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and Scheduling in SDN-Enabled Edge Computing
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Abstract—Services provided by mobile edge clouds offer low-
latency responses for large-scale and real-time applications. Dy-
namic service management algorithms generate live service migra-
tion requests to support user mobility and ensure service latency in
mobile edge clouds. To handle these migration requests, multiple
migration planning and scheduling algorithms are necessary to
calculate the migration order and optimize the performance and
overhead of multiple migrations. However, current planning and
scheduling algorithms in cloud data centers are not suitable for dy-
namic and large-scale scenarios in edge computing, as the network
topology expands and the number of migration requests increases.
Edge computing requires near real-time scheduling to handle user
mobility-induced live migrations. To address this issue, this paper
presents an efficient multiple migration planning and scheduling
framework for edge computing. The framework includes a lifecycle
management framework and innovative iterative Maximal Inde-
pendent Set-based scheduling algorithms based on the resource
dependency graph of multiple migrations. Our solution is shown
to efficiently schedule live migrations at scale using real-world
taxi traces and telecom base station coordinates. It can achieve
significant processing speedups over existing migration planning
algorithms in clouds, up to 3,000 times, while ensuring multiple
and individual migration performance for time-critical services.

Index Terms—Mobile-edge computing, quality of service, service
migration, multiple migration scheduling.

I. INTRODUCTION

EDGE computing [1] offers the opportunity to enhance the
performance of user-oriented applications, such as Vehicle

to Cloud (V2C), Vehicle to Vehicle (V2V), Virtual Reality
(VR), Augmented Reality (AR), Artificial Intelligence (AI), and
Internet of Things (IoT), among others, by bringing computation
and intelligence closer to end-users. Due to their smaller memory
footprint and quicker startup, microservices driven by container
virtualization are becoming more suited for dynamic deploy-
ment on edge computing [2], [3]. By hosting containerized
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Fig. 1. General migration management framework.

services in Edge Data Centers (EDCs) or Mobile Edge Clouds
(MECs) [4], end-to-end (E2E) communication delays between
end-users and services can be reliably guaranteed.

Edge infrastructure and service providers, however, are faced
with new challenges in dynamic resource management and user
mobility [5]. Live migration is a solution to these challenges
by offering non-application-specific management of compute
and memory state. Live Virtual Machine (VM) migration [6]
and Checkpoint/Restore in Userspace (CRIU)-based container
migration [7], [8] aim to minimize disruption (downtime) to
the running service during migration in edge computing. Com-
panies such as IBM, RedHat, and Google have integrated live
VM and container migration into their production systems [9],
[10]. For example, Google has adopted live VM and container
migration for both stateful and stateless services in its Borg
cluster manager [10], [11] for tasks of higher priority, software
updates (kernel and firmware), and reallocation for availability
and performance. With a median downtime of only 50 ms, a
minimum of one million migrations are performed monthly in
their production fleet [11].

The procedure for managing services using live migration
technologies is depicted in Fig. 1. Service management algo-
rithms generate multiple migration requests based on various
management objectives [5], [12], [13], [14], [15], [16]. Traffic
flow of migration requests can be optimized through online
SDN-enabled routing algorithms [17], [18] or proactively cal-
culated during the generation of migrations in the service man-
agement process [19]. While live migration costs are taken into
account in service management algorithms, performing multiple
migration scheduling in a disorganized manner can result in
service degradation [20], [21], [22], [23], [24]. This is partic-
ularly true in the edge computing environment, where network
and computing resources are limited. In this paper, we focus
on the challenging problem of multiple migration planning and
scheduling in SDN-enabled Edge Computing. The migration
requests generated by the service management algorithms serve
as inputs for our solution.

Service Management in Edge: Hardware-based solutions for
processing acceleration have been proposed recently [25], [26],
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Fig. 2. User-mobility-induced service migration in edge computing generated
stochastically.

[27]. However, ensuring end-to-end delay guarantees for ser-
vices is an inherent problem in edge computing systems. To
tackle the problem of user mobility, many service management
algorithms have been proposed [5], [12], [13], [14], [15], [16].
These algorithms reactively or proactively generate service mi-
grations to ensure Quality of Service (QoS). When users move
from one base station to another, the network delay between the
service and end-users can increase, potentially deteriorating the
service quality. To avoid SLA violations, the service may need
to be migrated to a nearby Edge Data Center (EDC) through live
migration. For example, as shown in Fig. 2, user1’s movement
could trigger a migration of the service from the host of EDC1
to the host of EDC2 based on the nearest EDC first policy, or
the migrations could be proactively generated to anticipate delay
violations [16].

The placement of SDN controllers and computing orchestra-
tors in regional edge data centers is determined based on the
workload and latency requirements. A hierarchical architecture
can be created by allocating multiple controllers in selected edge
data centers. Data exchange between controllers is facilitated
through west and east-bound interfaces, resulting in a logically
centralized controller.

Multiple Migration Planning and Scheduling: Taking multi-
ple migration requests with different source and destination pairs
as inputs, the migration planner and scheduler determine the start
time of each migration based on the status of migrating services
and the availability of network and computing resources. Migra-
tion requests compete for computing and network resources due
to co-location overheads and network routing issues [24]. With a
complex behavior model of live migration that takes into account
both computing and networking aspects [6], [23], the problem
of multiple migration scheduling cannot be easily modeled as a
maximum flow problem with network sharing [24].

The objective of migration planning and scheduling algo-
rithms is to maximize the performance of multiple migrations
in terms of total migration time, individual migration time, and
downtime, in order to minimize the overhead and impact on
other services [23], [24]. The “migration time” refers to the time
interval from the initiation of the pre-migration process on the
source host to the successful completion of the post-migration
process on the destination host. On the other hand, “downtime”

(also referred to as “freeze time”) refers to the time interval
during which the container or virtual machine (VM) is sus-
pended, due to the final dump (stop-and-copy), commitment, and
activation phases. When multiple migration requests are present,
the “total migration time” is the interval from the start of the
first migration to the completion of the last migration, which is
considered the actual convergence time of service management
optimization [23].

The elephant flows created during migration can lead to
reduced availability of the network for other services in the sys-
tem, negatively impacting the response time of both migrating
and co-located services [23]. For time-critical services, a pro-
longed migration time increases the risk of violating migration
deadlines and degrading the Quality of Service (QoS). Thus,
determining the optimal sequence of multiple migration tasks
is crucial for optimizing the performance of multiple migration
scheduling.

Current algorithms for multiple migration planning and
scheduling in cloud data centers are not suitable for edge com-
puting due to differences in arrival patterns, processing times,
and scales of services and edge networks: 1) The migration
scheduling framework, which is periodically triggered by re-
source management policies with a long time interval, is not
appropriate for mobility-induced migrations in edge computing,
which have a stochastic arrival nature. 2) Mobility-induced
migrations are generated based on real-time requirements for
end-to-end delay. 3) The network topology and available net-
work paths for migration flows are much more complex in
edge environments compared to traditional data center networks.
4) The number of end-users and live migration requests can be
ten thousand times higher in edge environments [14]. Without
proper modeling, the problem complexity increases dramatically
as the number of migration requests and network scale increases.
Therefore, current algorithms for multiple migration planning
and scheduling face serious challenges in terms of processing
efficiency and scalability.

In this paper, we propose a solution to address the chal-
lenges in current multiple migration planning and scheduling
algorithms for edge computing. Our proposed algorithms are
focused on efficient large-scale live service migration planning
and scheduling. They can also be applied to dynamic resource
management at scale. The key contributions of this paper can be
summarized as follows:
� A novel algorithm based on Iterative-Maximal Independent

Sets (MISs) for efficient large-scale migration planning and
scheduling in edge computing with real-time constraints.

� Lifecycle management for multiple migrations in edge
computing.

� Introduction of a resource dependency graph to consider
resource competition among migration requests and sim-
plify the problem complexity.

� Modeling of the problem as finding the iterative Maximum
Independent Sets of the remaining dependency graph and
theoretical proof.

� Demonstration of QoS degradation without proper mul-
tiple migration planning and scheduling through realistic
live migration simulations.
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� Evaluation of the proposed framework and algorithms us-
ing a real-world large-scale Telecom dataset and taxi GPS
traces in an event-driven simulator.

The rest of the paper is organized as follows. We review the
related work in Section II and present the system architecture in
Section III. Section IV analyzes and models the problem of mul-
tiple migration scheduling. Then, we propose two main methods
of large-scale migration scheduling in Section V. Section VI
shows the experimental design and evaluation with real-world
datasets. Finally, we conclude the paper in Section VII. Appen-
dices contains single migration model, proofs of the correspond-
ing theorems, and performance analysis of proposed algorithms
in graph processing.

II. RELATED WORK

The live VM migration realization [6] and its application in
cloud data centers, such as dynamic resource management, have
matured in the last few years. Furthermore, live container migra-
tion technology has been studied recently. Checkpoint/Restore
In Userspace (CRIU) [8] is a Linux software to migrate a
container’s in-memory state in userspace, which is integrated
with LXC, Docker (runC), and OpenVZ. Nadgowda et al. pro-
posed [28] a CRIU-based memory migration together with the
data federation capabilities of union mounts to minimize migra-
tion downtime. Ma et al. [29] utilized the layered storage feature
based on the AUFS storage drive to improve the performance of
docker container migration.

Research on service management in edge computing through
live migration technology is extensive (see survey [5]), with
a focus on generating multiple migration requests reactively
or proactively to meet network delay requirements with user
mobility [12], [13], [14], [15], [16]. However, existing solutions
for mobility-aware and delay-ware VNF, SFC, and service man-
agement neglect an essential phase, the performance of multiple
migration scheduling, which could cause QoS degradation and
SLA violations. Similar to [14], Ma et al. [16] proactively
migrate services to several strategic locations to avoid migration
time delay. The authors assume all migration requests for VNF
replication are finished before each time slot.

With multiple migration requests generated by resource and
service management algorithms, multiple live migration plan-
ning and scheduling algorithms are investigated to optimize
the performance of migration scheduling [20], [21], [22]. In
cloud data centers, Bari et al. [20] investigated the multiple
VM migration planning in one data center environment by
considering the available bandwidth and the migration effects
on network traffic reallocation. The authors proposed a heuristic
migration grouping algorithm (CQNCR) by setting the group
start time only based on the prediction model. Without an online
scheduler, the estimated start time of a live migration can lead
to unacceptable migration performance and QoS degradations.
Moreover, the work neglects the cost of individual migration by
only comparing the migration group cost. Without considering
the connectivity between VMs and the change of bandwidth,
Wang et al. [21], [22] simplified the problem by maximizing
the network transmission rate rather than minimizing the total

Fig. 3. System overview.

migration time and proposed a polynomial-time approximation
algorithm by omitting certain variables. However, the solution,
Fully Polynomial-time Approximation Scheme (FPTAS), can
create migration competing on the same network path which
degrades the migration performance in both average individual
migration time and the total migration time [24].

Table I shows that current algorithms can not meet the require-
ment of large scale in edge. The framework of migration schedul-
ing [20] which is periodically triggered by resource management
policies with a long time interval in clouds is not suitable
for the mobility-induced migration scenario. By modeling and
calculating every resource competition of migration directly, the
problem complexity [20], [21], [22] increases along with the mi-
gration request number which is not suitable for the large-scale
situation. For example, FPTAS [21] only considers 12 nodes
with 19 links and 40 migration requests in experiments. The
planning running time is also too large to schedule time-critical
migrations. The algorithms [20], [21], [22] do not consider the
deadline or urgency (priority) of migration. In addition, without
an online scheduler, the start time of a migration schedule is
only based on the estimated migration time which can lead to
migration performance and QoS degradation.

III. SYSTEM ARCHITECTURE

The SDN controller plays a pivotal role in the proposed frame-
work and algorithms by offering a range of essential capabilities.
These include the provision of real-time network monitoring,
such as end-to-end delay and remaining bandwidth. It facili-
tates the establishment of a finely segmented global network
partition dedicated to migration activities. It also empowers the
implementation of proactive networking routing and dynamic
bandwidth allocation at the application level.

A. System Overview

This section outlines the details of the system architecture for
migration management. The architecture of the SDN-enabled
edge computing system consists of three layers: the orchestration
layer, the controller layer, and the physical resource layer (as
depicted in Fig. 3).
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TABLE I
COMPARISONS OF MULTIPLE MIGRATION PLANNING AND SCHEDULING ALGORITHMS

The infrastructure layer utilizes the OpenFlow protocol and
Open VSwitch (OVS) to provide flexible network resource man-
agement. Open Virtual Network (OVN), an OVS-based SDN
solution, is widely used in industrial cloud networking. OVN
provides network virtualization features with Kubernetes, such
as subnetting, Quality of Service (QoS), static IP allocation,
traffic mirroring, and OpenFlow-based network policy. Addi-
tionally, Libvirt and CRIU are employed to enable the live
migration of VMs and containers across different servers.

The control layer consists of several controllers, including
the networking manager (SDN controller), resource monitor
engines, cloud controller (e.g., OpenStack), and container con-
trol plane (e.g., Kubernetes). The SDN controller manages the
software-defined switches and flow entries, and collects de-
vice and flow statistics through its southbound interfaces. Net-
working applications use its northbound interfaces to perform
topology discovery, network provisioning, and network routing
policies. With the help of SDN, real-time monitoring of network
topology and the status of virtual and physical links is possible.
As a result, the service manager can continuously monitor the
end-to-end delay between end users and edge services.

Unlike traditional setups in clouds, edge computing does not
have a dedicated network for live migration [30]. By incor-
porating SDN into edge computing, the centralized controller
can dynamically separate network resources from the service
network [31] to build a virtual WAN network for live migra-
tions. The bandwidth and network routing for migrations are
dynamically allocated based on the reserved bandwidth of the
service network, which reduces the overhead of live migrations
on other services and ensures the performance of multiple live
migrations. Additionally, the cloud and container control planes
manage the lifecycle of individual live migrations and provide
information related to live migration, such as dirty page rates
and memory size.

In the orchestration layer, network routing engines such as
QoS-oriented routing and network slicing are implemented. The
service manager and multiple migration scheduler are facilitated
by integrating the instance orchestrator and SDN controller.
The service manager generates multiple migration tasks with
different source and destination pairs and specific network rout-
ing based on the current network status. To achieve a detailed
schedule, the planning and scheduling algorithm of multiple
migrations interacts with the SDN controller and edge or cloud
platform through northbound interfaces to control the start of
each migration. The scheduling algorithm is automatically trig-
gered at the beginning of each scheduling time interval.

B. Migration Lifecycle Management

The section presents the proposed lifecycle of a single migra-
tion request in edge computing (Fig. 4), including management

Fig. 4. Lifecycle for stochastic arrival live migrations.

states (REQUEST_ARRIVAL, WAITING, FAILED, PLANNING,
SCHEDULING) and pre-copy live migration states (MIGRA-
TION_PRE, MEM_COPY, and MIGRATION_POST).

Live migration with one state dump has limited migration
time, which is solely dependent on the dump size and network
bandwidth. However, the extended service downtime is not
suitable for service migration in edge computing. Furthermore,
downtime is highly sensitive to network bandwidth and cannot
be guaranteed. Since pre-copy migration is the most commonly
used technology to reduce migration downtime, it is considered
the base model for live migration [8]. Compared to a simple
live migration strategy, pre-copy migration with a downtime
threshold can guarantee downtime with a longer migration time
through iterative state synchronization [23].

Compared with periodically arrived multiple migrations in
cloud data centers, the arrival of live migrations in edge comput-
ing is stochastic due to user mobility. To address this, we design
a scheduling framework to handle the planning and scheduling
of live migration in stochastic environments. When a migration
request arrives, it enters the WAITING state and is buffered if it
is feasible for scheduling, such as the container is not currently
in migration. An infeasible request will be added to the FAILED
waiting migration list for the corresponding container. The
migration PLANNING event is triggered periodically at short
intervalsΔsch (e.g., 1 s) regarding the time-critical nature of live
migration requests in edge. It generates a migration scheduling
plan based on both WAITING and SCHEDULING migrations
within each interval.

It is important to note that the scheduling interval plays
a crucial role in the performance of multiple migrations. A
large scheduling interval can lead to a negative impact on the
efficiency and timeliness of service migration in edge computing
due to the increase in the number of waiting migration requests.
Conversely, a small interval can also have a detrimental effect on
the performance of multiple migration scheduling. If the interval
is significantly small, there may be only a limited amount of
migration requests that can be scheduled per interval, leading to
performance similar to that of First-Come-First-Serve (FCFS)
scheduling and limiting the opportunities for optimization. It
is important to note that initiating a migration immediately
upon each request reception would not lead to any meaningful
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Fig. 5. Pre-copy live migration.

improvement or performance degradation in our scenario. By
referring to the baseline algorithm (nosch) in Section VI, this
point becomes clearer.

Based on the migration plan, the SDN-enabled online sched-
uler [24] initiates the migration process by allocating the band-
width and routing. The pre-copy live migration then begins
its pre-migration phase (MIGRATION_PRE) by extracting the
procedure tree of the container. It traces the dirty memory in
the userspace of the source server, and creates an empty con-
tainer instance in the destination for state synchronization [8].
In MEM_COPY, the dirty memory is transferred iteratively
to the instance in the destination for synchronization. In the
post-migration phase (MIGRATION_POST), network commu-
nication is redirected to the new instance in the destination. The
migrated container then recovers at the destination and triggers
the start of subsequent resource-dependent migrations in the
plan. Then, the feasibility flag of the first migration request of the
same container in the FAILED migration waiting list is changed.

IV. MOTIVATIONS AND PROBLEM FORMULATION

In this section, we first present the performance model for a
single pre-copy live migration and then examine the challenges
posed by multiple live migration scheduling in edge computing.
These challenges include resource competition or dependency
and real-time planning and scheduling. Finally, to address these
challenges, we model the problem as an iterative process of
generating the Maximal Independent Set (MIS) based on the
resource dependency graph.

A. Single Migration Model

The performance of a single live migration, denoted by Tmig ,
can be divided into three components (see Fig. 5): pre-migration
computing (pre-dump), memory-copy networking, and post-
migration (restore) computing overheads, which are represented
as Tmig = Tpre + Tmem + Tpost. The details of single mi-
gration model in terms of memory transmission time Tmem

(A.1) and stop-and-copy conditions, memory iteration copying
rounds i (A.2), and downtime threshold Tdthd are introduced in
Appendix A, available online.

Specifically, CRIU utilizes a pre-copy live migration tech-
nique that involves pre-dumping and incremental dumps. In
small containers with 11 tasks, each pre-dump stage has been
estimated to take around 0.5 seconds, while the restore time
ranges from 0.7 to 1.9 seconds, depending on the size of the
dump [8], [28]. In this paper, we set these values to 0.5 seconds
and 1.0 seconds, respectively.

Every individual live migration task is non-preemptible,
meaning that interruptions during the state synchronization pro-
cess between the source and destination servers would render
the migration process useless. As a result, in order to ensure a
successful live migration, it is necessary to only initiate migra-
tions when the available bandwidth is larger than the dirty page
rate (L > R). This makes the problem of scheduling multiple
live migrations not simply solvable by maximizing bandwidth
utilization using a network flow optimization approach.

B. Concurrent and Sequential

For scheduling multiple migration tasks with various source
and destination pairs, it is important to take concurrency into
consideration to maximize performance. Two or more migra-
tions that are dependent on shared resources should not be sched-
uled simultaneously, as demonstrated in [19], [23]. According
to (A.1) and (A.2), available online, a reduced bandwidth allo-
cation leads to an exponential increase in migration execution
time and a potential increase in downtime due to the ratio σ.
Thus, it is essential to optimize the networking resources in the
WAN during multiple migration scheduling. For instance, when
multiple migrations share network paths partially or entirely,
scheduling them at the same time will result in a total migration
time that is greater than the sum of their single execution time,
as demonstrated in the experimental results [23]. Therefore,
it is more efficient to schedule resource-dependent migrations
sequentially to optimize migration performance, as suggested
by [20], [23]. Meanwhile, migrations that are independent of
resources can be scheduled concurrently to reduce the total mi-
gration time. To achieve optimal total and individual migration
time, and downtime, it is important to exclusively allocate one
network path to one migration until it is completed.

In addition, previous empirical experiments and models [6],
[23] have shown that when the iterative memory copying over-
heads (dirty page rate and memory size) are small enough,
scheduling multiple migrations with the same source and desti-
nation on the same network paths can reduce the total migration
time with a slight increase in individual migration time. How-
ever, network bandwidth is often the limiting factor due to the
large memory size and dirty page rate of VMs in the WAN.
As indicated by (A.1), available online, and empirical results,
both the total and individual migration time are increased when
bandwidth is shared between live migrations. Thus, optimizing
multiple migration scheduling by maximizing network flows
would result in unacceptable migration time and downtime [24].
Additionally, live migrations that start with sufficient bandwidth
converge faster than those that start with a smaller bandwidth,
even if the average bandwidth is the same [24].

C. Real-Time Planning

There are several multiple migration planning and scheduling
algorithms for live VM migration in cloud data centers [20],
[21], [22]. However, the processing time of the scheduling
sequence for multiple live migrations based on these algorithms
is not suitable for the real-time requirements of mobility-induced
migrations in edge computing. For instance, the processing time
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Fig. 6. Example live migration requests and the network topology with five
compute hosts.

of FPTAS [21], [22] and CQNCR [20] for migration planning is
about 5 and 10 seconds for 100 migrations. The processing time
increases to 44.56 and 968.46 seconds for FPTAS and CQNCR,
respectively, when generating the scheduling plan for 500 mi-
grations. In traditional dynamic resource management, the al-
gorithm is triggered every 30 minutes or 60 minutes, leaving
enough processing time for algorithms to generate the optimal
scheduling sequence. However, in the case of mobility-induced
live migrations in edge computing environments, migration
requests arrive at any time stochastically and most of them are
time-critical. Therefore, the processing time of the planning and
scheduling algorithm for mobility-induced migrations should be
optimized to meet real-time requirements.

D. Resource Dependency Modeling

We utilize the capabilities of the SDN controller to generate
a dynamic dependency graph of migration requests based on
the flow routing algorithm, global network topology, available
bandwidth, and host network interfaces. Fig. 6 illustrates an
example with twelve live migration requests in an edge network
topology of five server nodes. The migration request to migrate
instance i from node s to node d is represented as msd

i . In this
example, for simplicity, the network interfaces used for migra-
tion traffic are limited to one. This means that migration flows
share the same interface when either the source or the destination
server is the same. The network routing policy initially chooses
the shortest network path with the largest available bandwidth
for each migration. For instance, there are two network routes
between node 1 and node 3, and since there is one migration
from node 2 to node 3, the network path {1, 4, 3} is chosen for
m1,3

1 and m1,3
12 . As shown in Algorithm 1, this can easily be

extended to consider the set of network interfaces of source {s}
and destination servers {d} and multiple migration network path
choices {p}.

Resource-independent migrations from one concurrent
scheduling group can be performed simultaneously. The plan-
ning algorithm should create a schedule plan that consists of
several concurrent migration groups, with each group as large as
possible. A larger concurrent group means that more migrations
can be carried out at the same time, leading to improved perfor-
mance in terms of total migration time and the quality of service
of the migrating service. It’s worth noting that migrations from
different migration groups do not necessarily have any resource
dependencies.

We model the interdependence of resources among migrations
as an undirected graph (Algorithm 1), which is based on the

Algorithm 1: Dependency Graph Generation for Multiple
Migrations Based on SDN Controller.

source, destination, and network routing of migration requests
according to the network topology provided by the SDN con-
troller. Each node vsdp represents a sorted list of migrations with
the same source s, destination interfaces d, and network paths
p. The list is sorted based on the calculated migration time, as
per Section IV-A. In other words, migrations within one node
list form a complete graph as all migrations are interdependent
on each other. For example, the migration list of node v13 is
{m13

1 ,m13
12}. This significantly simplifies the problem complex-

ity as the number of migration requests increases. The edge of
the dependency graph signifies resource competition (network
interfaces at the source or destination or bandwidth sharing along
network routes) between migrations.

The proposed dependency graph is designed to be a generic
model that is compatible with both existing network slicing [17]
and routing algorithms [18]. For instance, it considers both
physical and virtual paths as a path p in a uniform manner.
The routing algorithm used in this paper is the k-shortest path
routing with the largest available bandwidth, where k is equal to
2, representing the two network interfaces of a physical server.
This means that each server can have two NICs allocated to
migration flows. In Algorithm 1, two migrations u(msi,di,{pi}

i )

and v(m
sj ,dj ,{pj}
j ) are considered resource-dependent only if

either the network interface sets si and sj are equal, or the
network interface sets di and dj are equal, or the following
statement is true:

bw({pi} − {pi} ∩ {pj}) < min(bw(si), bw(di))∨
bw({pj} − {pj} ∩ {pi}) < min(bw(sj), bw(dj)). (1)

Before discussing the Maximum Independent Set of the re-
source dependency graph, we first review some basic graph
concepts [32]. Such concepts include clique,C, and independent
set, I . A clique is a subset of vertices of an undirected graph G,
where every two distinct vertices in the subset are adjacent. The
maximal clique is a clique that cannot be extended by including
one more adjacent vertex. On the other hand, an independent set
of graph G is the opposite of a clique in that no two nodes in the
set are adjacent. The maximum clique or independent set is the
maximal clique or independent set with the largest size. α(G)
denotes the size of the largest MIS of graph G. Therefore, an
independent set of the resource dependency graph represents a
concurrent migration group, meaning that the migrations from
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Fig. 7. Iterative maximal independent sets as concurrent migration groups
based on the temporal graph of migration resource dependency for the illustrative
example.

the nodes in the independent set I can be scheduled concur-
rently. Conversely, migrations from the nodes in a clique are
resource-dependent and must be scheduled sequentially.

As shown in Fig. 7, a maximal concurrent scheduling group
is a set of resource-independent migrations that is not a subnet
of any other concurrent group. No additional migration can be
included in the group to make all migrations perform simul-
taneously. As a result, the group is equivalent to a Maximal
Independent Set (MIS) and the largest MIS is the maximum inde-
pendent set. There are multiple combinations of migrations that
can form a maximal scheduling group. To solve this problem, we
can use the Maximum Independent Set algorithm, where in each
iteration, the migrations with the shortest migration time from
each node within the maximum independent set are selected and
removed from the graph. The algorithm stops when there are no
nodes left in the graph. For instance (Fig. 7), in the first iteration,
one of the maximum groups could be {m13

1 ,m32
7 ,m25

5 ,m41
9 },

while another maximal group could be {m23
3 ,m45

11,m
31
6 }. The

maximum group is a better choice. After selecting migrations
from the nodes in the maximum independent set, we delete these
migrations and update the dependency graph. A node is deleted
from the graph when there are no remaining migrations in its
node list. For instance, after the first iteration, nodes v25, v41, v32

are deleted, but node v13 still has one migration m13
12 left in its

list. Therefore, it is crucial to choose migrations carefully to
achieve the largest concurrent group size. In the end, the online
migration scheduler schedules all migrations in the first group.
Then, when one migration is finished, the scheduler starts all
migrations blocked by the finished migration in the order of
migration groups.

E. Problem Modeling

The planning and scheduling algorithm is triggered periodi-
cally at set intervals of Δsch. We use M t

arriv to denote the set
of arrival migration requests at planning time t, M t

wait as the
set of migration requests waiting for planning at time t, and
M t

fail as the set of infeasible migrations such as those involving
containers that are currently in migration. Additionally, M t

plan

represents migrations that have been planned but not yet com-
pleted at time t, while M t

finish denotes migrations that have
finished at time t.

The input of migration requests at every migration planning
time t is given by M t

input = M t
plan ∪M t

wait. For each live mi-
gration mj , we have the source and destination edge data center,
as well as the allocated network routing, (sj , dj , pj), available
bandwidth lj , arrival time aj , estimated migration time Tj ,
relative deadline Dj , start time bj , and finish time fj . Therefore,
the response time for each live migration can be represented as
rj = fj − aj . The slack time for migration scheduling, which
represents the remaining scheduling window that one migration
will not miss its deadline, is given by τj = aj +Dj − Tj − t.
The objective of live migration planning and scheduling is
to maximize the number of running resource-independent live
migrations until the next planning time t+Δsch.

At every planning and scheduling time t, the resource depen-
dency graph G = (V,E) denotes an acyclic undirected graph
where |G| = |V |. Each node u ∈ V represents the list of migra-
tions M(u) where migrations share the same source s, desti-
nation d, and network routing p. By sharing the same source,
destination, and network routing, migrations in the list of a
node are all resource-dependent. Let (u, v) ∈ E denote the edge
between node u and v. It indicates the resource dependency
between migrations from both nodes. V (G) denotes the set of
nodes of graph G.

We model the multiple migration planning problem as gen-
erating the maximal independent set of the dependency graph
iteratively. In other words, in each iteration, we obtain the
maximal independent set of the remaining graph and then up-
date the graph by deleting the corresponding migrations. Let
Gi+1 = Gi[V (Gi)− Si] represent the remaining graph by di-
rectly deleting the vertex from the set of nodes Si. Let Ii denote
the maximal independent set of graph Gi. Then, the remaining
graph Gi+1 in each iteration can be represented as

Gi+1 = Gi [ [V (Gi)− Ii] ] = Gi [V (Gi)− Si] , (2)

by deleting a set of nodes Si = {u|u ∈ Ii,M(u) = ∅}, where
the migration list of the deleted node u is empty. Therefore, for
each migration planning, the objective is to generate the iterative
maximum independent set of dependency graphs

max |Ii| , ∀Ii ∈
{
Iiiter

}
, (3)

where {Iiiter} = {I1, I2, . . ., IK} is the total K iterative inde-
pendent sets and there are no vertices left in theK + 1 remaining
graph as GK+1 = ∅. In other words, each iterative independent
set size equals the size of the maximum independent set of the
remaining graph |Ii| = α(Gi).

We extend the model to generate the iterative maximum
weighted independent set for migration with different priorities,
such as migration deadline. The weight of an independent set
is W (I) =

∑
u∈I W (u). The largest weight of migration m̂ in

the node migration list is the weight of its corresponding node
in the dependency graph W (u) = W (m̂) that

W (m̂) ≥ W (m), ∀m̂,m ∈ M(u). (4)

Then, the objective of multiple migration planning is

maxW (Ii) , ∀Ii ∈
{
Iiiter

}
. (5)

Authorized licensed use limited to: University of Melbourne. Downloaded on September 19,2024 at 00:58:51 UTC from IEEE Xplore.  Restrictions apply. 



6674 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 6, JUNE 2024

Algorithm 2: Iterative Approximation Grouping.

The weight of node W (u) = 1 when there is no need to differ-
entiate migrations in different nodes. Generating the maximum
(weighted) independent set of an undirected acyclic graph is a
well-known NP-hard problem [33], [34]. Therefore, generating
the iterative maximum independent set as the subset is also
NP-hard.

F. Complexity Analysis

Because an independent set of G is a clique in the comple-
ment graph of G, and vice versa, the independent set problem
and the clique problem are complementary [32], [33], [35]. In
other words, listing all maximal independent sets or finding the
maximum independent set of a graph is equivalent to listing all
maximal cliques or finding the maximum clique of its comple-
ment graph. Thus, in each iteration, we can find the maximum
independent set by obtaining the maximum clique Ci of the
complement graph Ci(Ḡi) = Ii(Gi).

It is known that all maximal cliques can be calculated in
a total time proportional to the maximum number of cliques
in an n-vertex graph [35]. In other words, each clique can
be generated in polynomial time in the listing of all maximal
cliques [33]. When we only consider vertices, the optimal algo-
rithm for maximal clique listing is the maximal cliques listing
algorithm (CLIQUES) [34], [35] based on Bron-Kerbosch [32].
The worst-case running time of CLIQUES isO(3n/3). The upper
bound of all maximal cliques or independent sets of a graph
is 3n/3 [36]. The best-known time complexity of finding one
maximum independent set has been improved is O(2n/4) [37].
Therefore, it is computationally impossible to solve the exact
problem of listing all maximal cliques (maximum clique) of
its complement graph Ḡdep or all maximal independent sets
(maximum independent set) ofGdep for real-time live migration
scheduling in edge computing, which exhibits an exponential
time complexity.

V. MIGRATION PLANNING AND SCHEDULING

The section presents the proposed planning and scheduling
algorithms for large-scale live migrations in edge computing.
With the waiting live migration requests and planned unfinished
live migrations as input, the migration planner needs to effi-
ciently schedule arriving migrations while maintaining the QoS.
Based on the problem modeling in Section IV-E, this problem is
reduced to finding an MIS of the migration dependency graph
iteratively. Therefore, we propose two approaches to generate
the iterative MISs of the dependency graph: 1) Direct iterative
MISs generation, including approximation (approx) and greedy
iterative MISs algorithm (iter-GWIN), and 2) Maximum Cliques
(MCs)-based MISs generation, including Iterative-rounds MCs
(iter-MCs) and Single-Round MCs Algorithm (single-MCs).

Appendix C, available online, presents a detailed computational
performance evaluation and analysis for the problem of iterative
MIS generation and the proposed algorithms.

A. Direct Iterative-Maximal Independent Sets

For the direct iterative MISs generation, we follow the ra-
tionals based on the planning model as follows: 1) Create de-
pendency graph Gdep based on the source, destination, and net-
work routing of the input migrations and the network topology;
2) Generate the Maximum Independent Set (MIS) I of G;
3) Delete the nodes u ∈ I from G if its migration list M(u)
is empty; and 4) Repeat the procedure 2 and 3 until there are no
vertices left Gdep = ∅.

1) The Approximation: For the approximation algorithm
(approx) of creating the iterative maximum independent set,
the procedure is as follows: In the approximation algorithm
(Algorithm 2), we use the approximating maximum independent
sets algorithm by excluding subgraph [38] to generate MIS in
each iteration. Note that we skip the MIS generation and remove
the migrations directly if the node size of Gdep is unchanged in
the current iteration. In other words, if we need to recalculate the
MISs of the remaining graph, there is at least one node removed
from the graph Gi. Given total m live migrations, we create
the corresponding dependency graph with n vertices. There-
fore, regardless of the total number of migration requests, the
upper bound of the complexity of planning multiple migrations
scheduling is limited by the involved source, destination, and
network routing. In the worst case, the planning algorithm only
needs at most n iteration rounds to calculate the concurrent
migration group. In each iteration, it guarantees O(n/(log n)2)
approximate maximum independent set in polynomial time [38].

Based on the newly generated scheduling plan {Iiter}, the
SDN-enabled online migration scheduler will start all feasible
migrations in the first group I0, considering the resource de-
pendency with current running migrations. Then, whenever a
migration finishes, the scheduler starts all remaining feasible
migrations in each concurrent migration group Ii followed by
the scheduling plan order.

2) Greedy Iterative MISs Algorithm: The greedy algorithm
(iter-GWIN) generates the concurrent groups (MIS) of live mi-
gration iteratively. A greedy maximal independent set algorithm
(GWIN) [39] based on the weight and the degree of a node is
adapted to directly generate the MIS in each iteration. Let ΔG

denote the maximum degree and d̄G is the average degree of G.
The degree of node u in G is dG(u) = |NG(u)|. NG(u) is the
set of neighbor nodes of vertex u and N+

G (u) = NG(u) ∪ {u}.
As shown in Algorithm 3, from lines 3-8, it selects the node

with the largest score regarding the minimal degree and maximal
weight

W (u)/(dGi
(u) + 1). (6)

It removes the selected node and its neighbors from the graph
and repeats the procedure until there are no vertices.

The problem model shows that the weighted node equals
the maximum weight of migrations from its list. The migra-
tion weight could be arrival time, estimated migration time, or
correlation network influence [20] after migration for non-time-
critical migrations and the deadline or slack time for real-timeAuthorized licensed use limited to: University of Melbourne. Downloaded on September 19,2024 at 00:58:51 UTC from IEEE Xplore.  Restrictions apply. 
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Algorithm 3: iter-GWIN.

Fig. 8. Total number of nodes and degeneracy number of the resource depen-
dency graph of WAN topologies [40] and its complement graph.

migrations scheduling. We consider the weight function regard-
ing the slack time τ as follows:

W (m) =

⎧⎨
⎩
10 · β/τ
100 · |τ |/β
100

τ > β
τ < −β
other

, (7)

where β is the slack time threshold. We set β = 1 in this paper.
The weight of the node is W (u) = γ ·W (m), where γ is the
coefficient regulator for the urgency of the scheduling migration.
We set γ = 1. Moreover, in a situation where the priorities of
all migrations are the same, we only need to consider the size
of MIS. The node weight is set to W (u) = 1. In each iteration,
the lower-bound of the maximum (weighted) independent set is∑

u∈V W (u)/(dG(u) + 1) [39]. As iteration is n in the worst
case, the time complexity of iter-GWIN is O(n2 log n) for
weighted graph and O(n2) for unweighted graph.

B. The Maximum Cliques-Based Heuristics

Based on the observation of the density property of the
migration resource dependency graph, we propose the iterative
Maximum Cliques (MCs)-based algorithm (iter-MCs). We first
discuss the rationales of iter-MCs.

The degeneracy of a graph G is the smallest number d such
that every subgraph of G contains a vertex of degree at most d.
It is a measure of the graph spareness. For an n-vertex graph
with degeneracy d, by introducing the sequence ordering based
on degeneracy, Bron-Kerbosch Degeneracy algorithm [41] can
list all maximal cliques in time O(dn3d/3). With a spare graph
that n ≥ d+ 3, the upper bound of all maximal cliques number
is (n− d)3d/3. Fig. 8 illustrates the nodes and the density
(degeneracy) of the resource dependency graph of WAN network
topologies [40] and its complement. It shows that the degeneracy

Algorithm 4: Iterative Heuristic MCs.

of the complement graph Ḡdep is 4.34 times that of Gdep. For
Gdep and its complement graph, the average ratio of dependency
d to the total number of nodes n is 0.153 and 0.714, respectively.
The resource dependency graph is considerably more sparse than
its complement graph. Therefore, forGdep, there are much fewer
maximal cliques than the total MIS. According to the theoretical
time complexity, the running time of listing all maximal cliques
or the maximum clique of Gdep is much smaller than that of
listing all maximal independent sets or the maximum indepen-
dent set of Gdep. Therefore, the iterative Maximum Cliques
(MCs)-based heuristics algorithm has two steps: 1) calculate the
list of iterative maximum cliques and 2) generate the iterative
maximal independent set based on the list. As nodes from one
maximal clique can not be included in the same independent
set, the iterative maximum cliques serve as a heuristic pruning
decider to speed up the algorithm.

1) Iterative-Rounds MCs Algorithm: Let Ĉi denote the max-
imum clique and {C̄i} denote the maximal cliques’ list of round
i graph. The iterative-rounds Maximum Cliques (MCs)-based
heuristic algorithm (Algorithm 4) follows two steps: 1) gener-
ating the maximum clique iteratively and 2) obtaining the MIS
from the iterative maximum cliques.

As shown in Algorithm 4, we first create dependency graph
Gdep as the input based on the source-destination of the given
migrations and the network topology. From lines 1-6, the al-
gorithm calculates the iterative maximum cliques of the depen-
dency graph until there are no vertices left. In each iteration,
it generates the maximum clique (Bron-Kerbosch Degeneracy
algorithm) [41] of the remaining graph. It is proved that the
algorithm is highly efficient in a sparse graph, such as the
resource dependency graph [41]. Then, it updates the remaining
graph by deleting the nodes of the maximum clique from Gdep.
Let dG[C](u) = |NG[C](u)| denote the degree of node u to the
remaining graph which excludes all nodes in the clique. The
node score can be represented as

W (u)/
(
dG[C](u) + 1

)
. (8)

In the second step (lines 7–12), it generates maximal inde-
pendent sets based on the iterative maximum cliques. In each
round (lines 9–11), it selects the feasible node with the maximum
score of each maximum clique Ĉi and adds the largest-weight
migration from its list into the independent set. A node is
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Algorithm 5: Single-Round Iterative MCs.

feasible when it can be included in the current independent
set. If there are no migrations left in the migration list of the
selected node M(u), the selected node is removed from the
clique. As the largest possible number of maximal cliques in
an n-vertex graph with degeneracy d is (n− d)3d/3. Therefore,
according to the iter-MCs algorithm, the upper bound of the
size of the iterative maximum independent set of each iteration
is also (n− d)3d/3. In the worst case, the time complexity of
iter-MCs is O(dn23d/3).

Theorem 1 (Correctness of MIS from Maximal Cliques): The
Independent Sets generated from maximal cliques are the max-
imal independent sets of the graph.

Proof: see Appendix B, available online �
2) Single-Round MCs Algorithm: Furthermore, we propose

a single-round MCs-based algorithm (single-MCs). It generates
the optimal iterative maximum cliques only based on all maxi-
mal cliques of the initial dependency graphGdep. The maximum
clique size of each iteration is the same as the iter-MCs. We also
prove the correctness of the proposed single-round iterative max-
imum cliques algorithm. The first step of the iter-MCs algorithm
is replaced by Algorithm 5. The algorithm only generates the list
of all maximal cliques {C̄} once by using the Bron-Kerbosch
Degeneracy algorithm. Until there are no vertices left in the
clique list, it selects the maximum clique (largest maximal
clique) Ĉi from the list and deletes the nodes of the selected
maximum clique from all maximal cliques.

Theorem 2 (Correctness of the algorithm single-MCs):
Given a graph G = (V,E) V 	= ∅, the single iteration algo-
rithm SINGLE-MCs generates all and only iteration maximum
cliques.

Proof: see Appendix B, available online �
In conclusion, the first group of proposed algorithms, approx

and iter-GWIN, directly calculate the MISs of the remaining
graph in each iteration. iter-GWIN and single-MCs have the
lowest time complexity. In the second group, heuristic algo-
rithms, iter-MCs, and single-MCs calculate iterative MISs based
on the Maximum Cliques of the original graph according to the
property of the dependency graph. The approximation algorithm
(approx) can guarantee an approximate ratio O(n/(log n)2) in
polynomial time. Compared with other algorithms for generat-
ing iterative MISs of a graph, single-MCs can largely reduce
the processing time as it is only based on the initial result of
Maximal Independent Sets at the first iteration. Furthermore, we
prove the correctness of single-MCs that direct MIS calculation
for the remaining graph in each iteration.

VI. PERFORMANCE EVALUATION

This section evaluates proposed solutions using real-world
traces on an event-driven simulator. We first describe the real-
world telecom base station dataset and taxi GPS traces. We ex-
plain the placement of edge data centers, the network topology,
and the regional coverage of each EDC. The event-driven simu-
lator for software-defined network-enabled edge-cloud comput-
ing [42] is extended to emulate the user movement and live
migration. It provides a network operating system based on
software-defined networking for dynamic service and network
resource monitoring and allocation. Compared to the simula-
tion results driven by mathematical models, this can generate
more realistic results without following the strong assumption
encoded in the proposed mathematical modeling.

Based on the evaluation of graph processing performance in
Appendix C, available online, we select iter-GWIN and single-
MCs algorithms to compare with the state-of-art inter-cloud al-
gorithm (FPTAS) [21], [22] and a baseline service management
policy without planning and scheduling algorithm. We evaluate
the performance of live migration planning and scheduling algo-
rithms in processing time, migration time, downtime, transferred
data, deadline violations, and network transmission time. The
time interval of each scheduling window is set at one second.

A. Experimental Data

We use coordinates from the Shanghai Telecom dataset1

and the Shanghai Qiangsheng taxi GPS trace dataset2 (April
1, 2018). The longitude and latitude values are limited to the
range of 30.40◦ N to 31.35◦ N and 120.51◦ E to 122.12◦

E. The Shanghai Telecom dataset contains 3,233 base station
coordinates (Fig. 9(a)). Using the K-means algorithm [43], we
generate 200 Edge Data Center (EDC) locations based on the
base station coordinates. The taxi GPS trace dataset (Fig. 9(b))
contains timestamped GPS coordinates and additional data on
taxi status and vehicle parameters (e.g., speed, direction, number
of connected satellites). Base stations are clustered and con-
nected to regional Edge Data Centers (EDCs) (Fig. 9(c)). We use
Delaunay Triangulation [44] to generate links between the EDC
gateways (Fig. 9(c)). For network routing within this topology,
we use the shortest path that is no longer than 4π/3

√
3 times the

euclidean distance between source and destination. The EDC
regions’ boundaries (Fig. 9(d)) form a Voronoi diagram [44],
where any point’s euclidean distance to its corresponding EDC
region is less than or equal to its distance to any other EDC.

Similar to other research regarding the generation of mobility-
induced live migrations in edge computing [13], [14], we com-
bine these two datasets to simulate the scenarios where the
user needs to connect to the services and maintains the low
end-to-end latency through live migration in edge computing.
Fig. 10 demonstrates an example that the request of live migra-
tion is induced when a taxi moves across the boundary between
two clusters of EDCs. The deadline of each live migration is
generated based on the average mobility speed of users in the

1[Online]. Available: http://sguangwang.com/TelecomDataset.html
2[Online]. Available: http://soda.shdataic.org.cn/download/31
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Fig. 9. Experimental dataset and configurations with longitude and latitude data as x and y axes.

Fig. 10. Example of live migration request triggered by user movement with
longitude and latitude data as x and y axes.

last 3 GPS records, travel direction, and the signal strength of
base stations.

B. Experimental Setup

This sectiondescribes the details of the experiment setup. The
end-to-end delay between the user and the service is the time
interval from the user (taxi) sending workload to the container
assigned in the EDC to the result received by the user. To
generalize computer vision use case workloads, the service task
generated during the experiments follows the Poisson distribu-
tion with a mean of 24 per second (24 FPS). In each task, the
network packet size sent from a user is 16384 bytes (128 ∗ 128
bytes). The processing workloads in the container are randomly
generated from 500 to 1,000 cycles per bit [14]. The resulting
packet sent back from the container to the user is 128 bytes.
The total CPU power frequency for each EDC with multiple
CPUs is 25 GHz [45], [46]. The reserved virtual (application)
bandwidth between a container server and the user client is
set at 3 Mbps, which is sufficient for streaming applications in
edge computing environments. For instance, Google streaming
bandwidth requirements for 720p video bitrate ranges from
1,500 to 4,000 Kbps, 480p from 500 to 2,000 Kbps, and 360p
from 400 to 1,000 Kbps, and a 0.6 Mbps configuration was also
chosen in mobile edge environments [14]. Thus, it is reasonable
and sufficient for video streaming and object detection in the
edge (e.g., Yolo 608 and 416 resolution setup). To simulate
the limited network resources for migrations, the bandwidth of
physical network links between EDCs is set to 1 Gbps. The

TABLE II
SERVICE MIGRATION SCENARIOS WITHIN 1 HOUR

network delay between base stations and regional EDCs is fixed
at 5 ms, while the delay between EDCs is randomly generated
between 5 and 50 ms [14].

According to the evaluation results of container memory and
dirty memory size during live container migrations [29], we
generate the container memory from 100 MB to 400 MB. The
dirty page rate for each dirty memory transmission is from
2 MB/s to 8 MB/s and the data compression rate is 0.8 [47]. We
configure the downtime threshold and the maximum iterations
for live migration at 0.5 seconds and 30 times [23], respectively.
Based on the SDN controller, the remaining network bandwidth
between the source and destination hosts in EDC which is not
utilized by services is allocated to the live container migration
traffic. If several live migrations are sharing part of their routings,
the bandwidth will be allocated evenly to each of the network
flows.

We consider the GPS trace of randomly selected vehicles
from 1,000 to 4,000 within one hour (S1 to S3 in Table II).
For the initial placement at the start of the experiment, we
allocate corresponding containers for each vehicle at the same
edge data center according to its GPS coordinates. The nearest
first policy is considered in our experiments to generate live
migration requests to allocate service containers to the nearest
edge data center. According to the user mobility, one live mi-
gration will be triggered when one vehicle exits the coverage
area of its current edge data center. There are 9,933, 19,522, and
37,822 migration requests induced by these vehicles’ movement,
respectively. During the live migration, the dirty memory of mi-
grating instances will be copied iteratively from the source edge
data center to the nearest edge data center through the shortest
network path. For the evaluation sensitivity, the results of each
scenario are an average of 10 individual experiments. In this
experiment, we assume that the container image as a universal
service is already available in all EDCs or shared by the network
storage. CloudSimSDN-NFV [42], an event-driven simulator, is
extended with corresponding components to support pre-copy
live migration and user mobility in edge computing.
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Fig. 11. Migration performance compared to no scheduler, iter-GWIN, and single-MCs under different scenarios with 0.95 CI.

TABLE III
TOTAL PROCESSING TIME COMPARISON IN MILLISECONDS

C. Experimental Results and Analysis

We compare the experimental results between no migration
scheduler, iter-GWIN, single-MCs, and the current state-of-
the-art migration planning and scheduling for inter-clouds FP-
TAS [21], [22]. In FPTAS, to maximize the total bandwidth
utilized by migrations, one migration can be started even though
there is considerably limited bandwidth which is much lower
than the dirty page rate per second. The solution can cause
devastating migration performance. Thus, we improve FPTAS
by adding a bandwidth threshold (FPTAS-BW) as the migration
start condition that the available bandwidth must be larger than
the dirty page rate. As the vehicle number increases from S1
to S3, the density of live migration requests in certain areas
increases dramatically. The resource competition or resource
dependency among live migration requests will also increase.
As a result, the complexity of the dependency graph may also
increase. When the requirements of live migration requests
exceed the resource capacity provided by edge computing, it is
inevitable that some of the deadlines of some migration requests
can not be satisfied.

Table III shows the total processing time of migration plan-
ning and scheduling algorithms within 1 h in milliseconds. From
S1 to S3, the average processing time of single-MCs for each
migration planning is 0.1175, 0.1936, and 0.4904 milliseconds.
Compared to iter-GWIN, the processing time of single-MCs
decreased by 61.36% in scenario S3. The results are consistent
with the graph algorithm evaluation in Appendix C, available

online. Furthermore, compared to FPTAS [21], [22], the per-
formance of our solution in terms of processing time has been
improved by more than 3,000 times. In S3, the processing time
of FPTAS is about 78 minutes. As a result, even with any
weight modification in the algorithm, the migration deadline in
seconds will be missed. As the results of FPTAS-BW in deadline
violation exceed chart comparison limits, we only compare it in
the migration performance.

From S1 to S3, without migration planning and scheduling,
more live migrations compete with each other on the network
routing and the available bandwidth. As a result, the average mi-
gration time increases dramatically from 2.25 and 4.59 seconds
to 299.89 seconds (Fig. 11(a)). Particularly, in S3, the allocated
bandwidth may either be smaller than the dirty page rate and
cause a large downtime for some migrations. Or, it causes a much
longer migration time due to a large number of memory-copying
iterations. As a result, the migrating service suffers a devastating
consequence. Furthermore, for FPTAS-BW, by maximizing the
total migration bandwidth rather than the resource competition,
it suffers smaller average bandwidth per migration. Thus, as
shown in Fig. 11 the performance of our purposed solution in
terms of average migration time, average downtime, and total
transferred data are increased by up to 30.24%, 51.56%, and
2.06%, respectively. Meanwhile, for the proposed planning and
scheduling algorithms iter-GWIN and single-MCs, the perfor-
mance of live migration can be guaranteed even with severe
resource competition. Results (Fig. 11(a) and (b)) show that
the average migration time and downtime are optimal at 1.9
and 0.13 seconds as there is no bandwidth sharing between
resource-dependent migrations.

As shown in Section IV-A, the migration time of each in-
dividual migration is influenced by factors such as memory
dump size, dirty page rate, downtime threshold, and bandwidth
between the migration source and destination. Therefore, ac-
tual container and VM migration time can vary from a few
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seconds to minutes [23], [29]. For instance, the experiment
demonstrates Xonotic server migration across the world,3 and
the live migration of a Minecraft container from AWS to Azure
in around 60 seconds.4 To verify our model and results, we
also evaluated live container migration in real hardware. We
performed live migrations of the Xonotic server container with
controlled bandwidth between servers. The Pre-dump size is
around 400 M and the second-round dump size is around 20 M.
Plus the processing time of pre-migration and post-migration
(Section IV-A), the migration time shown in Fig. 11 is justifiable.

Furthermore, for all migrations that arrive within the 3,600
seconds interval in S3, iter-GWIN and single-MCs can finish the
scheduling of all migrations in 3603.91 and 3601.43 seconds.
However, the total migration time of no scheduler is 48878.65
seconds in S3. A shorter average migration means less possibility
of QoS degradation and less occupation time on the network
resource. Less downtime equals less disruption to migrating
services.

Another critical migration performance is the transferred data
of the live migration. It is also highly related to network energy
efficiency. In S1 and S2, although average migration time and
downtime increase due to less allocated bandwidth, there is no
surge in the transferred data for the no migration scheduling
situation (Fig. 11(c)). Because of the container’s small mem-
ory footprint, the shared bandwidth can still satisfy the down-
time threshold with relatively small memory-copying iterations.
However, when the bandwidth becomes the bottleneck, a large
number of memory-copying iterations are needed to meet the
downtime threshold. Therefore, the total transferred data in S3
increased by 114.47% compared with the optimal result from
single-MCs.

The deadline of a live migration request is highly related to the
QoS and SLA requirement of the real-time migrating service.
For iter-GWIN and single-MCs, the ratio of migration violation
numbers to the total migration number is 0.071% and 0.107%
in S2 and 0.756% and 1.002% in S3 (Fig. 11(d)). However, the
ratio for no migration scheduler is 3.07 times in S2 and 8.46
times compared to the best result from iter-GWIN. The ratio
of total violation time to the service time of all containers in
one hour is 0.00127% and 0.00148% in S2 and 0.0425% and
0.0720% in S3, respectively (Fig. 11(e)). In S3, although migra-
tion performance in migration time and downtime is optimized
by the migration scheduler, the network resource is insufficient
to schedule all 37,822 migration requests on time with the live
migration competitions. It is inevitable to violate the deadline
of certain migrations with lower priority to satisfy the deadline
for others. As a solution, one needs to increase the network
resource by providing duplicate EDCs and additional network
routing or available bandwidth in the hot spot to alleviate the
deadline violation of real-time migrations.

The end-to-end delay for the migrating edge service is af-
fected by the migration downtime and the duration of deadline
violation. For the network transmission time, we compare the

3[Online]. Available: http://www.redhat.com/en/blog/container-migration-
around-world

4[Online]. Available: http://www.infoq.com/articles/container-live-migra
tion/

results of no user movement and no migration, no migration
requests with user movement, no scheduler, iter-GWIN, and
single-MCs (Fig. 11(f)). In the scenario that all vehicles stay
at the start point and do not move during the experiment time
(nomov), the average network transmission time to the service
or the end-user is from 17.4 to 19.9 milliseconds from S3 to
S1. Without the live migration requests (nomig), the end-to-end
delay can be not guaranteed due to the network delay between
the EDC and the end user. Specifically, the average network
transmission time is around 56 milliseconds. The live migration
planning and scheduling algorithm (iter-GWIN and single-MCs)
can guarantee the average service network transmission time.
In S3, without a migration scheduler, the elephant migration
flows and downtime and deadline violations have a considerable
impact on the service network delay. Compared to the iter-GWIN
result, without considering requests during migration downtime,
network delay increases 6.62 times at 133.24 ms and 79.16 times
at 1.38 seconds without and with timeout network requests,
respectively (Fig. 11(f)). Taking direct downtime impacts into
account, the average delay increases to 5.42 seconds with 8.32
confidence intervals due to the disproportionately large service
downtime.

In summary, our proposed algorithms can efficiently plan and
schedule large-scale mobility-induced live migrations in edge
computing. Even in the case of a migration request surge, it
guarantees the performance of live migrations and maintains the
QoS of migrating services. It significantly reduces average mi-
gration time (up to 99.36%), average downtime (up to 99.94%),
total deadline violations (up to 88.18%), and violation time (up
to 99.94%).

VII. CONCLUSION AND FUTURE WORK

This paper investigated the challenges of live migration
scheduling in edge computing, including resource competitions
or dependencies among live migrations and real-time migra-
tion planning and scheduling. To address these challenges, we
proposed a framework for migration scheduling triggered by
users or users’ mobility that utilizes SDN to minimize the
impact of migration flows on other edge services. Specifically,
we modeled the relationship of resource dependencies among
migrations as an undirected graph and formulated the scheduling
problem as generating the maximum independent set of the
dependency graph iteratively. To further improve the efficiency
and scalability of the proposed framework, we developed two
large-scale migration planning and scheduling algorithms based
on iterative Maximal Independent Sets. We conducted computa-
tional experiments to evaluate the performance of the graph al-
gorithms, and real-world data experiments further demonstrated
their effectiveness in optimizing live migration performance and
minimizing deadline violations in migration scheduling. Our
work contributes to the development of fine-grained multiple
migration planning and scheduling techniques for edge com-
puting, which can maintain the QoS of migrating services while
accommodating the mobility of users and resources in a complex
network environment. As part of the future work, we intend to
investigate base station clustering for EDC placement based on
user mobility to reduce the number of live migrations.
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