
R
f
T
A
a

b

A

K
M
S
S

C

c

h
R

Information and Software Technology 183 (2025) 107732

A
0
n

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

eengineering software systems into microservices: State-of-the-art and

uture directions
hakshila Imiya Mohottige a ,∗, Artem Polyvyanyy a , Colin Fidge b , Rajkumar Buyya a ,
listair Barros b
The University of Melbourne, Australia
Queensland University of Technology, Australia

 R T I C L E I N F O

eywords:
icroservices
oftware reengineering
oftware architecture

 A B S T R A C T

Context: With the acknowledged benefits of microservices architectures, such as scalability, flexibility,
improved maintenance, and deployment, legacy software systems are increasingly being reengineered into
microservices. Recently, a plethora of methods, techniques, tools, and evaluation criteria for reengineering
software systems into microservices have been proposed without being systematized.
Objectives: The objective of this work is to conduct an in-depth systematic literature review to identify and
analyze methods, techniques, and tools for reengineering software systems into microservices and the ways
for evaluating such reengineering initiatives and their results.
Methods: A systematic literature review of works on reengineering software systems into microservices was
performed, yielding 117 primary studies. The review focused on addressing key research questions concerning
the evolution of microservices reengineering, methodologies employed, tools available, and the challenges
faced in the reengineering process. We used a taxonomy development method to systematize knowledge in
these areas.
Results: The analysis revealed multiple reengineering approaches: static, dynamic, hybrid, and artifact-
driven. Significant evaluation criteria identified include coupling, cohesion, and modularity. Key paradigms
for microservices reengineering, such as domain-driven design and interface analysis, were identified and
discussed. The study also highlights that incremental and iterative transitions are favored in practice.
Conclusion: This study provides a structured overview of the current state of research on reengineering
software systems into microservices. It highlights challenges in existing reengineering methodologies. Fu-
ture directions include validating behavioral equivalence of original and reengineered systems, automating
microservices generation, and refining database layer partitioning. The findings emphasize the need for
further work to enhance the reengineering process and evaluation of the transition between monolithic and
microservices architectures.

ontents

1. Introduction .. 2
2. Systematic literature review process .. 3

2.1. Research questions ... 4
2.2. Search protocol and selection criteria... 4
2.3. Data extraction and synthesis .. 4
2.4. Quality assessment ... 4

3. Results .. 5
3.1. (RQ1) how did research on the reengineering of software systems into microservice-based systems develop over time?.................................. 5
3.2. (RQ2) what approaches are used to reengineer software systems into microservice-based systems, and how are reengineered systems evaluated? 6

3.2.1. (RQ2.1) what classes of approaches exist?.. 6
3.2.2. (RQ2.2) what tools exist, and which level of automation do they support? ... 9

∗ Corresponding author.
E-mail addresses: thakshila.imiyamohottige@student.unimelb.edu.au (T.I. Mohottige), artem.polyvyanyy@unimelb.edu.au (A. Polyvyanyy),

.fidge@qut.edu.au (C. Fidge), rbuyya@unimelb.edu.au (R. Buyya), alistair.barros@qut.edu.au (A. Barros).

ttps://doi.org/10.1016/j.infsof.2025.107732
eceived 24 September 2024; Received in revised form 27 December 2024; Accepted 18 March 2025
vailable online 27 March 2025
950-5849/© 2025 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
c-nd/4.0/).

https://www.elsevier.com/locate/infsof
https://www.elsevier.com/locate/infsof
https://orcid.org/0009-0002-7422-2303
https://orcid.org/0000-0002-7672-1643
https://orcid.org/0000-0002-9410-7217
https://orcid.org/0000-0001-9754-6496
https://orcid.org/0000-0001-8980-6841
mailto:thakshila.imiyamohottige@student.unimelb.edu.au
mailto:artem.polyvyanyy@unimelb.edu.au
mailto:c.fidge@qut.edu.au
mailto:rbuyya@unimelb.edu.au
mailto:alistair.barros@qut.edu.au
https://doi.org/10.1016/j.infsof.2025.107732
https://doi.org/10.1016/j.infsof.2025.107732
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

T.I. Mohottige et al.

Information and Software Technology 183 (2025) 107732
3.2.3. (RQ2.3) which techniques/algorithms are used? ... 9
3.2.4. (RQ2.4) how is data used?.. 13
3.2.5. (RQ2.5) how are the reengineered systems evaluated? .. 14

3.3. (RQ3) what are the challenges and limitations of existing methods for reengineering software systems into microservice-based systems? 17
4. Discussion and future directions.. 17

4.1. Artifact-driven analysis ... 18
4.2. Static analysis .. 18
4.3. Dynamic analysis ... 18
4.4. Hybrid analysis .. 19
4.5. Database analysis ... 19
4.6. Emerging techniques... 20
4.7. Evaluation ... 20
4.8. Paradigms.. 20
4.9. Gaps and future directions .. 21

5. Conclusion .. 21
 CRediT authorship contribution statement ... 21
 Declaration of competing interest .. 21
 Acknowledgment ... 21

Appendix. Study list... 21
 Data availability .. 25
 References... 25
1. Introduction

Modernizing software systems is essential to obtain the benefits
of the latest technical capabilities [9]. Monolithic, legacy mainframe-
based software systems are an increasingly obsolete technology that
suffers from scalability, maintainability, availability, and efficiency
problems [10–13]. Therefore, there is an imperative need to modernize
such systems to obtain better performance and improve the overall
developer and user experience [14].

A wave of migration of monolithic software to object-oriented plat-
forms was observed at the end of the previous millennium [15]. Later,
service-oriented architectures (SOAs) emerged, and legacy software
systems began moving towards service-oriented architectures [16]. In
an SOA, software systems are modular, with distributed modules having
clearly defined interfaces [17]. But these services are not independent
services [18]. As opposed to the logically related operations in an SOA,
the microservice architectural style emerged promising to distribute
applications via fine-grained, loosely coupled, and highly cohesive
autonomous components communicating via well-defined, lightweight
protocols managing local, synchronized databases, achieving high scal-
ability, availability, and efficiency [12,13].

The tightly coupled nature of legacy software systems reduces their
scalability and maintainability. Often, making a change in one class
affects several other classes. Hence, it increases complexity and devel-
opment time [19]. Decomposing legacy systems into small independent
units increases the maintainability [20]. Microservices were first dis-
cussed in 2011 [13]. In addition to addressing the aforementioned
drawbacks of conventional software architectures, microservices enable
independent development and deployment of services, flexibility in
horizontal scaling in the cloud environment, and support for efficient
development team management [21]. Due to their multiple advantages,
companies like Google, Netflix, Amazon, Uber, and eBay upgraded to
microservice-based systems.

Companies often have a substantial investment in their corporate
business systems and cannot afford to redevelop them entirely. Instead,
a legacy system can be converted into a microservice system by incre-
mentally extracting microservices from it. This approach has several
advantages. Firstly, it makes the best use of the company’s existing
investment in the original system, which is often considerable and
spans several decades. Secondly, the complexity of a legacy system
and the effort, time to market, and resource constraints (e.g., human
resources) required to reimplement it from scratch can be prohibitive.
Finally, only certain system parts may be suitable for migration, while
2
others cannot benefit from or even will degrade when moved to the
new architectural style. For example, functionality that is infrequently
used, such as annual financial reporting, is probably best implemented
in the head office’s mainframe. Hence, the ability to extract specific
services for reengineering and redeployment as microservices while
leaving other functionalities unchanged is essential.

Several studies [1–8] have been conducted to review the works on
microservices identification. Schmidt and Thiry [1] reviewed
model-driven engineering and domain-driven analysis approaches to
identify potential microservices. Schröer et al. [2] analyzed the tech-
niques for identifying microservices during the requirement analysis
and design phases with the evaluation techniques of identified mi-
croservices. Cojocaru et al. [3] discussed the quality assessment criteria
for microservices automatically decomposed from monolithic appli-
cations. Quality-driven approaches in migration, quality attributes
analysis, and quality-driven process implementation were reviewed
by Capuano and Muccini [4]. Ponce et al. [5] conducted a rapid
review study of migration techniques, the types of systems to which
the proposed techniques are applied, methods for validating the mi-
gration techniques, and the challenges associated with such migra-
tions. Fritzsch et al. [6] analyzed existing architectural refactoring
approaches in the context of decomposing a monolithic application
architecture into microservices and how they can be classified concern-
ing the techniques and strategies used. The approaches to modernizing
legacy software were discussed by Wolfart et al. [7]. They defined
a road map for modernizing legacy systems with microservices that
includes motivations, understanding and decomposing legacy systems,
execution, validation, monitoring, and infrastructure aspects of the
modernizing process. A taxonomy of service identification approaches
that combine the inputs used for service identification, the process
followed, the output of service identification, and the usability of
service identification was developed by Abdellatif et al. [8].

Existing studies have been limited both in scope and in the num-
ber of reviewed works. The various aspects of redesigning monolithic
software systems by extracting discrete functions from them that could
be re-implemented as microservices, including service discovery ap-
proaches and techniques, tools that support reengineering, data used
to inform migration processes, evaluation methods for the resulting
microservice systems, and challenges and limitations of the existing
reengineering approaches were not in the focus of previous studies.
A comparison of existing studies is provided in Table 1. Thus, our
research herein aims to provide a comprehensive review of previous
studies, contribute to a better understanding of microservice discovery
techniques regarding software architectural properties, and recommend

T.I. Mohottige et al. Information and Software Technology 183 (2025) 107732
Table 1
A comparison of existing literature reviews on reengineering of software systems into microservices.
Literature review LR [1] LR [2] LR [3] LR [4] LR [5] LR [6] LR [7] LR [8] This

study Research
question(s)
addressed
in this
study

Review period/year 2013–
2019 2020 1998–

2018
2016–
2022 2019 2018 2020 2019 2023

Number of reviewed papers 27 31 29 58 20 10 62 41 117

Comparison of research questions
What are the techniques/approaches/patterns for legacy
software reengineering? RQ2.1 & RQ2.3
What types of systems have the existing reengineering
techniques been applied to? RQ2.1

What tools are used for reengineering monolithic systems
into microservices? RQ2.2

What inputs/outputs are used by the existing
reengineering techniques? RQ2.4

What driving forces/evaluation criteria are used for the identified
microservices? RQ2.5

How reengineering processes/techniques are
validated? RQ2.5

What quality-driven/assessment criteria are used for
reengineering? RQ2.5

What quality attributes are analyzed, and how have they
been implemented for reengineering? RQ2.5

What are the challenges of reengineering legacy
software systems into microservices? RQ3

What usability aspects, advantages, and disadvantages/
limitations are highlighted? RQ3

What are the roles and responsibilities involved in
the identification of microservices? N/A

 Addressed Partially addressed Not addressed.
future research directions for migrating monolithic software systems to
microservices architectures.

Our study below is based on 117 papers. It reveals that static (44%),
dynamic (12%), hybrid (12%), and artifact-driven (32%) techniques
are the major classes of approaches for microservices identification
and extraction. Source code structure analysis that involves inheritance
attributes and structural interactions analysis is a widely used static
analysis technique. Dynamic analysis, however, is an under-explored
area. It often relies on instrumented logs. Hybrid approaches combine
the aspects of static and dynamic techniques. Artifact-driven techniques
rely on domain-driven designs (DDD) and additional software arti-
facts. We have further observed two main techniques for microservices
identification, namely system modeling and microservices extraction.
Prominent studies [19,21–38] have been identified for each class of
techniques. Input/output and tools used by the studies, the level of
automation, and various evaluation techniques were thoroughly re-
viewed to address all the aspects of microservice extraction. Moreover,
core design principles, such as domain-driven design, workflow anal-
ysis, feature analysis, semantic analysis, repository analysis, interface
analysis, and runtime analysis, were identified. Finally, we discuss
further insights into the limitations and future directions in the area
of microservices-based software system reengineering.

The remainder of the paper proceeds as follows. Section 2 de-
scribes the research methodology followed in this work. Sections 3
and 4 present and discuss the results of our literature review. Finally,
Section 5 states concluding remarks.

2. Systematic literature review process

In this work, we followed the guidelines for performing a systematic
literature review in software engineering proposed by Kitchenham
and Charters [39] and further refined by Kitchenham and Brereton
[40]. Existing literature review studies [1–8] were identified by first
performing an initial search for survey and literature review papers in
3
the area of interest and then including all additional secondary studies
identified when searching for the relevant primary studies. Table 1
compares the existing literature reviews. If a study has declared a
specific review period or year, it is specified in the review period/year
row. Otherwise, the study year has been provided to indicate that the
review period cannot go beyond that year. If a study mentions the
number of reviewed papers, it is indicated in the number of reviewed
papers row. The research questions listed in the first column of Table 1
are the research questions addressed in the existing studies. We merged
similar research questions and rephrased them to ensure the consistent
use of terminology. The table summarizes which research questions
are fully, partially, or not addressed in the existing literature reviews.
Review LR [1] focuses on semi-automated approaches to reengineering
and, thus, partially addresses the question of what techniques/ap-
proaches/patterns are used for legacy software reengineering. Reviews
LR [2], LR [3], LR [4], and LR [6] listed in Table 1 have addressed
only certain aspects of the problem. Reviews LR [5], LR [7], and LR [8]
are extensive literature reviews on the topic. Note that LR [5] is not a
systematic literature review. The scope of LR [7] is different from our
research since it is focused on defining a road map for modernizing
legacy systems. Finally, Review LR [8] focuses on service identification
instead of microservice identification and reengineering.

Our analysis indicates that works on the identification and reengi-
neering of microservices reached their peak between 2020 and 2022, as
shown in Fig. 2. In particular, 69% of the studies were conducted dur-
ing these years. Since the majority of existing literature review studies
have been conducted in or before 2020, our study has a better coverage
of the relevant works. As the existing literature reviews are limited in
scope, objectives, and coverage, it is, therefore, essential to analyze
and systematize existing works comprehensively, spanning different
techniques, system modeling approaches, and evaluation strategies to
understand the state-of-the-art, research gaps, and promising avenues
for future work. Hence our work seeks to address this gap.

T.I. Mohottige et al. Information and Software Technology 183 (2025) 107732
2.1. Research questions

Our literature review was conducted to examine existing methods,
techniques, and tools for reengineering software systems into microser-
vices, understand the limitations of the existing approaches, and iden-
tify fruitful avenues for future work. Consequently, we formulated the
following research questions to guide our study.

RQ1 How did research on the reengineering of software systems into
microservice-based systems develop over time?

RQ2 What approaches are used to reengineer software systems into
microservice-based systems, and how are reengineered systems
evaluated?

RQ2.1 What classes of approaches (e.g., static and dynamic)
exist?

RQ2.2 What tools exist and which level of automation do they
support?

RQ2.3 Which techniques/algorithms are used?
RQ2.4 How is data (e.g., software logs) used?
RQ2.5 How are the reengineered systems evaluated?

RQ3 What are the challenges and limitations of existing methods
for reengineering software systems into microservice-based sys-
tems?

Our research questions were defined to maximize the coverage of the
questions addressed in the early studies (cf. the first column in Table
1) and to understand and refine them further. The last column in
Table 1 maps the research questions addressed in our work onto the
questions studied elsewhere. However, our study does not consider the
last question listed in the table. Due to the typical roles involved in
the software development lifecycle, we excluded this aspect from our
study.

2.2. Search protocol and selection criteria

All the publications analyzed in this study were retrieved from five
databases widely used to index publications in the areas of computer
science and software engineering: Web of Science,1 Scopus,2 ScienceDi-
rect,3 ACM Digital Library,4 and IEEE Xplorer Digital Library.5 These
databases provide good coverage of primary sources from high-quality
academic journals and peer-reviewed conferences [41].

To maximize the chances of identifying papers that can contribute
to answering the research questions of this study, we used these key-
words: ‘‘microservice’’, ‘‘reengineer’’, ‘‘redesign’’, ‘‘refactor’’, ‘‘rearchi-
tect’’, ‘‘migrate’’, ‘‘discover’’, and ‘‘identify’’. The keyword ‘‘microser-
vice’’ was included as the study focuses on microservices systems.
Keywords such as ‘‘reengineer’’, ‘‘redesign’’, ‘‘refactor’’, ‘‘rearchitect’’,
and ‘‘migrate’’ were selected as this work focuses on reengineering
software systems into microservice-based systems. Lastly, the keywords
‘‘discover’’ and ‘‘identify’’ were added to address the objective of iden-
tifying microservices. The search query used for the Web of Science
database is listed below:

(TS = (microservice* AND (reengineer* OR re-engineer* OR re-
design* OR re-design* OR discover* OR identify* OR refactor* OR

1 https://clarivate.com/webofsciencegroup/solutions/web-of-science.
2 https://www.scopus.com/.
3 https://www.sciencedirect.com/.
4 http://portal.acm.org/.
5 https://ieeexplore.ieee.org/.
4
rearchitect* OR re-architect* OR migrate*))) AND (WC = (Computer
Science)) AND (DT = (Article OR Book Chapter OR Proceedings
Paper)) AND (LA = (English)).

To guide the selection of primary studies to include in our review,
we defined the inclusion and exclusion criteria listed in Table 2.
These criteria were applied to assess the suitability of each study for
inclusion.

Fig. 1 summarizes our search process for selecting primary studies,
including the number of papers identified in each stage. The initial
search for relevant papers over the five databases was conducted on
the 23rd of January 2023.

To ensure the full coverage of works relevant to this study on
the date the search was conducted, we did not impose restrictions on
the publication dates of the retrieved references. In this initial search,
4843 references were retrieved. As a paper can be indexed by several
databases, we removed duplicate references to result in 2441 distinct
references. To determine their relevance to our study, all the references
were evaluated against the inclusion and exclusion criteria from Table
2 using a checklist-based scoring procedure. Papers on legacy system
refactoring, requirements for refactoring, refactoring techniques, and
evaluation of reengineered systems were included for further analysis.
Studies not related to our research questions, for example, papers on
networks and deployment of microservice-based systems, non-peer-
reviewed studies, studies not related to software systems, or not in
English, were excluded from further processing. At the end of this stage,
220 papers were identified as potentially relevant for our literature
review. The inclusion/exclusion decisions were taken based on paper
titles and abstracts. Hence, papers with unclear exclusion decisions
were kept for further full text analysis. The full text read of 220
papers revealed 107 relevant studies. During the review of the papers
selected for full-text analysis, relevant references were noted. These
references were analyzed in the snowballing stage, and relevant works
were included in the study. Both forward and backward searching on
references were performed. Ten additional papers were included in
the snowballing stage. Consequently, the presented search process has
resulted in the identification of 117 primary studies.

2.3. Data extraction and synthesis

To systematize the knowledge extracted during the in-depth analysis
of the primary studies, we followed a method for taxonomy develop-
ment by Nickerson et al. [42]. It is an iterative approach to identifying
concepts and their characteristics and grouping them into dimensions.
The method guides the evaluation of the developed taxonomies for
usefulness, like the completeness and robustness of the developed
taxonomy dimensions. After defining the classification criteria com-
patible with the research questions, the selected primary studies were
analyzed in-depth, and relevant insights were extracted and recorded
in a spreadsheet for subsequent analysis.

2.4. Quality assessment

To ensure the rigor and credibility of our study, the author team
provided guidance and oversight of all stages of the literature review
process. Multiple review iterations were conducted to enhance the qual-
ity of decisions and minimize errors. The team collaboratively selected
the digital libraries, helped refine keywords to retrieve a sufficient
number of relevant papers, and helped establish the selection criteria.
Additionally, the entire team reached a consensus on the classification
criteria before data extraction began and reviewed the results to ensure
consistency and reliability.

https://clarivate.com/webofsciencegroup/solutions/web-of-science
https://www.scopus.com/
https://www.sciencedirect.com/
http://portal.acm.org/
https://ieeexplore.ieee.org/

T.I. Mohottige et al. Information and Software Technology 183 (2025) 107732
Table 2
Inclusion and exclusion criteria.
 Criterion type Criterion definition
 Inclusion 1. Study is on legacy software system reengineering

2. Study is on requirements for reengineering of legacy software systems
3. Study is on a technique for evaluating functional consistency of a reengineered
software system
4. Study is on a technique for evaluating the performance of a microservice system
5. Study is on using software logs for legacy software system reengineering
6. Study is on an approach for evaluating microservices

 Exclusion 1. Study is not related to software systems
2. Study is on microservice system deployment, self-adjusting models, Quality of
Service, or scalability
3. Study is on networks or load testing, security, and fault tolerance of software
systems
4. Study does not present sufficient technical details to contribute to at least one
research question addressed in this literature review
5. Study did not undergo a peer-review process, for example, published in a
non-reviewed journal or conference papers, theses, books and book chapters, and
doctoral dissertations
6. Study is a literature review
7. Study is not in English

Fig. 1. Overview of the stages and results of our literature selection process.
Table 3
Paper classification details.
 Type of study Number of papers
 Software system migration studies 83
 Case studies and industry interviews 30
 Greenfield development 4

3. Results

This section elaborates on the findings of the literature review based
on the research questions. Appendix lists the primary studies selected
for this literature review. Table 3 summarizes the classification of the
selected 117 papers. The majority of the papers (71%) explain legacy
system migration strategies, whereas most of the remainder of the
papers (25%) focus on industry interviews and case studies. A small
number of papers (4%) discuss greenfield development, where new sys-
tem implementation in a microservice-based architecture is considered.
The greenfield development was included in the analysis since it is
applied in the context of artifact-based microservices extraction.

3.1. (RQ1) how did research on the reengineering of software systems into
microservice-based systems develop over time?

The first study on software systems reengineering into microser-
vices was published in 2016. Manual, semi-automated, and automated
techniques for migrating systems are discussed in the literature. Man-
ual techniques are completely human-oriented, whereas appropriate
5
modeling, extraction, and visualization tools assist people during semi-
automated system reengineering projects. In contrast, automatic tech-
niques produce possible microservice recommendations from various
inputs, e.g., source code, software logs, and software design artifacts.
These recommendations can then form the basis for system reengineer-
ing.

Fig. 2(a) depicts the progression of automation levels in the tech-
niques examined across the surveyed studies over time. A significant
proportion of the studies (38%) concentrated on semi-automated iden-
tification methods. Manual approaches are similarly prevalent, com-
prising 37% of the total studies. In recent years, there has been a
notable shift towards automated approaches, which now account for
the remaining 25% of the studies.

The identified approaches for decomposing software systems into
microservices are classified as static, dynamic, artifact-driven, and
hybrid analyses. In static analysis, program source code, database
schemata, and source code repository histories are used to provide
insights into the system under study. By contrast, dynamic analysis
considers execution time details like software system and server event
logs, and runtime monitoring. The artifact-driven approaches are based
on system artifacts like UML and data flow diagrams, architectural
documents, use cases and user stories, ubiquitous language, and do-
main models. Domain-driven design (DDD) and task-driven (functional-
driven) design patterns are a subset of artificial-driven approaches.
Finally, the hybrid approach can combine static, dynamic, and artifact-
driven approaches.

Fig. 2(b) illustrates the numbers of different microservice identi-
fication approaches published over time. Most of the existing studies
are based on static system analysis (44% of studies). The artifact-
driven analysis is the second most used technique for software systems

T.I. Mohottige et al. Information and Software Technology 183 (2025) 107732
Fig. 2. Number of studies over time.

reengineering (32%). The studies of dynamic and hybrid approaches
are less frequent, with each approach comprising only 12% of the total
studies.

3.2. (RQ2) what approaches are used to reengineer software systems into
microservice-based systems, and how are reengineered systems evaluated?

In this section, we discuss the identified approaches for reengineer-
ing software systems into microservices systems.

3.2.1. (RQ2.1) what classes of approaches exist?
The approaches used to analyze monolithic applications for their

reengineering into microservices systems can be broadly classified into
three main categories: static, dynamic, and artifact-driven analysis.
An additional hybrid approach is identified, consolidating the main
approaches.

The artifact-driven approaches use software artifacts like require-
ments, design diagrams, UML diagrams, data flow diagrams, business
processes, use cases, user stories, domain models, and other design
artifacts to identify bounded contexts for microservices. Each such
bounded context implements a small, highly cohesive, loosely cou-
pled behavior [43]. These contexts are then accepted as microservice
candidates.

The static analysis approaches are based on analysis of source code,
database schema, and histories of source code repositories. These ap-
proaches use dependencies between classes, like inheritance, extended
class relationships, similarities between classes and database tables, and
dependent commits in code repositories.
6
In contrast, the dynamic analysis approaches use runtime informa-
tion to identify microservices. For example, they use runtime monitor-
ing, execution time data correlations, and system-generated logs.

Lastly, the hybrid analysis techniques combine principles from the
approaches discussed above. Often, a hybrid approach results from
extending one ‘‘pure’’ approach with some feature of an approach of
a different type. For example, a static analysis technique can bor-
row ideas of software log analysis to complement its microservice
identification decisions.

Fig. 3 shows categories and subcategories of the three main ap-
proaches. The leaf nodes in the figure correspond to relevant study
IDs, which are detailed in Appendix. A comprehensive analysis of the
categories and subcategories follows.
Artifact-driven analysis

An artifact-driven analysis uses various system representations to
examine requirements, features, use cases, classes, and components of
the system. The main categories of artifact-driven approaches, defined
by the types of analyzed artifacts, are detailed below:

• Domain models/languages: Domain models and languages play a
crucial role in software engineering by representing relation-
ships between classes or entities. For example, UML diagrams
provide abstract visualizations of the software system. The term
domain language, also known as ubiquitous language, refers to
the consistent terminology used to describe business operations
and is essential for capturing terms from legacy systems [44].
Use cases describe user interactions with the system, while user
stories outline specific system features. Architecture Description
Language (ADL) and Unified Modeling Language (UML) are com-
monly used to define and visualize the system’s architecture.
These artifacts help identify service boundaries and are typically
analyzed manually to determine the scopes and candidates for
microservices.

• Business processes: A business process comprises activities coor-
dinated within an organizational and technical environment to
achieve a specific business goal [45]. In software systems, the de-
pendencies between business processes—such as data, structural,
semantic, and control dependencies—can be analyzed to gain in-
sights into their interactions. These dependencies are represented
as matrices, which serve as input to identify microservices.

• Data flow diagrams: A data flow diagram (DFD) graphically rep-
resents the flow of data within a system, detailing how business
functions or operations process inputs into outputs [46]. It con-
sists of processes (activities or functions that transform data), data
stores (repositories where data is stored), data flows (paths show-
ing how data moves between components), and external entities
(sources or destinations of data outside the system). DFDs play a
key role in microservice identification by mapping dependencies
between processes and data stores. These dependencies are an-
alyzed through the construction of dependency matrices, which
help identify highly correlated processes and components. Alter-
natively, custom algorithms are used to examine the relationships
between processes and data stores, aiding in the identification of
microservices.

• System features and functions: System requirements, features, and
functionalities are used to identify microservices [47]. The system
functionalities are analyzed or divided into sub-tasks that cannot
be divided further to identify the dependencies. Based on these
dependencies, connected groups of functionalities are identified
as candidate microservices.

• Domain semantics: Semantic analysis involves a detailed exam-
ination of various software artifacts to derive meaningful in-
sights [48,49]. In the context of microservice identification, these
techniques analyze the extracted vocabularies of system terms—
such as domain-specific keywords, entity names, and operation

T.I. Mohottige et al. Information and Software Technology 183 (2025) 107732
Fig. 3. Classification of approaches.
descriptions. Similarity calculations are performed on these vo-
cabularies to identify related system entities and operations that
share commonalities, enabling the grouping of these elements
into potential microservices.

Static analysis
Static analysis is one of the most commonly discussed approaches

for microservice identification in the literature. Static analysis tech-
niques rely on analyzing artifacts derived from source code, databases,
and version control systems. Next, we provide details on these tech-
niques.

Source code analysis involves examining various components of a
system, including classes that represent entities, core functions imple-
menting business logic, communication APIs, and user interface (UI)
components. The analysis leverages the structure and semantics of the
source code, as well as custom approaches, to identify and extract
potential microservices. These methods aim to group related func-
tionalities into cohesive and independent services by studying these
information elements in the source code:

• Structural inheritance: Structural inheritance analysis examines
source code packages, classes, method-level dependencies, and
class inheritance hierarchies to uncover relationships within the
system. This analysis often involves constructing an abstract syn-
tax tree (AST) of the source code, which is then used to generate
system dependency graphs. In these graphs, classes and methods
are represented as vertices, while their dependencies form the
edges. Dependency graphs and ASTs are typically generated using
static analysis tools, with further details provided in Table 5.
Additionally, the class hierarchy is analyzed by examining ex-
tended (inherited) and implemented classes to identify structural
relationships that may guide microservice identification.

• Structural interaction: Structural interaction analysis focuses on the
interconnections between classes and methods in source code to
identify microservice boundaries. This process begins by analyz-
ing APIs and other entry points, such as UI calls, to determine a
7
set of execution paths. These paths, along with their subpaths and
interconnected segments, are examined to understand data usage
and dependencies. Call graphs, which map method invocations
within the source code, are also utilized to identify intercon-
nected components. These graphs can be either context-sensitive,
where different calls are annotated with unique identifiers to
distinguish paths through the same code sections, or context-
insensitive, which lack such distinctions [23]. Additionally, object
reference relationships, including information flows that trigger
the creation of object instances, are analyzed to uncover related
classes and methods. These interconnected components form the
foundation for identifying potential microservices.

• Semantics: These approaches examine the similarity between the
words (terminology) in the source code and derive the co-related
classes as possible microservice candidates. This type of approach
is also known as domain-related service decomposition. The core
assumption for the approaches from this category is that related
features use similar terminology at the implementation level.
Specifically, semantic approaches employ these techniques in
their analysis:

– Natural language processing (NLP) and information retrieval
(IR) techniques are commonly used to extract semantic
details. These techniques filter source code to exclude pro-
gramming language keywords and space characters. Then,
word tokenization, stop word removal, stemming, word
enrichment using the synonyms from existing word dictio-
naries, and tf–idf calculations are performed. Brito et al.
[25] use ASTs instead of source code to exclude the library
dependencies to identify the terms of the system.

– Topic modeling is another approach used for semantic analy-
sis. Stop word removal and stemming are applied to remove
insignificant terms and reduce multiple variations of identi-
cal terms from the source code. After identifying the unique
bag of words, topic modeling classifiers like Latent Dirichlet
Allocation (LDA) and Seeded Latent Dirichlet Allocation

T.I. Mohottige et al. Information and Software Technology 183 (2025) 107732
(SLDA) are applied to group the lexical terms into clusters.
These clusters are either directly identified as microservices
or further processed using graph-based modeling.

– Unique term analysis identifies distinct keywords in the
source code and constructs a word frequency matrix for
each class. This matrix is then used to calculate cosine sim-
ilarity, which quantifies the semantic relatedness between
two classes based on the overlap of their term distributions.
By identifying classes with high relatedness, this analysis
helps uncover potential groupings or dependencies that can
inform microservice identification.

• Custom analysis: These methods leverage additional elements of
the source code to identify microservices, as outlined below:

– Business logic in the source code is analyzed to identify
core business functions, which can then be grouped into
microservices based on their roles and dependencies.

– Persistence layer of the application is examined to identify
entities associated with data sources, along with the Create,
Read, Update, and Delete (CRUD) operations performed
on them. This analysis is often conducted in conjunction
with data source analysis to understand the relationships
between data and services.

– Reverse engineering is another custom analysis technique
where reverse engineering tools are used to extract the
underlying system architecture. This extracted architecture
is then analyzed to apply dependency analysis, helping
identify related partitions within the system.

– Programming language annotations are used to identify key
components in the source code. For example, Java annota-
tions like @EJB, @Controller, and @Entity help pinpoint
key classes and components, which can then be grouped
into microservices based on their functionality and depen-
dencies.

– API specification techniques involve analyzing API docu-
mentation, such as those following OpenAPI standards,6 to
examine semantic similarities. This information is then used
to infer potential microservices based on the relationships
and dependencies between APIs.

Database analysis involves examining tables, relationships, and entity
mappings used by Object-Relational Mapping (ORM) frameworks to
understand how data is structured within the system. In the context
of microservices, the ‘‘database per microservice’’ pattern is often rec-
ommended to ensure each service has its own dedicated data store,
which promotes data autonomy and scalability [23,50]. When iden-
tifying microservices, it is crucial to analyze the persistent entities,
such as database tables, that are associated with each service, as these
entities play a key role in defining the boundaries and responsibilities
of microservices. Specifically, these elements are studied:

• Schema and tables: The primary approach to database analysis
involves examining tables, their attributes, and the relationships
between them, including key constraints and triggers.

• Stored procedures: In legacy systems, business logic is often im-
plemented in the database layer, typically as stored procedures,
due to performance concerns and network overhead. This practice
results in the mapping of stored procedures to business functions,
which is another valuable technique for data source analysis.

• Queries and business objects: Validating SQL queries and their
associated business objects is crucial for microservice identifi-
cation. This involves analyzing the information derived from

6 https://spec.openapis.org/oas/v3.1.0.
8
SQL queries, as well as the relevant entities and attributes ac-
cessed through these queries, to identify potential microservice
boundaries.

• Topics: Topic modeling applied to database tables is another
technique for data source analysis. In this method, each table is
treated as a document, with its properties serving as the docu-
ment’s attributes. The lexical similarity between these documents
is then calculated, allowing for the grouping of related tables into
highly cohesive partitions, which can be identified as potential
microservices.

Version control systems maintain a history of source file changes
through collections of code commits, along with associated author
information. Evolutionary coupling, which involves analyzing commit
histories to identify correlated classes within the change logs, helps
identify relationships between components based on their modification
patterns. Consecutive commit analysis, a subcategory of evolution-
ary coupling, examines changes across multiple classes in consecutive
commits to group them accordingly.

Additionally, evolutionary coupling graphs aggregate commits over
different time periods. In these graphs, vertices represent classes, and
edges are drawn between classes that are modified together within a
single commit. This approach is known as logical coupling [21]. Lastly,
the contributor coupling graph maps developers to the changes they
have made in the source code. Since effective team organization is a
key factor in successful microservice migration [21], this analysis helps
extract system changes from the perspective of contributors.
Dynamic analysis

The final category of identified approaches is dynamic analysis.
In a dynamic analysis approach, the software system is treated as a
black box, where the produced outputs are analyzed based on the
provided inputs to identify recurring patterns and execution traces.
Three subcategories fall under dynamic analysis, as discussed below:

• Server logs: Server access log analysis plays a crucial role in the
reengineering of web applications, where web server access log
files are examined to identify frequently invoked URIs. Server
logs, such as those from Apache Tomcat,7 and WildFly8 provide
detailed information on access URIs, request and response times,
and response sizes. These logs are analyzed by examining the
frequency of URIs and response sizes and times, which helps
group requests into potential candidate microservices.

• System logs: Most existing studies that conduct dynamic analysis
rely on system log analysis. Instrumenting the source code using
aspect-oriented programming (AOP) is a log collection technique
in which an agent is integrated into the source code to capture
logs based on the operations performed by the system. These logs
are subsequently provided as inputs to a process mining tool,
like Disco,9 or analyzed further to identify frequent execution
traces, processes, and dependencies. The validity of this approach
depends on the extent of coverage of actions performed on the
instrumented system. To enhance the coverage of operations, use
cases, functional tests, unit tests, and user simulations have been
employed.

• Runtime monitoring : Runtime monitoring has been defined as an-
other class of dynamic analysis approaches. In such an approach,
the system is observed during execution time, and collected infor-
mation is used for system reengineering. Kieker,10 Elastic APM,11
and dynatrace12 are the tools used for this purpose.

7 https://tomcat.apache.org/.
8 https://www.wildfly.org/.
9 https://fluxicon.com/disco/.
10 https://kieker-monitoring.net/.
11 https://www.elastic.co/.
12 https://www.dynatrace.com/.

https://spec.openapis.org/oas/v3.1.0
https://tomcat.apache.org/
https://www.wildfly.org/
https://fluxicon.com/disco/
https://kieker-monitoring.net/
https://www.elastic.co/
https://www.dynatrace.com/

T.I. Mohottige et al. Information and Software Technology 183 (2025) 107732
Table 4
Tools and levels of automation; automated (A) and partially automated (PA).
 Study ID Level of automation Available artifacts
 1 PA https://github.com/ServiceCutter/ServiceCutter
 11 A https://github.com/miguelfbrito/microservice-identification
 24 PA https://github.com/AnuruddhaDeAlwis/NSGAII
 25 PA https://github.com/AnuruddhaDeAlwis/Subtype
 26 PA https://github.com/AnuruddhaDeAlwis/NSGAIIFOROptimization
 29 PA https://github.com/utkd/cogcn
 37 PA https://github.com/Rofiqul-Islam/logparser
 39 PA https://github.com/wj86/FoSCI
 42 A https://www.ibm.com/cloud/mono2micro
 51 PA https://github.com/loehnertz/Steinmetz

https://github.com/loehnertz/semantic-coupling

 52 PA https://github.com/tiagoCMatias/monoBreaker
 55 A https://essere.disco.unimib.it/wiki/arcan
 61 A https://github.com/socialsoftware/mono2micro
 70 A https://github.com/HduDBSI/MsDecomposer
 77 PA https://github.com/RLLDLBF/FeatureTable
 79 PA https://gitlab.com/LeveragingInternalArchitecture/IdentificationApproach
 86 PA https://github.com/gmazlami/microserviceExtraction-backend

https://github.com/gmazlami/microserviceExtraction-frontend

 89 A https://drive.google.com/drive/folders/1TQaS8etLr-32d0RXwC1Le-IOMVaDBcSS
Furthermore, a hybrid approach can integrate several artifact-
driven, static, and dynamic analysis techniques. However, in such
an approach, one technique is often dominant. For instance, static
analysis may be performed first, and the extracted data can then be en-
hanced with dynamic analysis details for further investigation [43,51,
52]. Alternatively, artifact-driven analysis may serve as the dominant
technique, with static analysis providing additional insights [53].

3.2.2. (RQ2.2) what tools exist, and which level of automation do they
support?

In the existing studies, two types of tools have been identified:
tools developed during the studies of microservice reengineering (in
line with the concept in the study) and existing tools to support
different stages of the reengineering process, e.g., call graph generation
and log analysis. The existing migration frameworks, their levels of
automation, and freely available source code/tools are listed in Table
4. Frameworks that provide microservice recommendations based on
primary inputs, like source code, log files, and system artifacts, are con-
sidered automated. The studies with tools involved in different stages
of the migration process, like data extraction and system modeling, are
categorized as partially automated.

Multiple categories of tools are available based on the approaches
used to examine the monolithic system. There are tools for the static
analysis of software systems, database administration, runtime mon-
itoring, visualization, architectural validation, and load simulations.
These tools, technologies used, and respective study IDs are listed in
Table 5. Moreover, a comparison between existing tools utilized to
extract microservices has been made in a separate study by Lapuz
et al. [54]. Ren et al. [55] used their tool EasyAPM to record the
operation data and parameter information through the instrument on
the JDBC and data access class libraries. Other supportive tools used
for testing, clustering, and other specific purposes are listed in Table 6.
The purpose column indicates the use of these tools in different steps
in the system modeling and microservices extraction process.

3.2.3. (RQ2.3) which techniques/algorithms are used?
The identified techniques can be broadly categorized into two types:

system modeling techniques and microservice extraction techniques.
The system modeling techniques are used to interpret or model soft-
ware systems, creating their abstract representations, while microser-
vice extraction techniques are applied to identify the microservices
within the interpreted systems, thereby defining boundaries of potential
microservices. Identified system modeling and extraction techniques
9
Fig. 4. Classification of legacy system modeling techniques.

are summarized in Figs. 4 and 5, respectively. Leaf nodes in the figures
refer to the relevant study IDs.
System modeling techniques
Graph-based modeling is the prominent technique for modeling legacy
systems, refer to Fig. 4. The vertices in such graphs can be com-
ponents, system entities, classes, methods, business processes, entry
points, execution traces, database tables, and system functionalities.
Edges can be either weighted or non-weighted. Undirected weighted
edges are frequently used in the system graphs. The existence of an
edge and its weight are based on the strength of the relationship
between two vertices. Structural relationship graphs are constructed
based on the number of dependencies, method calls, and coupling
scores. Dependencies and method calls are directly derived from ASTs,
call graphs, and dependency graphs. Moreover, structural relationships
can be prioritized by assigning weights based on their types, e.g., gener-
alization, aggregation, implementation, association, instantiation, and
method invocation [56].

https://github.com/ServiceCutter/ServiceCutter
https://github.com/miguelfbrito/microservice-identification
https://github.com/AnuruddhaDeAlwis/NSGAII
https://github.com/AnuruddhaDeAlwis/Subtype
https://github.com/AnuruddhaDeAlwis/NSGAIIFOROptimization
https://github.com/utkd/cogcn
https://github.com/Rofiqul-Islam/logparser
https://github.com/wj86/FoSCI
https://www.ibm.com/cloud/mono2micro
https://github.com/loehnertz/Steinmetz
https://github.com/loehnertz/semantic-coupling
https://github.com/tiagoCMatias/monoBreaker
https://essere.disco.unimib.it/wiki/arcan
https://github.com/socialsoftware/mono2micro
https://github.com/HduDBSI/MsDecomposer
https://github.com/RLLDLBF/FeatureTable
https://gitlab.com/LeveragingInternalArchitecture/IdentificationApproach
https://github.com/gmazlami/microserviceExtraction-backend
https://github.com/gmazlami/microserviceExtraction-frontend
https://drive.google.com/drive/folders/1TQaS8etLr-32d0RXwC1Le-IOMVaDBcSS

T.I. Mohottige et al. Information and Software Technology 183 (2025) 107732
Table 5
Tools for monolithic system analysis.
 Purpose Tool/Library Details Technology Study IDs

Static analysis
(source code)

Java call graph
(open source)

Reads jar files to collect the method
calling sequences. Dynamic Analysis is possible
but is used only in static context.
(https://github.com/gousiosg/java-callgraph)

Java 13, 111, 112

 Java parser/Symbol
Resolver
(open source)

Constructs abstract syntax tree for structural
dependency extraction.
(https://javaparser.org/)

Java 11, 33

 Mondrian
(open source)

Performs static source code analysis
(https://github.com/Trismegiste/Mondrian)

PHP 27, 28

 WALA
(open source)

Analyzes project class hierarchies and
generates call graphs.
(https://github.com/wala/WALA)

Java, JavaScript 53, 57

 Soot
(open source)

Models source code to analyze, instrument,
optimize, and visualize applications.
(https://soot-oss.github.io/soot/)

Java, Android 29, 53

 Doop & Datalog
(open source)

Conducts static analysis of source code
using Datalog engine.
(https://plast-lab.github.io/doop-pldi15-tutorial/)

Java, Android 53

 JackEE
(open source)

Provides static analysis of Java Web applications
with enterprise framework support. Additional
parameter is used for Doop framework to run JackEE.
(https://github.com/plast-lab/doop)

JEE applications 53

 Spoon
(open source)

Parses source code into abstract syntax
tree for further analysis.
(https://spoon.gforge.inria.fr/)

Java 61

 Structure 101
(commercial)

Validates software architectures by visualizing
their structures from source code.
(https://www.sonarsource.com/structure101/)

Java, .Net, C/C++ 2, 46, 71, 111

 Sonargraph
Architect
(commercial)

Offers architecture checks, duplicate code
detection, virtual refactorings, cyclic dependency
resolution, and comparison with previous versions.
Suppors Git repository mining.
(https://www.hello2morrow.com/products/)

C#, C/C++, Java,
Python 3

77

 Semantic analysis
(source code)

ANTLR
(open source)

Parses the source code to generate grammar for
language recognition.
(https://www.antlr.org/)

Java, C#, Python, Go,
C++, Swift, JavaScript,
TypeScript

97

Static analysis
(database)

SchemaSpy
(free software)

Generates Web-based visual representations
by analyzing database metadata.
(https://schemaspy.sourceforge.net/)

Java-based tool 2, 71, 72

 DBeaver
(free and commercial
versions)

Provides tools for database administration
and schema analysis.
(https://dbeaver.io/)

MySQL, Maria DB,
PostgreSQL, SQLite

46

 JSqlParser
(open source)

Parses SQL statements and translates them into
hierarchies of Java classes.
(https://github.com/JSQLParser/JSqlParser)

Java, SQL 61

Dynamic analysis

Kieker
(open source)

Monitors and analyzes runtime behavior of
software systems.
(https://kieker-monitoring.net/)

Java, .Net, C, VB 13, 39, 88, 108

 Elastic APM
(commercial)

Supports real-time monitoring, performance analysis
of incoming requests/responses, database queries,
cache invocations, and external calls.
(https://www.elastic.co/solutions/apm)

Java-based Web, Data
access frameworks,
application servers,
messaging frameworks,
AWS

2, 72

 Disco
(free and commercial
versions)

Analyzes event logs to identify call graphs
and enables automated process discovery.
(https://fluxicon.com/disco/)

Log files of software
systems

2, 24, 25, 26, 72

 ExplorViz
(open source)

Provides runtime monitoring and visualization
of software systems
(https://explorviz.dev/)

Applied to Java-based
systems

46

 django-silk
(open source)

Profiles and inspects the django framework,
analyzing HTTP requests and database queries.
(https://github.com/jazzband/django-silk)

Python django
framework-based tools

52
Static dependency graphs are generated by static analysis tools.
Subsequently, the coupling scores are often calculated manually based
on the pre-defined parameters. Depending upon the four categories
of cohesiveness, compatibility, constraints, and communication, 16
coupling criteria have been defined by Gysel et al. [31]. A priority
10
and score can be defined for each criterion that contributes to the
final edge weight of the graph. Semantic similarity-based graphs are
based on tf–idf (term frequency–inverse document frequency) or topic
modeling. Once the tf–idf is calculated, a vector with the frequency of
each word distribution in the class is obtained. The cosine similarity

https://github.com/gousiosg/java-callgraph
https://javaparser.org/
https://github.com/Trismegiste/Mondrian
https://github.com/wala/WALA
https://soot-oss.github.io/soot/
https://plast-lab.github.io/doop-pldi15-tutorial/
https://github.com/plast-lab/doop
https://spoon.gforge.inria.fr/
https://www.sonarsource.com/structure101/
https://www.hello2morrow.com/products/
https://www.antlr.org/
https://schemaspy.sourceforge.net/
https://dbeaver.io/
https://github.com/JSQLParser/JSqlParser
https://kieker-monitoring.net/
https://www.elastic.co/solutions/apm
https://fluxicon.com/disco/
https://explorviz.dev/
https://github.com/jazzband/django-silk

T.I. Mohottige et al. Information and Software Technology 183 (2025) 107732
Table 6
Additional tools used for system analysis.
 Purpose Tool Details Technology Study IDs
 Testing Jmeter

(open source)
Provides load simulation
(https://jmeter.apache.org/)

Java 6, 7, 108

 Gatling
(commercial)

Provides stress testing
(https://gatling.io/)

Java, Kotlin, Scala 16

 Reverse
engineering

MoDisco
(open source)

Provides model-driven reverse engineering of the source code
(https://wiki.eclipse.org/MoDisco/)

Java, JEE, XML 31, 99

 Topic modeling GuidedLDA
(open source)

Provides topic modeling using latent Dirichlet allocation
(https://guidedlda.readthedocs.io/en/latest/)

Python 55

 Clustering SciPy
(open source)

Provides hierarchical clustering and generates dendograms
(https://www.scipy.org/)

Python 61, 111

 Optimization
algorithm

Jmetal
(open source)

Supports multi-objective optimization algorithms NSGA II
and NSGA III
(https://jmetal.sourceforge.net/)

Java 82, 96

 Document
enrichment

WordWeb,
WordNet
(public
dictionary)

Lexical databases to identify synonyms for topic modeling
(https://wordnet.princeton.edu/)

Word dictionary 58

 Lines of code
count

CLOC
(open source)

Blank, comment, and physical lines counting
(https://github.com/AlDanial/cloc)

Java, C, Python 12
between two vectors is calculated, capturing the degree of similarity
between two data points. A high degree of similarity defines the closely
related classes.

Probabilistic Latent Semantic Analysis (PLSA), Latent Dirichlet Allo-
cation (LDA), Latent Semantic Analysis (LSA), and Non-negative Matrix
Factorization (NMF) are four classes of algorithms used for topic mod-
eling. Latent Dirichlet Allocation (LDA) and Seeded Latent Dirichlet
Allocation (SLDA) are commonly used to identify the topic distribution
within the source code. LDA is a probabilistic topic model. It is an
unsupervised model, whereas SLDA is a semi-supervised variant of
LDA. SLDA accepts the list of keywords as input that stimulates the
expected topics. LDA uses high coherence and fewer overlaps between
the concepts to derive clusters of concepts [57]. Once the clusters are
identified, cosine similarities between the clusters are calculated to
define the edge weights in the graph representation.

In dynamic analysis-based graphs, edges represent runtime frequen-
cies of method invocations and execution traces, while evolutionary
coupling graphs define edges based on correlations between classes
in commits and contributors involved in their development. Examples
of graph models include classes or components as vertices with topic
modeling strengths as edge weights, domain entities as vertices con-
nected by coupling scores as edge weights, call graphs where vertices
represent classes or methods and edges represent execution calls and
their frequencies, system entities and entry points as vertices with
method calls as edges, system classes or entities as vertices connected
by evolutionary coupling edges based on revision history, classes as
vertices with edges denoting contributors involved in their develop-
ment, runtime graphs with classes or methods as vertices and edges
representing invocation relationships and frequencies, and architectural
graphs generated by reverse engineering tools.
Matrix/table-based modeling represents a software system as a map-
ping of its attributes and components captured in a matrix with the
number of occurrences as entries to classify the co-related attributes
further. Once matrices are constructed, similarity measures are used
to identify related components that can define microservices. Either
classes, methods, database tables/entities, use cases, micro-tasks (tasks
that cannot be decomposed further), or business processes are used in
the computations of the frequencies of executions, sub-type/reference
relationships, coupling, and cohesion values to determine the rela-
tionship between elements. Semantic similarity analysis uses classes
against unique word matrices. Then, cosine similarity determines the
semantic similarity between the classes. Example matrix/table-based
11
modeling techniques include use-case-to-use-case similarity and use-
case-to-database-entity similarity matrices, subgraph similarity matri-
ces, class-to-database-object matrices, class-subtype (subtype relation-
ships between classes) matrices, class-reference-type matrices, micro-
tasks-to-data-object matrices, business process dependency matrices,
structural similarity matrices (structural relationships between classes
in a matrix format), conceptual similarity matrices (semantic similarity
between classes in a matrix format), read/write operations between
primitive types (further non-decomposable functions) and data storage,
user story coupling and cohesion matrices, BPMN structural and data
dependency matrices, feature tables, and use case to business process
mapping tables.
URI-based modeling is an approach to modeling web applications. Web
applications operate on a request/response base, where features are
requested via URI calls, and responses are redirected to the relevant
clients. Application servers like Tomcat and WildFly record logs with
the request/response details. These details are used to infer models of
the applications and identify the frequent URI calls that can be isolated
as separate services for better performance. Mean request/response
time (MRRT) and response size are used as indicators of network
overhead and resource utilization.
Domain element-based modeling is another approach used to repre-
sent software systems. This approach uses data flow diagrams, UML
diagrams, system capability models, and context maps to represent
the software systems. This is a manual approach with detailed system
diagrams with fine-grain information and capabilities that are analyzed
to identify bounded contexts.
Execution trace modeling uses software logs to identify the actual
methods/classes invoked during the runtime of the software systems.
The collection of active execution traces defines the overall behavior
of the system. In addition, inactive paths can be identified in the
runtime traces analysis [35]. Multiple techniques have been used in the
literature to investigate these execution traces. One approach is provid-
ing the software logs into the runtime trace analysis tool, e.g., Disco
process mining tool [19]. Tool-generated execution call graphs can
be used to analyze and extract the co-related classes/methods man-
ually [19] or programmatically identify the subtypes and common
subgraphs [52]. Execution traces can be further modeled and reduced
to identify functional atoms, which are coherent and minimal func-
tional units [29], identify direct/indirect call patterns in execution

https://jmeter.apache.org/
https://gatling.io/
https://wiki.eclipse.org/MoDisco/
https://guidedlda.readthedocs.io/en/latest/
https://www.scipy.org/
https://jmetal.sourceforge.net/
https://wordnet.princeton.edu/
https://github.com/AlDanial/cloc

T.I. Mohottige et al. Information and Software Technology 183 (2025) 107732
Fig. 5. Classification of microservice extraction techniques.
traces [35], and analyze class and method level execution traces based
on system functionalities [30].
Semantic-based modeling is used to model the system based on lin-
guistic information. Identifying system topics based on the application
domain [58], generating a vocabulary tree to illustrate the system
terminology [49], and examining the system subject and operations to
group the terms used in the API specifications [28,59] have been done
in semantic-based modeling.
Microservices extraction techniques

Fig. 5 illustrates the microservice extraction techniques identified in
the study. Following the modeling of the system using the aforemen-
tioned techniques, the extraction process is conducted to identify po-
tential microservice candidates. Clustering is used as the predominant
extraction technique.

Graph-based extraction is the leading technique due to the
widespread use of graph-based modeling. Hierarchical clustering is
used when the number of clusters is not given as an input. In contrast,
K-means clustering is used when prior knowledge of the number of
desired clusters (microservices) is available. The advantage of param-
eterizing the number of clusters is the ability to analyze the service
decomposition with any possible number of services. It can be used for
a better understanding of the system and coupling between the parts of
the system [31]. Two variations of hierarchical clustering that are used
are agglomerative clustering and divisive clustering. Agglomerative
clustering starts with data points and iteratively generates the clusters,
whereas divisive clustering starts with the complete dataset and splits it
into clusters. Furthermore, temporo-spatial clustering and collaborative
clustering are also used, implemented as adaptations of hierarchical
clustering and specifically hierarchical agglomerative clustering,

Community detection studied in large-scale networks has been ap-
plied for microservice extraction from graph models. For instance,
12
Girvan–Newman deterministic [60] and Epidemic Label Propagation
(ELP) non-deterministic [61] algorithms were applied to discover mi-
croservices. ELP algorithm takes in the number of clusters as an input
parameter. Louvain and fast community detection algorithms are based
on maximizing modularity within a given network. Louvain algorithm
is an unsupervised algorithm. It is based on modularity maximiza-
tion and does not require the number of communities or the size
of the communities as input [25]. Among the algorithms evaluated
for microservice detection, including MCL, Walktrap, Louvain, label
propagation, Infomap, and Chinese Whispers, it was observed that the
Louvain algorithm demonstrated the highest performance in supporting
the identification of microservices [33].

Hierarchical agglomerative clustering is used to analyze matrix/
table-based models of systems. DBSCAN is a density-based clustering
algorithm that aims to group elements that are densely packed in the
search space and identify noisy elements that do not fit into any clusters
using two concepts, which are neighborhood distance and the minimum
number of elements in a neighborhood [26].

The Non-dominated Sorting Genetic Algorithm II (NSGA II) and
Non-dominated Sorting Genetic Algorithm III (NSGA III) are multi-
objective optimization algorithms. A multi-objective optimization algo-
rithm aims to provide optimal solutions while achieving global optima
when multiple conflicting objectives, e.g., coupling, cohesion, and mod-
ularity, are to be considered [51]. Two studies have compared the
performance of NSGA II and NSGA III and identified that NSGA III does
not consistently outperform NSGA II in microservice discovery [62,63].

Several custom extraction techniques have been identified in the
literature. Manual and expert analysis are basic extraction techniques,
with artifact-driven approaches being the most widely used manual
microservice identification approaches.

T.I. Mohottige et al. Information and Software Technology 183 (2025) 107732
Table 7
Inputs and outputs of artifact-driven approaches.
 Study IDs Input and intermediate representation Output
 1 JSON-based representation of SSA to identify nano entities to

generate a graph with coupling as the edge weight.
Entities grouped into clusters to represent
microservices (service cuts).

 7 Component-attribute dataset. Use case to use case (U to U) and use
case to database entity (U to DB) relationship matrix to generate
the similarity matrix between use cases.

Candidate microservices with use case
grouping.

 8 Microservice Discovery Table (MDT) with requirement, features,
and stored procedure mapping.

MDT augmented with information on
microservices, entities, and rules.

 21 Business processes and dependencies (control, semantic, data, and
organizational) and dependency score matrix.

Groups of cohesive activities.

 40 Ubiquitous language, business operations, data operations, domain
models, database schema, and design documents.

Bounded contexts obtained after DDD
pattern analysis, business operation, and
data dependency analysis.

 41 System responsibilities obtained and ubiquitous language. Identified candidate microservice
boundaries.

 48 Data flow diagram (DFD) of the system. Set of decomposable DFDs and grouping of
DFDs as microservices.

 50 System functionalities—mapping between business requirements and
system services. Task dependency matrix for clustering.

Task decomposition as clusters to represent
microservices.

 54 Class model derived from UML diagrams—boundary (interface),
control (business logic), and entity (mapped to database table).

Entities separated as microservices.

 59 Set of business processes (BPs) to generate the dependency matrix. Set of clusters derived from dependency
matrix.

 69 Data flow diagrams (DFD) as the input. Relationship matrix
between primitive functions and data storage for extraction.

Primitive functions grouped into
microservices.

 73 BPEL of the system converted to Subject–Verb–Object table to
obtain system vocabulary trees.

System operations grouped as microservices
derived from vocabulary trees.

 74 Use case, requirements, and functionalities. From use cases,
generate operation/relation table.

Manually identified microservices from the
visualization of the operation/relation table.

 75, 115 Product backlog’s user stories. Decomposed microservices, backlog
diagram, and quality matrices.

 76 Architecture Domain Language (ADL) to identify bounded context
from ADL.

Converted and deployable system with
database and repository per microservice.

 77 Feature cards and feature table. Feature partitions identified as
microservices based on mapping rules.

 92 Business processes converted to structural and data dependencies
relationship matrix.

Clustered processes as microservices.

 116 System requirements to derive graph-based representation of
problem domain and correlation as vertices and edges.

Clustered problem domains as microservices.
3.2.4. (RQ2.4) how is data used?
Next, we discuss the inputs and outputs of existing approaches for

reengineering software systems into microservices.
The artifact-driven approaches use artifacts like UML diagrams,

Data Flow Diagrams (DFD), use cases, user stories, and architectural
documents as inputs. Most existing artifact-driven reengineering ap-
proaches are manual. However, several existing studies convert system
artifacts to computer-readable formats or intermediate representations
and use them to identify candidate microservices. After such (semi-
)automatic identification, recommended microservice candidates are
delivered as output. Such outputs can have visual representation or be
given as clusters of elements. Table 7 summarizes formats of inputs and
outputs used by the artifact-driven approaches. This table only covers
studies with clearly identified input and output details.

Study 1 is a semi-automated approach that takes System Speci-
fication Artifacts (SSA), such as UML and ER diagrams, use cases,
security zones, and entities, in JSON-based machine-readable format as
input. Study 7 uses use-case-to-use-case and use-case-to-database-entity
relationship matrices to generate a similarity matrix, which serves
as a basis for microservice identification. As input, ⟨component —
attribute⟩ data matrix is used, where components can be the use cases
of the system, and attributes are its properties. Study 8 uses business
requirements, features, and stored procedure/business logic mapping
for features as input. Then, a microservice discovery table (MDT) is
created with system requirements, corresponding features of interest in
13
the source code, and the stored procedures that implement the business
logic. This table is then used as the ground for microservice discovery.
The control, semantic, data, and organizational dependencies between
business processes represented in a matrix format with a dependency
score matrix are used in Study 21 as input to the microservice extrac-
tion. Studies 40, 41, 48, 54, 75, and 76 use domain artifacts, such as
UML, DFD, ADL, BPEL, and use case diagrams as input. Studies 40 and
41 produce bounded contexts identified as microservice candidates as
outputs. Studies 58 and 68 follow the same pattern and produce DFD
and entity groping, respectively, as output. In contrast, the results of
Study 75 and Study 115 are a set of matrices and microservices. The
matrices indicate the quality measures of extracted microservices in
terms of complexity, coupling, cohesion, interface count, and estimated
development time. Study 76, as output, provides a converted and
deployable system with a repository and database per microservice.
In Study 50, business requirements and functionalities are divided
into task levels, and a dependency matrix is created for microservice
identification. Studies 59, 69, and 92 use matrix-based representations
derived from business processes, while DFDs are used to extract the
microservices. A table-based representation of domain artifacts is in-
put to Studies 73, 74, and 77. Business Process Execution Language
(BPEL) models are used in Study 73 to derive the subject–verb–object
relationship table. This table is used as a vocabulary to identify system
operations. These system operations are used as output microservices.
In Study 74, use cases are used to construct operation/relations tables

T.I. Mohottige et al. Information and Software Technology 183 (2025) 107732
for requirements and functionalities. This table visually represents the
identified microservices and is the output of the approach. Study 77 is
grounded in system features. It has additional input of feature cards,
assigning weight to features. Microservice candidates are produced,
resulting from feature table analysis using predefined rules.

The inputs of static analysis approaches are source code, database
artifacts, and code repository histories. Most studies represent the
source code as graph- or matrix-based abstractions, which are then
used to discover microservices. Specifically, graph or matrix-based
clustering, genetic, and community detection algorithms are used. As
output, these approaches often provide clusters that define candidate
microservices. Table 8 summarizes the details of inputs and outputs
used by static analysis approaches. Again, only the studies with detailed
descriptions of the inputs and outputs are included in the table.

Inputs and outputs of the dynamic analysis approaches are detailed
in Table 9. These approaches often perform statistical studies over the
system’s performance data before identifying its constituent parts or
microservices. System logs are usually collected using instrumented
source code. The latter is also used to conduct use cases and functional
testing of the original and reengineered systems.

3.2.5. (RQ2.5) how are the reengineered systems evaluated?
Once the microservice extraction process is completed, the migrated

system can be evaluated from various perspectives. From a functional
viewpoint, the migrated system must retain all the essential features
and functions provided by the legacy system. Additionally, the perfor-
mance of the system should meet acceptable standards post-migration.
The system should also maintain key quality attributes, such as mod-
ularity, loose coupling, high cohesion, and appropriate granularity.
The literature highlights several techniques for evaluating reengineered
systems, including manual expert evaluations, prototype implementa-
tions, industrial case studies, cross-system comparisons, and property
assessments.

The basic approach for validating the refactored system is via expert
opinions, which can be carried out directly by experts evaluating the
refactored system or indirectly by comparing the resulting system with
expert-extracted solutions. Prototyping is another approach in which
the proposed reengineering technique is applied over one or multiple
open-source systems. In contrast, in industrial case studies, a migration
approach is evaluated based on industry applications. Cross-system
evaluation is a highly used technique in which the proposed solution
gets cross-compared with the available state-of-the-art techniques to
check if the new solution is superior. Property measuring is another
widely used technique. Properties like modularity, quality of decom-
position, and runtime performance of the original and reengineered
systems are calculated and compared. Moreover, a few studies have
considered hyperparameter optimization [26,59], where reengineering
technique configurations are evaluated for performance tuning.

The properties used to measure the quality of the reengineered
systems can broadly be categorized into six categories: runtime perfor-
mance, modularity, coupling, cohesion, independence of functionality
and evolvability, and quality of decomposition. These categories and
the studies in each category are summarized in Fig. 6.
Runtime performance

Runtime performance analyzes the properties of the reengineered
system during the execution phase and compares them with the corre-
sponding properties of the monolithic application. In this context, the
efficiency gain is the proportion of the total time taken by the legacy
system to process all the requests compared to the total time taken by
the corresponding microservices system to process the same requests.
Modularity

Modularity measures the quality of the clusters and how well com-
ponents of a system can be distinguished, decomposed, and recom-
bined. Structural modularity measures the soundness of the clusters
from the structural viewpoint, while conceptual modularity measures
14
Fig. 6. Classification of evaluation techniques.

the conceptual soundness of the clusters. The mean cluster factor
analyzes the interconnectivity and intraconnectivity of the clusters or
microservices. Feature modularity is a measure of feature distribution
across the system derived from the notion of the single responsibility
per microservice. The predominant feature number is the number of
occurrences of the most common feature divided by the sum of all
feature occurrences. Feature modularization is the sum of the predom-
inant feature number in every microservice divided by the number of
distinct features. In most of the studies, modularity calculation has been
conducted based on the method by Newman and Girvan [60].
Coupling

Coupling measures the level of interaction between services. Struc-
tural coupling refers to the structural relationships between services.
Afferent coupling quantifies the responsibility of a service by measuring
the number of classes in other services that depend on the classes within
the service. Efferent coupling indicates the extent to which the classes
in a service depend on the classes in other services. The instability index
is calculated as the ratio of efferent coupling to the sum of afferent and
efferent coupling, reflecting a service’s resilience to changes in other
services. Internal coupling measures the degree of direct or indirect
dependencies between classes within a microservice, while external

T.I. Mohottige et al. Information and Software Technology 183 (2025) 107732
Table 8
Inputs and outputs of static approaches.
 Study IDs Input and intermediate representation Output

 11 Source code, AST, and topic-based strength between components as a graph. Components partitions as microservice candidates.
 27 Source code and SQL queries are represented as classes to business object relationship

matrix, cosine similarity matrix with semantic similarity between classes and subtypes, and
reference relationship matrices generated by analyzing the class relationship graph
generated by the Mondrian tool.

Classes partitioned into clusters as microservices.

 28 Classes to business object relationship matrix, cosine similarity matrix with the semantic
similarity between methods, method call relationship matrix.

Methods partitioned into clusters as microservices.

 29 Source code represented as a graph with classes as nodes and edges as calls between the
classes. Classes and entry point matrix, classes vs. number of common entry points matrix,
and class inheritance matrix.

Cluster assignment matrix.

 31 Source code to MoDisco tool to get the system model as AST. Visual representation of EJB clusters and
microservices.

 32 Source code and repository represented as a graph. Classes/interfaces as vertices, static and
evolutionary coupling as edges.

Set of clusters as microservice candidates.

 33 Source code, database, set of proposed microservices in JSON format. Source code as
abstract syntax tree for structural data extraction.

Database and source code refactored as
microservices.

 44 Source code as a set of programs and data (data access write, read operations) represented
as a graph.

Visualization as the list of programs and data
using city metaphor.

 51 Source code and repository history represented as static, semantic, and evolutionary
coupling graphs.

Classes of clusters as microservices.

 53 System dependency graph of source code and database. Graph communities as recommended microservices.
 55 Source code is the input to the Arcan tool that creates a system dependency graph. Semantics of the migrating project with Java

classes as microservices.

 58 Database tables and table attributes for topic detection. Clusters of tables as microservices.
 61 System functionalities and persistent domain entities. Clusters of domain entities as microservices.
 66 Structural similarity and semantic similarity matrix. Classes grouped into microservices and outlier

classes.

 67 Classes in the source code. Classes grouped into microservices based on
dependencies.

 70 Open API specification based API details to generate API similarity graph. API clusters as microservices.
 79 Source code for reverse engineering to obtain layered architecture metamodel for class

clustering based on structural and data similarity.
Clusters of classes as microservices.

 80 Source code represented as class dependency graph. Visualization of graph clusters as microservices.
 85 Open API specification based API details and reference vocabulary details to calculate

semantic similarity.
API mappings as microservices.

 86 Source code to derive logical, semantic, and contributor coupling graphs. Clusters of classes as microservices.
 87 Open API specification based API details to extract operation names for semantic similarity. Clustered operation names as recommended

microservices.

 89 Source code to analyze static and semantic relationships using machine learning techniques
to generate graph-based representation of the system.

Clusters of classes as microservices.

 90 Source code to extract the methods and code embedding model using neural network
model (code2vec) and cluster based on semantic similarity.

Clusters of classes as microservices.

 91 Source code and database to generate dependency graph of classes, facades, and database
tables as vertices and call relationships as edges.

Identified microservice candidates from
dependency graph.

 93 Call graph of the source code with entry points and database access points. Clusters created around the detected seed classes.
 96 Source code with indicators that should not be parsed, a list of features and related

execution of the legacy system and the number of microservices to be identified.
The candidates as individual graphs and the
associated legacy system code.

 97 Source code semantic descriptors in Extended Backus–Naur Form (EBNF). Identified microservices in EBNF format.
 99 Source code model after extracting by MoDisco tool with service cuts (from Study 1) to

train the AI-based application.
Mapping between microservices and methods in
the source code.

 101 Source code as a graph with methods/entities as vertices and the number of invocations of
methods/entities as edge weight.

Clustered methods/entities as microservices.

 109 Graph-based representation of the source code constructed by using the AST and call graph
of the source code.

Candidate microservices identified by combining
highly coupled classes in the graph.

 111 Call graph generated from the source code. Set of clusters as candidate microservices.
 112 Source code classes/methods identified by Java call graph and repository history to

generate similarity matrix of related classes/methods.
Set of clusters as candidate microservices.

 117 Database and source code classes mapping to calculate semantic similarity. Set of graph-based clusters as microservices.
15

T.I. Mohottige et al. Information and Software Technology 183 (2025) 107732
Table 9
Inputs and outputs of dynamic approaches.
 Study IDs Input and intermediate representation Output
 2 Log files collected after AOP-based instrumentation

feed into the Disco tool to obtain graphical
representation of processes.

Multiple decomposition options with matrix-based
ranking for solution selection.

 5 Web server access logs to analyze URI invokes. URI frequency and mean request response time
(MRRT)-based clusters.

 6 Web server access logs to analyze URI invokes. Response size- and time-based clusters.
 13 Monitoring logs generated using Kieker with full

business operations coverage.
Method invocation logs with time and frequency
as inputs for a node attribute network.

 24 System logs with major functionality and use case
coverage.

Call graph generated using the Disco tool,
combined with static analysis results of business
objects and operations for clustering.

 25 System logs with major functionality and use case
coverage.

Call graph generated using the Disco tool,
combined with business objects to identify
single-entry-single-exit (SESE) regions to derive
frequently executed patterns (FEPs).

 26 Execution logs collected by simulating user
behavior using Selenium scripts.

Call graphs related to executions.

 39 Collected execution traces using the Kieker tool
with a predefined functional test suite.

Grouped functional atoms after applying NSGA-II
on identified functional atoms from execution
traces.

 42 Use case-based runtime logs to identify direct and
indirect call relationships to generate a similarity
matrix between classes.

Clustered set of class partitions based on similarity.

 43 Use case-based logs collected from instrumented
source code to generate a calling context tree.

Classes as clusters derived after combining
dynamic data with static information.

 46 Live monitoring and visualization using the
ExploreViz application.

Identified bounded contexts by static analysis and
ExploreViz visual results.

 52 Operational data (entry points, classes, queries)
collected using the Silk tool.

Classes as clusters after combining results with
system static data.

 57 System logs to analyze statistics and invoke
relationships to generate the call graph with
dynamic tracing frequencies.

Clustered microservice partitions.

 72 Collected traces after AOP-based instrumentation
to feed into the Disco tool.

Microservices identified after visually inspecting
the tool-generated call graphs.

 83 Data on the frequency of method invokes collected
by instrumenting the source code.

Identified microservice boundaries after combining
with static details of the source code.

 88 Log files generated after instrumenting the source
code and executing test cases.

Identified microservices after execution traces
analysis.

 100 Traces collected from the software system. Set of class/package interactions as microservices.
 108 Execution traces to derive an object call

relationship matrix.
Clusters of classes as microservices.
coupling assesses the dependencies between a class in a candidate
microservice and external classes. The absolute importance of a service
(AIS) is defined as the number of clients that invoke at least one oper-
ation of the microservice interface. Similarly, the absolute dependence
of a service (ADS) refers to the number of other microservices that
invoke at least one operation of the service. Finally, interdependence
represents the total number of dependent service pairs.
Cohesion

Cohesion measures the degree of interconnectedness of a service.
It represents the number of static calls within a server over all the
static calls. Relation cohesion is the number of internal relationships,
including inheritance, method invocations, access to class attributes,
and access via references. Cohesion at the message level (CHM) defines
the cohesiveness of interface messages, while cohesion at the domain
level (CHD) is the cohesiveness of services measured using the similar-
ity of functions. Lack of cohesion is the number of pairs of services
that do not have interdependence. Density is the degree of internal
co-relation of each microservice.
Independence of functionality and evolvability

A microservice should be independent and support flexible changes
in the system that do not affect other services. Therefore, functional
16
independence is an essential characteristic of microservices. Interface
number is the average number of interfaces published by a microser-
vice. The percentage or number of calls between two microservices is
measured as the interaction number or interpartition call percentage.
Operation number (OPN) is the number of operations provided by
the microservice. Internal and external co-change frequency is the
frequency of entity changes inside and outside the microservices cal-
culated based on the revision history. The frequency of external calls
is measured as the fraction of the number of calls over the number
of classes in a microservice. In addition, the fraction between exter-
nal change frequency (across services) and internal change frequency
(within services) is known as the REI ratio. Ideally, changes inside
a service should be higher than those across the services. Therefore,
the value is expected to be less than one. Smaller values indicate the
services tend to evolve independently [29].
Quality of decomposition

The measures from this category assess the quality of the functional
distribution across the microservices. This distribution can be, for
instance, in terms of use cases, operations, or classes. Business context
purity indicates business use case distribution across the services. It is
defined as the mean entropy of business use cases per partition. DB
Transaction purity measures the distributed transactions. This measure

T.I. Mohottige et al. Information and Software Technology 183 (2025) 107732
Table 10
Evaluated applications.
 Application Study IDs Technology

 JPetStore 7, 11, 13, 39, 42, 53, 57, 66, 80, 88, 90, 108, 115, 116 Java
 Acme Air 6, 7, 29, 53, 66, 80, 93 Java
 Cargo Tracking System 1, 7, 48, 49, 77, 80, 115 Java
 Daytrader 29, 43, 53, 55, 57, 66, 93 Java
 Springblog 39, 80, 88, 90, 113 Java
 Jforum 39, 88, 89, 90 Java
 Apache Roller 39, 88, 90 Java
 Spring boot pet clinic 44, 66, 89, 93 Java
 E-commerce system 49, 58 Java
 Microservices event sourcing 66, 70 Java
 Kanban board 66, 70 Java
 TFWA (Teachers Feedback Web Application) 5, 7 Java
 Train Ticket Microservice Benchmark 12, 88 Java
 Plants by WebSphere 29, 53 Java
 SugarCRM 24, 25, 26, 27 PHP
 ChurchCRM 24, 25, 26, 27 PHP
prioritizes decomposition with dedicated databases per microservice.
Per each DB table, calculate the partitions that access the table to
get the entropy. Smaller entropy values indicate high transactional
purity [23]. The degree of even distribution of the classes among the
microservices has been measured in non-extreme distribution. Code
redundancy rate is the code volume difference between the original
and migrated systems over the original code. Domain redundancy rate
measures the duplication of responsibilities. The team size of each
service is defined as the number of functions provided by the partition.
Reuse is measured by the relationship between identified services and
the legacy system users, e.g., API calls and UI interactions. Analysis
needs to be conducted in the migrated system to calculate this property.
Other measures

MoJoSim and MoJoFM are used to evaluate a microservice-based
architecture against a reference architecture, e.g., against an expert-
identified architecture. It is calculated by measuring the minimum
number of operations, e.g., moves or joins, required to transform the
identified microservice architecture to the reference architecture [32,
64]. API division accuracy [65] is a measure to calculate the efficiency
of API identification. It calculates the accuracy by relating the correctly
identified API against all APIs. The cluster-to-cluster coverage (c2ccvg)
measures the degree of overlap of the implementation-level entities
between two clusters [64].

Certain studies [26,59] perform hyperparameter optimization to ex-
plore multiple alternative decompositions to identify optimal ones with
respect to the properties discussed above. Furthermore, the Silhouette
coefficient (SC) is used to evaluate the performance of the clustering
algorithms [59,66].

Existing applications have been used to implement and evaluate
the proposed reengineering solutions. Most of the reengineered systems
were Java-based, with limited PHP systems identified. Applications
reengineered in at least two works are listed in Table 10.

Extensive evaluations have been conducted in several studies, where
the proposed solution was assessed against existing migration frame-
works, benchmarked against established applications, or subjected to
comprehensive prototyping and property calculations. The evaluation
criteria employed by key studies are presented in Table 11.

3.3. (RQ3) what are the challenges and limitations of existing methods for
reengineering software systems into microservice-based systems?

This section discusses challenges associated with microservices mi-
gration. Deciding to embark on a legacy system migration project poses
several organizational challenges, including:

• Defining strategic goals: Business owners and analysts must set
clear strategic goals and decide whether to pursue microservices
migration. This requires identifying and clarifying the business
and technical drivers behind the migration [67,68].
17
• Organizational restructuring : Microservices migration often neces-
sitates changes in organizational structure [67,69]. Large teams
need to be split into smaller, specialized teams capable of man-
aging microservices. Hierarchical organizations may require sig-
nificant restructuring to support this transition effectively.

• Resource and cost management : Preparing resources and manag-
ing migration costs are critical challenges. This includes costs
for human resources, hardware, and tools, as well as expenses
related to design, development, and infrastructure setup. Orga-
nizations must also identify and train key developers to handle
the reengineered systems [67,70].

Moreover, various technical challenges associated with microservices
migration have been identified, as summarized below:

• Lack of expert knowledge and tools: Migration to microservices of-
ten requires specialized expertise in DevOps and cloud technolo-
gies. Organizations must establish continuous integration (CI) and
continuous delivery (CD) pipelines and adopt DevOps practices
during the migration process [67,69].

• Design decisions: Making design decisions and modifying the
legacy system is challenging due to the complexity of exist-
ing software and the lack of comprehensive design documenta-
tion [68].

• Deployment and operational challenges: Migrating to microservices
introduces a complicated deployment process, increased opera-
tional overhead, difficulties in debugging and testing, and higher
resource utilization [70].

• Database decomposition: Splitting the centralized database layer
into distributed components can lead to data inconsistencies be-
tween services [71].

• Managing statefulness: In microservice architectures, managing
state is more complex than in monolithic systems due to their
distributed nature. Stateful systems produce outputs dependent
on previous interactions, posing significant challenges in ensuring
consistent state management [71].

Several limitations were identified in the current migration frame-
works. The primary limitation is the lack of a standardized mechanism
for ensuring optimal migration and assessing the quality of decompo-
sition. Furthermore, depending on the approach employed, identified
limitations across various service migration systems are outlined in Ta-
ble 12; the last column mentions study IDs in which the corresponding
limitations were stated.

4. Discussion and future directions

This section discusses the insights we inferred from this literature
review. Specifically, we discuss the insights into the artifact-driven,

T.I. Mohottige et al. Information and Software Technology 183 (2025) 107732
Table 11
Cross-system evaluation frameworks.
 ID Name Evaluation type Details

 1 Service cutter Prototype and case
study

Evaluated the approach with cargo tracking system and trading system.

 6 Compared with
legacy system

ACME air web application compared in monolith and microservices versions.

 7 Green micro Cross comparison Cross compared with FoSCI, CoGCN, Mono2Micro, MEM, Service Cutter, API, DFD, and
Business process analysis.

 11 Topic modeling Case study Evaluated using 200 Java Spring applications selected from GitHub for property calculations.
 13 Cross comparison Evaluated against Fosci, DFD approach and distributed source code representation.
 25, 26, 27 Compared with

legacy system
Compared Sugar CRM and Church CRM legacy and microservice versions.

 28 Compared with
legacy system

Compared Dolibarr open-source enterprise management system legacy and microservice
versions.

 29 Co_GCN Prototype Evaluated using Daytrader, Plants by websphere, Acme-Air, and Diet App
 39 FOSCI Cross comparison Compared with LIMBO, WCA, and MEM approaches.
 42 Mono2Micro Cross comparison Compared with FOSCI, CO_GCN, and Munch approaches.
 48 DFD Cross comparison Cross compared with Service cutter and API analysis approach.
 49 Knowledge graphs Prototype Evaluated the approach with E-commerce application and cargo tracking system.
 51 Steinmetz Case study Evaluated properties using 14 applications.
 53 CARGO Cross comparison Evaluated against Mono2Micro, CoCGN, MEM, and FOSCI.
 61 Case study Applied the approach to 121 monolith applications for comparison.
 66 Hierarchical DBSCAN Benchmark and

cross comparison
Evaluated existing microservices projects — Spring PetClinic, Microservices Event Sourcing,
and Kanban Board Cross compared with Bunch, CoGCN, FOSCI, MEM, and Mono2Micro
frameworks.

 70 API graph Benchmark and
cross comparison

Evaluated existing microservices projects Kanban, Money Transfer, Piggy Metrics, Microservices
Event Sourcing, and Sock Shop Cross compared with Service Cutter.

 77 Feature table Cross comparison Evaluated against DFD, Service Cutter, API analysis frameworks.
 85 Interface analysis Prototype Precision and recall properties evaluated using Cargo tracking system.
 86 MEM Case study Evaluated 21 projects for logical, semantic, and contributor coupling.
 87 Benchmark Evaluated existing microservices projects Kanban Board, and Money Transfer app. Amazon Web

Services and PayPal evaluated using OpenAPI specifications.

 88 FOME Cross comparison Evaluated LIMBO, WCA, and MEM frameworks.
 89 Case study and

cross comparison
Evaluated against existing Service Cutter and topic modeling frameworks. Five applications
including PetClinic JForum 3, and Compiere applications evaluated for accuracy.

 90 Case study and
cross comparison

Evaluated against FOME and multi-objective evolutionary search frameworks. Property
evaluated in JPetStore, SpringBlog, Jforum, Roller applications.

 108 Log2MS Case study and
cross comparison

Evaluated against FOSCI and Mono2Micro frameworks. Property evaluated in four applications
including JPetStore.

 115 Backlog Case study and
cross comparison

Evaluated against Domain-driven design, Interface analysis, and Service Cutter frameworks.
JPetStore, Cargo Tracking System, and Foristom Conferences(real life system) used for
evaluation.

static, dynamic, hybrid, and database analysis approaches, emerging
approaches, ways to evaluate the reengineered systems, and reengi-
neering paradigms. Finally, the section proposes directions for future
research based on our findings.

4.1. Artifact-driven analysis

The artifact-driven approaches constitute 32% of the reviewed stud-
ies. Service Cutter [31] is one of the pilot artifact-driven studies in
microservice identification. Hence, it has been used as a baseline in
multiple studies. The dataflow-driven technique [46] is another promi-
nent artifact-driven approach comprising quality attribute evaluation.
Greenmicro [72], Microservice Backlog [34], and the Feature Table ap-
proach [47] have shown promising experimental results in comparisons
with other migration studies. Greenmicro and Microservice Backlog are
notable studies that involve comprehensive cross-system analysis.

4.2. Static analysis

The state-of-the-art technique for reengineering software systems
into microservices is static analysis. Among the primary studies re-
viewed, 44% discuss static analysis techniques, with structural anal-
ysis dominating over semantic and evolutionary coupling approaches.
Prominent structural analysis techniques include CoGCN [22], Cargo-AI
18
Guided Dependency Analysis [23], and dependency-based microser-
vice decomposition [24]. Notably, Cargo-AI Guided Dependency Anal-
ysis stands out, as evaluations against benchmark studies confirm its
effectiveness. Other approaches, such as microservice identification
through topic modeling [25] and the method by Sellami et al. [26],
utilize ASTs combined with graph-based and matrix-based algorithms,
respectively, for structural and semantic analysis. Evolutionary cou-
pling techniques, though less prevalent, offer significant contributions.
For example, MEM [21] constructs logical, semantic, and evolution-
ary coupling graphs, employing a minimum spanning tree-based algo-
rithm for microservice detection. Similarly, the automatic extraction
approach [32] uses fast community graph clustering on graphs gen-
erated with structural and semantic information, while Löhnertz and
Oprescu [33] integrates static, semantic, and evolutionary coupling
graphs, experimenting with multiple clustering algorithms. Their find-
ings highlight the Louvain clustering algorithm as particularly effective.
Despite their promise, static analysis techniques face challenges, no-
tably imprecise program analysis, as identified by Nitin et al. [23].
These approaches also rely heavily on existing tools, underscoring the
need for advancements in program analysis precision.

4.3. Dynamic analysis

Limited experiments have been conducted using dynamic analysis
techniques. One approach supplies software logs as input to the process

T.I. Mohottige et al. Information and Software Technology 183 (2025) 107732
Table 12
Limitations of existing migration approaches.
 Limitation Description Study IDs
 Significant effort required to transform
software system artifacts

The artifact-driven approach requires significant manual effort to transform system
artifacts for further processing. For example, Service Cutter relies on system artifacts
such as use cases and domain models, which must be manually converted into JSON
format to enable subsequent processing and clustering.

1

 Availability of supportive tools Tools incorporated into the process, such as Disco, can produce inaccurate results,
directly impacting the output. Similarly, static analysis tools suffer from imprecise
program analysis, which can compromise the quality of the migration process.

2, 24, 25, 27, 28

 Applicability of the solution The applicability of proposed solutions is limited and often context-specific. For
instance, solutions that utilize request URLs are applicable only to Web applications,
while those based on Java annotations and language keywords are restricted to
Java-based systems. Likewise, EJB-based identification methods are exclusively
applicable to Java EE EJB-based architectures.

5, 6, 11, 31, 33

 Quality of the artifacts The effectiveness of proposed solutions are highly dependent on the quality of the
input artifacts. For example, studies using semantic analysis are heavily influenced
by the terminology used in the source code. Similarly, the quality and
comprehensiveness of artifacts, such as data flow diagrams, directly affect the quality
of the identified microservices. Solutions based on object-oriented principles rely on
the correct application of object-oriented programming concepts within the source
code.

11, 48, 67

 Challenges in database decomposition Database decomposition remains a significant challenge. ORM relationships in the
source code are often leveraged to reduce complexity, but not all source codes
support ORM frameworks. Furthermore, existing solutions primarily focus on
relational databases, leaving NoSQL databases largely unaddressed in the
decomposition process.

76, 86

 Coverage of the inputs The coverage of system inputs directly impacts the quality of the outputs. For
example, in dynamic analysis, the extent to which use cases generate system logs
significantly influences the results.

2, 39, 108

 Complexity of the algorithms The algorithmic complexity is a key factor contributing to performance limitations.
Many existing algorithms and libraries are heavily utilized for clustering and
extraction tasks, and the time complexity of these algorithms directly affects the
overall performance of the migration process.

1
mining tool Disco for further analysis. However, certain processes
have been incorrectly identified by this approach [19,73]. FoSCI [29],
FoME [30], and mono2micro [35], Log2MS [74] are the prominent
studies in dynamic analysis. Moreover, mono2micro is a commer-
cially available product. It collects software log traces by executing
use cases and identifies unique traces to derive direct and indirect
calls to generate a similarity matrix followed by hierarchical cluster-
ing. Furthermore, its strategy has been compared with FoSCI [29],
CoGCN [22], Bunch [75], and MEM [21] to validate the results. FoSCI
uses reduced execution traces to identify functional atoms using the
NSGA II multi-objective optimization algorithm. FoME collects logs
from test executions and generates descriptive log traces for clustering
and shared class processing. Both FoSCI and FoME use the Kieker
runtime monitoring tool for property evaluation and comparing results
against MEM [21], LIMBO [76], and WCA [77]. Log2MS [74] proposes
a Model-Driven Development (MDD)-based brownfield design approach
for identifying microservices using only execution logs. It utilizes a mi-
croservice diagram, microservice sequence diagram, and microservice
architecture modeler to generate microservices, drawing inspiration
from greenfield software development practices.

4.4. Hybrid analysis

Among the available hybrid analysis studies, microservice extrac-
tion using knowledge graphs [78] stands out as a comprehensive
approach as an approach that integrates static and artifact-driven anal-
ysis. It constructs a graph from diverse inputs, including source code,
database schemas, design documents, and API documentation, incor-
porating data, modules, functions, and resource details. The Louvain
community detection algorithm is then applied to identify microser-
vice candidates. Several other hybrid approaches combining static and
dynamic analysis have also demonstrated promising results [36,43,55,
79,80]. The node attribute network approach [79] uses call graphs to
analyze method invocations and employs the Kieker runtime analysis
19
tool to generate a graph structure that is processed using the Leiden
community detection algorithm. It is one of the most comprehen-
sively evaluated hybrid methods, compared against techniques like
FoSCI [29], the dataflow-driven approach [46], and the distributed
representation approach [81]. MonoBreaker [43] combines static struc-
tural analysis with runtime monitoring data to generate a graph model.
Clustering is performed using the Girvan–Newman algorithm, with
evaluations against Service Cutter [31] demonstrating that hybrid anal-
ysis yields better results than static analysis alone. Similarly, the Mi-
grating Web Applications approach [55] enhances dependency graphs
created through static analysis with dynamic analysis data, using the
K-means clustering algorithm to identify microservice candidates. How-
ever, this study focuses solely on evaluating the properties of the
reengineered system. Other notable hybrid approaches [36,80] employ
the NSGA-III multi-objective optimization algorithm to evaluate various
system properties, further showcasing the potential of hybrid anal-
ysis techniques in improving microservice identification and system
reengineering.

4.5. Database analysis

Database migration poses significant challenges, particularly in
transitioning from monolithic architectures to microservices-based sys-
tems. Key issues include maintaining data consistency, handling dis-
tributed transactions, and ensuring seamless integration of diverse
database types. To address these challenges, the following patterns have
been identified [82,83]:

1. Schema per microservice: Each microservice maintains its
schema while sharing the same database server.

2. Database per microservice: Each microservice is assigned a ded-
icated database, promoting modularity and autonomy.

3. Database as a microservice: The database is encapsulated as a
standalone microservice, with all interactions managed via APIs.

T.I. Mohottige et al. Information and Software Technology 183 (2025) 107732
4. Optimized read-only database replica: A replica of the primary
database is optimized for read operations, while the primary
database handles both reads and writes.

Among these, the ‘‘database per microservice’’ pattern is widely pre-
ferred in the literature [23,50,84] due to its alignment with microser-
vices principles. However, it introduces challenges in handling dis-
tributed transactions. As a mitigation strategy, eventual consistency is
often employed, where failed requests are queued for reattempts [84].

An innovative approach to migrating monolithic databases to multi-
model polyglot persistence systems [82] draws inspiration from poly-
glot programming principles. This approach conceptualizes the
database as a microservice, enabling seamless integration of SQL and
NoSQL databases through an API. By tailoring database types to the
specific data needs of the software system, this approach enhances
flexibility and scalability in microservices-based architectures.

Service extraction has also considered the persistence layer in
applications [85], including mappings between SQL queries and ob-
jects [51,52,86]. One notable study focuses on identifying microservice
candidates from business rules embedded in stored procedures [87].
Additionally, an Object Relational Mapping (ORM)-based system has
been proposed to evaluate reengineered systems using specific proper-
ties [88]. Widely used databases in microservices architectures include
Redis, MongoDB, MySQL, PostgreSQL, and MS SQL [82], highlighting
the diversity of tools that support modern database management in
distributed systems.

4.6. Emerging techniques

Microservices Backlog [34] employs genetic programming to iter-
atively identify the optimal combination of microservices through the
application of an objective function. The objective function utilizes a
granularity matrix, incorporating coupling, cohesion, granularity, per-
formance, complexity, and development time. A comprehensive evalua-
tion was conducted [34], wherein the results were cross-compared with
those obtained from Service Cutter, Interface Analysis, and FOSCI.

Another use of genetic algorithms is search-based microservices
detection using Non-dominated Sorting Genetic Algorithms (NSGA).
The NSGA algorithms employ multiple decision-making criteria for
mathematical optimization problems involving two or three objective
functions to be optimized simultaneously [36,37]. In general, studies
have utilized NSGA-II and NSGA-III with two or three criteria [29,36,
51,80,86]. The toMicroservice approach stands out as it incorporates
five criteria for search-based detection, including coupling, cohesion,
feature modularization, network overhead, and reuse.

Microminer [56], and the distributed representation of the source
code [81] have introduced machine learning to microservice extrac-
tion. Microminer uses a machine learning-based word2vec model with
the Louvain community detection algorithm, while the distributed
representation of the source code uses a code2vec model with the affin-
ity propagation algorithm. However, these approaches have no cross-
comparison with prominent migration techniques. Instead, property
calculations were performed to evaluate the proposed solutions.

Reverse engineering of software systems to derive microservices
is rarely used. Only three reviewed studies are grounded in reverse
engineering of monolithic systems [38,64,89]. The model-driven re-
verse engineering approach [38] integrates reverse engineering with
reinforcement learning to create a mapping between the identified
legacy system model and a set of microservices. Applying reverse engi-
neering techniques to uncover the architecture of a system can facilitate
the advancement of microservice discovery methods, particularly in
cases where legacy systems are hindered by inadequate documentation
regarding their architectural structure.
20
4.7. Evaluation

MicroValid [90] is the only framework identified in the primary
studies that offers a validation methodology specifically for microser-
vices. It performs static analysis of the identified microservice attributes
to assess the quality of decomposition, focusing on factors such as gran-
ularity, coupling, and cohesion. The evaluation of migrated systems has
been mainly based on property calculation. Several prominent studies
have cross-compared with previous studies [23,26,29,30,34,35,47,72,
79,91]. Service Cutter [31] is the classical migration study used for
cross-comparison. Interface numbers, inter-partition call percentages,
and structural modularity are the widely used properties. Even though
coupling has been evaluated in many studies, there is no convergence in
the evaluated definitions of this concept. Afferent coupling (measuring
incoming dependencies) and efferent coupling (outgoing dependencies)
are frequently used coupling measurements. Precision, recall, and F-
measure are used for evaluation when a standard decomposition is
available for comparison. This can be an available microservice system
or an expert decomposition result.

Existing microservice-based benchmark systems like Spring Pet
Clinic,13 Kanban,14 Money Transfer,15 Piggy Metrics,16 Microservices
Event Sourcing (MES),17 Sock Shop18 have been used for evalua-
tion [27]. Limited studies focused on hyper-parameter optimization
[26,59]. Yedida et al. [92] discussed performance improvements by
optimizing hyper-parameters.

The majority of the migration frameworks applied their concepts to
monolithic open-source projects. JPetStore is the most frequently used
project for implementation and testing. Moreover, Acme Air, Cargo
Tracking System, and Daytrader applications were used frequently in
the reengineering projects. Web-based applications like online shopping
systems, learning management systems, banking systems, ERP sys-
tems, real-estate applications, web-based IDEs, taxation office systems,
and police department systems were also used as proofs of concept.
Above 80% of the re-engineered applications in the literature are Java-
based projects. Database-oriented applications, like stored procedure
decompositions, have been discussed in relatively few studies [51,87].

4.8. Paradigms

Several paradigms for microservices reengineering have been iden-
tified during our analysis, such as Domain-Driven Design (DDD), work-
flow analysis, feature analysis, system semantic analysis, repository
analysis, interface analysis, and runtime analysis. Domain-driven de-
sign focuses on the business domain and identifies the boundaries of
the microservices. Workflow analysis uses business processes and work-
flows to identify microservices. Analysis and grouping of dependent
system features were used in feature analysis. System semantics analy-
sis includes semantics of system features and/or source code semantics
analysis. Repository analysis includes the source code structure, ver-
sion control history, and data source analysis. Interface analysis uses
web service definitions and messages disseminated via the interfaces.
Finally, runtime analysis includes analysis of execution traces and logs.

Incremental and iterative transitions are the preferred industry ap-
proach for migrating legacy systems to microservices [67,68,93–95], as
opposed to direct migration. Specifically, the Strangler Fig Pattern [95,
96] is inspired by the growth behavior of the Strangler Fig plant, which
gradually encircles and overtakes a tree, ultimately leading to the
decline of the tree over time. Similarly, microservices are introduced
to the legacy system incrementally and can lead to the ultimate decline
of the legacy software system.

13 https://github.com/spring-petclinic/spring-petclinic-microservices.
14 https://github.com/eventuate-examples/es-kanban-board.
15 https://github.com/cer/event-sourcing-examples.
16 https://github.com/sqshq/PiggyMetrics.
17 https://github.com/chaokunyang/microservices-event-sourcing.
18 https://github.com/microservices-demo/microservices-demo.

https://github.com/spring-petclinic/spring-petclinic-microservices
https://github.com/eventuate-examples/es-kanban-board
https://github.com/cer/event-sourcing-examples
https://github.com/sqshq/PiggyMetrics
https://github.com/chaokunyang/microservices-event-sourcing
https://github.com/microservices-demo/microservices-demo

T.I. Mohottige et al. Information and Software Technology 183 (2025) 107732
4.9. Gaps and future directions

Next, we highlight several gaps we identified in research on reengi-
neering of software systems into microservices systems and suggest
directions for future work in this area.

Dynamic analysis and AI-based techniques remain underutilized
and are rarely integrated into existing approaches. This gap presents
significant opportunities for innovation and further research.

Existing studies have primarily focused on identifying microservice
candidates, with runtime performance evaluations limited to metrics
like latency, throughput, availability, and network overhead. How-
ever, behavioral consistency in re-engineered systems remains largely
underexplored. Given the automated nature of extraction processes,
developing robust validation mechanisms is critical to ensuring system
integrity and reliability.

Evaluating the dynamic rearrangement of microservices under vary-
ing workloads is crucial for improving the efficiency of migrated sys-
tems. Under low system loads, maintaining a monolithic system may be
more efficient, while transitioning to a microservices-based architecture
can optimize performance under higher loads. Future work can study
strategies for achieving optimal resource utilization of microservices
under different workloads.

While the ‘‘database per microservice’’ pattern is often recom-
mended, the practical challenges of partitioning databases into mi-
croservices remain underexplored. Key issues, such as the performance
impact of distributed transactions and methods for ensuring data con-
sistency, are yet to be thoroughly investigated. Addressing these gaps is
essential for optimizing microservice architectures and ensuring their
reliability.

The effort required to redesign functionalities during microservice
decomposition has been partially addressed in previous work [97],
which introduced a complexity metric for migration. However, there
remains a need for a systematic approach to accurately calculate the
cost and complexity of the entire migration process, incorporating both
technical and resource-related factors.

The impact of the granularity of microservices on system perfor-
mance has not been a focus in previous studies. The Microservice
Backlog approach [34] takes granularity into account. However, the
impact of microservice granularity on the performance of the system
requires further studies.

While the identification of microservices has been automated, the
extraction of microservices from the original monolithic system remains
mostly a manual task. Therefore, there is a need for the development
of automated code refactoring approaches to facilitate the generation
of microservices and their communication interfaces.

5. Conclusion

A broad analysis of existing approaches for reengineering software
systems into microservices systems has been performed in this literature
review. Initially, 4843 papers were selected from five research paper
libraries. After multiple stages of filtering, 117 primary studies were
selected for further analysis. The identified studies were analyzed based
on multiple perspectives, including employed techniques and tools,
data usage, evaluation, limitations, and challenges. We have identi-
fied well-explored, state-of-the-art techniques like static analysis and
areas with limited focus to date, like dynamic analysis. In addition,
the unavailability of convergence in the studies proves that microser-
vice migration research is still in its infancy. Finally, microservice
reengineering is a significant study area that can be improved further.
Future studies can focus on exploring new techniques and evaluation
strategies for microservice discovery, implementation, deployment, and
assessment.
21
CRediT authorship contribution statement

Thakshila Imiya Mohottige: Writing – original draft. Artem
Polyvyanyy: Writing – review & editing, Writing – original draft,
Supervision. Colin Fidge: Writing – review & editing, Supervision.
Rajkumar Buyya: Writing – review & editing, Supervision. Alistair
Barros: Writing – review & editing, Supervision.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
Alistair Barros, Colin Fidge, Artem Polyvyanyy reports financial sup-
port was provided by Australian Research Council. If there are other
authors, they declare that they have no known competing financial in-
terests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgment

This work was in part supported by the Australian Research Council
project DP220101516.

Appendix. Study list
 ID Full reference
 1 M. Gysel et al. Service cutter: A systematic approach

to service decomposition, in: Service-Oriented and
Cloud Computing, 2016 [31].

 2 D. Taibi, K. Systä, From monolithic systems to
microservices: A decomposition framework based on
process mining, International Conference on Cloud
Computing and Services Science, 2019 [19].

 3 F. Auer et al. From monolithic systems to
microservices: An assessment framework,
Information and Software Technology, 2021 [18].

 4 H. Michael Ayas et al. The migration journey
towards microservices, in: Product-Focused Software
Process Improvement: 22nd International
Conference, 2021 [68].

 5 B. Deepali et al. Partial Migration for Re-architecting
a Cloud Native Monolithic Application into
Microservices and FaaS.

 6 A. Muhammad et al. Unsupervised Learning
Approach for Web Application Auto-Decomposition
into Microservices. Journal of Systems and Software,
2019

 7 D. Bajaj et al. Greenmicro: Identifying microservices
from use cases in greenfield development, IEEE,
2022 [72].

 8 M. H. Gomes Barbosa, P. H. M. Maia, Towards
identifying microservice candidates from business
rules implemented in stored procedures, IEEE
International Conference on Software Architecture
Companion, 2020 [87].

 9 R. Belafia et al. From Monolithic to Microservice
Architecture: The Case of Extensible and
Domain-Specific IDEs. ACM/IEEE International
Conference on Model Driven Engineering Languages
and Systems Companion (MODELS-C), 2021.

 10 K. Bozan, K. Lyytinen, G. M. Rose, How to transition
incrementally to microservice architecture,
Commun. ACM, 2020.

 11 M. Brito et al. Identification of microservices from
monolithic applications through topic modelling,
36th Annual ACM Symposium on Applied
Computing, 2021 [25].

T.I. Mohottige et al. Information and Software Technology 183 (2025) 107732
 12 V. Bushong et al. ‘‘Using Static Analysis to Address
Microservice Architecture Reconstruction,’’
International Conference on Automated Software
Engineering, 2021.

 13 L. Cao, C. Zhang, Implementation of domain-oriented
microservices decomposition based on node-attributed
network, 11th International Conference on Software
and Computer Applications, 2022 [79].

 14 A. Carrasco et al. Migrating towards microservices:
Migration and architecture smells, 2nd International
Workshop on Refactoring, 2018 [94].

 15 L. Carvalho et al. Analysis of the criteria adopted in
industry to extract microservices, 7th International
Workshop on Conducting Empirical Studies in Industry
(CESI) and 6th International Workshop on Software
Engineering Research and Industrial Practice, 2019
[98].

 16 C. Tomas Cerny et al. On isolation-driven automated
module decomposition.Conference on Research in
Adaptive and Convergent Systems, 2018.

 17 C. Nacha et al. Software Architectural Migration: An
Automated Planning Approach. ACM Trans. Softw. Eng.
Methodol, 2021.

 18 Christoforou, A. et al. Supporting the Decision of
Migrating to Microservices Through Multi-layer Fuzzy
Cognitive Maps. Service-Oriented Computing. ICSOC,
2017.

 19 da Silva, C.E. et al. SPReaD: service-oriented process
for reengineering and DevOps. SOCA, 2022.

 20 Hugo H. O. S. da Silva et al.,Towards a Roadmap for
the Migration of Legacy Software Systems to a
Microservice based Architecture. 9th International
Conference on Cloud Computing and Services Science,
2019 [48].

 21 M. Daoud et al.,Towards an Automatic Identification of
Microservices from Business Processes, 29th
International Conference on Enabling Technologies:
Infrastructure for Collaborative Enterprises, 2020.

 22 Dattatreya, V. et al. Design Patterns and Microservices
for Reengineering of Legacy Web Applications, 2021.

 23 de Almeida, M.G., Canedo, The Adoption of
Microservices Architecture as a Natural Consequence of
Legacy System Migration at Police Intelligence
Department.ICCSA 2022.

 24 A. A. C. De Alwis et al. Discovering microservices in
enterprise systems using a business object containment
heuristic, On the Move to Meaningful Internet Systems.
OTM 2018 [51].

 25 A. A. C. De Alwis et al. Function-splitting heuristics for
discovery of microservices in enterprise systems,
Service-Oriented Computing, 2018 [52].

 26 A. A. C. De Alwis et al. Availability and scalability
optimized microservice discovery from enterprise
systems, On the Move to Meaningful Internet Systems:
OTM 2019 [86].

 27 De Alwis, A.A.C. et al. Remodularization Analysis for
Microservice Discovery Using Syntactic and Semantic
Clustering. Advanced Information Systems Engineering.
CAiSE 2020.

 28 De Alwis, A.A.C. et al. Microservice Remodularisation
of Monolithic Enterprise Systems for Embedding in
Industrial IoT Networks. CAiSE 2021.

 29 U. Desai et al. Graph neural network to dilute outliers
for refactoring monolith application, Conference on
Artificial Intelligence, 2021 [22].

22
 30 E. Djogic, S. Ribic and D. Donko, ‘‘Monolithic to
microservices redesign of event driven integration
platform,’’ 41st International Convention on
Information and Communication Technology,
Electronics and Microelectronics (MIPRO), 2018.

 31 D. Escobar et al. Towards the understanding and
evolution of monolithic applications as microservices,
XLII Latin American Computing Conference, 2016 [89].

 32 S. Eski, F. Buzluca, An automatic extraction approach:
Transition to microservices architecture from
monolithic application, 19th International Conference
on Agile Software Development, 2018 [32].

 33 F. Freitas et al. A. Ferreira, J. Cunha, Refactoring Java
Monoliths into Executable Microservice-Based
Applications, 2021 [85].

 34 A. Furda et al. Migrating enterprise legacy source code
to microservices: On multitenancy, statefulness, and
data consistency, IEEE Software 35, 2018 [71].

 35 Gutiérrez-Fernández et al. Redefining a Process Engine
as a Microservice Platform. Business Process
Management Workshops, 2016.

 36 A. O. R. Ishida et al. K., Extracting Micro Service
Dependencies Using Log Analysis,IEEE 29th Annual
Software Technology Conference (STC),2022.

 37 Md Rofiqul Islam and Tomas Cerny. Business process
extraction using static analysis. 36th IEEE/ACM
International Conference on Automated Software
Engineering, 2021.

 38 A. Janes and B. Russo, Automatic Performance
Monitoring and Regression Testing During the
Transition from Monolith to Microservices, ISSREW,
2019.

 39 W. Jin et al. Service candidate identification from
monolithic systems based on execution traces, IEEE
Transactions on Software Engineering 47, 2021 [29].

 40 M. I. Joselyne et al. A systematic framework of
application modernization to microservice based
architecture, International Conference on Engineering
and Emerging Technologies (ICEET), 2021 [44].

 41 I. J. Munezero et al. Partitioning Microservices: A
Domain Engineering Approach, IEEE/ACM Symposium
on Software Engineering in Africa, 2018.

 42 A. K. Kalia et al. Mono2Micro: A practical and effective
tool for decomposing monolithic Java applications to
microservices, 29th ACM Joint Meeting on European
Software Engineering Conference and Symposium on
the Foundations of Software Engineering, 2021 [35].

 43 Anup K. Kalia et al. Mono2Micro: an AI-based
toolchain for evolving monolithic enterprise
applications to a microservice architecture. 28th ACM
Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of
Software Engineering, 2020.

 44 M. Kamimura et al. Extracting Candidates of
Microservices from Monolithic Application Code, 25th
Asia-Pacific Software Engineering Conference, 2018.

 45 Khoshnevis, S. A search-based identification of variable
microservices for enterprise SaaS. Front. Comput. Sci.
17, 2023

 46 A. Krause et al. Microservice decomposition via static
and dynamic analysis of the monolith, IEEE
International Conference on Software Architecture
Companion, 2020 [53].

T.I. Mohottige et al. Information and Software Technology 183 (2025) 107732
 47 N. Lapuz et al. Digital transformation and the role of
dynamic tooling in extracting microservices from
existing software systems, Systems, Software and
Services Process Improvement,2021 [54].

 48 S. Li, H. Zhang et al. A dataflow-driven approach to
identifying microservices from monolithic applications,
Journal of Systems and Software 157, 2019 [46].

 49 Z. Li, C. Shang, J. Wu, Y. Li, Microservice extraction
based on knowledge graph from monolithic
applications, Information and Software Technology
150,2022 [78].

 50 B. Liu et al. Method of Microservices Division for
Complex Business Management System Based on Dual
Clustering, International Conference on Mechanical,
Control and Computer Engineering, 2020

 51 J. Löhnertz, A. Oprescu, Steinmetz: Toward automatic
decomposition of monolithic software into
microservices, 2020 [33].

 52 T. Matias et al. Determining microservice boundaries: A
case study using static and dynamic software analysis,
Software Architecture,2020 [43].

 53 V. Nitin et al, CARGO: AI-guided dependency analysis
for migrating monolithic applications to microservices
architecture, 37th IEEE/ACM International Conference
on Automated Software Engineering, 2023 [23].

 54 park, J. et al. Approach to Identify Microservices based
on Analysis Class Model. International Journal of
Advanced Science and Technology, 28, 2019.

 55 I. Pigazzini et al. Tool support for the migration to
microservice architecture: An industrial case study,
European Conference on Software Architecture, 2019
[58].

 56 T. Prasandy et al.,Migrating Application from Monolith
to Microservices, International Conference on
Information Management and Technology 2020.

 57 Z. Ren et al. Migrating web applications from
monolithic structure to microservices architecture, 10th
Asia-Pacific Symposium on Internetware, 2018 [55].

 58 Y. Romani et al.,Towards Migrating Legacy Software
Systems to Microservice-based Architectures: a
Data-Centric Process for Microservice Identification,
19th International Conference on Software Architecture
Companion (ICSA-C), 2022.

 59 Saidi, M. et al. Automatic Microservices Identification
Across Structural Dependency. Hybrid Intelligent
Systems. 2022.

 60 N. Santos, A. Rito Silva, A complexity metric for
microservices architecture migration, 2020 IEEE
International Conference on Software Architecture
(ICSA), 2020 [97].

 61 S. Santos, A. R. Silva, Microservices identification in
monolith systems: Functionality redesign complexity
and evaluation of similarity measures, Journal of Web
Engineering 21, 2022 [99].

 62 Sarita and S. Sebastian, Transform Monolith into
Microservices using Docker, International Conference
on Computing, Communication, Control and
Automation, 2017.

 63 Casper Schröder et al. Search-based software
re-modularization: a case study at Adyen. 43rd
International Conference on Software Engineering:
Software Engineering in Practice, 2021.

 64 Christoph Schröer, Towards Microservice Identification
Approaches for Architecting Data Science Workflows,
Procedia Computer Science, 2021.

23
 65 C. Schroer, S. Wittfoth and J. M. Gomez, A Process
Model for Microservices Design and Identification, IEEE
18th International Conference on Software Architecture
Companion, 2021.

 66 K. Sellami et al. A Hierarchical DBSCAN Method for
Extracting Microservices from Monolithic Applications,
26th International Conference on Evaluation and
Assessment in Software Engineering, 2022 [26].

 67 Selmadji, A. et al. Re-architecting OO Software into
Microservices. Service-Oriented and Cloud Computing,
2018.

 68 A. L. Shastry et al. Approaches for migrating non
cloud-native applications to the cloud, IEEE 12th
Annual Computing and Communication Workshop and
Conference, 2022.

 69 T. D. Stojanovic et al. Identifying microservices using
structured system analysis, 24th International
Conference on Information Technology (IT), 2020
[100].

 70 X. Sun et al. Expert system for automatic microservices
identification using API similarity graph, Expert
Systems, 2022 [65].

 71 D. Taibi et al. Processes, Motivations, and Issues for
Migrating to Microservices Architectures: An Empirical
Investigation, IEEE Cloud Computing 4, 2017 [10].

 72 D. Taibi, K. Systä, A decomposition and metric-based
evaluation framework for microservices, Cloud
Computing and Services Science, 2020 [73].

 73 M. Tusjunt, W. Vatanawood, Refactoring orchestrated
web services into microservices using decomposition
pattern, IEEE 4th International Conference on
Computer and Communications (ICCC), 2018 [49].

 74 S. Tyszberowicz et al. Identifying microservices using
functional decomposition, Dependable Software
Engineering. Theories, Tools, and Applications, 2018
[50].

 75 F. H. Vera-Rivera et al. Microservices backlog—A
model of granularity specification and microservice
identification, 17th International Conference, 2020
[91].

 76 E. Volynsky et al. Architect: A Framework for the
Migration to Microservices, International Conference on
Computing, Electronics Communications Engineering
(iCCECE), 2022.

 77 Y. Wei et al. A feature table approach to decomposing
monolithic applications into microservices, 12th
Asia-Pacific Symposium on Internetware, 2021 [47].

 78 R. Yedida et al. Lessons learned from hyper-parameter
tuning for microservice candidate identification, 36th
IEEE/ACM International Conference on Automated
Software Engineering (ASE), 2021 [92].

 79 P. Zaragoza et al. Leveraging the layered architecture
for microservice recovery, IEEE 19th International
Conference on Software Architecture (ICSA), 2022 [64].

 80 O. Al-Debagy, P. Martinek, Dependencies-based
microservices decomposition method, International
Journal of Computers and Applications 44, 2021 [24].

 81 Almeida, J.F., Silva, A.R., Monolith Migration
Complexity Tuning Through the Application of
Microservices Patterns. ECSA 2020.

T.I. Mohottige et al. Information and Software Technology 183 (2025) 107732
 82 W. K. G. Assunção et al. Analysis of a many-objective
optimization approach for identifying microservices
from legacy systems, Empirical Softw. Engg.
(2022)[36].

 83 W. K. G. Assunção et al. A multi-criteria strategy for
redesigning legacy features as microservices: An
industrial case study, IEEE International Conference on
Software Analysis, Evolution and Reengineering
(SANER), 2021 [80].

 84 Wesley K. G. Assunção et al. Variability management
meets microservices: six challenges of re-engineering
microservice-based webshops. 24th ACM Conference on
Systems and Software Product Line, 2020.

 85 L. Baresi et al. Microservices identification through
interface analysis, Service-Oriented and Cloud
Computing, 2017 [28].

 86 G. Mazlami et al. Extraction of microservices from
monolithic software architectures, IEEE International
Conference on Web Services (ICWS), 2017 [21].

 87 O. Al-Debagy, P. Martinek, A new decomposition
method for designing microservices, Period. Polytech.
Electr. Eng. Comput. Sci. 63, 2019 [59].

 88 W. Jin et al. Functionality-oriented microservice
extraction based on execution trace clustering, IEEE
International Conference on Web Services (ICWS), 2018
[30].

 89 I. Trabelsi et al. From legacy to microservices: A
type-based approach for microservices identification
using machine learning and semantic analysis, Journal
of Software: Evolution and Process, 2022 [56].

 90 O. Al-Debagy, A microservice decomposition method
through using distributed representation of source
code, Scalable Comput. Pract.Exp., 2021 [81].

 91 Levcovitz, A. et al. Towards a Technique for Extracting
Microservices from Monolithic Enterprise Systems.
2016.

 92 M. J. Amiri, ‘‘Object-Aware Identification of
Microservices,’’ IEEE International Conference on
Services Computing(SCC), 2018.

 93 S. Agarwal et al. Monolith to Microservice Candidates
using Business Functionality Inference, 2021 IEEE
International Conference on Web Services (ICWS),
2021.

 94 C. Bandara and I. Perera, Transforming Monolithic
Systems to Microservices - An Analysis Toolkit for
Legacy Code Evaluation, 20th International Conference
on Advances in ICT for Emerging Regions (ICTer),
2020.

 95 M. Camilli et al. Domain metric driven decomposition
of data-intensive applications, IEEE International
Symposium on Software Reliability Engineering
Workshops (ISSREW), 2020 [83].

 96 L. Carvalho et al. On the performance and adoption of
search-based microservice identification with
toMicroservices, IEEE International Conference on
Software Maintenance and Evolution (ICSME), 2020
[37].

 97 C. Andreas et al. Migration of Software Components to
Microservices: Matching and Synthesis, 14th
International Conference on Evaluation of Novel
Approaches to Software Engineering (ENASE), 2019.

24
 98 M. Cojocaru et al. MicroValid: A Validation Framework
for Automatically Decomposed Microservices, IEEE
International Conference on Cloud Computing
Technology and Science (CloudCom), 2019.

 99 M. Dehghani et al. Facilitating the migration to the
microservice architecture via model-driven reverse
engineering and reinforcement learning, Softw. Syst.
Model.,2022 [38].

 100 F. -D. Eyitemi and S. Reiff-Marganiec, System
Decomposition to Optimize Functionality Distribution
in Microservices with Rule Based Approach, IEEE
International Conference on Service Oriented Systems
Engineering (SOSE), 2020.

 101 G. Filippone et al. Migration of Monoliths through the
Synthesis of Microservices using Combinatorial
Optimization, IEEE International Symposium on
Software Reliability Engineering Workshops (ISSREW),
2021.

 102 N. Ivanov and A. Tasheva, A Hot Decomposition
Procedure: Operational Monolith System to
Microservices, International Conference Automatics and
Informatics (ICAI), 2021.

 103 J. Kazanavičius et al. An Approach to Migrate a
Monolith Database into Multi-Model Polyglot
Persistence Based on Microservice Architecture: A Case
Study for Mainframe Database [82]

 104 D. Kuryazov et al. Towards Decomposing Monolithic
Applications into Microservices, IEEE 14th
International Conference on Application of Information
and Communication Technologies (AICT), 2020.

 105 L. De Lauretis, From Monolithic Architecture to
Microservices Architecture, IEEE International
Symposium on Software Reliability Engineering
Workshops (ISSREW), 2019.

 106 C.-Y. Li et al. Microservice migration using strangler fig
pattern: A case study on the green button system,
International Computer Symposium (ICS), 2020 [95].

 107 J. Lin et al. Migrating web applications to clouds with
microservice architectures, International Conference on
Applied System Innovation (ICASI), 2016.

 108 Log2MS: a framework for automated refactoring
monolith into microservices using execution logs [74]
B. Liu et al. Log2ms: a framework for automated
refactoring monolith into microservices using execution
logs, IEEE International Conference on Web
Services(ICWS), 2022 [74].

 109 S. A. Maisto et al. From monolith to cloud architecture
using semi-automated microservices modernization,
Advances on P2P, Parallel, Grid, Cloud and Internet
Computing, 2020 [69].

 110 R. Mishra et al. Transition from Monolithic to
Microservices Architecture: Need and proposed
pipeline, International Conference on Futuristic
Technologies (INCOFT), 2022.

 111 Nunes, L. et al.,From a Monolith to a Microservices
Architecture: An Approach Based on Transactional
Contexts, ECSA, 2019.

 112 Ana Santos and Hugo Paula, Microservice
decomposition and evaluation using dependency graph
and silhouette coefficient, 15th Brazilian Symposium
on Software Components, Architectures, and Reuse
(SBCARS), 2021.

T.I. Mohottige et al. Information and Software Technology 183 (2025) 107732
 113 A. Selmadji et al. From Monolithic Architecture Style to
Microservice one Based on a Semi-Automatic Approach,
IEEE International Conference on Software Architecture
(ICSA), 2020.

 114 A. Shimoda and T. Sunada, Priority Order
Determination Method for Extracting Services Stepwise
from Monolithic System, 7th International Congress on
Advanced Applied Informatics (IIAI-AAI), 2018.

 115 F. H. Vera-Rivera et al. Microservices backlog—A
genetic programming technique for identification and
evaluation of microservices from user stories, IEEE
Access. 2021 [34].

 116 Z. Yang et al. A Microservices Identification Approach
based on Problem Frames, IEEE 2nd International
Conference on Software Engineering and Artificial
Intelligence (SEAI), 2022.

 117 J. Zhao and K. Zhao, Applying Microservice Refactoring
to Object-2riented Legacy System, 8th International
Conference on Dependable Systems and Their
Applications (DSA), 2021.

Data availability

Data will be made available on request.

References

[1] R.A. Schmidt, M. Thiry, Microservices identification strategies a review focused
on model-driven engineering and domain driven design approaches, in: 2020
15th Iberian Conference on Information Systems and Technologies, CISTI, 2020.

[2] C. Schröer, F. Kruse, J. Marx Gómez, A qualitative literature review on
microservices identification approaches, in: Service-Oriented Computing, 2020,
pp. 151–168.

[3] M. Cojocaru, A. Oprescu, A. Uta, Attributes assessing the quality of microser-
vices automatically decomposed from monolithic applications, in: 2019 18th
International Symposium on Parallel and Distributed Computing, ISPDC, 2019,
pp. 84–93.

[4] R. Capuano, H. Muccini, A systematic literature review on migration to
microservices: A quality attributes perspective, in: 2022 IEEE 19th International
Conference on Software Architecture Companion, ICSA-C, 2022, pp. 120–123.

[5] F. Ponce, G. Márquez, H. Astudillo, Migrating from monolithic architecture to
microservices: A rapid review, in: 2019 38th International Conference of the
Chilean Computer Science Society, SCCC, 2019, pp. 1–7.

[6] J. Fritzsch, J. Bogner, A. Zimmermann, S. Wagner, From monolith to mi-
croservices: A classification of refactoring approaches, 2018, CoRR abs/1807.
10059.

[7] D. Wolfart, W.K.G. Assunção, I.F. da Silva, D.C.P. Domingos, E. Schmeing,
G.L.D. Villaca, D.d.N. Paza, Modernizing legacy systems with microservices:
A roadmap, in: Proceedings of the 25th International Conference on Evaluation
and Assessment in Software Engineering, EASE 2011, 2021, pp. 149–159.

[8] M. Abdellatif, A. Shatnawi, H. Mili, N. Moha, G.E. Boussaidi, G. Hecht, J. Privat,
Y.-G. Guéhéneuc, A taxonomy of service identification approaches for legacy
software systems modernization, J. Syst. Softw. 173 (2021) 110868.

[9] K. Bennett, Legacy systems: Coping with success, IEEE Softw. 12 (1995) 19–23.
[10] D. Taibi, V. Lenarduzzi, C. Pahl, Processes, motivations, and issues for migrating

to microservices architectures: An empirical investigation, IEEE Cloud Comput.
4 (2017) 22–32.

[11] J. Fritzsch, J. Bogner, S. Wagner, A. Zimmermann, Microservices migration
in industry: Intentions, strategies, and challenges, in: 2019 IEEE Interna-
tional Conference on Software Maintenance and Evolution, ICSME, 2019, pp.
481–490.

[12] S. Newman, Building Microservices: Designing Fine-Grained Systems, O’Reilly
Media, Inc., 2015.

[13] J. Lewis, M. Fowler, Microservices: A definition of this new architectural term,
2014, https://martinfowler.com/articles/microservices.html. [Online; Accessed
27 July 2023].

[14] D. Arcelli, V. Cortellessa, D. Di Pompeo, Performance-driven software model
refactoring, Inf. Softw. Technol. (2018) 366–397.

[15] A. De Lucia, G. Di Lucca, A. Fasolino, P. Guerra, S. Petruzzelli, Migrating legacy
systems towards object-oriented platforms, in: 1997 Proceedings International
Conference on Software Maintenance, 1997, pp. 122–129.
25
[16] S. Adjoyan, A.-D. Seriai, A. Shatnawi, Service identification based on quality
metrics—Object-oriented legacy system migration towards SOA, in: Inter-
national Conference on Software Engineering and Knowledge Engineering,
2014.

[17] C. Abrams, R. Schulte, Service-oriented architecture overview and guide
to SOA research, 2008, https://doveltech.com/wp-content/uploads/2017/10/
serviceoriented_architecture.pdf. [Online; Accessed 27 July 2023].

[18] F. Auer, V. Lenarduzzi, M. Felderer, D. Taibi, From monolithic systems to
microservices: An assessment framework, Inf. Softw. Technol. 137 (2021).

[19] D. Taibi, K. Systä, From monolithic systems to microservices: A decomposition
framework based on process mining, in: International Conference on Cloud
Computing and Services Science, 2019, pp. 153–164.

[20] D.L. Parnas, On the criteria to be used in decomposing systems into modules,
Commun. ACM 15 (1972).

[21] G. Mazlami, J. Cito, P. Leitner, Extraction of microservices from monolithic
software architectures, in: 2017 IEEE International Conference on Web Services,
ICWS, 2017, pp. 524–531.

[22] U. Desai, S. Bandyopadhyay, S.G. Tamilselvam, Graph neural network to dilute
outliers for refactoring monolith application, in: AAAI Conference on Artificial
Intelligence, 2021, pp. 72–80.

[23] V. Nitin, S. Asthana, B. Ray, R. Krishna, CARGO: AI-guided dependency
analysis for migrating monolithic applications to microservices architecture,
in: Proceedings of the 37th IEEE/ACM International Conference on Automated
Software Engineering, 2023.

[24] O. Al-Debagy, P. Martinek, Dependencies-based microservices decomposition
method, Int. J. Comput. Appl. 44 (2021) 814–821.

[25] M. Brito, J. Cunha, J. Saraiva, Identification of microservices from monolithic
applications through topic modelling, in: Proceedings of the 36th Annual ACM
Symposium on Applied Computing, 2021, pp. 1409–1418.

[26] K. Sellami, M.A. Saied, A. Ouni, A hierarchical DBSCAN method for extracting
microservices from monolithic applications, in: Proceedings of the 26th Interna-
tional Conference on Evaluation and Assessment in Software Engineering, 2022,
pp. 201–210.

[27] X. Sun, S. Boranbaev, S. Han, H. Wang, D. Yu, Expert system for automatic
microservices identification using API similarity graph, Expert Syst. (2022).

[28] L. Baresi, M. Garriga, A. De Renzis, Microservices identification through
interface analysis, in: Service-Oriented and Cloud Computing, 2017, pp. 19–33.

[29] W. Jin, T. Liu, Y. Cai, R. Kazman, R. Mo, Q. Zheng, Service candidate
identification from monolithic systems based on execution traces, IEEE Trans.
Softw. Eng. 47 (2021) 987–1007.

[30] W. Jin, T. Liu, Q. Zheng, D. Cui, Y. Cai, Functionality-oriented microservice
extraction based on execution trace clustering, in: 2018 IEEE International
Conference on Web Services, ICWS, 2018, pp. 211–218.

[31] M. Gysel, L. Kölbener, W. Giersche, O. Zimmermann, Service cutter: A sys-
tematic approach to service decomposition, in: Service-Oriented and Cloud
Computing, 2016, pp. 185–200.

[32] S. Eski, F. Buzluca, An automatic extraction approach: Transition to microser-
vices architecture from monolithic application, in: Proceedings of the 19th
International Conference on Agile Software Development: Companion, 2018.

[33] J. Löhnertz, A. Oprescu, Steinmetz: Toward automatic decomposition of mono-
lithic software into microservices, in: Seminar on Advanced Techniques and
Tools for Software Evolution, 2020.

[34] F.H. Vera-Rivera, E. Puerto, H. Astudillo, C.M. Gaona, Microservices backlog—
A genetic programming technique for identification and evaluation of
microservices from user stories, IEEE Access (2021) 117178–117203.

[35] A.K. Kalia, J. Xiao, R. Krishna, S. Sinha, M. Vukovic, D. Banerjee, Mono2Micro:
A practical and effective tool for decomposing monolithic Java applications to
microservices, in: Proceedings of the 29th ACM Joint Meeting on European Soft-
ware Engineering Conference and Symposium on the Foundations of Software
Engineering, 2021, pp. 1214–1224.

[36] W.K.G. Assunção, T.E. Colanzi, L. Carvalho, A. Garcia, J.A. Pereira, M.J.
de Lima, C. Lucena, Analysis of a many-objective optimization approach for
identifying microservices from legacy systems, Empir. Softw. Engg. (2022).

[37] L. Carvalho, A. Garcia, T.E. Colanzi, W.K.G. Assunção, J.A. Pereira, B. Fonseca,
M. Ribeiro, M.J. de Lima, C. Lucena, On the performance and adoption of
search-based microservice identification with toMicroservices, in: 2020 IEEE
International Conference on Software Maintenance and Evolution, ICSME, 2020,
pp. 569–580.

[38] M. Dehghani, S. Kolahdouz-Rahimi, M. Tisi, D. Tamzalit, Facilitating the
migration to the microservice architecture via model-driven reverse engineering
and reinforcement learning, Softw. Syst. Model. (2022) 1115–1133.

[39] B. Kitchenham, S. Charters, Guidelines for Performing Systematic Literature
Reviews in Software Engineering, Technical Report EBSE 2007-001, Keele
University and Durham University Joint Report, 2007.

[40] B. Kitchenham, P. Brereton, A systematic review of systematic review process
research in software engineering, Inf. Softw. Technol. 55 (2013).

[41] M. Gusenbauer, N.R. Haddaway, Which academic search systems are suitable
for systematic reviews or meta-analyses? Evaluating retrieval qualities of Google
Scholar, PubMed, and 26 other resources, Res. Synth. Methods 11 (2) (2020).

http://refhub.elsevier.com/S0950-5849(25)00071-0/sb1
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb1
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb1
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb1
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb1
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb2
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb2
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb2
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb2
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb2
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb3
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb3
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb3
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb3
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb3
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb3
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb3
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb4
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb4
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb4
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb4
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb4
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb5
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb5
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb5
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb5
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb5
http://arxiv.org/abs/1807.10059
http://arxiv.org/abs/1807.10059
http://arxiv.org/abs/1807.10059
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb7
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb7
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb7
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb7
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb7
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb7
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb7
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb8
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb8
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb8
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb8
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb8
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb9
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb10
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb10
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb10
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb10
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb10
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb11
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb11
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb11
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb11
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb11
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb11
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb11
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb12
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb12
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb12
https://martinfowler.com/articles/microservices.html
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb14
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb14
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb14
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb15
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb15
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb15
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb15
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb15
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb16
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb16
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb16
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb16
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb16
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb16
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb16
https://doveltech.com/wp-content/uploads/2017/10/serviceoriented_architecture.pdf
https://doveltech.com/wp-content/uploads/2017/10/serviceoriented_architecture.pdf
https://doveltech.com/wp-content/uploads/2017/10/serviceoriented_architecture.pdf
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb18
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb18
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb18
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb19
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb19
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb19
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb19
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb19
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb20
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb20
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb20
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb21
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb21
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb21
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb21
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb21
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb22
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb22
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb22
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb22
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb22
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb23
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb23
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb23
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb23
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb23
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb23
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb23
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb24
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb24
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb24
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb25
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb25
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb25
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb25
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb25
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb26
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb26
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb26
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb26
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb26
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb26
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb26
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb27
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb27
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb27
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb28
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb28
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb28
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb29
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb29
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb29
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb29
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb29
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb30
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb30
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb30
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb30
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb30
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb31
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb31
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb31
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb31
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb31
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb32
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb32
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb32
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb32
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb32
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb33
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb33
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb33
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb33
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb33
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb34
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb34
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb34
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb34
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb34
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb35
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb35
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb35
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb35
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb35
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb35
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb35
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb35
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb35
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb36
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb36
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb36
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb36
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb36
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb37
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb37
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb37
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb37
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb37
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb37
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb37
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb37
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb37
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb38
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb38
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb38
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb38
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb38
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb39
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb39
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb39
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb39
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb39
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb40
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb40
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb40
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb41
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb41
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb41
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb41
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb41

T.I. Mohottige et al. Information and Software Technology 183 (2025) 107732
[42] R.C. Nickerson, U. Varshney, J. Muntermann, A method for taxonomy develop-
ment and its application in information systems, Eur. J. Inf. Syst. 22 (3) (2013)
336–359.

[43] T. Matias, F.F. Correia, J. Fritzsch, J. Bogner, H.S. Ferreira, A. Restivo,
Determining microservice boundaries: A case study using static and dynamic
software analysis, in: Software Architecture, 2020, pp. 315–332.

[44] M.I. Joselyne, G. Bajpai, F. Nzanywayingoma, A systematic framework of appli-
cation modernization to microservice based architecture, in: 2021 International
Conference on Engineering and Emerging Technologies, ICEET, 2021, pp. 1–6.

[45] M. Weske, Business Process Management: Concepts, Languages, Architectures,
Springer, 2012.

[46] S. Li, H. Zhang, Z. Jia, Z. Li, C. Zhang, J. Li, Q. Gao, J. Ge, Z. Shan, A dataflow-
driven approach to identifying microservices from monolithic applications, J.
Syst. Softw. 157 (2019) 110380.

[47] Y. Wei, Y. Yu, M. Pan, T. Zhang, A feature table approach to decompos-
ing monolithic applications into microservices, in: Proceedings of the 12th
Asia-Pacific Symposium on Internetware, 2021, pp. 21–30.

[48] M. Daoud, A.E. Mezouari, N. Faci, D. Benslimane, Z. Maamar, A.E. Fazziki,
Towards an automatic identification of microservices from business pro-
cesses, in: 2020 IEEE 29th International Conference on Enabling Technologies:
Infrastructure for Collaborative Enterprises, WETICE, 2020, pp. 42–47.

[49] M. Tusjunt, W. Vatanawood, Refactoring orchestrated web services into mi-
croservices using decomposition pattern, in: 2018 IEEE 4th International
Conference on Computer and Communications, ICCC, 2018, pp. 609–613.

[50] S. Tyszberowicz, R. Heinrich, B. Liu, Z. Liu, Identifying microservices us-
ing functional decomposition, in: Dependable Software Engineering. Theories,
Tools, and Applications, 2018, pp. 50–65.

[51] A.A.C. De Alwis, A. Barros, C. Fidge, A. Polyvyanyy, Discovering microservices
in enterprise systems using a business object containment heuristic, in: On
the Move To Meaningful Internet Systems. OTM 2018 Conferences, 2018, pp.
60–79.

[52] A.A.C. De Alwis, A. Barros, A. Polyvyanyy, C. Fidge, Function-splitting heuris-
tics for discovery of microservices in enterprise systems, in: Service-Oriented
Computing, 2018, pp. 37–53.

[53] A. Krause, C. Zirkelbach, W. Hasselbring, S. Lenga, D. Kröger, Microservice
decomposition via static and dynamic analysis of the monolith, in: 2020 IEEE
International Conference on Software Architecture Companion, ICSA-C, 2020,
pp. 9–16.

[54] N. Lapuz, P. Clarke, Y. Abgaz, Digital transformation and the role of dynamic
tooling in extracting microservices from existing software systems, in: Systems,
Software and Services Process Improvement, 2021, pp. 301–315.

[55] Z. Ren, W. Wang, G. Wu, C. Gao, W. Chen, J. Wei, T. Huang, Migrating
web applications from monolithic structure to microservices architecture, in:
Proceedings of the 10th Asia-Pacific Symposium on Internetware, 2018.

[56] I. Trabelsi, M. Abdellatif, A. Abubaker, N. Moha, S. Mosser, S. Ebrahimi-Kahou,
Y.-G. Guéhéneuc, From legacy to microservices: A type-based approach for
microservices identification using machine learning and semantic analysis, J.
Softw.: Evol. Process. (2022).

[57] P. Kherwa, P. Bansal, Topic modeling: A comprehensive review, EAI Endorsed
Trans. Scalable Inf. Syst. 7 (2018) e2.

[58] I. Pigazzini, F.A. Fontana, A. Maggioni, Tool support for the migration to
microservice architecture: An industrial case study, in: European Conference
on Software Architecture, 2019, pp. 247–263.

[59] O. Al-Debagy, P. Martinek, A new decomposition method for designing
microservices, Period. Polytech. Electr. Eng. Comput. Sci. 63 (2019) 274–281.

[60] M. Newman, M. Girvan, Finding and evaluating community structure in
networks, Phys. Rev. E, Stat. Nonlinear, Soft Matter Phys. 69 (2004) 026113.

[61] N. Raghavan, R. Albert, S. Kumara, Near linear time algorithm to detect
community structures in large-scale networks, Phys. Rev. E, Stat. Nonlinear,
Soft Matter Phys. 76 (2007) 036106.

[62] P. Chaudhari, A.K. Thakur, R. Kumar, N. Banerjee, A. Kumar, Comparison of
NSGA-III with NSGA-II for multi objective optimization of adiabatic styrene
reactor, Mater. Today: Proc. 57 (2022) 1509–1514.

[63] H. Ishibuchi, R. Imada, Y. Setoguchi, Y. Nojima, Performance comparison of
NSGA-II and NSGA-III on various many-objective test problems, in: 2016 IEEE
Congress on Evolutionary Computation, CEC, 2016, pp. 3045–3052.

[64] P. Zaragoza, A.-D. Seriai, A. Seriai, A. Shatnawi, M. Derras, Leveraging the
layered architecture for microservice recovery, in: 2022 IEEE 19th International
Conference on Software Architecture, ICSA, 2022, pp. 135–145.

[65] X. Sun, S. Boranbaev, S. Han, H. Wang, D. Yu, Expert system for automatic
microservices identification using API similarity graph, Expert Syst. (2022).

[66] L. Nunes, N. Santos, A. Rito Silva, From a monolith to a microservices architec-
ture: An approach based on transactional contexts, in: Software Architecture,
Springer International Publishing, 2019.

[67] K. Bozan, K. Lyytinen, G.M. Rose, How to transition incrementally to
microservice architecture, Commun. ACM (2020) 79–85.

[68] H. Michael Ayas, P. Leitner, R. Hebig, The migration journey towards microser-
vices, in: Product-Focused Software Process Improvement: 22nd International
Conference, PROFES 2021, Turin, Italy, November 26, 2021, Proceedings, 2021,
pp. 20–35.
26
[69] S.A. Maisto, B. Di Martino, S. Nacchia, From monolith to cloud architecture
using semi-automated microservices modernization, in: Advances on P2P,
Parallel, Grid, Cloud and Internet Computing, 2020.

[70] J. Doležal, A. Buchalcevová, Migration from monolithic to microservice
architecture : research of impacts on agility, in: IDIMT, 2022.

[71] A. Furda, C. Fidge, O. Zimmermann, W. Kelly, A. Barros, Migrating enterprise
legacy source code to microservices: On multitenancy, statefulness, and data
consistency, IEEE Softw. 35 (2018) 63–72.

[72] D. Bajaj, A. Goel, S.C. Gupta, GreenMicro: Identifying microservices from use
cases in greenfield development, IEEE Access 10 (2022) 67008–67018.

[73] D. Taibi, K. Systä, A decomposition and metric-based evaluation framework for
microservices, in: Cloud Computing and Services Science, 2020, pp. 133–149.

[74] B. Liu, J. Xiong, Q. Ren, S. Tyszberowicz, Z. Yang, Log2MS: a framework for
automated refactoring monolith into microservices using execution logs, in:
2022 IEEE International Conference on Web Services, ICWS, 2022, pp. 391–396.

[75] B. Mitchell, S. Mancoridis, On the automatic modularization of software systems
using the Bunch tool, IEEE Trans. Softw. Eng. (2006) 193–208.

[76] P. Andritsos, V. Tzerpos, Information-theoretic software clustering, IEEE Trans.
Softw. Eng. (2005) 150–165.

[77] M. Chatterjee, S.K. Das, D. Turgut, WCA: A weighted clustering algorithm for
mobile ad hoc networks, Clust. Comput. (2002) 193–204.

[78] Z. Li, C. Shang, J. Wu, Y. Li, Microservice extraction based on knowledge graph
from monolithic applications, Inf. Softw. Technol. 150 (2022).

[79] L. Cao, C. Zhang, Implementation of domain-oriented microservices decompo-
sition based on node-attributed network, in: Proceedings of the 2022 11th
International Conference on Software and Computer Applications, 2022, pp.
136–142.

[80] W.K.G. Assunção, T.E. Colanzi, L. Carvalho, J.A. Pereira, A. Garcia, M.J. de
Lima, C. Lucena, A multi-criteria strategy for redesigning legacy features as
microservices: An industrial case study, in: 2021 IEEE International Conference
on Software Analysis, Evolution and Reengineering, SANER, 2021, pp. 377–387.

[81] O. Al-Debagy, A microservice decomposition method through using distributed
representation of source code, Scalable Comput. Pr. Exp. (2021) 39–52.

[82] J. Kazanavičius, D. Mazeika, D. Kalibatiene, An approach to migrate a mono-
lith database into multi-model polyglot persistence based on microservice
architecture: A case study for mainframe database, Appl. Sci. 12 (2022) 6189.

[83] M. Camilli, C. Colarusso, B. Russo, E. Zimeo, Domain metric driven decomposi-
tion of data-intensive applications, in: 2020 IEEE International Symposium on
Software Reliability Engineering Workshops, ISSREW, 2020, pp. 189–196.

[84] R. Mishra, N. Jaiswal, R. Prakash, P.N. Barwal, Transition from monolithic to
microservices architecture: Need and proposed pipeline, in: 2022 International
Conference on Futuristic Technologies, INCOFT, 2022, pp. 1–6.

[85] F. Freitas, A. Ferreira, J. Cunha, Refactoring java monoliths into executable
microservice-based applications, 2021, pp. 100–107.

[86] A.A.C. De Alwis, A. Barros, C. Fidge, A. Polyvyanyy, Availability and scalability
optimized microservice discovery from enterprise systems, in: On the Move To
Meaningful Internet Systems: OTM 2019 Conferences, 2019, pp. 496–514.

[87] M.H. Gomes Barbosa, P.H. M. Maia, Towards identifying microservice candi-
dates from business rules implemented in stored procedures, in: 2020 IEEE
International Conference on Software Architecture Companion, ICSA-C, 2020,
pp. 41–48.

[88] S. Santos, A. Silva, Microservices identification in monolith systems: Function-
ality redesign complexity and evaluation of similarity measures, J. Web Eng.
(2022).

[89] D. Escobar, D. Cárdenas, R. Amarillo, E. Castro, K. Garcés, C. Parra, R.
Casallas, Towards the understanding and evolution of monolithic applications
as microservices, in: 2016 XLII Latin American Computing Conference, CLEI,
2016, pp. 1–11.

[90] M. Cojocaru, A. Uta, A.-M. Oprescu, MicroValid: A validation framework for au-
tomatically decomposed microservices, in: 2019 IEEE International Conference
on Cloud Computing Technology and Science, CloudCom, 2019, pp. 78–86.

[91] F.H. Vera-Rivera, E.G. Puerto-Cuadros, H. Astudillo, C.M. Gaona-Cuevas, Mi-
croservices backlog-a model of granularity specification and microservice
identification, in: Services Computing-SCC 2020: 17th International Conference,
Held As Part of the Services Conference Federation, SCF 2020, Honolulu, HI,
USA, September 18–20, 2020, Proceedings, 2020, pp. 85–102.

[92] R. Yedida, R. Krishna, A. Kalia, T. Menzies, J. Xiao, M. Vukovic, Lessons learned
from hyper-parameter tuning for microservice candidate identification, in: 2021
36th IEEE/ACM International Conference on Automated Software Engineering,
ASE, 2021, pp. 1141–1145.

[93] A. Levcovitz, R. Terra, M. Valente, Towards a technique for extracting microser-
vices from monolithic enterprise systems, 2016, URL https://doi.org/10.48550/
arXiv.1605.03175.

[94] A. Carrasco, B.v. Bladel, S. Demeyer, Migrating towards microservices: Migra-
tion and architecture smells, in: Proceedings of the 2nd International Workshop
on Refactoring, 2018, pp. 1–6.

[95] C.-Y. Li, S.-P. Ma, T.-W. Lu, Microservice migration using strangler fig pattern:
A case study on the green button system, in: 2020 International Computer
Symposium, ICS, 2020, pp. 519–524.

http://refhub.elsevier.com/S0950-5849(25)00071-0/sb42
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb42
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb42
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb42
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb42
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb43
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb43
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb43
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb43
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb43
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb44
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb44
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb44
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb44
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb44
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb45
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb45
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb45
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb46
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb46
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb46
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb46
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb46
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb47
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb47
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb47
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb47
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb47
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb48
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb48
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb48
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb48
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb48
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb48
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb48
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb49
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb49
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb49
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb49
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb49
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb50
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb50
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb50
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb50
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb50
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb51
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb51
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb51
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb51
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb51
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb51
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb51
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb52
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb52
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb52
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb52
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb52
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb53
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb53
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb53
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb53
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb53
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb53
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb53
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb54
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb54
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb54
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb54
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb54
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb55
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb55
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb55
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb55
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb55
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb56
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb56
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb56
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb56
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb56
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb56
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb56
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb57
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb57
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb57
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb58
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb58
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb58
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb58
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb58
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb59
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb59
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb59
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb60
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb60
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb60
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb61
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb61
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb61
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb61
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb61
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb62
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb62
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb62
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb62
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb62
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb63
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb63
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb63
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb63
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb63
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb64
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb64
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb64
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb64
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb64
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb65
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb65
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb65
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb66
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb66
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb66
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb66
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb66
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb67
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb67
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb67
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb68
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb68
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb68
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb68
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb68
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb68
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb68
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb69
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb69
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb69
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb69
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb69
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb70
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb70
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb70
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb71
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb71
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb71
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb71
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb71
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb72
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb72
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb72
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb73
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb73
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb73
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb74
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb74
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb74
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb74
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb74
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb75
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb75
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb75
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb76
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb76
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb76
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb77
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb77
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb77
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb78
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb78
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb78
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb79
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb79
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb79
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb79
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb79
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb79
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb79
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb80
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb80
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb80
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb80
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb80
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb80
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb80
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb81
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb81
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb81
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb82
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb82
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb82
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb82
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb82
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb83
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb83
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb83
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb83
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb83
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb84
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb84
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb84
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb84
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb84
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb85
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb85
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb85
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb86
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb86
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb86
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb86
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb86
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb87
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb87
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb87
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb87
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb87
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb87
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb87
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb88
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb88
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb88
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb88
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb88
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb89
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb89
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb89
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb89
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb89
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb89
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb89
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb90
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb90
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb90
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb90
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb90
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb91
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb91
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb91
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb91
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb91
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb91
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb91
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb91
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb91
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb92
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb92
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb92
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb92
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb92
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb92
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb92
https://doi.org/10.48550/arXiv.1605.03175
https://doi.org/10.48550/arXiv.1605.03175
https://doi.org/10.48550/arXiv.1605.03175
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb94
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb94
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb94
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb94
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb94
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb95
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb95
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb95
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb95
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb95

T.I. Mohottige et al. Information and Software Technology 183 (2025) 107732
[96] M. Fowler, Strangler fig application, 2024, URL https://martinfowler.com/bliki/
StranglerFigApplication.html. (Accessed 23 December 2024).

[97] N. Santos, A. Rito Silva, A complexity metric for microservices architecture
migration, in: 2020 IEEE International Conference on Software Architecture,
ICSA, 2020, pp. 169–178.

[98] L. Carvalho, A. Garcia, W. K. G. Assunção, R. de Mello, M. Julia de Lima,
Analysis of the criteria adopted in industry to extract microservices, in: 2019
IEEE/ACM Joint 7th International Workshop on Conducting Empirical Studies
in Industry (CESI) and 6th International Workshop on Software Engineering
Research and Industrial Practice, 2019, pp. 22–29.
27
[99] S. Santos, A.R. Silva, Microservices identification in monolith systems: Function-
ality redesign complexity and evaluation of similarity measures, J. Web Eng.
21 (2022) 1543–1582.

[100] T.D. Stojanovic, S.D. Lazarevic, M. Milic, I. Antovic, Identifying microservices
using structured system analysis, in: 2020 24th International Conference on
Information Technology, IT, 2020, pp. 1–4.

https://martinfowler.com/bliki/StranglerFigApplication.html
https://martinfowler.com/bliki/StranglerFigApplication.html
https://martinfowler.com/bliki/StranglerFigApplication.html
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb97
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb97
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb97
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb97
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb97
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb98
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb98
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb98
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb98
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb98
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb98
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb98
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb98
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb98
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb99
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb99
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb99
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb99
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb99
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb100
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb100
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb100
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb100
http://refhub.elsevier.com/S0950-5849(25)00071-0/sb100

	Reengineering software systems into microservices: State-of-the-art and future directions
	Introduction
	Systematic Literature Review Process
	Research Questions
	Search Protocol and Selection Criteria
	Data Extraction and Synthesis
	Quality Assessment

	Results
	(RQ1) How did research on the reengineering of software systems into microservice-based systems develop over time?
	(RQ2) What approaches are used to reengineer software systems into microservice-based systems, and how are reengineered systems evaluated?
	(RQ2.1) What classes of approaches exist?
	(RQ2.2) What tools exist, and which level of automation do they support?
	(RQ2.3) Which techniques/algorithms are used?
	(RQ2.4) How is data used?
	(RQ2.5) How are the reengineered systems evaluated?

	(RQ3) What are the challenges and limitations of existing methods for reengineering software systems into microservice-based systems?

	Discussion and Future Directions
	Artifact-Driven Analysis
	Static Analysis
	Dynamic Analysis
	Hybrid Analysis
	Database Analysis
	Emerging Techniques
	Evaluation
	Paradigms
	Gaps and Future Directions

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgment
	Appendix. Study List
	Data availability
	References

