
including JPetStore.

 

 115 Backlog Case study and 
cross comparison

Evaluated against Domain-driven design, Interface analysis, and Service Cutter frameworks. 
JPetStore, Cargo Tracking System, and Foristom Conferences(real life system) used for 
evaluation.

 

static, dynamic, hybrid, and database analysis approaches, emerging 
approaches, ways to evaluate the reengineered systems, and reengi-
neering paradigms. Finally, the section proposes directions for future 
research based on our findings.

4.1. Artifact-driven analysis

The artifact-driven approaches constitute 32% of the reviewed stud-
ies. Service Cutter [31] is one of the pilot artifact-driven studies in 
microservice identification. Hence, it has been used as a baseline in 
multiple studies. The dataflow-driven technique [46] is another promi-
nent artifact-driven approach comprising quality attribute evaluation. 
Greenmicro [72], Microservice Backlog [34], and the Feature Table ap-
proach [47] have shown promising experimental results in comparisons 
with other migration studies. Greenmicro and Microservice Backlog are 
notable studies that involve comprehensive cross-system analysis.

4.2. Static analysis

The state-of-the-art technique for reengineering software systems 
into microservices is static analysis. Among the primary studies re-
viewed, 44% discuss static analysis techniques, with structural anal-
ysis dominating over semantic and evolutionary coupling approaches. 
Prominent structural analysis techniques include CoGCN [22], Cargo-AI 
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Guided Dependency Analysis [23], and dependency-based microser-
vice decomposition [24]. Notably, Cargo-AI Guided Dependency Anal-
ysis stands out, as evaluations against benchmark studies confirm its 
effectiveness. Other approaches, such as microservice identification 
through topic modeling [25] and the method by Sellami et al. [26], 
utilize ASTs combined with graph-based and matrix-based algorithms, 
respectively, for structural and semantic analysis. Evolutionary cou-
pling techniques, though less prevalent, offer significant contributions. 
For example, MEM [21] constructs logical, semantic, and evolution-
ary coupling graphs, employing a minimum spanning tree-based algo-
rithm for microservice detection. Similarly, the automatic extraction 
approach [32] uses fast community graph clustering on graphs gen-
erated with structural and semantic information, while Löhnertz and 
Oprescu [33] integrates static, semantic, and evolutionary coupling 
graphs, experimenting with multiple clustering algorithms. Their find-
ings highlight the Louvain clustering algorithm as particularly effective. 
Despite their promise, static analysis techniques face challenges, no-
tably imprecise program analysis, as identified by Nitin et al. [23]. 
These approaches also rely heavily on existing tools, underscoring the 
need for advancements in program analysis precision.

4.3. Dynamic analysis

Limited experiments have been conducted using dynamic analysis 
techniques. One approach supplies software logs as input to the process 
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Table 12
Limitations of existing migration approaches.
 Limitation Description Study IDs
 Significant effort required to transform 
software system artifacts

The artifact-driven approach requires significant manual effort to transform system 
artifacts for further processing. For example, Service Cutter relies on system artifacts 
such as use cases and domain models, which must be manually converted into JSON 
format to enable subsequent processing and clustering.

1  

 Availability of supportive tools Tools incorporated into the process, such as Disco, can produce inaccurate results, 
directly impacting the output. Similarly, static analysis tools suffer from imprecise 
program analysis, which can compromise the quality of the migration process.

2, 24, 25, 27, 28 

 Applicability of the solution The applicability of proposed solutions is limited and often context-specific. For 
instance, solutions that utilize request URLs are applicable only to Web applications, 
while those based on Java annotations and language keywords are restricted to 
Java-based systems. Likewise, EJB-based identification methods are exclusively 
applicable to Java EE EJB-based architectures.

5, 6, 11, 31, 33  

 Quality of the artifacts The effectiveness of proposed solutions are highly dependent on the quality of the 
input artifacts. For example, studies using semantic analysis are heavily influenced 
by the terminology used in the source code. Similarly, the quality and 
comprehensiveness of artifacts, such as data flow diagrams, directly affect the quality 
of the identified microservices. Solutions based on object-oriented principles rely on 
the correct application of object-oriented programming concepts within the source 
code.

11, 48, 67  

 Challenges in database decomposition Database decomposition remains a significant challenge. ORM relationships in the 
source code are often leveraged to reduce complexity, but not all source codes 
support ORM frameworks. Furthermore, existing solutions primarily focus on 
relational databases, leaving NoSQL databases largely unaddressed in the 
decomposition process.

76, 86  

 Coverage of the inputs The coverage of system inputs directly impacts the quality of the outputs. For 
example, in dynamic analysis, the extent to which use cases generate system logs 
significantly influences the results.

2, 39, 108  

 Complexity of the algorithms The algorithmic complexity is a key factor contributing to performance limitations. 
Many existing algorithms and libraries are heavily utilized for clustering and 
extraction tasks, and the time complexity of these algorithms directly affects the 
overall performance of the migration process.

1  
mining tool Disco for further analysis. However, certain processes 
have been incorrectly identified by this approach [19,73]. FoSCI [29], 
FoME [30], and mono2micro [35], Log2MS [74] are the prominent 
studies in dynamic analysis. Moreover, mono2micro is a commer-
cially available product. It collects software log traces by executing 
use cases and identifies unique traces to derive direct and indirect 
calls to generate a similarity matrix followed by hierarchical cluster-
ing. Furthermore, its strategy has been compared with FoSCI [29], 
CoGCN [22], Bunch [75], and MEM [21] to validate the results. FoSCI 
uses reduced execution traces to identify functional atoms using the 
NSGA II multi-objective optimization algorithm. FoME collects logs 
from test executions and generates descriptive log traces for clustering 
and shared class processing. Both FoSCI and FoME use the Kieker 
runtime monitoring tool for property evaluation and comparing results 
against MEM [21], LIMBO [76], and WCA [77]. Log2MS [74] proposes 
a Model-Driven Development (MDD)-based brownfield design approach 
for identifying microservices using only execution logs. It utilizes a mi-
croservice diagram, microservice sequence diagram, and microservice 
architecture modeler to generate microservices, drawing inspiration 
from greenfield software development practices.

4.4. Hybrid analysis

Among the available hybrid analysis studies, microservice extrac-
tion using knowledge graphs [78] stands out as a comprehensive 
approach as an approach that integrates static and artifact-driven anal-
ysis. It constructs a graph from diverse inputs, including source code, 
database schemas, design documents, and API documentation, incor-
porating data, modules, functions, and resource details. The Louvain 
community detection algorithm is then applied to identify microser-
vice candidates. Several other hybrid approaches combining static and 
dynamic analysis have also demonstrated promising results [36,43,55,
79,80]. The node attribute network approach [79] uses call graphs to 
analyze method invocations and employs the Kieker runtime analysis 
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tool to generate a graph structure that is processed using the Leiden 
community detection algorithm. It is one of the most comprehen-
sively evaluated hybrid methods, compared against techniques like 
FoSCI [29], the dataflow-driven approach [46], and the distributed 
representation approach [81]. MonoBreaker [43] combines static struc-
tural analysis with runtime monitoring data to generate a graph model. 
Clustering is performed using the Girvan–Newman algorithm, with 
evaluations against Service Cutter [31] demonstrating that hybrid anal-
ysis yields better results than static analysis alone. Similarly, the Mi-
grating Web Applications approach [55] enhances dependency graphs 
created through static analysis with dynamic analysis data, using the 
K-means clustering algorithm to identify microservice candidates. How-
ever, this study focuses solely on evaluating the properties of the 
reengineered system. Other notable hybrid approaches [36,80] employ 
the NSGA-III multi-objective optimization algorithm to evaluate various 
system properties, further showcasing the potential of hybrid anal-
ysis techniques in improving microservice identification and system 
reengineering.

4.5. Database analysis

Database migration poses significant challenges, particularly in 
transitioning from monolithic architectures to microservices-based sys-
tems. Key issues include maintaining data consistency, handling dis-
tributed transactions, and ensuring seamless integration of diverse 
database types. To address these challenges, the following patterns have 
been identified [82,83]:

1. Schema per microservice: Each microservice maintains its
schema while sharing the same database server.

2. Database per microservice: Each microservice is assigned a ded-
icated database, promoting modularity and autonomy.

3. Database as a microservice: The database is encapsulated as a 
standalone microservice, with all interactions managed via APIs.
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4. Optimized read-only database replica: A replica of the primary 
database is optimized for read operations, while the primary 
database handles both reads and writes.

Among these, the ‘‘database per microservice’’ pattern is widely pre-
ferred in the literature [23,50,84] due to its alignment with microser-
vices principles. However, it introduces challenges in handling dis-
tributed transactions. As a mitigation strategy, eventual consistency is 
often employed, where failed requests are queued for reattempts [84].

An innovative approach to migrating monolithic databases to multi-
model polyglot persistence systems [82] draws inspiration from poly-
glot programming principles. This approach conceptualizes the
database as a microservice, enabling seamless integration of SQL and 
NoSQL databases through an API. By tailoring database types to the 
specific data needs of the software system, this approach enhances 
flexibility and scalability in microservices-based architectures.

Service extraction has also considered the persistence layer in 
applications [85], including mappings between SQL queries and ob-
jects [51,52,86]. One notable study focuses on identifying microservice 
candidates from business rules embedded in stored procedures [87]. 
Additionally, an Object Relational Mapping (ORM)-based system has 
been proposed to evaluate reengineered systems using specific proper-
ties [88]. Widely used databases in microservices architectures include 
Redis, MongoDB, MySQL, PostgreSQL, and MS SQL [82], highlighting 
the diversity of tools that support modern database management in 
distributed systems.

4.6. Emerging techniques

Microservices Backlog [34] employs genetic programming to iter-
atively identify the optimal combination of microservices through the 
application of an objective function. The objective function utilizes a 
granularity matrix, incorporating coupling, cohesion, granularity, per-
formance, complexity, and development time. A comprehensive evalua-
tion was conducted [34], wherein the results were cross-compared with 
those obtained from Service Cutter, Interface Analysis, and FOSCI.

Another use of genetic algorithms is search-based microservices 
detection using Non-dominated Sorting Genetic Algorithms (NSGA). 
The NSGA algorithms employ multiple decision-making criteria for 
mathematical optimization problems involving two or three objective 
functions to be optimized simultaneously [36,37]. In general, studies 
have utilized NSGA-II and NSGA-III with two or three criteria [29,36,
51,80,86]. The toMicroservice approach stands out as it incorporates 
five criteria for search-based detection, including coupling, cohesion, 
feature modularization, network overhead, and reuse.

Microminer [56], and the distributed representation of the source 
code [81] have introduced machine learning to microservice extrac-
tion. Microminer uses a machine learning-based word2vec model with 
the Louvain community detection algorithm, while the distributed 
representation of the source code uses a code2vec model with the affin-
ity propagation algorithm. However, these approaches have no cross-
comparison with prominent migration techniques. Instead, property 
calculations were performed to evaluate the proposed solutions.

Reverse engineering of software systems to derive microservices 
is rarely used. Only three reviewed studies are grounded in reverse 
engineering of monolithic systems [38,64,89]. The model-driven re-
verse engineering approach [38] integrates reverse engineering with 
reinforcement learning to create a mapping between the identified 
legacy system model and a set of microservices. Applying reverse engi-
neering techniques to uncover the architecture of a system can facilitate 
the advancement of microservice discovery methods, particularly in 
cases where legacy systems are hindered by inadequate documentation 
regarding their architectural structure.
20 
4.7. Evaluation

MicroValid [90] is the only framework identified in the primary 
studies that offers a validation methodology specifically for microser-
vices. It performs static analysis of the identified microservice attributes 
to assess the quality of decomposition, focusing on factors such as gran-
ularity, coupling, and cohesion. The evaluation of migrated systems has 
been mainly based on property calculation. Several prominent studies 
have cross-compared with previous studies [23,26,29,30,34,35,47,72,
79,91]. Service Cutter [31] is the classical migration study used for 
cross-comparison. Interface numbers, inter-partition call percentages, 
and structural modularity are the widely used properties. Even though 
coupling has been evaluated in many studies, there is no convergence in 
the evaluated definitions of this concept. Afferent coupling (measuring 
incoming dependencies) and efferent coupling (outgoing dependencies) 
are frequently used coupling measurements. Precision, recall, and F-
measure are used for evaluation when a standard decomposition is 
available for comparison. This can be an available microservice system 
or an expert decomposition result.

Existing microservice-based benchmark systems like Spring Pet 
Clinic,13 Kanban,14 Money Transfer,15 Piggy Metrics,16 Microservices 
Event Sourcing (MES),17 Sock Shop18 have been used for evalua-
tion [27]. Limited studies focused on hyper-parameter optimization
[26,59]. Yedida et al. [92] discussed performance improvements by 
optimizing hyper-parameters.

The majority of the migration frameworks applied their concepts to 
monolithic open-source projects. JPetStore is the most frequently used 
project for implementation and testing. Moreover, Acme Air, Cargo 
Tracking System, and Daytrader applications were used frequently in 
the reengineering projects. Web-based applications like online shopping 
systems, learning management systems, banking systems, ERP sys-
tems, real-estate applications, web-based IDEs, taxation office systems, 
and police department systems were also used as proofs of concept. 
Above 80% of the re-engineered applications in the literature are Java-
based projects. Database-oriented applications, like stored procedure 
decompositions, have been discussed in relatively few studies [51,87].

4.8. Paradigms

Several paradigms for microservices reengineering have been iden-
tified during our analysis, such as Domain-Driven Design (DDD), work-
flow analysis, feature analysis, system semantic analysis, repository 
analysis, interface analysis, and runtime analysis. Domain-driven de-
sign focuses on the business domain and identifies the boundaries of 
the microservices. Workflow analysis uses business processes and work-
flows to identify microservices. Analysis and grouping of dependent 
system features were used in feature analysis. System semantics analy-
sis includes semantics of system features and/or source code semantics 
analysis. Repository analysis includes the source code structure, ver-
sion control history, and data source analysis. Interface analysis uses 
web service definitions and messages disseminated via the interfaces. 
Finally, runtime analysis includes analysis of execution traces and logs.

Incremental and iterative transitions are the preferred industry ap-
proach for migrating legacy systems to microservices [67,68,93–95], as 
opposed to direct migration. Specifically, the Strangler Fig Pattern [95,
96] is inspired by the growth behavior of the Strangler Fig plant, which 
gradually encircles and overtakes a tree, ultimately leading to the 
decline of the tree over time. Similarly, microservices are introduced 
to the legacy system incrementally and can lead to the ultimate decline 
of the legacy software system.

13 https://github.com/spring-petclinic/spring-petclinic-microservices.
14 https://github.com/eventuate-examples/es-kanban-board.
15 https://github.com/cer/event-sourcing-examples.
16 https://github.com/sqshq/PiggyMetrics.
17 https://github.com/chaokunyang/microservices-event-sourcing.
18 https://github.com/microservices-demo/microservices-demo.

https://github.com/spring-petclinic/spring-petclinic-microservices
https://github.com/eventuate-examples/es-kanban-board
https://github.com/cer/event-sourcing-examples
https://github.com/sqshq/PiggyMetrics
https://github.com/chaokunyang/microservices-event-sourcing
https://github.com/microservices-demo/microservices-demo
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4.9. Gaps and future directions

Next, we highlight several gaps we identified in research on reengi-
neering of software systems into microservices systems and suggest 
directions for future work in this area.

Dynamic analysis and AI-based techniques remain underutilized 
and are rarely integrated into existing approaches. This gap presents 
significant opportunities for innovation and further research.

Existing studies have primarily focused on identifying microservice 
candidates, with runtime performance evaluations limited to metrics 
like latency, throughput, availability, and network overhead. How-
ever, behavioral consistency in re-engineered systems remains largely 
underexplored. Given the automated nature of extraction processes, 
developing robust validation mechanisms is critical to ensuring system 
integrity and reliability.

Evaluating the dynamic rearrangement of microservices under vary-
ing workloads is crucial for improving the efficiency of migrated sys-
tems. Under low system loads, maintaining a monolithic system may be 
more efficient, while transitioning to a microservices-based architecture 
can optimize performance under higher loads. Future work can study 
strategies for achieving optimal resource utilization of microservices 
under different workloads.

While the ‘‘database per microservice’’ pattern is often recom-
mended, the practical challenges of partitioning databases into mi-
croservices remain underexplored. Key issues, such as the performance 
impact of distributed transactions and methods for ensuring data con-
sistency, are yet to be thoroughly investigated. Addressing these gaps is 
essential for optimizing microservice architectures and ensuring their 
reliability.

The effort required to redesign functionalities during microservice 
decomposition has been partially addressed in previous work [97], 
which introduced a complexity metric for migration. However, there 
remains a need for a systematic approach to accurately calculate the 
cost and complexity of the entire migration process, incorporating both 
technical and resource-related factors.

The impact of the granularity of microservices on system perfor-
mance has not been a focus in previous studies. The Microservice 
Backlog approach [34] takes granularity into account. However, the 
impact of microservice granularity on the performance of the system 
requires further studies.

While the identification of microservices has been automated, the 
extraction of microservices from the original monolithic system remains 
mostly a manual task. Therefore, there is a need for the development 
of automated code refactoring approaches to facilitate the generation 
of microservices and their communication interfaces.

5. Conclusion

A broad analysis of existing approaches for reengineering software 
systems into microservices systems has been performed in this literature 
review. Initially, 4843 papers were selected from five research paper 
libraries. After multiple stages of filtering, 117 primary studies were 
selected for further analysis. The identified studies were analyzed based 
on multiple perspectives, including employed techniques and tools, 
data usage, evaluation, limitations, and challenges. We have identi-
fied well-explored, state-of-the-art techniques like static analysis and 
areas with limited focus to date, like dynamic analysis. In addition, 
the unavailability of convergence in the studies proves that microser-
vice migration research is still in its infancy. Finally, microservice 
reengineering is a significant study area that can be improved further. 
Future studies can focus on exploring new techniques and evaluation 
strategies for microservice discovery, implementation, deployment, and 
assessment.
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