
Outsourcing Resource-Intensive Tasks from Mobile
Apps to Clouds: Android and Aneka Integration

Tiago Justino∗ and Rajkumar Buyya∗†
∗Cloud Computing and Distributed Systems (CLOUDS) Laboratory

Department of Computing and Information Systems
The University of Melbourne, Australia

†Manjrasoft Pty Ltd, Melbourne, Australia
{tiago.vieira, rbuyya}@unimelb.edu.au

Abstract—Mobile Cloud Computing enables augmenting mo-
bile device capabilities and increasing battery lifetime through
the extension of cloud services and resources, resulting in an
enhanced user experience. However, the development of a mobile
cloud application is challenging because it involves dealing with
different cloud providers and mobile platforms. To tackle the
above issues, a mobile cloud architecture is proposed to asyn-
chronously delegate resource-intensive mobile tasks in order to
alleviate the mobile device load and, consequently, extend the
battery life. We demonstrate this capability by developing an
interface that supports the delegation of heavy tasks from mobile
apps running under the Android mobile platform to a cloud
computing environment managed by the Aneka Cloud Applica-
tion Platform. The Aneka Mobile Client Library encapsulates
the processes of communicating to cloud is provided, thus, the
effort and complexity of developing a mobile cloud application
is decreased. Two different resource-intensive mobile application
are presented in order to show the library effectiveness. A
performance evaluation is conducted showing the feasibility of
architecture through the reduction of application execution time
and extension of mobile device battery life.

Keywords—Mobile Cloud Computing, Task Delegation, Mobile
Apps, Android, Aneka, Software Engineering.

I. I NTRODUCTION

The International Telecommunication Union (ITU) expects
the number of mobile phone accounts to exceed the global
population in 20141. This growth is observed throughout all
the Smart Mobile Devices (SMDs) domain, such as: Personal
Digital Assistants (PDAs), smart phones, and tablets. In recent
years, the advance in semiconductor technology enabled the
design of mobile devices increasingly powerful and compact
[1]. Although the technology has advanced, the miniature and
mobile nature of these devices impose intrinsic limitations on
CPU, memory, and battery lifetime [2], [3].

This technological advancement enabled the execution of
resource-intensive mobile applications, such as voice recog-
nition, image processing, optical character recognizers,and
online games. However, SMDs rely on finite energy source
and they are resource-poor compared to stationary machines
such as desktops and servers [4]. Nevertheless, users presume
to execute resource-intensive applications on their SMDs with
the same quality expectations (performance and reliability) [3].

1http://www.siliconindia.com/magazinearticles/World to have more
cell phone accountsthan people by 2014-DASD767476836.html

In this context, Mobile Cloud Computing (MCC) enables
augmenting SMD capabilities through extension of cloud
services and computational resources to SMD on demand
[3]. The augmentation of capabilities includes screen, battery
life, storage, and application processing (CPU, memory) [5].
Thereby, storage and processing are increased and battery
lifetime is extended, enhancing the user experience. Further-
more, this solution inherits characteristics intrinsic tocloud
environments like, pay-as-you-go model, elasticity, illusion of
infinite resources, and task parallelization [6].

However, the development of a mobile application that
requires accessing distributed hybrid clouds is challenging
because it involves dealing with different Web APIs from
different cloud providers (e.g., Amazon, Microsoft Azure)
and different mobile platforms (e.g., Android, iOS, Windows
Phone). Moreover, porting these API to SMDs is a difficult
task due to compiler limitations, additional dependencies,
and code incompatibility reasons [6]. To tackle the above
issues, a mobile cloud architecture is proposed to delegatein
asynchronous manner resource-intensive mobile tasks in order
to alleviate the mobile device load and, consequently, extend
the battery life.

We demonstrate this capability by developing an interface
that supports the delegation of heavy computing tasks from
mobile apps running under the Android mobile platform to a
cloud computing environment managed by the Aneka Cloud
Application Platform. However, our proposed model for inte-
gration of Android and Aneka platforms can be easily applied
to other mobile platforms such as iOS and Windows Phone.

The main contribution of this paper is the Aneka Mobile
Client Library for Android platform that encapsulates the
processes of connecting to cloud, serializing and deserializing
messages, sending messages, and collecting their responses.
Thus, the effort and complexity of developing a mobile cloud
application is decreased. In addiction, the library was designed
to leverage the Aneka Cloud Application Platform, which
provides transparent resource provisioning and job scheduling
services and encapsulates different cloud providers Web APIs.
The user has no concern in allocating or deallocating virtual
machines or distributing the jobs among the resources.

This paper also presents two different resource-intensive
mobile applications (ray tracing image generation and Mandel-
brot set generation) in order to show the Aneka Mobile Client
Library effectiveness. A performance evaluation is conducted



with objective of comparing the applications execution in the
mobile device and delegating to the cloud in view of metrics
battery consumption and processing time.

The rest of this paper is organized as follow: Section II
analyses related works, highlighting similarities and differ-
ences for this proposal. Section III describes the architectures
and software artifacts, and its deployment. Section IV describes
the Aneka Mobile Client Library development and shows its
operations. Section V presents two different resource-intensive
mobile applications developed using the proposed approachin
order to evaluate it. Finally, Section VI concludes the paper
and highlights future research directions.

II. BACKGROUND AND RELATED WORK

In order to augment the processing power of mobile
devices, two main approaches have emerged [6]: offloading
and delegation. In offloading, applications are partitioned into
components, which are analyzed in order to determine whether
they should be migrated to the cloud. This process can occur
at development time or at runtime. These components can be
different entities depending on the granularity level, such as
method, class, module, application partition, entire application
or image [3]. Usually, the analysis considers two variables
for deciding about migration: the amount of computation
and the amount of data to communicate. A component is
migrated if intensive computation and little communication are
needed [1]. The finer the granularity, the more intensive is the
synchronization mechanism between mobile device and cloud.
The more abstract the granularity, the more traffic intensive is
the communication [3].

Shiraz et al. [3] describes and compares 17 different
works using offloading, considering several aspects such as
partitioning approach and migration granularity. Among them
we highlight the two following works. Hung et al. [7] propose
an Android framework based on VM migration for appli-
cation offloading. The framework installs an application on
the mobile phone for managing the offloading process. This
application encapsulates other running applications in VMs to
migrate and execute on cloud servers. This approach requires
a large amount of bandwidth and processing for ensuring
consistency between the mobile phone and the cloud server.
Cuervo et al. [8] propose Mobile Assistance Using Infrastruc-
ture (MAUI), which adopts a dynamic (runtime) partitioning
approach at a method level with focus on energy saving for
the mobile device. MAUI leads to extra overhead on mobile
devices to analyse the amount of computation needed for each
method and to migrate and reintegrate this computation.

Delegation utilizes Service Oriented Computing (SOC) in
order to migrate the execution of resource-intensive tasks, e.g.
prime verification or matrix multiplication, to cloud. Mobile
tasks are delegated by invoking a cloud service [6] and no
code is migrated to cloud, what makes this approach more
lightweight than offloading. On the other hand, as delegation
has dependency on the cloud service to execute part of the
computation, it requires always available network connectivity.

In the offloading approach, the cloud utilization is limited
to executing applications that can run on mobile devices. On
the other hand, delegation approach allows the utilizationof
resources unavailable in the mobile device platform, but that

are available in the platform running on cloud. Section V
discusses an example of this advantage, where the software
for image rendering POV-Ray2, available only for the Windows
platform, is used from an Android application. Furthermore,
the delegation approach allows the use of other characteristics
intrinsic to cloud environments, such as dynamic resource
provisioning, elasticity, illusion of infinite resource, and task
parallelization [6], as presented in this work.

Abolfazli et al. [2] implement mobile augmentation by
utilizing delegation and analyses how the number of hops
impacts the execution time in a service call. They prefer
SOC instead of offloading in order to avoid the overhead of
identifying, partitioning and transferring large amountsof data
from mobile to cloud. They do not leverage cloud aspects like
dynamic provisioning or parallel tasks execution.

Flores and Srirama [6] propose a Mobile Cloud Middleware
(MCM) to work as an intermediary between the mobile phone
and the cloud in order to manage the asynchronous delegation
of mobile tasks to cloud resources. MCM abstracts the API
and manages different cloud providers, as well as allows the
development of customized services based on service com-
position. The mobile task computation happens on the cloud
providers and a connection between MCM and the providers is
kept during all the execution. After the computation is finished,
MCM stores the results in the transactional space and sends
a message to the mobile application via push notification,
signalling the end of execution.

Although MCM communicates with the cloud resources,
the mobile application is responsible for managing the in-
formation about the services and the cloud providers, which
increases the mobile application complexity and reduces flex-
ibility. If any piece of this information changes, the mobile
application needs to be updated. In addition, MCM requires
services to be previously developed and deployed. In this work,
the Aneka cloud provides a dynamic resource provisioning
allowing scale up and down according to application needs,
which is not observed in MCM.

III. A RCHITECTURE

This section describes the elements that compose the
proposed solution architecture and how these elements relate
as shown in Figure 1. The deployment of the architecture is
presented in Figure 2. The two main structures in the architec-
ture are: (i) Aneka service, which provides via web interface a
runtime environment for tasks execution; and (ii) mobile client,
which allows mobile applications to send resource-intensive
tasks to execute on cloud and alleviate the mobile device load.

The architecture was designed in order to facilitate the
development and deployment of mobile cloud applications.
Firstly, by using theAneka Mobile Client Library, all the
complexity of communicating to Aneka cloud and submitting
jobs is taken care for the developer. Secondly, by using the
Aneka cloud, which provides transparently the resource provi-
sioning and job scheduling services, the user has no concern
in allocating or deallocating virtual machines or distributing
the jobs among the resources.

2http://www.povray.org/



Fig. 1. Architecture showing how mobile devices interact with an Aneka
cloud through theAneka Task Web Servicein order to outsource resource-
intensive tasks.

Fig. 2. Deployment Diagram showing how the different artifacts can be
deployed and how they communicate.

A. Aneka Service

Aneka [9] is a PaaS solution for developing cloud ap-
plications that can be deployed on both public and private
clouds. It provides a runtime environment as well as an
Application Programming Interfaces (APIs) to build .NET
applications leveraging the parallel power of an Aneka cloud.
By using these APIs, developers can implement and deploy
applications that automatically scale on demand, following
different programming models such as Bag of Tasks (BoT),

Thread, and MapReduce.

An Aneka cloud is defined as a collection of physical re-
sources (desktops, servers) and/or virtualized resources(virtual
machines) connected though a network, each of these machines
running an instance of Aneka Container. This container rep-
resents the basic deployment unit of Aneka and it provides a
runtime environment composed ofAneka Masterand Aneka
Workersto execute the distributed applications.

Aneka is designed following a Service Oriented Archi-
tecture (SOA), which makes it customizable and extensible,
allowing developers to create new services that replace the
default ones or that add new functionalities to Aneka. The
default installation provides services such as dynamic resource
provisioning, resource reservation, persistence, storage, secu-
rity and performance monitoring [9].

The Aneka Masterhosts the dynamic resource provision-
ing service, which is responsible for dynamically acquiring
and integrating newAneka Workersinto the Aneka cloud,
allowing it to elastically scale up and down to satisfy the
applications needs. It also hosts theScheduling Service, which
is responsible for dispatching the collection of application jobs
to the Aneka Workers, as shown in Figure 2. Thereby, when
a mobile cloud application is executed, its jobs are submitted
to the Aneka Master, via Aneka Task Web Service. Each of
these jobs is moved toAneka Workersand processed by the
Execution Service, which is the runtime environment in charge
of retrieving all the files required for execution, monitoring job
execution, and collecting results.

The Aneka Task Web Serviceenables applications devel-
oped in any language to send mobile jobs to run on Aneka
cloud [10]. This service exposes, via Representational State
Transfer (REST), the main functionalities such as authenticate
user, create application, submit jobs, and query information
(see Figure 2). REST was preferred to SOAP because the
message serialization process is faster [11], configuring an
advantage toAneka Task Web Service.

B. Mobile Client

The mobile client side of the architecture contains Mobile
Cloud Applications,Aneka Mobile Client Library, andAndroid
Platform layers, as presented in Figure 1. Mobile cloud appli-
cations, such as voice recognition, image processing, optical
character recognizers, and online games, benefit from cloud
computing resources to execute resource-intensive tasks.

Depending on the mobile application characteristics, input
files may need to be uploaded to the cloud. For instance,
an audio file needs to be uploaded for a voice recognition
application or, a image file for an image filtering application. In
order to keep a light implementation, the web service interface
was designed not to allow user to upload or download files
through it. An easy way to transfer files to use in Aneka cloud
is through a storage service. As shown in Figure 2, the FTP
is used to communicate with theFile Server.

Once the mobile application developer identifies a
resource-intensive task, they can instantiate theAndroid Client
Library in order to consume theAneka Task Web Service.
TheAndroid Client Libraryhides the complexity of delegating
tasks to Aneka, executing steps, such as connecting to the



Fig. 3. Class Diagram showing the main classes and interfaces, such asTaskWSand ITaskWS, and how they interact.

server, serializing and encapsulating objects into requests,
sending messages, and collecting their responses. Thus, the
mobile cloud application development is simplified since the
library can be easily reused by new applications.

The serialization and deserialization process of messages
exchanged between theAndroid Client Libraryand theAneka
Task Web Serviceis provided by the third-party library called
Jackson3. The messages are serialized to JSON format and
sent to Aneka Task Web Servicethrough the Http-Client
class, provided by Apache4. The JSON format simplifies the
communication between different platforms. Additionally, it is
more lightweight in comparison with XML [11].

TheAndroid Client Libraryinvokes the Aneka service in an
asynchronous manner since the resource-intensive task requires
time to process and keeping the connection entails mobile
device battery consumption. Also, these devices are prone
to connection loss due to their mobility characteristic, which
makes the synchronous communication an unwise choice. So,
in the event of connection loss during a synchronous task
execution the information gets lost and the message needs to
be retransmitted, entailing consumption of time, mobile device
battery, and cloud resources.

3http://jackson.codehaus.org/
4http://hc.apache.org/httpcomponents-client-ga/

TheAndroid Client Librarywas developed in Java in order
to execute over theAndroid Platform. However, the library
could be developed for iOS or Windows Phone, moreover, the
architecture does not depend on the mobile phone platform.

IV. D ESIGN AND IMPLEMENTATION

This section details the design and implementation of the
Android Client Library proposed in this work. This library
cover all 7 operations provided by theAneka Task Web Service,
which are: user authentication, application creation, application
query, application abortion, job submission, job query, and job
abortion.

Figure 3 shows the main library classes and interfaces. The
ITaskWSinterface holds theAneka Task Web Servicemethods.
This interface is implemented byTaskWSclass. TaskWSis
responsible for creating and storing aCommWrapperinstance.
CommWrapperhas only one method, calledpost, implemented
using Java Generics. This method receives as parameters a
string containing the web service operation to be executed,
the content to be sent to the web service, and return type for
which the response will be converted.

TaskWSalso instantiate aAsyncPostobject every time it
needs to execute an asynchronous operation with the web ser-
vice.TaskWStransfer itsCommWrapperinstance toAsyncPost



Fig. 4. Basic lifecycle for a mobile application using Aneka.

through the constructor.AsyncPostimplements theAsyncTask
interface from Android API, which is responsible for cre-
ating thread for executing theCommWrapper postmethod.
CommWrapperuses theNetCommclass, which is responsible
for generating the HTTP message, assembling the URL for
HTTP call and sending the message to the web service
through the apacheHttpClientclass.TaskWSneeds also to give
AsyncPostan OnPostFinishedListenerinstance. This instance
will be called byAsyncPostafter CommWrapperfinishes its
post operation.

A. Job Submission

Mobile applications usingAneka Mobile Client Library
will commonly follow the lifecycle described by Figure 4 to
submit jobs toAneka Masterthrough Aneka Mobile Client
Library. The main library element is theTaskWSclass which
encapsulates all the communication withAneka Task Web
Service. Thus, a mobile application, represented in the figure
by the classAndroidApp, starts the job submission process by
using theauthenticateUsermethods. This method returns the
user credentials, which will be required by all the otherTaskWS
methods. After authenticating the user, a mobile application
creates the application entity in the Aneka cloud viacreateAp-
plication method, which returns the application id. The FTP
server is represented in Figure 4 by theStorageServiceclass.
The file transfer is done through theupload method.

Following the createAppplicationmethod, and input files
upload if needed, the mobile application is able to submit
jobs by using the methodsubmitJobs, which returns the job id
for each successfully submitted job. This identifier is usedto
query jobs status viaqueryJobmethod during their execution.
Once the job execution has finished, theAndroidApp can
download the output files, e.g. a text file for a voice recognition
application or a new image for an image filtering one.

B. Asynchronicity

Each of TaskWS’s method is accessed in an asynchronous
way. The library was purposefully designed this way to fa-
cilitate the developers work with Android, as it does not
allow network I/O operations in the main thread5. This

5http://developer.android.com/reference/android/os/
NetworkOnMainThreadException.html

Fig. 5. Sequence diagram for asynchronous methods.

restriction is imposed because network I/O operations in the
main thread entails blocking the user interface. In this context,
we developed theAsyncPostclass extending theAsyncTask
class provided by Android. The latter instantiate a new thread,
releasing the application to continue its flow.

Figure 5 shows the sequence diagram for a method called in
an asynchronous way. In order to call a method fromTaskWS
class, e.g.authenticateUser, AndroisApp needs to input a
content, e.g. user name and password, and a listener. This
input is forwarded to theAsyncPostclass, that creates a new
thread and calls thepost method fromCommWrapper. This
method encapsulates the network I/O operations and returns
the method result toAsyncPost. In the case of user authenticate
example, it returns the user credential. Finally, theAsyncPost
calls the listener delivering the result toAndroidApp.

Figure 6 details how the exchange of messages between
the Aneka Mobile Client Libraryand theAneka Task Web
Serviceis performed. TheCommWrapperis responsible for
encapsulating the process of serializing and deserializing the
messages via theMapper class provided by Jackson library
as well as communicating to the remote service through the
NetCommclass. Thereby, when theCommWrapper’s post
method is called, it receives a Java object as parameter. This
object is serialized and sent toNetComm.

The NetCommclass is responsible for assembling the
Uniform Resource Locator (URL), generating the POST re-
quest message, and sending it through theHttpClient class.
When the network operation finishes, the result is returned to
CommWrapper, which uses again theMapper class in order
to deserialize the JSON content to Java object and returns it
to AsyncPostclass.

V. USE CASES AND PERFORMANCEEVALUATION

This section shows the Aneka Mobile Client Library’s ef-
fectiveness through the development of two resource-intensive
Android applications, one for image rendering called DroidPov
and one for generating the Mandelbrot set called MandelDroid.
Furthermore, this section evaluates the MandelDroid applica-
tion in order to quantify the gain by using the cloud resources
in terms of execution time and battery consumption.



Fig. 6. Sequence diagram forCommunicationWrapperclasspost method.

A. Use Cases

Alrokayan and Buyya [12] show how the use cases pre-
sented in this section benefit from the programming models
supported by the Aneka Cloud Application Platform. However,
in this section, the same applications are ported to run on
Android mobile phones.

DroidPov uses the Persistence of Vision Ray-Tracer (POV-
Ray)6 tool for generating images through the ray-tracing tech-
nique [13] from a text file which describes a scene, defining
aspects such as light, objects, camera position and atmosphere
effect. This file is stored on the mobile phone and sent to
Aneka cloud through a FTP server. This type of application
has a resource-intensive nature [14]. The delegation approach
enables the mobile platform to use the POV-Ray software,
available only for Windows platform. Thereby, this approach
adds the advantage of allowing the utilization of resources
unavailable to the mobile device platform, but that are available
in the platform running in the cloud.

As shown in Figure 7a, in order to use the DroidPov,
the application user has to set the scene to be rendered, the
generated image resolution, and the number of columns and
rows to generate the image in parallel. The product of number
of rows and columns defines the number of jobs that will be
processed by Aneka Workers. Once the image processing has
been completed, the image is downloaded and rendered on the
mobile phone screen as shown in Figure 7b.

The other developed application is MandelDroid, which
consists of a mobile application to generate the Mandelbrot
set. This application receives as input a range in the plane of
complex numbers. This range is defined by the origin point
coordinates and its size, as illustrated in the Figure 8a. The
user also specifies the generated image resolution and, if the
application runs in the cloud, the number of columns and
rows that define how many jobs demanded to split the image
generation.

The Mandelbrot algorithm assesses how quickly each point
belonging to the range converges to infinity. A gray-scale color
is assigned to each point, as shown in Figure 8b. The black
points do not converge to infinity, therefore, they belong tothe

6http://www.povray.org/

(a) DroidPovMain Activity. (b) Scene generated image.

Fig. 7. DroidPov Screens showing (a) the user input parameters: the
Resolutionand theSceneto be generated and the number ofColumnsand
Rowsto split the image generation; and (b) the generated image downloaded
to the mobile phone.

(a) MandelDroidMain Activity. (b) Mandelbrot set generated image.

Fig. 8. MandelDroid screens showing (a) the user input parameters: X and
Y representing the central point, theSizeof the set, andWidth andHeight of
the image to be generated; and (b) Mandelbrot set generated image shown in
the mobile phone.

Mandelbrot set. On the other hand, the white points converge
to infinity so they do not belong to the Mandelbrot set.

In both applications, the user must configure the connection
parameters of Web Aneka Task Service and FTP server, and
define a username and password for Aneka authentication.

B. Performance Evaluation

In this section, a performance evaluation is conducted to
compare the application execution in a mobile device and
in the Aneka cloud and demonstrate the advantage of using
the proposed approach, considering the execution time and
battery consumption metrics. Since the POV-Ray software is
not available for Android platform, only the MandelDroid
application is employed in the experiments.

The first experiment consists of executing the MandelDroid
application, both on the mobile phone and on the cloud, for
generating Mandelbrot set images with 5 different resolutions:
500x500, 1000x1000, 1500x1500, 2000x2000 and 2500x2500.
The origin point was fixed in (-0.5, 0) and the range size to 2.



C
.5

00
x5

00
L.

50
0x

50
0

C
.1

00
0x

10
00

L.
10

00
x1

00
0

C
.1

50
0x

15
00

L.
15

00
x1

50
0

C
.2

00
0x

20
00

L.
20

00
x2

00
0

C
.2

50
0x

25
00

L.
25

00
x2

50
0

0

500

1000

1500

E
xe

cu
tio

n 
T

im
e 

(s
)

Local / on Cloud . Width x Height
(a) Execution time, in seconds, for each parameter combination.

C
.5

00
x5

00
L.

50
0x

50
0

C
.1

00
0x

10
00

L.
10

00
x1

00
0

C
.1

50
0x

15
00

L.
15

00
x1

50
0

C
.2

00
0x

20
00

L.
20

00
x2

00
0

C
.2

50
0x

25
00

L.
25

00
x2

50
0

0

5

10

15

20

B
at

te
ry

 C
on

su
m

ed
 (

%
)

Local / on Cloud . Width x Height
(b) Percentage of battery consumed for each parameter combination.

Fig. 9. Boxplot graphs comparing the results forLocal and onCloud execution with different image resolutions: 500x500, 1000x1000, 1500x1500, 2000x2000
and 2500x2500. Each combination of parameters was executed 5 times.

Also, the application was split in 4 jobs in order to execute on
mobile device and Aneka cloud. Each experiment was executed
5 times, resulting in a total 60 rounds. The observed metrics
were battery consumption, in percentage, and execution time,
in seconds, both monitored using the Android API.

The experimental scenario is composed of a Asus Padfone
Infinity a86 (T004) mobile phone with Android 4.2.2, 32 GB
of storage, 2 GB RAM, support WLAN 802.11a/b/g/n/ac and
CPU Snapdragon 800 quad-core (2.2GHz) and one Azure
Standard tier A3 virtual machine, with 4 2.1GHz cores and 7
GB memory, running Windows Server 2012 R2. The internet
connection used to connect the mobile device to FTP server
and the Aneka Task Web Service has upload and download
rates of 12.11 Mbps and 11.79 Mbps, respectively.

Figure 9a presents the MandelDroid local (L) and on cloud
(C) execution time with the different image resolutions. This
plot shows that the time spent for the application executionon
cloud is lesser for all the resolutions. This difference is bigger
as the resolution increases, representing an economy of up to
87% for the 2500x2500 resolution.

Figure 9b presents the battery consumption during the
experiment execution, where it can be observed that the
consumption showed by the mobile device is bigger for all
resolutions except 500x500. This result is expected, whereas
during the execution on cloud, the mobile device uses energy
only to wait for the remote execution result, for instance, to
keep the Wi-Fi connection and display active. For the 500x500
resolution, the required processing to generate the image is
low, both using the cloud or not, which represents a negligible

1 2 3 4 5

10
00

15
00

20
00

25
00

30
00

Number of Aneka Workers

E
xe

cu
tio

n 
T

im
e 

(s
)

Fig. 10. Boxplot graph comparing the impact of the number of Aneka
Workers on execution time. The image resolution is fixed to 12500x12500
and the image generation was split in 25 jobs.

impact to battery consumption. The battery savings can reach
95.23% for the 2500x2500 resolution.

The second experiment aims to evaluate the impact of dif-
ferent numbers of Aneka Workers on the execution time. This



experiment scenario differs from the first because c3.xlarge
Amazon EC2 virtual machines were used instead of Azure
ones. Each virtual machine has 4 2.8GHz cores and 7.5 GB
and runs Windows Server 2008 R2.

Figure 10 presents the execution time for generating a Man-
delbrot set image with 12500x12500 resolution. The image
generation is split in 25 jobs and distributed among workers
that vary from 1 to 5 and each boxplot in the figure corresponds
to 5 application execution rounds. For each worker added to
the experiment, the total number of CPU cores increases by 4,
varying from 4 to 20 cores.

By increasing the number of workers from 1 to 3, the
execution time is significantly reduced. However, an expressive
gain is not observed when the number of workers increases
from 4 to 5. Two different situations can explain this: (i) each
of the 25 jobs have similar execution time and at least one core
needs to execute 2 jobs; or (ii) the execution time of the jobs
are different and the longest jobs are limiting the application
execution time. In this context, the ideal number of workers
is 4, considering the image resolution and the number of jobs
aforementioned and having the reduction of execution time as
main goal.

VI. CONCLUSIONS ANDFUTURE WORK

Currently, developers are facing complex mobile applica-
tions that require accessing distributed clouds. The develop-
ment of these applications is challenging because it involves
dealing with different cloud providers Web APIs and mobile
platforms. Moreover, porting these APIs to mobile devices is
a difficult task due to compiler limitations, additional depen-
dencies, and code incompatibility. In order to reduce the effort
and complexity of developing mobile cloud applications, the
Aneka Mobile Client Library was proposed and described in
this paper. This library encapsulates the processes of connect-
ing to cloud, serializing and deserializing messages, sending
messages, and collecting their responses.

A mobile cloud architecture was also proposed to delegate
resource-intensive mobile tasks in an asynchronous mannerin
order to alleviate the mobile device load and, consequently,
extend the battery life. This architecture was designed to
leverage the Aneka PaaS solution, which provides transparent
resource provisioning and job scheduling services and encap-
sulates different cloud providers Web APIs. Thereby, the user
has no concern in allocating or deallocating virtual machines
or distributing the jobs among the resources.

This paper also investigated the effectiveness of the
Aneka Mobile Client Library through the development of
two resource-intensive mobile applications: ray tracing image
generation and Mandelbrot set generation. A performance
evaluation was conducted and the results showed the feasibility
of the architecture, since the Aneka cloud spends less time to
execute the MandelDroid application, representing a reduction
of up to 87% of execution time while reducing battery con-
sumption by up to 95.23%.

As future work, we are planning to (i) improve the verifica-
tion process of job execution by integrating with Android push
notification service, avoiding the battery consumption intrinsic

to the pooling approach currently used to check the status
of submitted jobs; (ii) port the Aneka Mobile Client Library
for other mobile platforms such as iOS and Windows Phone;
and (iii) design new scheduling and provisioning policies that
consider user preferences, such as budget and application
execution deadline, and mobile context parameters, such as
battery level and internet connection type (WiFi of mobile).

ACKNOWLEDGEMENTS

This work is supported by the Australian Research Council
through Future Fellowship program. We would like to thank
Amir Vahid Dastjerdi, Nikolay Grozev, Rodrigo N. Calheiros,
Satish Narayana Srirama, and Deborah Magalhães for their
comments on improving the quality of the paper.

REFERENCES

[1] K. Kumar and Y.-H. Lu, “Cloud computing for mobile users: Can
offloading computation save energy?”Computer, vol. 43, no. 4, pp.
51–56, 2010.

[2] S. Abolfazli, Z. Sanaei, M. Alizadeh, A. Gani, and F. Xia,“An exper-
imental analysis on cloud-based mobile augmentation in mobile cloud
computing,” Consumer Electronics, IEEE Transactions on, vol. 60,
no. 1, pp. 146–154, 2014.

[3] M. Shiraz, A. Gani, R. H. Khokhar, and R. Buyya, “A review on
distributed application processing frameworks in smart mobile devices
for mobile cloud computing,”Communications Surveys & Tutorials,
IEEE, vol. 15, no. 3, pp. 1294–1313, 2013.

[4] M. Satyanarayanan, “Fundamental challenges in mobile computing,” in
Proceedings of the fifteenth annual ACM symposium on Principles of
distributed computing. ACM, 1996, pp. 1–7.

[5] S. Abolfazli, Z. Sanaei, and A. Gani, “Mobile cloud computing:
A review on smartphone augmentation approaches,”arXiv preprint
arXiv:1205.0451, 2012.

[6] H. Flores and S. N. Srirama, “Mobile cloud middleware,”Journal of
Systems and Software, 2013.

[7] S.-H. Hung, T.-W. Kuo, C.-S. Shih, J.-P. Shieh, C.-P. Lee, C.-W. Chang,
and J.-W. Wei, “A cloud-based virtualized execution environment for
mobile applications,”ZTE Communications, vol. 9, no. 1, pp. 15–21,
2011.

[8] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “Maui: making smartphones last longerwith
code offload,” inProceedings of the 8th international conference on
Mobile systems, applications, and services. ACM, 2010, pp. 49–62.

[9] C. Vecchiola, X. Chu, and R. Buyya, “Aneka: a software platform for
.NET-based cloud computing,”High Speed and Large Scale Scientific
Computing, pp. 267–295, 2009.

[10] R. N. Calheiros, C. Vecchiola, D. Karunamoorthy, and R. Buyya,
“The Aneka platform and QoS-driven resource provisioning for elastic
applications on hybrid clouds,”Future Generation Computer Systems,
vol. 28, no. 6, pp. 861–870, June 2012.

[11] K. Hameseder, S. Fowler, and A. Peterson, “Performance analysis of
ubiquitous web systems for smartphones,” inPerformance Evaluation of
Computer & Telecommunication Systems (SPECTS), 2011 International
Symposium on. IEEE, 2011, pp. 84–89.

[12] M. Alrokayan and R. Buyya, “A web portal for management of
Aneka-based multicloud environments,” inProceedings of the Eleventh
Australasian Symposium on Parallel and Distributed Computing-Volume
140. Australian Computer Society, Inc., 2013, pp. 49–56.

[13] A. S. Glassner,An introduction to ray tracing. Morgan Kaufmann,
1989.

[14] C. Mateos, A. Zunino, M. Hirsch, M. Fernández, and M. Campo, “A
software tool for semi-automatic gridification of resource-intensive java
bytecodes and its application to ray tracing and sequence alignment,”
Advances in Engineering Software, vol. 42, no. 4, pp. 172–186, 2011.


