
Swarm and Evolutionary Computation 87 (2024) 101575

A
2

Contents lists available at ScienceDirect

Swarm and Evolutionary Computation

journal homepage: www.elsevier.com/locate/swevo

Information interaction and partial growth-based multi-population growable
genetic algorithm for multi-dimensional resources utilization optimization of
cloud computing
Guangyao Zhou a, Yuanlun Xie a, Haocheng Lan a, WenHong Tian a,∗, Rajkumar Buyya b, Kui Wu c

a School of Information and Software Engineering, University of Electronic Science and Technology of China, China
b Cloud Computing and Distributed Systems (CLOUDS) Laboratory, Department of Computing and Information Systems, The University of Melbourne, Australia
c Department of Computer Science, The University of Victoria, Canada

A R T I C L E I N F O

Keywords:
Multi-population evolution
Growable genetic algorithm
Cloud computing
Utilization optimization
Multi-dimensional resources
Elite sharing

A B S T R A C T

Optimizing multi-dimensional resource utilization is a critical research area in distributed computing, partic-
ularly in cloud computing, where various heterogeneous resources are integrated to offer a wide range of
services. Addressing this issue necessitates the simultaneous consideration of multiple resource bottlenecks.
This paper presents a new solution, called the Multi-Population Growth Genetic Algorithm (MPGGA), which
consists of a central management unit responsible for executing information interaction and growth quota
reallocation, and multiple population evolution executors to perform crossover and regeneration within each
population. The proposed MPGGA combines elite sharing and priority support for the weaker population
(ESPW), resulting in better convergence and optimality than other combinations of strategies. This outcome is
corroborated by extensive ablation experiments on various strategies. Furthermore, the experimental results for
minimizing the maximum utilization of resources in each dimension indicate that MPGGA-ESPW outperforms
other popular algorithms, such as GHW-NSGA II (1.363x), GHW-MOEA/D (1.339x), NSGA II (1.948x), and
MOEA/D (2.151x) in terms of convergence speed. For energy consumption-related optimization problems, the
experimental results demonstrate that the adaptability of a single algorithm in MPGGA family is limited by
the algorithm of growth route, while also showing that the MPGGA framework is flexible to allow various
algorithms as its growth route to adapt to various scenarios.
1. Introduction

The advent of Industry 4.0 has led to a significant increase in
data volume, necessitating more advanced requirements for large-scale
distributed computing systems [1]. Cloud computing, a prevalent high-
performance distributed system paradigm, offers reliable, flexible, and
dynamic services [2]. It integrates heterogeneous electronic compo-
nents, such as CPUs, GPUs, and RAM, to accommodate various requests,
including computing, caching, and storage [3]. In realistic scenarios,
the bottleneck of any electronic component can impact the utilization
of other components [4,5]. Consequently, the simultaneous optimiza-
tion of various components has emerged as a critical research trend
in cloud computing, which points to the optimization problem of
multi-dimensional resource utilization [6–9]. Utilization optimization
in distributed systems is typically an NP-hard problem, demanding

∗ Corresponding author.
E-mail addresses: guangyao_zhou@std.uestc.edu.cn (G. Zhou), ylxie@std.uestc.edu.cn (Y. Xie), 202122090620@std.uestc.edu.cn (H. Lan),

tian_wenhong@uestc.edu.cn (W. Tian), rbuyya@unimelb.edu.au (R. Buyya), wkui@uvic.ca (K. Wu).

considerable computational complexity to find optimal solutions. More-
over, the utilization optimization of multi-dimensional resources (ab-
breviated as UPMDR) is also a multi-objective optimization problem
(MOP).

In cloud computing, existing scheduling algorithms include heuris-
tics, meta-heuristics, and machine learning, all of which can achieve
acceptable solutions in specific scenarios. Heuristic algorithms excel
in single-objective optimization but often struggle with MOPs. Some
machine learning algorithms, such as Deep Q Network (DQN) [10,11],
ADEC [12] and DQTS [13], have demonstrated the potential to solve
MOPs with a certain degree of optimality in their experimental scenar-
ios. However, these approaches require exponentially larger training
datasets as the number of tasks and server nodes increases. Meta-
heuristic algorithms, with their ability to search for solution sets,
offer comprehensive advantages in terms of complexity and optimal-
ity when solving MOPs, particularly in cloud scheduling [14]. Most
vailable online 30 April 2024
210-6502/© 2024 Published by Elsevier B.V.

https://doi.org/10.1016/j.swevo.2024.101575
Received 8 November 2023; Received in revised form 27 March 2024; Accepted 8
 April 2024

https://www.elsevier.com/locate/swevo
https://www.elsevier.com/locate/swevo
mailto:guangyao_zhou@std.uestc.edu.cn
mailto:ylxie@std.uestc.edu.cn
mailto:202122090620@std.uestc.edu.cn
mailto:tian_wenhong@uestc.edu.cn
mailto:rbuyya@unimelb.edu.au
mailto:wkui@uvic.ca
https://doi.org/10.1016/j.swevo.2024.101575
https://doi.org/10.1016/j.swevo.2024.101575

Swarm and Evolutionary Computation 87 (2024) 101575G. Zhou et al.
meta-heuristic algorithms are evolutionary or swarm algorithms. In
meta-heuristic algorithms, the NSGA (Non-dominated Sorting Genetic
Algorithms) family [15–18] and the MOEA/D (Multiobjective Evolu-
tionary Algorithm Based on Decomposition) family [19,20] are two
frequently used algorithm families currently [21]. Two of the key
factors affecting their application in UPMDR are convergence speed
and optimality. A new method to increase the convergence speed and
optimality in solving UPMDR is the GGA (Growable Genetic Algorithm)
family that added an extra growth stage to enable individuals in GA to
improve their genes through certain search algorithms before partici-
pating in the genetic process [22]. The shortcomings of GGA are that
it only contains one population (single-population) and all individuals
in GGA need to participate in the extra growth route (marked as all
growth). Single-population will lead to premature local optima due to
limited diversity, thereby reducing optimality. All growth will bring
redundant computational complexity and imbalance within the popula-
tion, thereby slowing down the convergence speed of the whole genetic
system. Thus, the performance of GGA can still be further improved by
addressing these two shortcomings.

It is widely recognized that even minor enhancements to large-scale
cloud systems can bring significant benefits. Focusing on the shortcom-
ings of GGA, we are committed to ongoing refinements within the GGA
family to further enhance the management capability of cloud systems
for multi-dimensional resources. We introduce the multi-population
strategy into GGA to construct the multi-population growable genetic
algorithm (MPGGA). Multi-population is a well-established method for
nature-inspired optimization algorithms [23]. In multi-population evo-
lutionary algorithms, information interaction between populations is a
critical component [21,24–26]. Correspondingly, we develop three in-
formation interaction strategies between multi-populations. In order to
enhance the evolutionary effectiveness of MPGGA, we propose a partial
growth strategy to improve the growth efficiency of the genetic system,
which can maintain balance within the population. Correspondingly,
we propose three growth quota reallocation tactics to further optimize
MPGGA’s performance. Growth quota reallocation tactics can readjust
the number of individuals in each population’s current generation that
can enter the growth route according to the evolutionary state of each
population. With these strategies, MPGGA achieves better convergence
speed and optimality than GGA. Another benefit of MPGGA is that it
allows evolutions of multiple populations to perform parallel comput-
ing on multi-core or multithreaded platforms. In terms of some typical
MOP indicators (hypervolume, Pareto solutions and C indicator) and
statistic tests (Wilcoxon rank-sum test and Friedman test), rigorous
experimentation in solving UPMDR confirms that our proposed MPGGA
outperforms the baseline algorithms including GGA [22], NSGA II [27],
MOEA/D [19], MP-NSGA II [25,28], MP-MOEA/D and their variants
in solving UPMDR of cloud computing. Additionally, we also provide
some experimental results of MPGGA for other problems including
energy consumption-related problems and multi-objective asymmetric
traveling salesman problems (MoATSP, in Appendix B), which can
supplement the analysis to the adaptability of MPGGA framework.

The main contributions of this paper are summarized as follows.
(1) We propose the Multi-Population Growable Genetic Algorithm

(MPGGA) framework to address UPMDR by incorporating multi-
populations into the GGA, which is an exploration of a new ar-
chitecture for evolutionary algorithms. To execute the program of
MPGGA, we also design a multi-processes-based architecture with
one management center and multi-population internal evolution
executors.

(2) Building on the MPGGA framework, we develop three information
interaction strategies for exchanging solutions between popula-
tions. This approach effectively leverages the information from
multiple populations, resulting in enhanced convergence speed for
2

MPGGA.
(3) To further optimize MPGGA’s performance, we propose partial
growth in lieu of all growth and introduce three growth quota real-
location strategies to dynamically adjust the number of individuals
entering the growth route for each population. These strategies
facilitate the full utilization of computational power, ultimately
improving MPGGA’s efficiency.

(4) We conduct comprehensive experiments to evaluate different com-
binations of interaction strategies and growth quota reallocation
strategies. The experimental results demonstrate that MPGGA ex-
hibits superior convergence speed and optimality compared to
baseline algorithms. The experimental results also verify the adapt-
ability of the MPGGA framework to diverse scenarios, allowing
different algorithms to serve as growth routes of MPGGA to adapt
to various problems.

The rest of this paper is organized as follows. We review the related
work in Section 2. The system model and problem formulation are
constructed in Section 3. The framework of MPGGA and its various
strategies are proposed in Section 4. The extensive experiments to
evaluate the proposed method are presented in Section 5. Finally, we
conclude this paper in Section 6.

2. Related work

2.1. Optimization algorithms

The frequently used scheduling algorithms in cloud computing
mainly include heuristic algorithms, meta-heuristic algorithms, ma-
chine learning algorithms, and hybrid algorithms [2,29].

Generally, heuristic algorithms were frequently used for some sin-
gle objective optimization problems. Some popular heuristics include
round-robin (RR), longest processing time first (LPT), greedy, random,
first come first serve (FCFS) [30], etc. Heuristic algorithms can usu-
ally obtain an initial state of some search algorithms to accelerate
convergence such as Jacobi Best-response Algorithm [31], FISTA [32],
LARAC [33]. In recent studies, heuristic algorithms were also used as
the search route of algorithms. In [34], multi-search route algorithms
used heuristic algorithms as the search route to solve the minimizing
makespan of heterogeneous cloud, which combined the advantages
of heuristic and local search. Heuristics still have some adaptabil-
ity in large-scale optimization problems due to their low computa-
tional complexity and analytical theoretical approximation. However,
there are several defects of heuristics: a heuristic is often designed for
one or few specific scenarios; heuristics are usually only suitable for
single-objective problems or single-dimensional resources optimization;
heuristics without search capability usually have worse solutions than
search-based algorithms.

Machine learning (ML) algorithms of resource scheduling are mainly
established by reinforcement learning or deep reinforcement learn-
ing such as QEEC [35], ADEC [12] and URL [36], Deep Q Network
(DQN) [10,11], ADRL [37], DQTS [13]. Machine learning algorithms
of resource scheduling have the ability to model for complex scenarios
and optimization objectives. However, ML consumes large computing
power in the progress of training, has unstable optimization results
and has poor migration ability for scenarios due to its dependence on
training datasets.

Common meta-heuristic algorithms include ant colony algorithms
(such as MALO [38] and S-MOAL [39]), genetic algorithms (GA, such
as NSGA II [27,40], NSGA III [17] and MOGA [5]), particle swarm op-
timization (such as MOPSO [41,42], TSPSO [43], and HAPSO [4]), bee
colony algorithm [44], as well as firefly algorithm [45]. Liu et al. [46]
proposed OEMACS combining OEM (order exchange and migration)
local search techniques and ACO to resolve energy consumption of
VMs deployment in Cloud computing, which significantly reduced the
energy consumption and improved the effectiveness of different re-
sources. Monge DA et al. [47] proposed an online multi-objective
genetic autoscaler to optimize the scientific and engineering workflows

Swarm and Evolutionary Computation 87 (2024) 101575G. Zhou et al.
in cloud infrastructures with unreliable virtual machines. Shikha Mehta
et al. [48] proposed two variants of the whale optimization algorithm
for efficiently placing VMs on physical machines. Due to its adapt-
ability, the meta-heuristic algorithm is a major type of algorithm to
optimize resource utilization. NSGA proposed by Deb et al. [15,15]
and MOEA/D proposed by Qingfu Zhang and Hui Li [19] are the two
common families. To improve the optimality and convergence speed
of GA, the growable genetic algorithm was proposed, whose GHW-
NSGA II and GHW-MOEA/D showed a better convergence speed and
optimization than NSGA II and MOEA/D [22]. Meta-heuristic algo-
rithms are more applicable than heuristic algorithms suitable for more
complex optimization scenarios because meta-heuristics are generally
universal optimization strategies. In addition, based on search capa-
bility that continuously updates the optimization solution (or solution
set), meta-heuristic can obtain better optimization solutions with higher
probabilities. However, there are several inevitable defects of meta-
heuristics: the convergence of the meta-heuristic cannot be guaranteed
due to the presence of randomness; the randomness of the meta-
heuristic also increases redundant computations; as the search space
increases, the required search iterations must also increase accordingly,
subsequently producing more redundant solutions.

At present, hybrid algorithms are based on a combination of meta-
heuristic. For example, PSO-ACS [49] applied PSO for an optimal
solution of task scheduling and ACO for the best migration path of
VMs on PMs; HEFT-GA [50] adhibited HEFT to generate the initial
population of GA. SFLA-GA algorithm [51] (shuffled frog leaping al-
gorithm + GA) took advantage of the two algorithms to transmit
information among groups hence the search route. A hybrid algorithm,
with multiple heuristics or meta-heuristics as elemental algorithms,
cannot exceed the scenarios that the elemental algorithms are suitable
for. Additionally, various optimization algorithms also need to consider
a balance between computation time and optimization performance.

2.2. Multi-population evolutionary algorithms

In evolutionary algorithms, the population is a basic factor [23].
From the existing Refs. [14,23,52–58], multi-population (MP) is a valid
approach to improve the performance of evolutionary algorithms.

Sukanta Nama et al. [52] applied MP to improve the backtracking
search algorithm and proposed ImBSA to solve optimization problems.
Kaixi Yang et al. [59] used a dual-population evolutionary algorithm
(dp-ACS) to deal with constrained multi-objective optimization prob-
lems, which can dynamically adjust constraint strength to improve
the diversity. Liyun Fu et al. [53] proposed constrained cooperative
adaptive multi-population differential evolutionary to solve economic
load dispatch problems, which had constraint-handling efficiency and
better global searching ability. Djaballah et al. [54] proposed a multi-
population ABC algorithm for optimization problems, which divides the
colony into multi sub-populations to increase the diversity of solutions.
Yandi Zuo et al. [55] developed a novel multi-population artificial
bee colony algorithm to minimize the makespan, total tardiness and
total energy consumption (TEC) for energy-efficient hybrid flow shop
scheduling problems. Yongjun Sun and Yu Chen [56] proposed an im-
proved whale optimization algorithm with multi-population (MIWOA)
to address high dimensional optimization, where the better group of
individuals was used to improve exploitation performance and the
poorer group was used to improve exploration performance. The multi-
population enhanced the solution accuracy and convergence speed
with less execution time. Li-Jiao Wu et al. [60] proposed a multi-
ple population-based multi-objective ant colony system to solve cold
chain logistics (CCL) scheduling problems. Guoqing Li et al. [61] pro-
posed a grid search-based multi-population particle swarm optimiza-
tion algorithm to handle multimodal multi-objective optimization prob-
lems. Xinming Zhang et al. [62] proposed MPBBO (multi-population
biogeography-based optimization algorithm) which had stronger search
3

ability and higher efficiency than WRBBO (Worst opposition learning
and Random-scaled differential mutation Biogeography-Based Opti-
mization) and performed well in image segmentation.

In the implementation of multi-population, multi-population ge-
netic algorithm (MPGA) is a frequently used algorithm [14,25,63,64].
Zhiyong Xiao et al. [25] proposed a highly scalable hybrid parallel
genetic algorithm (HPGA) with multi sub-population to solve large-
scale optimization problems, which can effectively exploit individual
diversity. Jia Luo et al. [26] applied the heterogeneous parallel genetic
algorithm to solve the job shop scheduling problem, where GPUs
were used to accelerate the execution time. Idir Aoudia et al. [28]
implement the MPGA to enhance the QoS-Aware Service quality of fog-
IoT healthcare environment. Huixian Qiu et al. [14] applied a dynamic
multi-population genetic algorithm to solve multi-objective workflow
scheduling in cloud, which simultaneously optimized makespan and
energy consumption achieving a better Pareto solution set than two
heuristic algorithms (MOHEFT and DCHG-TS) and three evolutionary
algorithms (GA-PSO, HEFTGA, and HPSO).

In addition to other scenarios, Fatih Kılıç et al. [65] proposed
MPPSO (a novel multi-population-based particle swarm optimization)
for feature selection. For the clustering problem, K. Thirumoorthy
and K. Muneeswaran [66] proposed ESAMPRO (an elitism-based self-
adaptive multi-population Poor and Rich optimization algorithm) to
solve grouping similar documents. Babak Rezaei et al. [67] combined
genetic local search into a multi-population imperialist competitive
algorithm to solve the vehicle routing problem. Hanghao Cui et al. [68]
applied a greedy job insertion inter-factory neighborhood structure to
improve the multi-population genetic algorithm to solve distributed
heterogeneous hybrid flow shop scheduling problem.

According to the review of research, existing algorithms face var-
ious challenges in solving UPMDR or other multi-objective optimiza-
tion problems. Heuristic algorithms are not optimal enough for solv-
ing multi-objective problems. Machining learning based on reinforce-
ment learning needs to train for different scenarios and must be re-
trained when the parameters change. As the number of distributed
nodes increases, its transfer learning ability will rapidly decrease. Meta-
heuristic algorithms are popular to solve multi-objective optimization
problems. Genetic algorithm (GA), multi-population genetic algorithm
(MPGA) and their variant are widely applied to solve multidimensional
resource optimization problems. They are also some frequently used
baselines in optimization problems to evaluate the performance of other
algorithms. However, in the multi-dimensional resource optimization
of large-scale distributed systems, their convergence and optimality
still require to be further improved, which attracts much interest.
Therefore, we combine existing state-of-the-art methods and further
propose various strategies for improvement. Referring to the previous
research, we use the growable genetic algorithm family and multi-
population approach to improve the solution of multi-dimensional
resource utilization optimization, and then propose MPGGA. In order
to support MPGGA, we introduce some novel information interaction
strategies between different populations including balanced random
mixing, elite supporting and elite sharing, etc. Additionally, we pro-
posed partial growth and growth quota reallocation strategies to make
full use of computational force and provide the opportunity for each
individual to be optimized by the growth route in GGA. Our proposed
MPGGA is also an extension of MPGA, replacing the genetic algorithm
with the growable genetic algorithm and adding specific growth quota
reallocation strategies. Especially, partial growth and growth quota
reallocation strategies are unique features of MPGGA.

3. System model and problem

To assist with the system model and problem formulations, Table 1
lists the descriptions of some notations in this paper.

In this paper, we construct the system model of cloud with multiple
types of resources. A diagram of the allocation of tasks or VMs to het-

erogeneous nodes with multi-dimensional resources is shown in Fig. 1

Swarm and Evolutionary Computation 87 (2024) 101575G. Zhou et al.
Fig. 1. Allocation of a task or VM to heterogeneous nodes with multi-dimensional resources.
Table 1
Notations and Descriptions.

Notation Description

𝑛 Number of tasks or VMs
𝑚 Number of nodes
𝑑 Number of dimensions of resources
𝑉𝑖 The task or VM with index 𝑖
𝑁𝑗 The node with index 𝑗
𝐶𝑖𝑗𝑘 The capacity requested of by 𝑉𝑖 for the 𝑘th dimensional resource in 𝑁𝑗
𝜓𝑗 Set of tasks and VMs in node 𝑁𝑗
𝜅 The set of 𝜓𝑗 where 𝜅 = ⟨𝜓1 , 𝜓2 ,… , 𝜓𝑚⟩
𝑥𝑖𝑗 If 𝑉𝑖 ∈ 𝑁𝑗 then 𝑥𝑖𝑗 = 1, otherwise 𝑥𝑖𝑗 = 0
𝐿𝑗𝑘 The limited capacity of resource in the 𝑘th dimension of the node 𝑁𝑗
𝑆𝑗𝑘 The load of resource in 𝑘th dimension of the node 𝑁𝑗
𝑈𝑗𝑘 The utilization rate in 𝑘th dimension of the node 𝑁𝑗
𝑢𝑖𝑗𝑘 The resource occupancy rate of 𝑉𝑖 for the 𝑘th dimension in 𝑁𝑗
𝑌𝑖𝑗 The vector of 𝑉𝑖 for node 𝑁𝑗 , i.e., 𝑌𝑖𝑗 =

⟨

𝑢𝑖𝑗1 , 𝑢𝑖𝑗2 ,… , 𝑢𝑖𝑗𝑑
⟩

𝑁𝑝 The number of individuals in each generation of genetic algorithm
𝑁𝑔 The number of generations in genetic algorithm
𝐺𝑠𝑡𝑒𝑝 The number of search steps of each individual in each generation

through HLSA in GGA

where the ellipses are used to indicate the occupancy ratio. The allo-
cation of tasks and VMs will also be related to other scenarios in cloud
scheduling, such as virtual machine migration and task offloading, as
allocation is one of the foundations of resource scheduling in cloud [69–
71]. It can be set that a cloud system has 𝑚 heterogeneous nodes
(denoted as 𝑁 = ⟨𝑁1, 𝑁2,… , 𝑁𝑚⟩) and each node has 𝑑-dimensions of
resources such as CPU, RAM, disk storage, GPU, bandwidth. The virtual
machines (VMs) waiting to be allocated can be set as 𝑉 = ⟨𝑉1, 𝑉2,… , 𝑉𝑛⟩
where 𝑛 is the number of VMs. When the 𝑖th VM is allocated to the
𝑗th node, the capacity required for the 𝑘th dimension of resource is
denoted as 𝐶𝑖𝑗𝑘 where 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚, 1 ≤ 𝑘 ≤ 𝑑. We denote the
set of tasks and VMs in node 𝑁𝑗 as 𝜓𝑗 . If a task or VM 𝑉𝑖 is allocated
to the node 𝑁𝑗 , we use 𝑉𝑖 ∈ 𝜓𝑗 . The 𝜓𝑗 of each node constitutes a
vector 𝜅 = ⟨𝜓1, 𝜓2,… , 𝜓𝑚⟩. Therefore, we can gain the relationships
of 𝜓𝑗 that ⋃𝑚

𝑗=1 𝜓𝑗 = 𝑉 and 𝜓𝑗
⋂

𝜓𝑙 = ∅ for ∀1 ≤ 𝑗 ≠ 𝑙 ≤ 𝑚. 𝜅
determines the unique allocation scheme. We use 𝑆𝑗𝑘 to denote the load
of resource in the 𝑘th dimension of the 𝑗th node. Then, the load vector
of the 𝑗th node is expressed as 𝑆𝑗 =

⟨

𝑆𝑗1, 𝑆𝑗2,… , 𝑆𝑗𝑑
⟩

. The occupancy
of most components approximately satisfies linear superposition. Thus,
resource occupation of each dimension on a node is equal to the sum
of the requests of all VMs on it shown as Eq. (1).

𝑆𝑗𝑘 =
∑

𝐶𝑖𝑗𝑘 (1)
4

𝑉𝑖∈𝜓𝑗
To better describe the characteristics of the system, the features of
nodes and VMs are as follows considering static scheduling or offline
reservation scheduling of VMs. The set of VMs is deterministic [72],
which means the capacity {𝐶𝑖𝑗𝑘} or the utilization {𝑢𝑖𝑗𝑘} are given
before allocation; All VMs are independent and preemptive without
precedence constraints for the order of VMs [72]; Each VM cannot be
further split into smaller tasks [35], which means a VM can only be al-
located to one node; Each VM can be fully fulfilled by one and only one
resource [35]; When 𝑆𝑗𝑘 ≤ 𝐿𝑗𝑘 for 1 ≤ ∀𝑘 ≤ 𝑑, the processing capacity
of the 𝑗th node remains unchanged, which means the parameter {𝐶𝑖𝑗𝑘}
or {𝑢𝑖𝑗𝑘} of each VM is fixed. Each node (i.e. server) can process more
than one VM; And the number of available nodes is invariant. In fact,
online scheduling of every time slot also requires solving UPMDR.

Each node has limited capacity in each dimension (i.e., the max-
imum load for the healthy operation of components) that can be
set as 𝐿 =

{

𝐿𝑗𝑘
}

1≤𝑗≤𝑚,1≤𝑘≤𝑑 . Thus, for a solution of UPMDR, any
dimension occupancy of resource in a node must be no larger than its
corresponding limited capacity, i.e. for ∀𝑗 and ∀𝑘,
∑

𝑉𝑖∈𝜓𝑗

𝐶𝑖𝑗𝑘 ≤ 𝐿𝑗𝑘 (2)

When 𝐿𝑗𝑘 and 𝐶𝑖𝑗𝑘 are given, the utilization for a dimension of
resource on a node required by a VM can be obtained as:

𝑢𝑖𝑗𝑘 = 𝐶𝑖𝑗𝑘∕𝐿𝑗𝑘 (3)

Then, Eq. (2) can be rewritten as:

𝑈𝑗𝑘 =
𝑆𝑗𝑘
𝐿𝑗𝑘

=

∑

𝑉𝑖∈𝜓𝑗 𝐶𝑖𝑗𝑘
𝐿𝑗𝑘

≤ 1 (4)

where 𝑈𝑗𝑘 represent the total utilization of the 𝑘th dimension of re-
source for the 𝑗th node.

There are various indicators to evaluate balancing degrees in the
cloud such as variance or standard deviation of load [13,45], aver-
age success rate [73], coefficient of variance [74], degree of imbal-
ance [75], etc. In this paper, we leverage the objectives of minimizing
the maximum utilization of resources in each dimension, which is
a representative issue to ensure that distributed systems have better
flexibility to respond to subsequent tasks or VM requests. We can
set min𝜔𝑘 = minmax

(

𝑈1𝑘, 𝑈2𝑘,… , 𝑈𝑚𝑘
)

, which means minimizing the
utilization of the 𝑘th dimension of resource for all nodes. To improve
the effectiveness and flexibility of a cloud system, it is necessary to
minimize the maximum utilization of resources in all dimensions, to

Swarm and Evolutionary Computation 87 (2024) 101575G. Zhou et al.

s

Table 2
Parameters 𝑢𝑖𝑗𝑘 of VMs of example.

𝑉1 𝑉2 𝑉3 𝑉4
CPU RAM DS CPU RAM DS CPU RAM DS CPU RAM DS

𝑁1 0.1 0.3 0.3 0.2 0.3 0.2 0.2 0.1 0.3 0.3 0.2 0.1
𝑁2 0.2 0.3 0.1 0.1 0.2 0.3 0.0 0.3 0.2 0.2 0.1 0.3

provide services for subsequent VMs with greater robustness. Then, the
problem with multi-objective can be written as:

min𝜔(1) = min

⎧

⎪

⎪

⎨

⎪

⎪

⎩

max
(

𝑈11,… , 𝑈𝑚1
)

max
(

𝑈12,… , 𝑈𝑚2
)

…
max

(

𝑈1𝑑 ,… , 𝑈𝑚𝑑
)

(5)

Introducing the matrix {𝑥𝑖𝑗}1≤𝑖≤𝑛,1≤𝑗≤𝑚 as the unknown number, the
sub-objective can be written as:

min𝜔𝑘 = min

(

max
𝑗=1,2,…,𝑚

(𝑛
∑

𝑖=1
𝑥𝑖𝑗𝑢𝑖𝑗𝑘

))

(6)

where 𝑥𝑖𝑗 ∈ {0, 1}. 𝑥𝑖𝑗 = 1 means the 𝑖th VM is allocated to the 𝑗th
node, i.e., 𝑉𝑖 ∈ 𝜓𝑗 , otherwise 𝑉𝑖 ∉ 𝜓𝑗 .

The constraints are:

𝐬.𝐭.

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑚
∑

𝑗=1
𝑥𝑖𝑗 = 1,

𝑛
∑

𝑖=1
𝑥𝑖𝑗𝑢𝑖𝑗𝑘 ≤ 1, 𝑥𝑖𝑗 ∈ {0, 1},

𝑖 ∈ {1, 2,… , 𝑛}, 𝑗 ∈ {1, 2,… , 𝑚},

𝑘 ∈ {1, 2,… , 𝑑}

(7)

where ∑𝑚
𝑗=1 𝑥𝑖𝑗 = 1 means a VM can only be allocated to one node.

In distributed computing systems, reducing the utilization of server
nodes within a time slot is beneficial for increasing the flexibility of the
system in providing services in subsequent time. The smaller the space
occupied by resources in different dimensions, the more timely services
can be provided for subsequent new task applications with less network
congestion [72,76,77]. It is also beneficial to reduce the subsequent
migration volume of virtual machines [78–80], balance the energy
consumption of server nodes and reduce the total energy consumption
of the system [81,82]. We can illustrate the application relevance
of optimization problem 𝜔(1) in realistic cloud platforms through an
example with 𝑛 = 4 VMs, 𝑚 = 2 server nodes and 𝑑 = 3 dimensions
of resources. The parameters 𝑢𝑖𝑗𝑘 of VMs are listed in Table 2. There
are 16 optional allocation schemes in the example of Table 2. The
optional allocation schemes and their corresponding 𝑈𝑗𝑘 can be seen
in Table 3. From Table 3, the Pareto solution set contains (0.3, 0.6, 0.5),
(0.3, 0.5, 0.6), (0.4, 0.4, 0.5), (0.5, 0.6, 0.3) and (0.5, 0.5, 0.4). In real cloud
platforms or cloud–edge platforms, server nodes may be deployed in
different places. It can be set that the server nodes 𝑁1 and 𝑁2 are far
enough apart. If select the scheme of 𝜅1, the server node 𝑁2 can be
idle, which seems to be. However, when a user near node 𝑁1 submits
a new task or VM request with more than (0.2, 0.1, 0.1) utilization re-
quirement for 𝑁1, it must be assigned to node 𝑁2, which will consume
redundant communication consumption. In addition, if VM migration
is temporarily carried out once a new task closed to 𝑁1 arrives, it is still
necessary to send the migrated VM to 𝑁2. When multiple users submit
tasks at the same time slot (assuming unfortunately these users are all
close to 𝑁1 and far away from 𝑁2), it will cause congestion or even
paralysis to network communication, thereby increasing user waiting
time and actually reducing the efficiency of the entire cloud system.
The imbalanced utilization allocation schemes may face a similar risk.
In actual cloud management, balancing the utilization of resources in
each dimension is beneficial for reducing risks when the parameters
for subsequent task submissions are unpredictable. Even if requiring
VM migration, the migration volume is relatively lower. If selecting
5

𝜅6, i.e., (0.3, 0.6, 0.5), any new task or VM request with the occupancy
rate less than (0.7, 0.4, 0.5) for each dimension on any node can be
allocated nearby without the need for VM migration or long-distance
communication, showing a larger tolerance range. If the occupancy rate
of a task on one node is much higher than that of another node, a
trade-off between the allocation cost and VM migration cost can guide
subsequent schemes. In order to quantitatively illustrate the risk of
different schemes, we can use 𝑅𝑡1 and 𝑅𝑡2 in Eq. (8) as two indicators
for the new task tolerance of the schemes in the example of Table 2:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑅𝑡1 =
𝑑
∏

𝑘=1

(

1 − 𝜔𝑘
)

𝑅𝑡2 =
𝑚
∏

𝑗=1

𝑑
∏

𝑘=1

(

1 − 𝑈𝑗𝑘
)

(8)

Then, we can obtain the 𝑅𝑡 for the example and list them in the last
two rows of Table 3. It can be seen that the 𝜔(1)-based Pareto solution
et obtains better 𝑅𝑡1 and 𝑅𝑡2 than other solutions.

In addition to direct optimization of utilization, there is also energy
consumption optimization based on utilization of multi-dimensional
resources [22,82]. In the experimental evaluation of this paper, we
will conduct experiments on the utilization problem (𝜔(1)) described in
this section, and also on two energy consumption-related optimization
problems (𝜔(2) and 𝜔(3)) based on utilization to verify the adaptability
of the proposed algorithm and framework. For the convenience of
presentations, we will present the objectives of 𝜔(2) and 𝜔(3) in the
corresponding experimental section.

4. Methodology: MPGGA

The framework of MPGGA can be seen in Fig. 2. In MPGGA,
each population executes a complete five stages of a growing genetic
algorithm including initial stage, infancy stage, growth stage, mature
stage and genetic stage.

Unlike in the growable genetic algorithm where all individuals will
grow through a specific growth route, in one population of MPGGA,
only a portion of individuals will enter the growth route, called GGA
with partial growth. A certain quota is allocated to each population
to select some individuals for growth, which can improve the compu-
tational efficiency of devices executing optimization algorithms. The
flowchart of GGA with partial growth can be seen in Fig. 3.

Additionally, MPGGA also has the processes of multiple population
evolution algorithms. In the mature stage, MPGGA selects a portion of
individuals from each population according to a certain standard to en-
ter the management center, where individuals from various populations
are fused and adjusted (called information interaction between popu-
lations), and then returns the adjusted individuals to each population
to participate in subsequent genetic stages.

The MPGGA introduces multi-population strategies to GGA and
mainly includes four factors: growable genetic algorithm with par-
tial population growth, multi-population, information interaction strat-
egy and growth quota reallocation strategy. Next, we will provide
descriptions of these factors.

4.1. GGA with partial growth

MPGGA follows the GGA [22] as the main part of the algorithm. The
research [22] applies the concept of stages to divide the classical ge-
netic algorithm into four stages namely the initialization stage, infancy
stage, mature stage and genetic stage. Based on these four stages, GGA
adds a growth stage for each individual, whose structure compared
with that of classical GA is drawn in Fig. 3. GGA applies the direct
growth route (such as the heuristic-based local search algorithm) to
improve the infancy individuals and has better convergence speed and
optimality than the classical GA.

In GGA, if all individuals are grown up through the direct growth

route, it still requires much time. Therefore, GGA can still be improved

Swarm and Evolutionary Computation 87 (2024) 101575G. Zhou et al.
Table 3
The optional allocation schemes of example.

𝜅1 𝜅2 𝜅3 𝜅4 𝜅5 𝜅6 𝜅7 𝜅8 𝜅9 𝜅10 𝜅11 𝜅12 𝜅13 𝜅14 𝜅15 𝜅16
𝑉1 𝑁1 𝑁1 𝑁1 𝑁1 𝑁2 𝑁1 𝑁1 𝑁2 𝑁1 𝑁2 𝑁2 𝑁1 𝑁2 𝑁2 𝑁2 𝑁2
𝑉2 𝑁1 𝑁1 𝑁1 𝑁2 𝑁1 𝑁1 𝑁2 𝑁1 𝑁2 𝑁1 𝑁2 𝑁2 𝑁1 𝑁2 𝑁2 𝑁2
𝑉3 𝑁1 𝑁1 𝑁2 𝑁1 𝑁1 𝑁2 𝑁1 𝑁1 𝑁2 𝑁2 𝑁1 𝑁2 𝑁2 𝑁1 𝑁2 𝑁2
𝑉4 𝑁1 𝑁2 𝑁1 𝑁1 𝑁1 𝑁2 𝑁2 𝑁2 𝑁1 𝑁1 𝑁1 𝑁2 𝑁2 𝑁2 𝑁1 𝑁2

𝑈𝑗𝑘

𝑁1

CPU 0.8 0.5 0.6 0.6 0.7 0.3 0.3 0.4 0.4 0.5 0.5 0.1 0.2 0.2 0.3 0
RAM 0.9 0.7 0.8 0.6 0.6 0.6 0.4 0.4 0.5 0.5 0.3 0.3 0.3 0.1 0.2 0
DS 0.9 0.8 0.6 0.7 0.6 0.5 0.6 0.5 0.4 0.3 0.4 0.3 0.2 0.3 0.1 0

𝑁2

CPU 0 0.2 0 0.1 0.2 0.2 0.3 0.4 0.1 0.2 0.3 0.3 0.4 0.5 0.3 0.5
RAM 0 0.1 0.3 0.2 0.3 0.4 0.3 0.4 0.5 0.6 0.5 0.6 0.7 0.6 0.8 0.9
DS 0 0.3 0.2 0.3 0.1 0.5 0.6 0.4 0.5 0.3 0.4 0.8 0.6 0.7 0.6 0.9

𝑅𝑡

𝑅𝑡1 (%) 0.2 3 3.2 4.8 4.8 14 16.8 18 15 14 15 5.6 7.2 6 5.6 0.5
𝑅𝑡2 (%) 0.2 1.51 1.79 2.42 2.42 3.36 3.29 3.89 4.05 3.92 4.41 2.47 3.23 3.02 2.82 0.5
Fig. 2. The framework of MPGGA.
Fig. 3. The flowchart comparison between the classical GA, GGA, and GGA with partial growth (PG).
by partial growth (PG). In the growth stage of each generation, GGA
with PG randomly re-selects partial individuals to grow instead of
fixing a part of individuals to grow. In fact, if specific individuals
are selected and fixed for growth in every generation of GGA, the
diversity and overall optimality of the population will deteriorate. This
is because the genes of these specific individuals will repeatedly appear
during the crossover process so there is an increasing probability that
all individuals will gradually have the same genes. Therefore, GGA
6

with PG re-selects the individuals who enter the growth route in each
generation and sets the attenuation mechanism for the probabilities of
participating in growth (denoted as growth probability, abbreviated as
GP) for each individual. In the initial stage, the growth probability
of each individual is uniformly distributed, that is every individual
has the same opportunity to participate in growth. In the growth
stage, when an individual is selected to participate in the growth of
a generation, the attenuation mechanism will adjust its probability of

Swarm and Evolutionary Computation 87 (2024) 101575G. Zhou et al.

(

Fig. 4. Information Interaction Strategies between Populations.
i
t
t
t
p

M
m
t
N
𝐸
n
a
i
t
o

𝑃

being selected, and the reduced probability will be evenly distributed
to other individuals not participating in growth. In the genetic stage,
the children individuals will inherit the growth probability of their
parents in an average way. The attenuation mechanism can eliminate
polarization of the solution set to a certain extent.

Then, the framework of GGA with PG, compared with classical GA
and GGA (with all growth), can also be seen in Fig. 3. The process of
GGA with PG is as follows.
(1) Infancy Stage: At the 1st generation, input the initialized individ-

uals as the infancy individuals with even GP.
(2) Growth Stage: Select one part of individuals to enter the growth

route through the GP selector. Then, update the GP of each indi-
vidual according to whether it participates in growth.

(3) Mature Stage: After the growth stage, mature individuals have two
types of individuals: grown individuals and non-grown individuals.
In the mature stage, screened mature individuals by non-dominated
sorting and congestion degree sorting for the subsequent crossover
and mutation;

(4) Genetic Stage: Execute crossover and mutation to generate chil-
dren, which inherit GP from parents. Then, regenerate the next
infancy individuals.

(5) Repeat Infancy Stage → Genetic Stage.

4.2. MP and information interaction strategies

In MPGGA with PG, we define the base components as follows
referring to the existing research of GA and MPGA.
(1) Gene and Individual (Chromosome): we define the 𝑖th gene as a

vector 𝜆𝑖 = ⟨𝑥𝑖1, 𝑥𝑖2,… , 𝑥𝑖𝑚⟩ where 1 ≤ 𝑖 ≤ 𝑛 and 𝑥𝑖𝑗 ∈ {0, 1}. If 𝑉𝑖 ∈
𝜓𝑗 , then 𝑥𝑖𝑗 = 1, otherwise 𝑥𝑖𝑗 = 0. A vector 𝐼 = ⟨𝜆1, 𝜆2,… , 𝜆𝑛⟩ with
𝑛 genes construct an individual (also chromosome) corresponding
to a solution 𝜅 of the problem.

(2) Crossover: The crossover is defined as separately extracting a part
of genes from two individuals to gain a new vector as the child
individual.

(3) Mutation: Mutation is defined as replacing some genes of an
individual with randomly generated genes.

(4) Population: A group of individuals constructs a population. Gen-
erally, the crossover is carried out within a population. The 𝑖th
population can be set as 𝑃𝑖 =

⟨

𝐼 (𝑖)1 , 𝐼
(𝑖)
2 ,… , 𝐼 (𝑖)𝜏𝑖

⟩

where 𝜏𝑖 is the
number of individuals in the 𝑖th population.

5) Regeneration Mechanism: Each population applies elitist strat-
egy [15] to combine the parent individuals with children individ-
7

uals to jointly compete to produce the next generation.
With the basic components of MPGGA, an important factor is the
nteraction mechanism. Different populations exchange information
hrough certain interaction mechanisms to share some optimal solu-
ions. In this paper, we propose a novel group of information in-
eraction strategies through elite solutions competition of different
opulations.

Some information interaction strategies can be seen in Fig. 4.
PGGA set up a management center to coordinate the entire process of
ultiple populations. Each population selects partial individuals with

he best fitness (for example: according to the sorting strategies of
SGA II or MOEA/D) to enter the center to construct an elite collection
. Then, the center sorts the incoming individuals according to the
on-dominated ranking and crowding ranking, scores each population
ccording to the order of these individuals, as well as obtains the sort-
ng of each population. Finally, the center distributes the information of
he elite collection to each population according to the overall sorting
f each population via a given interaction strategy.

It can be set the sorted populations set from better to worse is
=

⟨

𝑃1, 𝑃2,… , 𝑃𝜂
⟩

and the elite individuals selected from 𝑃𝛼 to elite
collection are 𝐸𝛼 =

⟨

𝑒𝛼1, 𝑒𝛼2,… , 𝑒𝛼𝜁
⟩

where 𝜂 is the number of popula-
tions and 𝜁 is the number of elite individuals from each population to
enter the elite collection. Then, several interaction strategies tested in
this paper are called non-interaction, balanced randomly mixing, elite
sharing and elite supporting, which are described as follows.
(1) Non-Interaction (denoted as 𝐼𝑟0): Non-Interaction means each

population evolves independently in the whole process without
interaction with other populations.

(2) Balanced Randomly Mixing (𝐼𝑟1): One-to-one mixing the elite
of a better population and a worse population (𝑃𝛼 and 𝑃𝜂−𝛼+1) as
a set

⟨

𝑒𝛼1,… , 𝑒𝛼𝜁 , 𝑒(𝜂−𝛼+1)1,… , 𝑒(𝜂−𝛼+1)𝜁
⟩

, and randomly redistribut-
ing the individuals of this set to replace the elite of these two
populations.

(3) Elite Supporting (𝐼𝑟2): Using the elite individuals 𝐸𝛼 of the 𝛼-th
(𝛼 ≤ 𝜂∕2) population to replace the elite individuals 𝐸𝜂−𝛼+1 in the
(𝜂 − 𝛼 + 1)-th population.

(4) Elite Sharing (𝐼𝑟3): Using the best 𝜁 individuals in 𝐸 to replace
the elite individuals of all the populations.

Other information interaction strategies are still applicable to
MPGGA, and different information interaction strategies may have
different diversity and convergence of solution sets. This paper mainly
considers the construction of MPGGA and compares its advantages over
GGA. Therefore, this paper only tests the performance of these three

strategies of information interaction.

Swarm and Evolutionary Computation 87 (2024) 101575G. Zhou et al.

a
⟨

a
i
s
t
g
p
s
t
c
s
p
(

a
g
c
L
t

4.3. Growth quota reallocation strategies

PG requires a growth quota for each population. MPGGA sets up
a global growth quota which means the total number of individuals
that can enter the growth routes in each generation of all popula-
tions. MPGGA can control the convergence speed and optimality of all
populations by adjusting the allocation of the growth quota to each
population.
Algorithm 1: MPGGA family with various strategies

1 Generate the initial individuals and divide them into MPs as
𝑃 =

⟨

𝑃1, 𝑃2,… , 𝑃𝜂
⟩

2 for 𝑙 in range(generation number) do
3 Population evolution executor for the 𝑃𝛼 :
4 Randomly select 𝑄𝛼 individuals to enter the growth

route according to the GP of individuals, and then
obtain the grown individuals by calling Algorithm 2 or
A.1

5 Update the GP of individuals
6 Select the best 𝜁 individuals as the elite individuals 𝐸𝛼

and send them to management center of evolutions
7 Management center of evolutions:
8 Receive the elite individuals from all the populations to

construct an elite collection
9 Sort the elite individuals in the elite collection and

calculate the total score of each population
10 Replace the elite individuals of populations based on

the specific information interaction strategies
11 Readjust the growth quota of populations based on

specific quota reallocation strategies
12 Send the new elite individuals 𝐸𝛼 and growth quota to

corresponding populations
13 Population evolution executor for the 𝑃𝛼 :
14 Receive the elite individuals to replace the original

elite individuals and update the growth quota
15 Select and Pair the better mature individuals with

specific sort strategies such as non-dominated sorting
[15,16] and congestion degree sorting [15]

16 Execute crossover and mutation to generate children
inheriting the GP from parents

17 Regenerate the infancy individuals of the (𝑙 + 1)-th
generation

18 Management center of evolutions:
19 Output the Pareto solutions

It can be set the global growth quota as 𝑄 and the growth quota
llocated to the 𝛼-th population is 𝑄𝛼 which constructs a vector as
𝑄1, 𝑄2,… , 𝑄𝜂

⟩

. The growth quota reallocation strategy is to gener-
te the growth quota vector

⟨

𝑄1, 𝑄2,… , 𝑄𝜂
⟩

according to the elite
ndividuals 𝐸𝛼 =

⟨

𝑒𝛼1, 𝑒𝛼2,… , 𝑒𝛼𝜁
⟩

of each population 𝑃𝛼 . We con-
ider that when different populations evolve into the same generation,
heir evolutionary states may differ. If all populations retain equal
rowth quotas, there may be an imbalance in evolution among multiple
opulations, thereby affecting the performance of the entire genetic
ystem. Overemphasizing the feasibility optimization may also lead to
he search falling into local optimum [59]. According to different allo-
ation principles of growth quotas, we propose three quota reallocation
trategies as follows which will be tested in the experiments of this
aper.
1) Balanced Quota Allocation (denoted as 𝑄𝑎1): Each population has

the same growth quotas, i.e., 𝑄𝛼 = ⌈𝑄∕𝜂⌉.
(2) Priority Supporting the Worse (𝑄𝑎2): The population with the

lower ranking can obtain more quota. In the priority support of
this paper, we set the 𝑄 =

⌈

2𝛼 𝑄
⌉

for 1 ≤ 𝛼 ≤ 𝜂.
8

𝛼 𝜂(𝜂+1)
(3) Priority Supporting the Better (𝑄𝑎3): It is contrary to 𝑄𝑎2 and
the 𝑄𝛼 =

⌈

2(𝜂−𝛼+1)
𝜂(𝜂+1) 𝑄

⌉

for 1 ≤ 𝛼 ≤ 𝜂.

4.4. MPGGA and its system architecture

With the above strategies, we can obtain the framework of the
MPGGA family as Fig. 2 and its pseudo code as Algorithm 1. In Algo-
rithm 1, the population internal evolution executor corresponds to each
population, which mainly performs the evolution process within each
population. Corresponding to the number of populations, there are also
𝜂 population internal evolution executors, which can be implemented
through multi-threads or multi-machines (or multi-GPUs).
Algorithm 2: Growth route for one individual in MPGGA:
Heuristic-based local search algorithm for heterogeneous nodes
using MLSPT as search route

Input : Utilization vectors 𝑌𝑖𝑗 for ∀𝑖, 𝑗, random weight
𝑤 = ⟨𝑤1, 𝑤2,… , 𝑤𝑑⟩, solution 𝜅 for the individual,
𝐺𝑠𝑡𝑒𝑝

Output: Solution 𝜅 corresponding to 𝐼 = ⟨𝜆1, 𝜆2,… , 𝜆𝑛⟩
1 Set 𝑖 = 0, 𝐸𝑥𝑖𝑠𝑡𝑠_𝑁𝑒𝑟 = 𝑇 𝑟𝑢𝑒
2 while Exists_Ner and 𝑖 < 𝐺𝑠𝑡𝑒𝑝 do
3 𝐸𝑥𝑖𝑠𝑡𝑠_𝑁𝑒𝑟 = 𝐹𝑎𝑙𝑠𝑒, 𝑖 + +
4 Choose the node 𝑁𝑗1 with the largest weighted utilization

as 𝑗1 = argmax
𝑗=1,2,…,𝑚

(
∑𝑛
𝑖=1 𝑥𝑖𝑗𝑤 ⋅ 𝑌𝑖𝑗

)

where 𝑤 ⋅ 𝑌𝑖𝑗 means the

vector inner product
5 for 𝑗2 ≠ 𝑗1 do ; // Call the MLSPT algorithm in

following loop
6

7 Initialize 𝑀𝑎𝑟𝑘𝑗1 = 0, 𝑀𝑎𝑟𝑘𝑗2 = 0, 𝜓 ′
𝑗1

= ∅ = 𝜓 ′
𝑗2

8 while 𝜓 ≠ ∅ do
9 if 𝑀𝑎𝑟𝑘𝑗1 ≤𝑀𝑎𝑟𝑘𝑗2 then

10 𝛼 = 𝑗1, 𝛽 = 𝑗2
11 else
12 𝛼 = 𝑗2, 𝛽 = 𝑗1
13 Collect tasks 𝑉𝜏 ∈ 𝜓 s.t.

𝑤 ⋅
(

𝑌𝜏𝛼 − 𝑌𝜏𝛽
)

= min
𝑉𝑖∈𝜓

𝑤 ⋅
(

𝑌𝑖𝛼 − 𝑌𝑖𝛽
)

to obtain a set

of
⟨

𝑉𝜏1 , 𝑉𝜏2 ,… , 𝑉𝜏𝑠
⟩

14 if 𝑠 ≥ 2 then
15 Choose 𝑉𝜏 s.t. 𝑤 ⋅ 𝑌𝜏𝛼 = max

1≤𝑝≤𝑠
𝑤 ⋅ 𝑌𝜏𝑝𝛼

16 𝑀𝑎𝑟𝑘𝛼+ = 𝑤 ⋅ 𝑌𝜏𝛼 , 𝜓 ′
𝛼+ = {𝑉𝜏} and 𝜓− ={𝑉𝜏}

17 𝜅𝑗1𝑗2 = 𝜅 − 𝜓𝑗1 − 𝜓𝑗2 + 𝜓
′
𝑗1
+ 𝜓 ′

𝑗2

18 if ∃𝑗2 ≠ 𝑗1 s.t. the solution of 𝜅𝑗1𝑗2 is optimal than 𝜅 then
19 𝐸𝑥𝑖𝑠𝑡𝑠_𝑁𝑒𝑟 = 𝑇 𝑟𝑢𝑒
20 Choose the optimal 𝜅𝑗1𝑗2 to update 𝜅 = 𝜅𝑗1𝑗2

In this paper, the growth route is also a Heuristic-based local search
algorithm for heterogeneous nodes using Modified LSPT as search route
as Algorithm 2 [22] where

𝜔(𝑤) = min

(

max
𝑗=1,2,…,𝑚

(𝑛
∑

𝑖=1
𝑥𝑖𝑗

𝑑
∑

𝑘=1

(

𝑤𝑘 ⋅ 𝑢𝑖𝑗𝑘
)

))

(9)

nd 𝑌𝑖𝑗 =
⟨

𝑢𝑖𝑗1, 𝑢𝑖𝑗2,… , 𝑢𝑖𝑗𝑑
⟩

. Eq. (9) utilizes weight summation to de-
rade multi-objective optimization problems to ensure that individuals
an engage in additional growth through modified LSPT. The modified
SPT-based neighborhood can be defined as follows. It can be assumed
hat 𝜅′ is an HLSA-based neighbor of 𝜅 i.e., only two nodes have differ-

ent VMs, 𝜓 ′
𝑗1
∪𝜓 ′

𝑗2
= 𝜓𝑗1 ∪𝜓𝑗2 =

{

𝑉𝜏1 , 𝑉𝜏2 ,…
}

and 𝜉𝜏𝑖 ≥ 𝜉𝜏𝑖+1 where 𝜉𝜏𝑖 =

𝑤 ⋅
(

𝑌𝜏𝑗1 − 𝑌𝜏𝑗2
)

. If 𝑉𝜏𝑖 ∈ argmin𝜓 ′

(

∑

𝑉𝜏𝑘∈𝜓
′
1
𝑤 ⋅ 𝑌𝜏𝑗1 ,

∑

𝑉𝜏𝑘∈𝜓
′
2
𝑤 ⋅ 𝑌𝜏𝑗1

)

where 𝑘 < 𝑖 for ∀𝑉𝜏𝑖 ∈ 𝜓 ′
𝑗1

∪ 𝜓 ′
𝑗2

, then 𝜅′ can be called the modified
LSPT-based neighbor of 𝜅. While by contraries 𝜅 may not be that of 𝜅′.

Swarm and Evolutionary Computation 87 (2024) 101575G. Zhou et al.

r
t
d
m
i
i
R
l
a
d
T
G
t
a

u

e
a

5

5

r
p
a
s
f
i
i
r
o
a
(
(
(
(
(
(

(

Table 4
GGA with various combinations of strategies.

Category Models MP IR QA

GGA 𝑀𝑜𝑑𝑒𝑙1

MPGGA with Non 𝑀𝑜𝑑𝑒𝑙2 !

MPGGA with IR 𝑀𝑜𝑑𝑒𝑙3 ! 𝐼𝑟1

𝑀𝑜𝑑𝑒𝑙4 ! 𝐼𝑟2
𝑀𝑜𝑑𝑒𝑙5 ! 𝐼𝑟3

MPGGA with QA
𝑀𝑜𝑑𝑒𝑙6 ! 𝑄𝑎1
𝑀𝑜𝑑𝑒𝑙7 ! 𝑄𝑎2
𝑀𝑜𝑑𝑒𝑙8 ! 𝑄𝑎3

MPGGA with IR & QA

𝑀𝑜𝑑𝑒𝑙9 ! 𝐼𝑟1 𝑄𝑎2
𝑀𝑜𝑑𝑒𝑙10 ! 𝐼𝑟1 𝑄𝑎3
𝑀𝑜𝑑𝑒𝑙11 ! 𝐼𝑟2 𝑄𝑎2
𝑀𝑜𝑑𝑒𝑙12 ! 𝐼𝑟2 𝑄𝑎3
𝑀𝑜𝑑𝑒𝑙13 ! 𝐼𝑟3 𝑄𝑎2
𝑀𝑜𝑑𝑒𝑙14 ! 𝐼𝑟3 𝑄𝑎3

Algorithm 2 is a version convenient for comprehension. In the
ealistic program of the algorithm, we can use array operations on GPUs
o accelerate the growth route and run MPGGA algorithm program in a
istributed environment. For genetic algorithms to solve resource opti-
ization problems, the main processes consuming computational time

nclude fitness calculation, crossover and mutation processes for each
ndividual in each generation (the details are provided in Appendix A).
esources optimization in cloud computing especially needs to consider

arge-scale scenarios. Using a single CPU for launching optimization
lgorithms will consume excessive calculational time, which is not con-
ucive to executing extensive instances for comprehensive evaluation.
hus, in this paper, we will execute MPGGA and baseline algorithms on
PUs, which can leverage GPU-based matrix operations to accelerate

he execution speed of algorithms. GPU-based genetic programming is
lso one of the current hotspots in meta-heuristics [26,83,84].

With various strategies of MPGGA, we can get different models
nder different strategy combinations as shown in Table 4.

In this section of experiments, we will verify the performance of
ach model through experiments in UPMDR to determine policy options
nd also compare our proposed algorithm to state-of-the-art methods.

. Performance evaluation in UPMDR of cloud

.1. Experiments setting

In this section, we mainly present and discuss the experimental
esults of MPGGA algorithm in the UPMDR problem of cloud com-
uting as Eq. (5). Additionally, our proposed MPGGA framework also
dapts to other problems considering multi-dimensional resources. To
upplement the analysis to the adaptability of our proposed MPGGA
ramework, we provide partial experimental results of MPGGA for solv-
ng multi-objective asymmetric traveling salesman problems (MoATSP)
n Appendix B and some results of MPGGA for energy consumption-
elated problems in 𝐸𝑥7. For the sake of the comprehensive evaluations
f MPGGA, we carry out seven groups of experiments from various
spects including:
1) 𝐸𝑥1: evaluation of the MP strategy without other strategies;
2) 𝐸𝑥2: comparison of information interaction strategies;
3) 𝐸𝑥3: comparison of quota reallocation strategies;
4) 𝐸𝑥4: comparison of various combinations of strategies;
5) 𝐸𝑥5: evaluation of different growth quotas;
6) 𝐸𝑥6: comparison with the state-of-the-art methods for the prob-

lem of minimizing the maximum utilization of resources in all
dimensions;

7) 𝐸𝑥7: comparison with the state-of-the-art methods for the en-
ergy consumption-related problems to evaluate the adaptability of
9

MPGGA.
All these experiments are based on the control variable method.
𝐸𝑥1 fixes the structure of the algorithm as GGA and varies the number
of populations. 𝐸𝑥2 fixes the structure of the algorithm as MPGA
and varies the information interaction strategies. 𝐸𝑥3 fixes the struc-
ture of the algorithm as MPGGA and varies the quota reallocation
strategies. 𝐸𝑥4 compares the performance of different combinations of
information interaction and quota reallocation strategies. 𝐸𝑥5 fixes the
structure of the algorithm as MPGGA with 𝐼𝑟3 (elite sharing) and 𝑄𝑎2
(priority supporting the worse) and varies the growth quotas. When
growth quota 𝑄 = 0, MPGGA will degrade to multi-population NSGA
II (MP-NSGA II). Thus, the comparison between 𝑄 > 0 and 𝑄 = 0 in
𝐸𝑥5 is also equivalent to the comparison between MPGGA and MP-
NSGA II. 𝐸𝑥6 compares our proposed MPGGA with baselines for the
problem of minimizing the maximum utilization of resources in all
dimensions. 𝐸𝑥7 compares our proposed MPGGA with baselines for
the problems of minimizing the maximum energy consumption of each
server node (min𝜔(2)) and minimizing the total energy consumption
of the whole system (min𝜔(3)) to evaluate the adaptability of MPGGA
to scenarios and optimization objectives. Considering that the com-
parison algorithms need to be representative and compatible with the
multi-dimensional resources optimization problem studied in this pa-
per, we choose various state-of-the-art methods as baselines, including
some existing well-performed multi-dimensional resource optimization
algorithms (GHW-NSGA II, GHW-MOEA/D, NSGA II and MOEA/D)
and some existing advanced multi-population evolutionary algorithms
(MP-NSGA II, MP-MOEA/D, and their variants, e.g., MP-NSGA II-ES,
MP-MOEA/D-ES, MP-NSGA II-BM, MP-MOEA/D-BM).

These experiments are executed on the random simulation dataset.
In the simulation, we set up the server nodes of cloud to be het-
erogeneous and the parameters of VMs obey uniform distribution:

𝑢𝑖𝑗𝑘 ∼ U (2, 10)%, (10)

which are generated by torch.randint(low=20, high=100, size=
(𝑛, 𝑑, 𝑚))/1000, where U (2, 10) means the uniform distribution in the
region [2, 10]. In simulated datasets with other ranges or the public
dataset (such as AzureTraceforPacking2020 [76]), the experimental
comparison results are similar. Therefore, this paper mainly provides
results on simulation datasets in ablation studies and parameter lec-
totype studies (𝐸𝑥2 to 𝐸𝑥5), and only provides experimental results
on public trace (AzureTraceforPacking2020) in 𝐸𝑥6 to supplement the
usability of the proposed algorithm for realistic scenarios.

The main multi-objective indicators for measuring multi-dimen-
sional resource utilization optimization in this paper include the Pareto
solution set, C indicator and HyperVolume (HV) [85,86] of 𝜔(1) with
multi-dimensional resources utilizations. For the sake of the evaluation,
we choose three dimensions of resources, i.e., CPU, RAM and DS,
to execute the experiments. In order to maintain the comparability
of the results, we use the absolute HV of these three-dimensional
resources’ utilization by calling the function pymoo.indicators.hv.
Hypervolume [87], whose settings are as ref_points = (1, 1, 1), zero_to_
one = False, ideal =

(

min𝑗 𝑈𝑗1,min𝑗 𝑈𝑗2,min𝑗 𝑈𝑗3
)

, nadir =
(

max𝑗 𝑈𝑗1,
max𝑗 𝑈𝑗2,max𝑗 𝑈𝑗3

)

. HV of 𝜔(1) converts the vector with maximum
utilization rates of multi-dimensional resources (a multi-objective) into
a scalar indicator, which is often used to measure the optimality and
also able to evaluate the convergence of multi-objective optimization
algorithms [85,86]. In experiments, we also use Wilcoxon rank-sum
test and Friedman test to evaluate the significance of the performance
differences between baseline algorithms and our proposed MPGGA.

We uniformly set the mutation rate as 0.2 and growth steps in GGA
as 𝐺𝑠𝑡𝑒𝑝 = 10. In order to show more coverage of results, we try to
present them corresponding to different combinations of (𝑛, 𝑚).

For optimization problems in large-scale scenarios, using the CPU
to execute evolutionary algorithms will usually cost far more time.
To generate extensive instances for comprehensive evaluation and dis-

cussions of our proposal, we execute MPGGA and baseline algorithms

Swarm and Evolutionary Computation 87 (2024) 101575G. Zhou et al.

r

o
p
l
w
t
a
e
s
w
e
c

5

i
v
f
p
a
2
t
i
a
p

t

Fig. 5. The HV-over-generation for MPGGA-without-additional-strategies under different number of populations: all growth, non information interaction, non growth quota
eallocation, 𝑁𝑝 × 𝜂 = 800, 𝜂 ∈ {1, 2, 4, 8}, 𝑁𝑔 = 20.
l
p

t
o
i
s
G
o
t
(
s

G
g
v
e
t
2
t
I
t
p
t
t
c
r

b
a
t
a
a
i
H
r
s
s
r
G
c
s
a
f

5

n GPUs in experiments, which is also beneficial for evaluating the
erformance of algorithms at the current advanced computing power
evel. Then, the experiments are launched on a cluster environment
ith multiple servers or desktops. The center server (or desktop) acts as

he management center of MPGGA. All algorithms (including baseline
lgorithms and our proposed algorithms) participating in comparative
xperiments are running on the same number of GPUs (in the same
erver or desktop) to ensure that they are compared in the environment
ith the same computing power. Except for specified explanations, the
xperiments are performed on servers (GPU cluster of V100). The main
onfigurations of the cluster environments are as follows.

• Communication Network: Gigabit, Full Duplex;
• Communication Backend: Gloo;
• Program version: Python 3.7, Pytorch 1.10.2, Numpy 1.21.6,

Pymoo 0.6.0.1;
• Servers (GPU Cluster of V100):

– Operation System: Ubuntu 18.04.5;
– CPU: Intel i9 10850K @ 3.6 GHz, 10 cores;
– SSD: Samsung 980 NVMe M.2 @ 1TB;
– RAM: LPX 64 GB DDR4 3200;
– GPU: NVIDIA TESLA V100 @ 32 GB × 2, where × 2 means

one server has two GPUs).
• Desktops (GPU Cluster of RTX 3060 Ti):

– Operation System: Windows 10;
– CPU: Intel i5 13600KF @ 3.5 GHz, 14 cores;
– SSD: P7000Z NVMe M.2 SSD @ 2TB;
– RAM: LPX 64 GB DDR4 3200;
– GPU: NVIDIA GeForce RTX 3060 Ti @ 8 GB × 2.

.2. 𝐸𝑥1: Evaluation of the MP strategy

Firstly, we evaluate the effect of the MP strategy without additional
nformation interactions by comparing 𝑀𝑜𝑑𝑒𝑙2 to 𝑀𝑜𝑑𝑒𝑙1. All indi-
iduals will participate in the growth route. Considering experiments
or various combinations of (𝑛, 𝑚) have a similar conclusion, we only
resent two groups of experiments respectively under (𝑛, 𝑚) = (500, 200)
nd (𝑛, 𝑚) = (2000, 1000). We change the number of populations from
0 to 23. Because all individuals will grow through the growth route,
he time consumed by each generation of the algorithm program is
ndependent of the population number. Therefore, we use the gener-
tion as the abscissa and plot the results under the different number of
opulations in Fig. 5.

As shown in Fig. 5, with the increase of generation, the growth
rends of HVs corresponding to each population number 𝜂 = 1, 2, 4, 8

are very close. This indicates that only increasing the number of popula-
tions without additional information interactions between populations
10

has no obvious impact on the convergence rate of MPGGA. This also g
aterally reflects the significance of information interactions between
opulations in MPGGA.

Then, we evaluate the performance of the proposed system architec-
ure to execute MPGGA which is shown in Fig. A.1. We set the number
f individuals 𝑁𝑝 = 100 for each population, the number of populations
s 𝜂 = 8, and all individuals can be improved through the growth
tage. Then, we execute the MPGGA respectively on 1 GPU, 2 GPUs, 4
PUs and 8 GPUs. As the architecture with multi GPUs mainly focuses
n improving the computing speed of MPGGA, we use the running
ime as the abscissa. Then, we plot the HVs-over-time for the scenarios
𝑛, 𝑚) = (500, 200) and (𝑛, 𝑚) = (2000, 800) respectively under different
izes of GPUs in Fig. 6.

The overall trend in Fig. 6 shows that increasing the number of
PUs can improve the computation speed of MPGGA algorithm. In each
eneration, the HVs corresponding to different numbers of GPUs are
ery close, which shows that the number of GPUs has no effect on the
volution process of each generation. In detail to (𝑛, 𝑚) = (500, 200), it
akes 820 s for 1 GPU to implement 20 generations, 420 s for 2 GPUs,
15 s for 4 GPUs and 150 s for 8 GPUs. From 1 GPU to 4 GPUs, the
ime is approximately inversely proportional to the number of GPUs.
n this range, the acceleration effect of multiple GPUs is more obvious
han that for 8 GPUs. From 4 GPUs to 8 GPUs, the time is not inversely
roportional. This may be because, in addition to the time required for
he growth route of each generation, the selection at the mature stage,
he crossover and regeneration at the genetic stage will also consume a
ertain time, which is less affected by the number of GPUs than growth
oute.

Additionally from Fig. 6, we can observe that increasing the num-
er of GPUs may reduce the efficiency of GPUs, so we choose to
pply 2 GPUs for the subsequent experiments, which does not affect
he conclusion of comparative experiments on different strategies and
lgorithms. In fact, as long as the memory of the GPU is sufficient
nd the requirements for computing speed are relaxed, only one GPU
s needed to perform the evolution process of multiple populations.
owever, a phenomenon in our experiments with large-scale tasks and

esource counts is that a single GPU is not sufficient to support the
imultaneous evolution and computation of 8 populations. Thus, we
elect 2 GPUs for the experiment. In the experiment, all baseline algo-
ithms and our proposed methods were running on the same number of
PUs to ensure that they are compared in the environment with same
omputing power. If there are more GPUs, the calculation process can
till be accelerated accordingly. However, more GPUs may introduce
dditional communication consumption, thus it may not necessarily
ully comply with linear acceleration.

.3. 𝐸𝑥2-𝐸𝑥4: Ablation studies

To test the performance of different information interaction strate-

ies, we carry out a group of experiments (𝐸𝑥2) by comparing 𝑀𝑜𝑑𝑒𝑙2

Swarm and Evolutionary Computation 87 (2024) 101575G. Zhou et al.

𝑁

n
𝜂
d
a
t
(
m
H
F

t
𝐼
t
o
b
p
t
c
i
t
p
a
b
t
c
i
s
i
s
t
i

Fig. 6. The hypervolume-over-time for MPGGA-without-additional-strategies under the different size of GPUs: all growth, non information interaction, non growth quota reallocation,
𝑝 = 100 for each population, 𝜂 = 8, 𝑁𝑔 = 20, 𝐺𝑃𝑈𝑠 ∈ {1, 2, 4, 8}.
Fig. 7. The HV-over-generation for MPGA under different interaction strategies: non growth, various information interactions, non growth quota reallocation, 𝑁𝑝 = 100 for each
population, 𝜂 = 8, 𝑁𝑔 = 20.
e
s
g
r

to 𝑀𝑜𝑑𝑒𝑙3, 𝑀𝑜𝑑𝑒𝑙4 and 𝑀𝑜𝑑𝑒𝑙5. In this group of experiments, we set
on-growth for all individuals (MPGA), 𝑁𝑝 = 100 for each population,
= 8 and 𝑁𝑔 = 20. Because different information interaction strategies
o not affect the time of each generation, we also use generation
s the abscissa. Similarly, a large number of experiments will draw
he same conclusion, thus we only present two scenarios of (𝑛, 𝑚) =
4000, 1000) and (𝑛, 𝑚) = (8000, 3000), which have sufficient virtual
achines and nodes for a representative conclusion. Then, we plot the
V-over-generation for MPGA under different interaction strategies in
ig. 7.

For the instance of Fig. 7(a), the HVs of 𝐼𝑟1 (balanced mixing) before
he 13-th generation are higher than that of 𝐼𝑟3 (elite sharing), while
𝑟3 (elite sharing) achieves the highest HVs at the 20-th generation. For
he instance of Fig. 7(b), the curve of 𝐼𝑟3 (elite sharing) is higher than
thers from the 4-th generation to the 20-th generation. This may be
ecause 𝐼𝑟3 shares the better solutions to all populations so that each
opulation can evolve the solutions on the basis of the better solutions
o accelerate the optimizations. From the two instances of Fig. 7, the
urves of 𝐼𝑟1 and 𝐼𝑟3 are higher than that of 𝐼𝑟2 (elite supporting). This
llustrates directly using the elite of the better populations to replace
hat of the worse one cannot effectively interact information between
opulations. This may be because 𝐼𝑟2 (elite supporting) abandons some
ppreciable solutions of the lower ranking population accompanied
y the reduction of population diversity, resulting in a reduction in
he convergence speed of the optimization solution. In Fig. 7, the
urves of 𝐼𝑟1, 𝐼𝑟2 and 𝐼𝑟3 are obviously higher than that of non-
nteraction, which demonstrates applying the information interaction
trategies can improve the convergence speed of the evolution process
n MPGGA to a certain extent. Other unlisted experiments still have
imilar conclusions. The comparative experiments of information in-
eraction strategies also illustrate again the necessity of information
nteraction in MPGGA.
11
MPGGA, as one of the variants of MPGA, also conforms to the
ffectiveness of information interaction strategies. The difference is that
ome individuals in MPGGA can get extra improvement through the
rowth route. Then, we continually evaluate the performance of quota
eallocation strategies by comparing 𝑀𝑜𝑑𝑒𝑙2 to 𝑀𝑜𝑑𝑒𝑙6, 𝑀𝑜𝑑𝑒𝑙7 and
𝑀𝑜𝑑𝑒𝑙8. In this group of experiments (𝐸𝑥3), we set total growth quota
𝑄 = 80, non interaction strategy, 𝑁𝑝 = 100 for each population, 𝜂 = 8
and 𝑁𝑔 = 20. The different growth quota reallocation strategies also
do not affect the time of each generation for the whole population set,
thus we use generation as the abscissa. Similarly, as the conclusion is
representative, we only present two scenarios of (𝑛, 𝑚) = (3000, 1000)
and (𝑛, 𝑚) = (5000, 2000). Then, we plot the HV-over-generation for
MPGGA under different growth quota reallocation strategies in Fig. 8.

From Fig. 8, the curves of non-growth are far lower than that with
growth quotas, which illustrates extra growth of populations has signifi-
cant improvement to the convergence and optimality. Among the three
growth quota reallocation strategies, 𝑄𝑎2 corresponds to the highest
curves, followed by 𝑄𝑎3 and 𝑄𝑎1. This demonstrates preferably giving
additional growth quotas to the populations with lower ranking can
improve the overall convergence speed. This may be because balanced
allocation or priority better may cause some populations to enter the
local optimum prematurely and priority worse strategy can make full
use of the limited growth quotas.

Combining the results of Figs. 7 and 8, we can roughly predict
that the combination of 𝐼𝑟3 and 𝑄𝑎2 in MPGGA will have better
performance than others. To validate this, we carry out a group of
experiments (𝐸𝑥4) by comparing 𝑀𝑜𝑑𝑒𝑙9-𝑀𝑜𝑑𝑒𝑙14. In 𝐸𝑥4, we change
the combinations of interaction strategies and growth quota strategies.
Other parameters, including total growth quotas, number of popula-
tions, number of generations, number of individuals of each population,
etc, are the same as the experiments of Figs. 7 and 8. We present the

Swarm and Evolutionary Computation 87 (2024) 101575G. Zhou et al.

v

Fig. 8. The HV-over-generation for MPGGA under different growth quota reallocation strategies: partial growth with total quota 𝑄 = 80, non information interactions, various
growth quota reallocation, 𝑁𝑝 = 100 for each population, 𝜂 = 8, 𝑁𝑔 = 20.
Fig. 9. The HV-over-time for MPGGA under different combinations of information interaction and growth quota reallocation strategies: partial growth with total quota 𝑄 = 80,
arious information interactions, various growth quota reallocation, 𝑁𝑝 = 100 for each population, 𝜂 = 8, 𝑁𝑔 = 20.
(

𝑄
g
g
T
f
t
c
c
g
i
r
g
c
t
c
w
d
t
I
0

results of two instances of (𝑛, 𝑚) = (3000, 1000) and (𝑛, 𝑚) = (5000, 2000),
and use the run time as the abscissa. Then, we plot the HV-over-time
for MPGGA under different combinations of information interaction
strategies and growth quota reallocation strategies in Fig. 9.

The curves in Fig. 9 can be divided into four grades from top to
bottom: first includes 𝐼𝑟3 + 𝑄𝑎2 and 𝐼𝑟3 + 𝑄𝑎3, second is 𝐼𝑟1 + 𝑄𝑎2
and 𝐼𝑟1 + 𝑄𝑎3, third is 𝐼𝑟2 + 𝑄𝑎2 and 𝐼𝑟2 + 𝑄𝑎3, as well as the
last is 𝑄𝑎2 (𝐼𝑟0 + 𝑄𝑎2). The order of these four grades is basically
consistent with the ranking of information interaction strategies in the
experiments of Fig. 7. In each grade, the results corresponding to 𝑄𝑎2
are better than those corresponding to 𝑄𝑎3, which is consistent with
the conclusion of the experiments in Fig. 8. This grading shows that the
gap between different information interaction strategies is greater than
the gap between different quota reallocation strategies. This not only
demonstrates the importance of information interaction strategies but
also laterally shows that the growth quota proposed in this paper has
greatly improved MPGGA, because the closer to the theoretical optimal
solution in the optimization problem, the more difficult it is to be
further optimized. As shown in Fig. 9, the curves corresponding to the
𝐼𝑟3 + 𝑄𝑎2 are the highest, which validates again that the combination
of 𝐼𝑟3 and 𝑄𝑎2 in MPGGA has better performance than others. Based
on this conclusion, we select 𝑀𝑜𝑑𝑒𝑙13 (with 𝐼𝑟3 + 𝑄𝑎2, abbreviated as
MPGGA-ESPW) as the practical strategies combination in the following
experiments.

5.4. 𝐸𝑥5: Evaluation of growth quotas

In the above experiments, we observe that the performance of
𝑀𝑜𝑑𝑒𝑙13 (MPGGA-ESPW) was better than other combinations of infor-
mation interaction and growth quota reallocation, so we conducted
incremental experiments on the growth quota based on 𝑀𝑜𝑑𝑒𝑙13 to
observe the performance of 𝑀𝑜𝑑𝑒𝑙 (MPGGA-ESPW) under different
12

13 p
growth quotas, so as to verify the advantages of partial growth strategy.
Referring to Taguchi methods [88,89], the experimental process of 𝐸𝑥1
to 𝐸𝑥5 can also be used to determine the algorithm parameters for
specific optimization scenarios and problems.

With the increase in growth quota, MPGGA will spend more time
completing 100 generations. Thus, we only present the time regions
when MPGGA with 40 growth quota completes 100 generations. Then,
we plot the results for the scenarios of (𝑛, 𝑚) = (3000, 1000) and (𝑛, 𝑚) =
5000, 2000) in Fig. 10.

From Fig. 10, 𝑄 = 40 achieves the highest HV-over-time. From
= 0 to 𝑄 = 40, the curve has a significant rise, which shows that

rowth quota has a significant improvement effect on MPGGA. As the
rowth quota increases from 40 to 200, the curves gradually decrease.
his proves that more growth quotas are not necessarily better. In
act, compared with the process of conventional genetic algorithms,
he local search algorithm corresponding to the growth route often
onsumes a lot of computing time, thus excessive growth quotas will
onsume additional computing force. While, if there is no additional
rowth route, the search process of GA has great uncertainty, resulting
n the slow evolution of each generation, and then may also consume
edundant computational force. The genetic algorithm with partial
rowth quotas combines the advantages of both. It allocates limited
omputational force to make some individuals gain additional growth
hrough HLSA [22], and these grown individuals participate in the
rossover and mutation to help the population evolve. Additionally,
hen the growth quota 𝑄 = 0, the growable genetic algorithm will
egenerate into the conventional genetic algorithm, which indicates
hat MPGGA-ESPW with 0 growth quota equals multi-population NSGA
I (MP-NSGA II). Thus, comparing the results of 𝑄 = 0 and 𝑄 >

in Fig. 10 can also demonstrate our proposed MPGGA has better

erformance in terms of convergence and optimality than the other

Swarm and Evolutionary Computation 87 (2024) 101575G. Zhou et al.

s

Fig. 10. The HV-over-time for 𝑀𝑜𝑑𝑒𝑙13 (MPGGA-ESPW) with different growth quotas: partial growth with different total growth quotas 𝑄 = 0, 40, 80,… , 200, elite sharing (𝐼𝑟3)
information interaction, priority supporting the worse (𝑄𝑎2) growth quota reallocation, 𝑁𝑝 = 100 for each population, 𝜂 = 8, 𝑁𝑔 = 100, 5 skip points for the symbols in the curves.
When the growth quota 𝑄 = 0, MPGGA-ESPW equals multi-population NSGA II (MP-NSGA II).
Fig. 11. HV with respect to growth quota for different each time profile under the
cenario of Fig. 10(b) (𝑛, 𝑚) = (5000, 2000).

multi-population evolutionary algorithm (i.e., MP-NSGA II). This indi-
cates that GGA has a greater advantage than NSGA II when combined
with the multi-population strategy.

To further observe the effect of growth quota on performance, we
intercept five time-profiles 100 s, 200 s, 300 s, 400 s and 500 s of
Fig. 10(b), record the HV of each growth quota corresponding to the
nearest generation of individuals before time profile, and then plot the
curve of HV with respect to growth quota for different each time profile
in Fig. 11.

It can be clearly seen from Fig. 11 that with the increase of growth
quota, HV shows a trend of first increasing and then decreasing in each
time profile. The HV of 𝑄 = 60 is highest at the 400 s profile and
that of 𝑄 = 40 is highest at other profiles. The possible reason for this
is that the iteration process for different time profiles varies with the
growth quotas resulting in certain volatility. While it does not affect
to draw an important conclusion: there is the most appropriate growth
quota of MPGGA at each time point, i.e., limited time corresponds to an
appropriate allocation of computing force. In addition, this also verifies
the advantages of partial growth of MPGGA in this paper.

5.5. 𝐸𝑥6: Comparison with the state-of-the-art for the problem min𝜔(1)

To further evaluate the advantages of our proposed algorithms in
the problem min𝜔(1) (minimizing the maximum utilization of resources
in each dimension), we execute a group of experiments 𝐸𝑥6 comparing
the MPGGA with the state-of-the-art in the terms of convergence.
According to the above experiments, we select the strategies combi-
nation 𝐼𝑟3 + 𝑄𝑎2, (ESPW), which outperforms other combinations, to
participate in the comparison with the state-of-the-art.

In research [22], it has demonstrated that GHW family (including
13

GHW-NSGA II and GHW-MOEA/D) outperforms two state-of-the-art
methods NSGA II and MOEA/D in solving the problem min𝜔(1). There-
fore, we also regard GHW family as the state-of-the-art in this group
of experiments in addition to NSGA II and MOEA/D. The number of
total individuals is set as 800 for these algorithms. The MPGGA also
includes 𝜂 = 8 populations and each of them has 100 individuals.
These algorithms are all executed on two GPUs respectively with 4
processes. To observe the algorithm performance over a long time,
we set 100 generations for MPGGA and GHW family. Because the
NSGA II and MOEA/D have no additional growth, which makes each
generation consume less time than MPGGA and GHW family, we set
2000 generations for NSGA II and MOEA/D. Then, we only present
the indicators of each algorithm in the time corresponding to the 100
generations of MPGGA.

To increase the coverage of the experimental results, we show the
results of four scenarios: two have less size of VMs and nodes that
(𝑛, 𝑚) = (500, 100) and (𝑛, 𝑚) = (1000, 300); as well as two have larger
size that (𝑛, 𝑚) = (5000, 1500) and (𝑛, 𝑚) = (6000, 2500). Then, we plot
the results of these scenarios in Fig. 12.

From the overall trend of the curves in Fig. 12, the HVs of the
algorithm MPGGA-ESPW proposed in this paper are significantly higher
than that of the compared algorithms in the time range shown in the
figures. The concrete order of these algorithms is: MPGGA-ESPW is
better than GHW family, followed by NSGA II and MOEA/D. This not
only proves the superiority of the proposed algorithm MPGGA-ESPW
in terms of optimality and convergence compared with state-of-the-
art in both small and large-scale scenarios but also shows that the
introduction of multiple populations with its counterpart information
interaction strategies and partial growth quota reallocation strategies
based on GGA can further improve the convergence speed.

Concretely, we list the generations and HVs of each algorithm
corresponding to the final time of each sub-figure in Table 5. Taking
(𝑛, 𝑚) = (500, 100) as the example: It can be calculated that with 291 s
the average increment of HV per generation is 0.00524 for algorithm
MPGGA, 0.0225 for GHW-NSGA II, 0.0229 for GHW-MOEA/D, 0.00056
for NSGA II and 0.00051 for MOEA/D. This means that the average
increment of GHW per generation is the largest, followed by MPGGA.
However, the average time consumed by each generation of GHW
is 14.10 s for GHW-NSGA II and 14.00 s for GHW-MOEA/D, which
is the longest, also followed by MPGGA (2.91 s). Thus, MPGGA is
actually to minimize the time consumption of each generation and
simultaneously enhance the increment of HV per generation. According
to the HV of the four experiments, the average convergence speed of
MPGGA is 1.363, 1.339, 1.948 and 2.151 times that of GHW-NSGA II,
GHW-MOEA/D, NSGA II and MOEA/D respectively.

To evaluate the significance of differences between baselines and
our proposed algorithm, we can use Wilcoxon rank-sum test. The
Wilcoxon rank-sum test tests the null hypothesis that two sets of

measurements are drawn from the same distribution. At the 5% test

Swarm and Evolutionary Computation 87 (2024) 101575G. Zhou et al.

d
a
b
w
p
d
i
t
s
t

o
M
s
W
d
n
i
e
a
t

Fig. 12. The HV-over-time of MPGGA-ESPW compared with baselines GHW-NSGA II, GHW-MOEA/D, NSGA II, MOEA/D: partial growth with growth quotas 𝑄 = 80, elite sharing
(𝐼𝑟3, ES) information interaction, priority supporting the worse (𝑄𝑎2, PW) growth quota reallocation, 𝑁𝑝 = 100 of each population, 𝜂 = 8, 𝑁𝑔 = 100 for MPGGA; 𝑁𝑝 = 800 for
GHW-NSGA II, GHW-MOEA/D, NSGA II, and MOEA/D; 5 skip points for the symbols in the curves of MPGGA-ESPW, GGA-NSGA II and GGA-MOEA/D, 20 skip points for NSGA
II and MOEA/D in figures; all algorithms are executed on two GPUs using 8 processes.
Table 5
The generations and HVs of each algorithm corresponding to the final time of each sub-figures in Fig. 12, where ratio means HV𝑀𝑃𝐺𝐺𝐴∕HV𝑋 and 𝑋 is the corresponding row’s
algorithm.

Algorithms (500, 100) (1000, 300) (5000, 1500) (6000, 2500) Ave. Ratio

Gen. Time HV Ratio Gen. Time HV Ratio Gen. Time HV Ratio Gen. Time HV Ratio

G-NSGA II 21 296 0.473 1.107 16 479 0.440 1.248 13 2746 0.224 1.594 12 4831 0.276 1.504 1.363
G-MOEA/D 21 294 0.481 1.089 16 482 0.450 1.220 13 2752 0.232 1.539 12 4840 0.275 1.509 1.339
NSGA II 420 297 0.233 2.249 680 479 0.302 1.818 1000 2730 0.178 2.006 1030 4853 0.241 1.722 1.948
MOEA/D 390 296 0.197 2.660 670 491 0.287 1.913 900 2721 0.170 2.100 920 4893 0.215 1.930 2.151

MPGGA 100 291 0.524 – 100 473 0.549 – 100 2670 0.357 – 100 4818 0.415 – –
level, if 𝑝-value ≤ 0.05 indicates that two algorithms have obvious
ifferences in a function, otherwise the difference is not obvious. The
lternative hypothesis is that values in one sample are more likely to
e larger than the values in the other sample. For the results of Fig. 12,
e calculate the HVs of baseline algorithms at the corresponding time
oints for each generation of MPGGA-ESPW. If baseline algorithms
o not have results at the corresponding time point, we use linear
nterpolation to obtain the corresponding values. Then, the results of
he Wilcoxon rank-sum test for the HVs are listed in Table 6, where if
tatistics> 0 indicates the HVs of the proposed MPGGA are less than
he corresponding baseline algorithm.

From Table 6, the HVs of MPGGA are significantly less than those
f the baseline algorithms during the time within 100 generations of
PGGA. However, as the time range tested by Wilcoxon rank-sum test

hortens, the advantages and the significance of MPGGA will decrease.
hen only testing the time within the 10 generations of MPGGA, the

ifferences between MPGGA and G-NSGA II (or G-MOEA/D) are not sig-
ificant where the 𝑝-value remains larger than 0.05. This phenomenon
ndicates that manifesting the advantages of MPGGA relies on sufficient
volutionary generations (corresponding to sufficient computing time),
nd MPGGA is not significantly better than baseline algorithms when
he computing time is small.
14
To further observe the solution of each algorithm, we plot the Pareto
scatters in CPU-RAM projection of the final time for scenarios (𝑛, 𝑚) =
(500, 100) and (𝑛, 𝑚) = (1000, 300) in Fig. 13. From Fig. 13, the Pareto
solution set in CPU-RAM projections of our proposed algorithm also
obviously dominates the solution set of other comparison algorithms.
We use C indicator [90] to quantify the advantages and disadvan-
tages of the dominating relationship between 3D Pareto solution sets
of different algorithms. Table 7 shows the C indicator between the
algorithms for the Pareto solution set of Fig. 12, where the C indicator
is computed by the following formula [90].

𝐶(𝑋, 𝑌) =
|𝑦 ∈ 𝑌 |∃𝑥 ∈ 𝑋 ∶ 𝑥 ⪯ 𝑦|

𝑌
(11)

From Table 7, MPGGA has a higher proportion of Pareto solutions
that are not dominated by the solutions of other algorithms, followed
by GHW-MOEA/D, GHW-NSGA II, NSGA II and MOEA/D. From the
perspective of Pareto solution dominance, the results of Fig. 13 and
Table 7 again verify that the proposed MPGGA is superior to the
compared algorithms.

From the experiments of Fig. 12, MPGGA can maintain advantages
over the baseline evolutionary algorithms that have one population in
large-scale scenarios for the problem of 𝜔(1). Next, we compare MPGGA

Swarm and Evolutionary Computation 87 (2024) 101575G. Zhou et al.

f

w
M
E
c
i
S
w
0
m
n
o
w
p

p
I

Table 6
Wilcoxon rank-sum test for the HVs-over-time of Fig. 12.

Algorithm (500, 100) (1000, 300) (5000, 1500) (6000, 2500)

p-value statistics p-value statistics p-value statistics p-value statistics

The time within 100 generations of MPGGA

MPGGA – – – – – – – –
G-NSGA II 7.7E−13 +7.167 5.7E−20 +9.150 2.9E−22 +9.705 5.5E−21 +9.400
G-MOEA/D 2.8E−11 +6.658 8.5E−20 +9.107 7.1E−22 +9.612 1.0E−20 +9.268
NSGA II 8.6E−32 +11.73 6.7E−29 +11.16 2.7E−26 +10.61 5.7E−28 +10.96
MOEA/D 4.6E−31 +11.59 9.0E−29 +11.13 4.3E−25 +10.35 2.7E−24 +10.17

𝑊 ∕𝑇 ∕𝐿 4/0/0 4/0/0 4/0/0 4/0/0

The time within 50 generations of MPGGA

MPGGA – – – – – – – –
G-NSGA II 6.4E−7 +4.977 4.4E−10 +6.239 1.1E−10 +6.460 2.6E−11 6.666
G-MOEA/D 3.3E−7 +5.108 9.3E−10 +6.122 7.6E−11 +6.508 5.0E−10 +6.218
NSGA II 2.0E−15 +7.942 2.0E−13 +7.349 1.6E−11 +6.742 8.7E−13 +7.149
MOEA/D 3.1E−15 +7.887 1.5E−13 +7.390 1.2E−10 +6.446 3.4E−10 +6.280

𝑊 ∕𝑇 ∕𝐿 4/0/0 4/0/0 4/0/0 4/0/0

The time within 20 generations of MPGGA

MPGGA – – – – – – – –
G-NSGA II 4.1E−3 +2.867 8.8E−4 +3.327 7.2E−4 +3.381 1.1E−4 +3.868
G-MOEA/D 4.1E−3 +2.867 1.4E−3 +3.192 8.8E−4 +3.327 1.4E−3 +3.192
NSGA II 1.2E−5 +4.382 1.1E−4 +3.868 1.7E−3 +3.138 2.9E−4 +3.625
MOEA/D 2.9E−6 +4.680 1.3E−5 +4.355 8.0E−4 +3.354 2.9E−3 +2.976

𝑊 ∕𝑇 ∕𝐿 4/0/0 4/0/0 4/0/0 4/0/0

The time within 10 generations of MPGGA

MPGGA – – – – – – – –
G-NSGA II 0.131 +1.512 0.150 +1.436 0.096 +1.663 0.028 +2.192
G-MOEA/D 0.151 +1.436 0.150 +1.436 0.131 +1.512 0.131 +1.512
NSGA II 0.016 +2.419 0.082 +1.739 0.257 +1.134 0.096 +1.663
MOEA/D 2.5E−3 +3.024 0.005 +2.797 0.023 +2.268 0.096 +1.663

𝑊 ∕𝑇 ∕𝐿 2/2/0 1/3/0 1/3/0 1/3/0
Fig. 13. The 2D Pareto solutions (CPU-RAM projections) of utilization-ESPW compared MPGGA with baselines including GHW-NSGA II, GHW-MOEA/D, NSGA II, MOEA/D at the
inal time of Figs. B.1(a) and B.1(b).
d
D
s
i
s
b
g
(
u
s
o
a
s
g
a
s

ith other baseline multi-population algorithms including MP-NSGA II,
P-MOEA/D, MP-NSGA II-ES (using elite sharing) and MP-MOEA/D-
S. In order to enrich the diversity of the experimental scenario, we
hose to perform the optimization algorithm on the AzureTraceforPack-
ng2020 [91] driven dataset and in other GPU clusters (RTX 3060 Ti).
ame as the experiments of GGA [22], we screen out some types of VMs
ith a minimum resource utilization of CPU, RAM and SSD greater than
.3 on all types of machines, and finally retain 338 types of VMs, which
eans min𝑚𝑗=1 𝑢𝑖𝑗𝑘 ≤ 30% for ∀𝑖, 𝑘. Then, we randomly select the given
umbers of VMs and machines from the 338 types of VMs and 35 types
f machines. For two scenarios (𝑛, 𝑚) = (500, 100) and (𝑛, 𝑚) = (800, 300),
e can plot the absolute HVs-over-time in Fig. 14 where the reference
oint of HV is (1, 1, 1).

Fig. 14 shows that MPGGA has far higher HVs than other multi-
opulation algorithms including MP-NSGA II, MP-MOEA/D, MP-NSGA
I-ES, MP-MOEA/D-ES. The experiments in the public trace-based
15
ataset also verify the feasibility of MPGGA in realistic scenarios.
ue to the fact that a type of VM in AzureTrace could only be

uitable for partial categories of machines, the feasible solution space
s smaller than that in ideal scenarios. Therefore, the solutions corre-
ponding to the genes of all individuals in a certain generation may
e outside the feasible solutions space without using a constraint to
uarantee the solutions in the feasible solution space. In this situation
e.g., baseline algorithms in Fig. 14), HVs will be close to 0 when
sing (1, 1, 1) as the reference point to calculate the HV of the Pareto
olution set. The results in Fig. 14 also illustrate that the solving ability
f the baseline multi-population evolutionary algorithms (if without
dditional strategies) will significantly deteriorate when the feasible
olution space range is reduced. However, the multi-population growth
enetic algorithm (MPGGA), introducing additional growth routes,
llows evolutionary algorithms to quickly find some of the feasible
olution regions and continuously optimize solutions in these regions.

Swarm and Evolutionary Computation 87 (2024) 101575G. Zhou et al.

r

m

m

w

𝐸

Table 7
The C indicator between the algorithms for the Pareto solution set of Fig. 12.

𝑌

𝐶(𝑋, 𝑌) 𝑋
MPGGA G-NSGA II G-MOEA/D NSGA II MOEA/D

(𝑛, 𝑚) = (500, 100) of Fig. B.1(a)
MPGGA - 0 0 0 0
G-NSGA II 0.980 - 0.588 0 0
G-MOEA/D 1 0.123 - 0 0
NSGA II 1 1 1 - 0
MOEA/D 1 1 1 1 -

(𝑛, 𝑚) = (1000, 300) of Fig. B.1(b)
MPGGA - 0 0 0 0
G-NSGA II 1 - 0.241 0 0
G-MOEA/D 1 0.207 - 0 0
NSGA II 1 1 1 - 0
MOEA/D 1 1 1 1 -

(𝑛, 𝑚) = (5000, 1500) of Fig. 12(c)
MPGGA - 0 0 0 0
G-NSGA II 1 - 0.867 0 0
G-MOEA/D 1 0 - 0 0
NSGA II 1 1 1 - 0
MOEA/D 1 1 1 0.4 -

(𝑛, 𝑚) = (6000, 2500) of Fig. 12(d)
MPGGA - 0 0 0 0
G-NSGA II 1 - 0.579 0 0
G-MOEA/D 1 0.136 - 0 0
NSGA II 1 1 1 - 0
MOEA/D 1 1 1 1 -
Fig. 14. The HV-over-time of MPGGA-ESPW compared with baselines MP-NSGA II, MP-MOEA/D, MP-NSGA II-ES, MP-MOEA/D-ES in the Azure Trace driven dataset: executed on
two GPUs that RTX 3060 Ti, partial growth with growth quotas 𝑄 = 80, 𝑁𝑝 = 100 of each population, 𝜂 = 4, 𝑁𝑔 = 20 for MPGGA.
w

5.6. 𝐸𝑥7: Adaptation test for MPGGA

In 𝐸𝑥6, our proposed MPGGA outperforms the compared algorithms
in the problem 𝜔(1). However, MPGGA needs to design specific growth
routes for corresponding problems. If using MLSPT as the growth route
to solve other optimization algorithms, MPGGA may fail to obtain
competitive solutions.

To test the adaptability of MPGGA, we execute experiments in
two problems related to energy consumption, including minimizing
the maximum energy consumption of each server node (denoted as
min𝜔(2)) and minimizing the total energy consumption of the whole
system (denoted as min𝜔(3)). The 𝐸𝑥7 adopts the calculation formula
for energy consumption in research of GGA [22], mainly to introduce
nonlinear terms. Then, the problems of min𝜔(2) and min𝜔(3) can be
espectively written as Eqs. (12) and (14).

in𝜔(2) = min
𝑚

max
𝑗=1

𝐸𝑗 (12)

in𝜔(3) = min
𝑚
∑

𝑗=1
𝐸𝑗 (13)

here 𝐸𝑗 means the energy consumption of the 𝑗th server node, and

𝑗 =
𝑑
∑

⎛

⎜

⎜

𝑎𝑗𝑘

(𝑛
∑

𝑥𝑖𝑗𝑢𝑖𝑗𝑘

)2

+ 𝑏𝑗𝑘

(𝑛
∑

𝑥𝑖𝑗𝑢𝑖𝑗𝑘

)

+ 𝑐𝑗𝑘 + 𝑑𝑗𝑘
𝑛

max
𝑖=1

(

𝑥𝑖𝑗
)

⎞

⎟

⎟

(14)
16

𝑘=1
⎝

𝑖=1 𝑖=1
⎠

where 𝑎𝑗𝑘, 𝑏𝑗𝑘, 𝑐𝑗𝑘 and 𝑑𝑗𝑘 are the coefficients of energy consumption
for quadratic polynomials. In the simulation experiments, we generate
the coefficients as integers according to the uniform distributions as
{

𝑎𝑗𝑘 ∼ U(1, 10), 𝑏𝑗𝑘 ∼ U(0, 100),

𝑐𝑗𝑘 ∼ U(100, 200), 𝑑𝑗𝑘 ∼ U(500, 1000).
(15)

In experiments related to energy consumption, we use two MPGGAs
ith different growth routes as follows.

• MPGGA (MLSPT), using MLSPT algorithm as the growth route of
MPGGA;

• MPGGA (RNSE), using random neighborhood search for energy
consumption (RNSE) as the growth route of MPGGA. The neigh-
borhood based on only changing of the server node of virtual
machine 𝑉𝑖 is defined as: for two solutions 𝜅 = ⟨𝜓1, 𝜓2,… , 𝜓𝑚⟩ and
𝜅̄ = ⟨𝜓̄1, 𝜓̄2,… , 𝜓̄𝑚⟩, if ∃𝑗1 ≠ 𝑗2 satisfy 𝜓𝑗1 − 𝜓̄𝑗1 = 𝜓̄𝑗2 − 𝜓𝑗2 = {𝑉𝑖}
and 𝜓𝑗 = 𝜓̄𝑗 for ∀𝑗 ∈ {1, 2,… , 𝑚} − {𝑗1, 𝑗2}, then 𝜅 and 𝜅̄ can be
referred to as mutual neighborhoods based on only changing of
the server node of 𝑉𝑖. RNSE randomly chooses a VM 𝑉𝑖, calculates
𝜔(2) (or 𝜔(3), depending on the current optimization objective)
corresponding to the solutions of all neighborhoods, and chooses
the neighborhood that has the minimum 𝜔(2) (or 𝜔(3)) to update

the current solution.

Swarm and Evolutionary Computation 87 (2024) 101575G. Zhou et al.
Fig. 15. The maximum energy consumptions of each node for 𝜔(2) compared MPGGAs to baselines: executed on RTX 3060 Ti, partial growth with growth quotas 𝑄 = 80, 𝑁𝑝 = 100
of each population, 𝜂 = 4, 𝑁𝑔 = 50 for MPGGAs; all algorithms are executed on two GPUs using 4 processes.
Fig. 16. The total energy consumption of system for 𝜔(3) compared MPGGAs to baselines: executed on RTX 3060 Ti, partial growth with growth quotas 𝑄 = 80, 𝑁𝑝 = 100 of each
population, 𝜂 = 4, 𝑁𝑔 = 50 for MPGGAs; all algorithms are executed on two GPUs using 4 processes.
Among them, MLSPT is a growth route specifically designed for
problem 𝜔(1) as Algorithm 2, and RNSE is a growth route specifically de-
signed for problems 𝜔(2) and 𝜔(3). The baseline algorithms include G-GA
II (RNSE), G-MOEA/D (RNSE), MP-GA II-ES, MP-MOEA/D-ES, MP-GA
II-BM, MP-MOEA/D-BM. 𝜔(2) and 𝜔(3) are single-objective problems but
still need to consider multi-dimensional resources’ utilizations. The GA
II in baselines represents using the value of a single objective as fitness
and utilizing the elite strategy in NSGA II for population regeneration,
which is a variant of NSGA II in single-objective problem; G-GA II
(RNSE) and G-MOEA/D (RNSE) are two instantiations growable genetic
algorithm with all growth using RNSE as the growth route, where the
growable genetic algorithm is one of the latest evolutionary algorithms
with excellent performance in multi-dimensional resource scheduling
problems; MP-GA II-ES means the multi-population genetic algorithm
using elite sharing strategy to interact information among multiple
populations; BM means using balanced randomly mixing to interact
information among multiple populations which is one of the important
strategies in the latest multi-population algorithm [52,53,55,56]. The
results of energy consumptions for 𝜔(2) and 𝜔(3) are respectively plotted
in Figs. 15 and 16.

From Fig. 15 (minimizing the maximum energy consumption of
each node) and Fig. 16 (minimizing the total energy consumption of
the system), it can be seen that the energy consumption curve obtained
by MPGGA using MLSPT as the growth route is not better than the
baseline algorithms. This indicates that MLSPT is not as suitable for
energy consumption problems as utilization optimization problems,
which is because energy consumption is a high power polynomial in
this experiment and MLSPT is mainly designed for load balancing of
resource utilization. The comparison between MPGGA (MLSPT) and
17

baseline algorithms also reveals that MPGGA with only one certain
growth route will have limited adaptability for different scenarios. In
addition, MPGGA (RNSE) uses a more adaptive neighborhood search
to solve energy consumption-related optimization problems, and its
optimization results in the 50th generation are significantly better than
the baseline algorithms. This indicates that although the adaptability of
a single algorithm of MPGGA (i.e., MPGGA using MLSPT as the growth
route) is limited, the MPGGA architecture has appreciable flexibility,
allowing various algorithms to serve as its growth routes to increase the
adaptability to optimization scenarios and problems. For two scenarios
of Fig. 15, MPGGA (RNSE) reduces the maximum energy consumption
by 1.93% and 1.28%; for that of Fig. 16, MPGGA (RNSE) reduces the
total energy consumption by 11.83% and 7.07% compared to the best
baseline algorithm. Specifically, in Fig. 16(b), within 200 s, the en-
ergy consumption corresponding to the optimized solution of MPGGA
(RNSE) is larger than that of the baseline algorithms. This indicates
that the advantage of MPGGA-RNSE depends on sufficient computation
time. This is because the computational complexity of the RNSE growth
route used by MPGGA is relatively high. When the overall optimization
of the current solution set of the evolutionary algorithm is not high, the
cost-effectiveness of using RNSE for additional growth is lower, and it is
not as effective as directly conducting the genetic evolutionary search.
After the optimization of the solution set is improved, evolutionary
algorithms such as genetic algorithms may fall into local convergence
and find it difficult to continue improving the solution. However, from
the experimental results over a long period of time, it can be seen that
the optimization solution obtained by MPGGA (RNSE) remains better
than the baseline algorithms when the computing time is long enough.
This indicates that the MPGGA architecture can improve the optimality

of local convergence solutions of evolutionary algorithms.

Swarm and Evolutionary Computation 87 (2024) 101575G. Zhou et al.

b
t
v
s
a
t

r
(
r
r
(
u
F
a
r
𝜖
w
I
M
M
(

i
a
(
a
l
(
v
T
l
t

Table 8
Wilcoxon rank-sum test for the energy consumption of Fig. 15 and Fig. 16 within 50 generations of MPGGA (RNSE).

Algorithm 𝜔(2) 𝜔(3)

(800, 200) (2000, 300) (800, 200) (1500, 300)

p-value statistics p-value statistics p-value statistics p-value statistics

MPGGA (RNSE) – – – – – – – –
G-GA II 1.1E−7 +5.304 1.5E−7 +5.250 2.6E−5 +4.206 2.2E−8 +5.598
G-MOEA/D 5.9E−10 +6.194 4.4E−6 +4.427 9.7E−5 +3.899 5.6E−10 +6.201
MP-GA II-ES 1.2E−14 +7.720 4.7E−14 +7.539 1.2E−6 +4.849 0.214 +1.241
MP-MOEA/D-ES 9.4E−15 +7.747 6.8E−14 +7.492 2.0E−5 +4.260 1.1E−3 +3.256
MP-GA II-BM 2.3E−14 +7.633 1.7E−12 +7.057 4.9E−4 +3.484 5.1E−2 +1.951
MP-MOEA/D-BM 2.3E−14 +7.633 5.2E−14 +7.526 1.6E−3 +3.149 1.6E−2 +2.406
MPGGA (MLSPT) 1.9E−15 +7.948 5.9E−15 +7.807 3.6E−6 +4.635 1.1E−3 +3.390

𝑊 ∕𝑇 ∕𝐿 7/0/0 7/0/0 7/0/0 5/2/0
Table 9
Wilcoxon rank-sum test and Friedman test for 𝜔(3) compared MPGGAs to baseline algorithms where each combination of (𝑚, 𝑛) has 30 instance.

Algorithm (300, 50) (500, 100) (700, 250)

𝜖1 𝜖2 Score Rank 𝜖1 𝜖2 Score Rank 𝜖1 𝜖2 Score Rank

MPGGA (RNSE) – 0/0/30 1 1 – 0/2/28 1.00 1 – 0/2/28 1.00 1
G-GA II 30/0/0 3/12/15 3.23 3 30/0/0 2/5/23 3.90 3 30/0/0 27/3/0 6.83 7
G-MOEA/D 30/0/0 2/14/14 3.03 2 30/0/0 1/4/25 3.47 2 30/0/0 29/1/0 7.07 8
MP-GA II-ES 30/0/0 14/5/11 5.93 6 30/0/0 13/6/11 5.57 6 29/1/0 14/3/13 5.00 4
MP-MOEA/D-ES 30/0/0 12/9/9 6.37 8 30/0/0 12/5/13 6.23 7 30/0/0 11/4/15 5.30 6
MP-GA II-BM 30/0/0 13/3/14 5.67 5 30/0/0 6/5/19 4.27 4 24/6/0 3/3/24 2.63 2
MP-MOEA/D-BM 30/0/0 8/4/18 4.70 4 29/0/0 12/2/17 5.17 5 29/1/0 4/0/26 3.10 3
MPGGA (MLSPT) 30/0/0 – 6.13 7 30/0/0 – 6.40 8 28/2/0 – 5.07 5
5

c
a
p
t
•

•

•

•

•

•

To evaluate the significance of the performance differences between
aseline algorithms and MPGGA (RNSE), we use Wilcoxon rank-sum
est to show the differences in the energy consumption-related objective
alues obtained by each algorithm for Figs. 15 and 16. The results are
hown in Table 8. Table 8 shows that in the experiments of Figs. 15
nd 16, the results obtained by MPGGA (RNSE) are significantly better
han the baseline algorithms.

To further evaluate the performance of MPGGA in statistics, we
espectively conduct 30 instances on each combination of (𝑚, 𝑛) =
300, 50), (𝑚, 𝑛) = (500, 100) and (𝑚, 𝑛) = (700, 250) for problem 𝜔(3), and
ecorded the results of Wilcoxon rank-sum test and Friedman test. The
esults are shown in Table 9, where 𝜖1 means 𝑊 ∕𝑇 ∕𝐿 using MPGGA
RNSE) as the standard of Wilcoxon rank-sum test, 𝜖2 means 𝑊 ∕𝑇 ∕𝐿
sing MPGGA (MLSPT) as the standard, score and rank corresponds to
riedman test. In the experiments, we set the number of populations
s 𝜂 = 4, each population has 𝑁𝑝 = 100 individuals, and test the
esults within the time of 𝑁𝑔 = 50 generations of MPGGA (RNSE).
1 = 30∕0∕0 for the row of G-GA II represents there are 30 instances
here the results of MPGGA (RNSE) are significantly better than G-GA

I; 𝜖2 = 3∕12∕15 represents there are 3 instances where the results of
PGGA (MLSPT) are significantly better than G-GA II, 12 instances for
PGGA (MLSPT) approaching G-GA II, and 15 instances for MPGGA

MLSPT) worse than G-GA II.
From the statistical test results of multiple instances in Table 9,

t can be seen that MPGGA (RNSE) can maintain better than other
lgorithms in various scenarios, while the performance of MPGGA
MLSPT) fluctuates greatly. The results shows that the adaptability of

specific algorithm (i.e., MPGGA (MLSPT)) in the MPGGA series is
imited by the growth route. However, the performance of MPGGA
RNSE) demonstrates the flexibility of MPGGA framework, allowing
arious algorithms as its growth route to adapt to various scenarios.
he MPGGA framework also has the potential for solving other prob-

ems, and its experimental results for the multi-objective asymmetric
raveling salesman problem can be seen in Appendix B.
18
.7. Summary of experiments

Through the multiple groups of experiments, we have not only
ompleted the performance test of various strategies of MPGGA but
lso verified that MPGGA outperforms the compared algorithm in the
roblem of multi-dimensional resource utilization optimization. Among
hese experiments:
𝐸𝑥1 validates that only increasing the number of populations with-
out additional information interactions between populations has no
obvious impact on the convergence of GGA. 𝐸𝑥1 also validates the
proposed system architecture with multi GPUs can accelerate the
computation of MPGGA.
𝐸𝑥2 evaluates the performance of different information interaction
strategies between populations and demonstrates that: the addition
of information interaction can improve the performance of MPGGA
and elite sharing strategy (𝐼𝑟3) has the most significant improvement,
followed by balanced mixing (𝐼𝑟1) and elite supporting (𝐼𝑟2).
𝐸𝑥3 evaluates the performance of different growth quota allocation
strategies in MPGGA and demonstrates that: preferably giving more
additional growth quotas to the populations with lower ranking
(priority worse, 𝑄𝑎2) can most significantly improve the overall
convergence speed.
𝐸𝑥4 evaluates the performance of different combinations of growth
quota reallocation strategies and growth quota allocation strategies
in MPGGA and demonstrates that: the combination of elite sharing
and priority worse (𝐼𝑟3 +𝑄𝑎2) outperforms other combinations.
𝐸𝑥5 tests the performance of MPGGA under different growth quotas,
and shows that: with the increase of growth quota, the performance
of MPGGA shows a trend of first increasing and then decreasing in
each time profile.
For the problem of 𝜔(1) (minimizing the maximum utilization of the
resources in each dimension), 𝐸𝑥6 compares the proposed MPGGA-
ESPW with the some baseline algorithms including some single-
population evolutionary algorithms (GHW-NSGA II, GHW-MOEA/D,

Swarm and Evolutionary Computation 87 (2024) 101575G. Zhou et al.

6

i
c
p
r
p
n
a
t
o
e
i

e
c
l
𝑄
o
t
c
M
m
i
g
e
v

g
t
q
s
m
a
c
t
a
t
p
s
o
a
A
I

a
t
t
i

C

n
m
a
S
S
–
F
r
e

D

c
i

D

A

D
P
C
o
S

A

p
o
‘
A
F
s

𝑍
f
a
p
∑

∑

NSGA II, MOEA/D) and some multi-population evolutionary algo-
rithms (MP-NSGA II, MP-MOEA/D, MP-NSGA II-ES, MP-MOEA/D-
ES). The results demonstrate our proposed MPGGA-ESPW has a faster
convergence rate and better optimality than compared algorithms.

• For other multi-dimensional resources utilization optimization prob-
lems (energy consumption-related problems 𝜔(2) and 𝜔(3)), 𝐸𝑥7 com-
pares the proposed MPGGA with baseline algorithms to evaluate the
adaptability of MPGGA to different scenarios. The results show that
MPGGA with MLSPT growth route designed for problem 𝜔(1) is unable
to adapt to problem 𝜔(2) and problem 𝜔(3), which also shows that the
adaptability of a specific algorithm in the MPGGA series is limited
by the algorithm corresponding to its growth route. Additionally,
using the neighborhood search (a more adaptive algorithm) as its
growth route, MPGGA (RNSE) still has better performances than the
baseline algorithms in terms of convergence speed and optimality,
which further demonstrates the flexibility of the MPGGA framework.
In realistic optimization problems, we can select a suitable algorithm
as the growth route to improve the adaptability of MPGGA to specific
scenarios or select some universal algorithms (e.g., neighbor search)
to increase the universality of MPGGA for different scenarios.

. Conclusion

Optimizing multi-dimensional resource utilization in cloud comput-
ng presents a formidable challenge, as it necessitates the concurrent
onsideration of multiple resource bottlenecks. By incorporating multi-
opulations with information interaction strategies and growth quota
eallocation strategies into growable genetic algorithms, this paper
roposed a new algorithm called the multi-population growable ge-
etic algorithm (MPGGA). To streamline and expedite MPGGA, we
lso presented a system architecture comprising two types of execu-
ors: population internal evolution executors and a management center
f evolutions. The former is primarily responsible for the internal
volution process of each GGA population, while the latter oversees
nformation interaction and growth quota reallocation.

To evaluate MPGGA’s performance, we conducted multiple sets of
xperiments. Through these experiments, we first identified the optimal
ombination of information interaction strategy and growth quota al-
ocation strategy, namely ESPW (elite sharing and priority worse, 𝐼𝑟3+
𝑎2). Subsequently, we demonstrated that partial growth in MPGGA
utperforms both non-growth and all growth. Then, we confirmed
hat MPGGA-ESPW exhibits superior convergence speed and optimality
ompared to baseline algorithms. Lastly, we test the adaptability of
PGGA to different scenarios of multi-dimensional utilization opti-
izations. The results show that the adaptability of a specific algorithm

n the MPGGA series is limited by the algorithm corresponding to its
rowth route and also demonstrate the MPGGA framework is flexible
nough to allow various algorithms as its growth route to adapt to
arious scenarios.

MPGGA represents the advancement and extension of the growable
enetic algorithm family. It showcases the potential of employing mul-
iple populations, information interaction strategies, and partial growth
uota reallocation strategies to further enhance GGA’s convergence
peed. This research also underscores the value of continued develop-
ent within the GGA algorithm family. Potential future work includes

pplying MPGGA to other complex problems or hierarchical distributed
omputing systems (e.g., edge-cloud, fog-cloud), as well as exploring
he combination of multi-population strategies and growth genetic
lgorithms to enable distinct growth trajectories and information in-
eraction rules for different populations. In the realistic optimization
roblems of diverse cloud systems or other fields, we can select a
uitable algorithm as the growth route to improve the adaptability
f MPGGA to specific scenarios, alternatively select some universal
lgorithms to increase the universality of MPGGA for varying scenarios.
uxiliary strategies can be adjusted according to actual requirements.

t may also be effective to combine the extra growth route and dynamic
19
llocation of growth quotas with other evolutionary algorithms. Addi-
ionally, a theoretical analysis of the feasible solution clusters belonging
o the same local convergent solution in growable genetic algorithms
s also a possible direction.

RediT authorship contribution statement

Guangyao Zhou: Writing – review & editing, Writing – origi-
al draft, Visualization, Validation, Software, Resources, Project ad-
inistration, Methodology, Investigation, Funding acquisition, Formal

nalysis, Data curation, Conceptualization. Yuanlun Xie: Validation,
oftware, Investigation, Conceptualization. Haocheng Lan: Validation,
oftware, Investigation, Conceptualization. WenHong Tian: Writing
review & editing, Supervision, Resources, Project administration,

unding acquisition, Conceptualization. Rajkumar Buyya: Writing –
eview & editing, Conceptualization. Kui Wu: Writing – review &
diting, Conceptualization.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

ata availability

Data will be made available on request.

cknowledgments

This research is partially supported by National Key Research and
evelopment Program of China with Grant ID 2018AAA0103203,
roject of Key Research and Development Program of Sichuan Province,
hina with Grant ID 2021YFG0325, the Chengdu Science and Technol-
gy Project with Grant ID 2022-YF05-02014-SN, and National Natural
cience Foundation of China with Grant ID 61672136 and 61828202.

ppendix A. GPU based acceleration and architecture for MPGGA

In this appendix, we present some acceleration methods for MPGGA
rogram based on array operation and distributed system. The array
perations on GPUs can be leveraged to accelerate the procedure of

Call the MLSPT algorithm in the following loop’ (i.e., line 5–20) in
lgorithm 2 to eliminate ‘for loop’ (line 5) and ‘while loop’ (line 8).
or 𝜓 = 𝜓𝑗1 ∪ 𝜓𝑗2 of two nodes 𝑁𝑗1 and 𝑁𝑗2 , we can assume the set
orted in ascending order according to the value of 𝑤 ⋅

(

𝑌𝑖𝑗1 − 𝑌𝑖𝑗2
)

=

𝑖𝑗1 − 𝑍𝑖𝑗2 in 𝜓 as
{

𝑉𝛼1 , 𝑉𝛼2 ,… , 𝑉𝛼ℎ
}

, where we set 𝑍𝑖𝑗 = 𝑤 ⋅ 𝑌𝑖𝑗
or ∀𝑖, 𝑗. Then, the operation of MLSPT algorithm equals to finding
n index 𝜑 in {0, 1, 2,… , ℎ} 𝐬.𝐭.

∑𝜑
𝑖=0𝑍𝛼𝑖𝑗1 and ∑ℎ+1

𝑖=𝜑+1𝑍𝛼𝑖𝑗2 as close as
ossible, assuming 𝑍𝛼0𝑗 = 𝑍𝛼ℎ+1𝑗 = 0 for 𝑗 ∈ {𝑗1, 𝑗2}. And ∑𝜑

𝑖=0𝑍𝛼𝑖𝑗1 ≈
ℎ+1
𝑖=𝜑+1𝑍𝛼𝑖𝑗2 is equivalent to ∑𝜑

𝑖=0𝑍𝛼𝑖𝑗1 +
∑𝜑
𝑖=0𝑍𝛼𝑖𝑗2 ≈

∑ℎ+1
𝑖=𝜑+1𝑍𝛼𝑖𝑗2 +

𝜑
𝑖=0𝑍𝛼𝑖𝑗2 →

∑𝜑
𝑖=0

(

𝑍𝛼𝑖𝑗1 +𝑍𝛼𝑖𝑗2
)

≈
∑ℎ+1
𝑖=0 𝑍𝛼𝑖𝑗2 = 𝑆𝑢𝑚𝑗2 . Setting 𝑆𝑗1 =

⟨

𝑍𝛼0𝑗1 , 𝑍𝛼1𝑗1 ,… , 𝑍𝛼ℎ𝑗1
⟩

and 𝑆𝑗2 =
⟨

𝑍𝛼0𝑗2 , 𝑍𝛼1𝑗2 ,… , 𝑍𝛼ℎ𝑗2
⟩

, therefore,
we can use the GPU-based program to quickly calculate a new array
as

|

|

|

|

𝑐𝑢𝑠𝑢𝑚
(

𝑆𝑗1 + 𝑆𝑗2
)

− 𝑆𝑢𝑚𝑗2
|

|

|

|

where 𝑐𝑢𝑠𝑢𝑚(𝑆) means the cumulative
sum of 𝑆, choose the index at its minimum as 𝜑, and update 𝜓 ′

𝑗1
=

{

𝑉𝛼1 , 𝑉𝛼2 ,… , 𝑉𝛼𝜑
}

and 𝜓 ′
𝑗2

= 𝜓 − 𝜓 ′
𝑗1

where if 𝜑 = 0 then 𝜓 ′
𝑗1

= ∅.
Using this idea, we can quickly adjust the tasks or VMs of two nodes.
On this basis, we make further improvement and we propose the array
operation-based growth route as Algorithm A.1, which can quickly
adjust the tasks or VMs of multiple nodes simultaneously in MLSPT
growth route. The introduction of array operations allows growth route
to be accelerated by running on GPUs.

Swarm and Evolutionary Computation 87 (2024) 101575G. Zhou et al.

w
G
t
h
(
f
t

i
a
r
t
a
o
a
P

Algorithm A.1: Growth route accelerated by array operation (improved algorithm for Algorithm 2)
Input : 𝑌𝑖𝑗 for ∀𝑖, 𝑗, 𝑤 = ⟨𝑤1, 𝑤2,… , 𝑤𝑑⟩, solution 𝑋 =

{

𝑥𝑖𝑗
}

𝑛×𝑚 = ⟨𝑋1,… , 𝑋𝑚⟩, 𝐺𝑠𝑡𝑒𝑝
Output: Solution 𝑋 =

{

𝑥𝑖𝑗
}

𝑛×𝑚 corresponding to 𝐼 = ⟨𝜆1, 𝜆2,… , 𝜆𝑛⟩
1 𝑍 =

{

𝑍𝑖𝑗
}

𝑛×𝑚 = ⟨𝑍1,… , 𝑍𝑚⟩
2 Set 𝑖 = 0, 𝐸𝑥𝑖𝑠𝑡𝑠_𝑁𝑒𝑟 = 𝑇 𝑟𝑢𝑒, 𝑀𝑎𝑟𝑘 = max (𝑠𝑢𝑚 (𝑋 ∗ 𝑍, 𝑑𝑖𝑚 = 0) , 𝑑𝑖𝑚 = 0)
3 while Exists_Ner and 𝑖 < 𝐺𝑠𝑡𝑒𝑝 do
4 𝐸𝑥𝑖𝑠𝑡𝑠_𝑁𝑒𝑟 = 𝐹𝑎𝑙𝑠𝑒, 𝑖 + +
5 𝑗1 = argmax (𝑠𝑢𝑚 (𝑋 ∗ 𝑍, 𝑑𝑖𝑚 = 0) , 𝑑𝑖𝑚 = 0) where 𝑋 ∗ 𝑍 means Hadamard product between 𝑋 and 𝑍 ; // Calculate the node

with the largest weighted utilization
6 𝑋𝑛𝑒𝑤 = 𝑋 + 𝑋̄𝑗1 where 𝑋̄𝑗1 =

⟨

𝑋𝑗1 ,… , 𝑋𝑗1

⟩

𝑚
, 𝐹1 = 𝑋𝑛𝑒𝑤 ∗ 𝑍̄𝑗1 , 𝐹2 = 𝑋𝑛𝑒𝑤 ∗ 𝑍

7 𝐷 = argsort
(

𝐹1 − 𝐹2, 𝑑𝑖𝑚 = 0
)

and 𝑅𝑚 = 𝑟𝑎𝑛𝑔𝑒(𝑚), 𝐹1 = 𝐹1[𝐷[∶, 𝑅𝑚], 𝑅𝑚], 𝐹2 = 𝐹2[𝐷[∶, 𝑅𝑚], 𝑅𝑚] ; // Rearrange each column of
𝐹1 and 𝐹2 according to the sorting order of corresponding column in 𝐹1 − 𝐹2

8 Expand 𝐹1 as 𝐸𝐹1[0] = ⟨0,… , 0⟩𝑚, 𝐸𝐹1[1 ∶ 𝑛 + 1] = 𝐹1[1 ∶], similar to 𝐸𝐹2
9 𝐶𝑆1 = 𝑇 𝑟𝑖𝑙(𝑛+1)×(𝑛+1) × 𝐸𝐹1 and 𝐶𝑆2 = 𝑇 𝑟𝑖𝑢(𝑛+1)×(𝑛+1) × 𝐸𝐹2 where 𝑇 𝑟𝑖𝑙 is lower triangular matrix and 𝑇 𝑟𝑖𝑢 is upper triangular matrix, ×

means matrix product ; // Quickly calculate cumulative sums of 𝐸𝐹1 and 𝐸𝐹2 by triangular matrix
10 𝐸𝐹2 = 𝐶𝑆2 − 𝐸𝐹2 ; // adjust 𝐸𝐹2 by cumulative sums
11 𝐶𝑆3 = abs

(

𝐸𝐹2 − 𝐸𝐹1
)

, 𝐷2 = argmin
(

𝐶𝑆3, 𝑑𝑖𝑚 = 0
)

; // Obtain the index 𝜑 for each column
12 𝐹1 = 𝐶𝑆1[𝐷2[𝑅𝑚], 𝑅𝑚], 𝐹2 = 𝐶𝑆2[𝐷2[𝑅𝑚], 𝑅𝑚], 𝑀𝑛𝑒𝑤 = min

(

𝑚𝑎𝑥𝑖𝑚𝑢𝑚
(

𝐹1, 𝐹2
)

, 𝑑𝑖𝑚 = 0
)

, 𝑗2 = argmin
(

𝑚𝑎𝑥𝑖𝑚𝑢𝑚
(

𝐹1, 𝐹2
)

, 𝑑𝑖𝑚 = 0
)

,
𝜑 = 𝐷2[𝑗2] ; // Obtain the optimal adjustment result combining 𝑁𝑗1 with all other nodes

13 if 𝑀𝑛𝑒𝑤 < 𝑀𝑎𝑟𝑘 then
14 𝐸𝑥𝑖𝑠𝑡𝑠_𝑁𝑒𝑟 = 𝑇 𝑟𝑢𝑒, 𝑀𝑎𝑟𝑘 =𝑀𝑛𝑒𝑤

15 𝑋′
𝑗1

= 𝑋′
𝑗2

= ⟨0,… , 0⟩T𝑛 𝑋
′
𝑗1

= 𝑋𝑛𝑒𝑤
𝑗2

[𝐷[𝑗2, ∶ 𝜑]] = 1, 𝑋′
𝑗2

= 𝑋𝑛𝑒𝑤
𝑗2

[𝐷[𝑗2, 𝜑 ∶]] = 1, ; // Reallocate tasks or VMs between 𝑁𝑗1
and 𝑁𝑗2 according to 𝜑

16 𝑋𝑗1 = 𝑋′
𝑗1

and 𝑋𝑗2 = 𝑋′
𝑗2

; // Update the solution 𝑋
Fig. A.1. The distributed system architecture with multi-GPUs to execute the MPGGA.

Due to the growth route being able to run on GPUs as Algorithm A.1,
e use the method combining multi-thread and multi-GPU, i.e., each
PU corresponds to multiple threads (or multiple processes) and each

hread (or process) corresponds to one population. As each population
as only partial individuals to grow in each generation, so each thread
also each population) must have idle time without using GPU. There-
ore, the method combining multi-thread and multi-GPU can improve
he utilization of GPU.

The management center of evolutions mainly performs information
nteraction and growth quota reallocation. In this paper, the man-
gement center of evolutions is deployed on the central server. It
eceives information of elite individuals from each population through
he network and delivers the selected information to each population
ccording to specific rules and strategies. Since the management center
f evolutions receives the elite information of each generation from
ll populations, it is also responsible for calculating and recording the
areto solution set and outputting the final Pareto solution set at the
20
end of the MPGGA. With the above description, the system architecture
to execute the MPGGA can be seen in Fig. A.1.

Appendix B. Performance evaluation of MPGGA in MoATSP

In this appendix, we present some experimental results of MPGGA in
solving multi-objective asymmetric traveling salesman problem
(MoATSP). It targets at supplementing that our proposed evolutionary
algorithm MPGGA is also applicable to other multi-objective optimiza-
tion problems.

MoATSP is a complex problem in TSP. There are multiple di-
mensional distances (or costs) between cities in MoATSP. And the
round-trip distances between two cities may not be equal, i.e., asym-
metric distances. When visiting each city once and returning to the
starting city, the optimization objectives of MoATSP are respectively
minimizing total distances of each dimension.

In experiments, we use simulation program to randomly generate all
distances of MoATSP by a uniform distribution U[20, 100]. We use the
order in which cities are visited to represent each gene. The crossover
method between two individuals is partial mapping crossover, i.e., ran-
domly selecting one segment for exchange and using missing genes to
randomly replace repetitive genes that are not involved in exchange.
The mutation method of one individual is to randomly select a portion
of the genes for sequence exchange. The growth route is based on
local search, whose neighborhood solutions are that there are only
two different genes. Other parameters of MPGGA include 𝐺𝑠𝑡𝑒𝑝 = 10,
𝜂 = 8, 𝑁𝑝 = 100 for each population. Then, we carry out experiments
comparing MPGGA with multi-population NSGA-II, multi-population
MOEA/D, and MPGGA with all growth. The results of two experiments
respectively with 200 cities and 500 cities are plotted in Fig. B.1. From
the experimental results in Fig. B.1, it is intuitive that our proposed
MPGGA still has better convergence speed and optimization perfor-
mance in MoATSP. This demonstrates the applicability of our proposed
MPGGA for other types of multi-objective optimization problems.

Swarm and Evolutionary Computation 87 (2024) 101575G. Zhou et al.

2

Fig. B.1. The HV-over-time of MPGGA-ESPW in solving MoATSP compared with baselines multi-population NSGA-II, multi-population MOEA/D, and MPGGA with all growth:
-dimensional distances (costs), partial growth with different total growth quotas 𝑄 = 80 for MPGGA-ESPW; 𝑁𝑝 = 100 of each population and 𝜂 = 8 for each algorithm; 5 skip

points for the symbols in the curves of multi-population NSGA-II and multi-population MOEA/D in figures.
References

[1] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R.H. Katz, A. Konwinski, G. Lee,
D.A. Patterson, A. Rabkin, I. Stoica, M. Zaharia, A view of cloud computing,
Commun. ACM 53 (4) (2010) 50–58.

[2] M. Adhikari, T. Amgoth, S.N. Srirama, A survey on scheduling strategies for
workflows in cloud environment and emerging trends, ACM Comput. Surv. 52
(4) (2019) 68:1–68:36.

[3] Z. Zhan, X.F. Liu, Y. Gong, J. Zhang, H.S. Chung, Y. Li, Cloud computing resource
scheduling and a survey of its evolutionary approaches, ACM Comput. Surv. 47
(4) (2015) 63:1–63:33.

[4] S. Midya, A. Roy, K. Majumder, S. Phadikar, Multi-objective optimization tech-
nique for resource allocation and task scheduling in vehicular cloud architecture:
A hybrid adaptive nature inspired approach, J. Netw. Comput. Appl. 103 (2018)
58–84.

[5] H. Jiang, J. Yi, S. Chen, X. Zhu, A multi-objective algorithm for task scheduling
and resource allocation in cloud-based disassembly, J. Manuf. Syst. 41 (2016)
239–255.

[6] W. Wei, H. Gu, K. Wang, J. Li, X. Zhang, N. Wang, Multi-dimensional resource
allocation in distributed data centers using deep reinforcement learning, IEEE
Trans. Netw. Serv. Manag. 20 (2) (2023) 1817–1829.

[7] M.I. Khaleel, A fault tolerance aware green IoT workflow scheduling algo-
rithm for multi-dimensional resource utilization in sustainable cloud computing,
Internet Things 23 (2023) 100909.

[8] Y. Sun, S. Chen, Z. Wang, S. Mao, A joint learning and game-theoretic approach
to multi-dimensional resource management in fog radio access networks, IEEE
Trans. Veh. Technol. 72 (2) (2023) 2550–2563.

[9] J. Huang, K.B. Kent, J. Yen, Y. Wang, Hestia: A cost-effective multi-dimensional
resource utilization for microservices execution in the cloud, in: K. Ye, L. Zhang
(Eds.), Cloud Computing - CLOUD 2022 - 15th International Conference, Held
As Part of the Services Conference Federation, SCF 2022, Honolulu, HI, USA,
December 10-14, 2022, Proceedings, in: Lecture Notes in Computer Science, vol.
13731, Springer, 2022, pp. 22–38.

[10] M. Li, F.R. Yu, P. Si, W. Wu, Y. Zhang, Resource optimization for delay-tolerant
data in blockchain-enabled IoT with edge computing: A deep reinforcement
learning approach, IEEE Internet Things J. 7 (10) (2020) 9399–9412.

[11] T. Dong, F. Xue, C. Xiao, J. Li, Task scheduling based on deep reinforcement
learning in a cloud manufacturing environment, Concurr. Comput. Pract. Exp.
32 (11) (2020).

[12] S.M.R. Nouri, H. Li, S. Venugopal, W. Guo, M. He, W. Tian, Autonomic
decentralized elasticity based on a reinforcement learning controller for cloud
applications, Future Gener. Comput. Syst. 94 (2019) 765–780.

[13] Z. Tong, H. Chen, X. Deng, K. Li, K. Li, A scheduling scheme in the
cloud computing environment using deep Q-learning, Inform. Sci. 512 (2020)
1170–1191.

[14] H. Qiu, X. Xia, Y. Li, X. Deng, A dynamic multipopulation genetic algorithm
for multiobjective workflow scheduling based on the longest common sequence,
Swarm Evol. Comput. 78 (2023) 101291.

[15] K. Deb, S. Agrawal, A. Pratap, T. Meyarivan, A fast and elitist multiobjective
genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput. 6 (2) (2002) 182–197.

[16] N. Srinivas, K. Deb, Multiobjective optimization using nondominated sorting in
genetic algorithms, Evol. Comput. 2 (3) (1994) 221–248.
21
[17] A.J. Miriam, R. Saminathan, S. Chakaravarthi, Non-dominated sorting genetic
algorithm (NSGA-III) for effective resource allocation in cloud, Evol. Intell. 14
(2) (2021) 759–765.

[18] J.K. Mandal, S. Mukhopadhyay, P. Dutta (Eds.), Multi-Objective Optimization -
Evolutionary to Hybrid Framework, Springer, 2018.

[19] Q. Zhang, H. Li, MOEA/D: A multiobjective evolutionary algorithm based on
decomposition, IEEE Trans. Evol. Comput. 11 (6) (2007) 712–731.

[20] H. Xu, W. Zeng, D. Zhang, X. Zeng, MOEA/HD: A multiobjective evolutionary
algorithm based on hierarchical decomposition, IEEE Trans. Cybern. 49 (2)
(2019) 517–526.

[21] C. Guerrero, I. Lera, C. Juiz, Genetic-based optimization in fog computing:
Current trends and research opportunities, Swarm Evol. Comput. 72 (2022)
101094.

[22] G. Zhou, W. Tian, R. Buyya, K. Wu, Growable genetic algorithm with
heuristic-based local search for multi-dimensional resources scheduling of cloud
computing, Appl. Soft Comput. (ISSN: 1568-4946) 136 (2023) 110027.

[23] H. Ma, S. Shen, M. Yu, Z. Yang, M. Fei, H. Zhou, Multi-population techniques in
nature inspired optimization algorithms: A comprehensive survey, Swarm Evol.
Comput. 44 (2019) 365–387.

[24] K. Shen, T.D. Pessemier, L. Martens, W. Joseph, A parallel genetic algorithm for
multi-objective flexible flowshop scheduling in pasta manufacturing, Comput.
Ind. Eng. 161 (2021) 107659.

[25] Z. Xiao, X. Liu, J. Xu, Q. Sun, L. Gan, Highly scalable parallel genetic algorithm
on Sunway many-core processors, Future Gener. Comput. Syst. 114 (2021)
679–691.

[26] J. Luo, D.E. Baz, R. Xue, J. Hu, Solving the dynamic energy aware job shop
scheduling problem with the heterogeneous parallel genetic algorithm, Future
Gener. Comput. Syst. 108 (2020) 119–134.

[27] A.S. Sofia, P. Ganeshkumar, Multi-objective task scheduling to minimize energy
consumption and makespan of cloud computing using NSGA-II, J. Netw. Syst.
Manag. 26 (2) (2018) 463–485.

[28] I. Aoudia, S. Benharzallah, L. Kahloul, O. Kazar, A multi-population genetic
algorithm for adaptive QoS-aware service composition in fog-IoT healthcare
environment, Int. Arab J. Inf. Technol. 18 (3A) (2021) 464–475.

[29] G. Zhou, W. Tian, R. Buyya, Deep reinforcement learning-based methods for
resource scheduling in cloud computing: A review and future directions, 2021,
CoRR abs/2105.04086.

[30] S.G. Domanal, R.M.R. Guddeti, R. Buyya, A hybrid bio-inspired algorithm for
scheduling and resource management in cloud environment, IEEE Trans. Serv.
Comput. 13 (1) (2020) 3–15.

[31] Z. Guan, T. Melodia, The value of cooperation: Minimizing user costs in multi-
broker mobile cloud computing networks, IEEE Trans. Cloud Comput. 5 (4)
(2017) 780–791.

[32] T. Chen, A.G. Marqués, G.B. Giannakis, DGLB: Distributed stochastic geographical
load balancing over cloud networks, IEEE Trans. Parallel Distrib. Syst. 28 (7)
(2017) 1866–1880.

[33] W. Zhang, Y. Wen, Energy-efficient task execution for application as a general
topology in mobile cloud computing, IEEE Trans. Cloud Comput. 6 (3) (2018)
708–719.

[34] G. Zhou, W. Tian, R. Buyya, Multi-search-routes-based methods for minimizing
makespan of homogeneous and heterogeneous resources in Cloud computing,
Future Gener. Comput. Syst. 141 (2023) 414–432.

http://refhub.elsevier.com/S2210-6502(24)00113-5/sb1
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb1
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb1
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb1
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb1
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb2
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb2
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb2
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb2
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb2
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb3
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb3
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb3
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb3
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb3
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb4
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb4
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb4
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb4
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb4
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb4
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb4
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb5
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb5
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb5
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb5
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb5
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb6
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb6
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb6
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb6
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb6
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb7
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb7
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb7
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb7
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb7
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb8
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb8
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb8
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb8
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb8
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb9
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb9
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb9
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb9
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb9
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb9
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb9
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb9
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb9
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb9
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb9
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb10
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb10
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb10
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb10
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb10
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb11
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb11
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb11
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb11
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb11
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb12
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb12
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb12
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb12
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb12
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb13
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb13
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb13
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb13
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb13
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb14
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb14
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb14
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb14
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb14
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb15
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb15
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb15
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb16
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb16
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb16
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb17
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb17
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb17
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb17
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb17
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb18
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb18
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb18
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb19
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb19
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb19
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb20
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb20
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb20
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb20
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb20
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb21
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb21
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb21
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb21
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb21
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb22
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb22
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb22
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb22
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb22
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb23
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb23
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb23
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb23
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb23
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb24
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb24
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb24
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb24
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb24
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb25
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb25
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb25
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb25
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb25
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb26
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb26
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb26
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb26
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb26
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb27
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb27
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb27
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb27
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb27
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb28
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb28
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb28
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb28
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb28
http://arxiv.org/abs/2105.04086
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb30
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb30
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb30
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb30
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb30
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb31
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb31
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb31
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb31
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb31
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb32
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb32
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb32
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb32
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb32
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb33
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb33
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb33
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb33
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb33
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb34
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb34
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb34
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb34
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb34

Swarm and Evolutionary Computation 87 (2024) 101575G. Zhou et al.
[35] D. Ding, X. Fan, Y. Zhao, K. Kang, Q. Yin, J. Zeng, Q-learning based dynamic task
scheduling for energy-efficient cloud computing, Future Gener. Comput. Syst. 108
(2020) 361–371.

[36] C. Xu, J. Rao, X. Bu, URL: A unified reinforcement learning approach for
autonomic cloud management, J. Parallel Distrib. Comput. 72 (2) (2012) 95–105.

[37] S. Kardani-Moghaddam, R. Buyya, K. Ramamohanarao, ADRL: A hybrid anomaly-
aware deep reinforcement learning-based resource scaling in clouds, IEEE Trans.
Parallel Distrib. Syst. 32 (3) (2021) 514–526.

[38] L. Abualigah, A. Diabat, A novel hybrid antlion optimization algorithm for multi-
objective task scheduling problems in cloud computing environments, Cluster
Comput. (2020) 1–19.

[39] A. Belgacem, K.B. Bey, H. Nacer, S. Bouznad, Efficient dynamic resource
allocation method for cloud computing environment, Clust. Comput. 23 (4)
(2020) 2871–2889.

[40] Q. Liu, W. Cai, J. Shen, Z. Fu, X. Liu, N. Linge, A speculative approach to
spatial-temporal efficiency with multi-objective optimization in a heterogeneous
cloud environment, Secur. Commun. Netw. 9 (17) (2016) 4002–4012.

[41] H. Li, G. Zhu, Y. Zhao, Y. Dai, W. Tian, Energy-efficient and QoS-aware model
based resource consolidation in cloud data centers, Clust. Comput. 20 (3) (2017)
2793–2803.

[42] F. Ramezani, J. Lu, F.K. Hussain, Task scheduling optimization in cloud comput-
ing applying multi-objective particle swarm optimization, in: Service-Oriented
Computing - 11th International Conference, ICSOC 2013, Berlin, Germany,
December 2-5, 2013, Proceedings, in: Lecture Notes in Computer Science, vol.
8274, Springer, 2013, pp. 237–251.

[43] R. Jena, Multi objective task scheduling in cloud environment using nested PSO
framework, Procedia Comput. Sci. 57 (2015) 1219–1227.

[44] J. Li, Y. Han, A hybrid multi-objective artificial bee colony algorithm for flexible
task scheduling problems in cloud computing system, Clust. Comput. 23 (4)
(2020) 2483–2499.

[45] M. Adhikari, T. Amgoth, S.N. Srirama, Multi-objective scheduling strategy for
scientific workflows in cloud environment: A firefly-based approach, Appl. Soft
Comput. 93 (2020) 106411.

[46] X.F. Liu, Z. Zhan, J.D. Deng, Y. Li, T. Gu, J. Zhang, An energy efficient ant
colony system for virtual machine placement in cloud computing, IEEE Trans.
Evol. Comput. 22 (1) (2018) 113–128.

[47] D.A. Monge, E. Pacini, C. Mateos, E. Alba, C.G. Garino, CMI: An online multi-
objective genetic autoscaler for scientific and engineering workflows in cloud
infrastructures with unreliable virtual machines, J. Netw. Comput. Appl. 149
(2020).

[48] S. Mehta, P. Kaur, P. Agarwal, Improved whale optimization variants for SLA-
compliant placement of virtual machines in cloud data centers, Multimedia Tools
Appl. 83 (1) (2024) 149–171.

[49] M. M., J. T., Combined particle swarm optimization and Ant Colony System for
energy efficient cloud data centers, Concurr. Comput. Pract. Exp. 33 (10) (2021).

[50] H. Aziza, S. Krichen, A hybrid genetic algorithm for scientific workflow
scheduling in cloud environment, Neural Comput. Appl. 32 (18) (2020)
15263–15278.

[51] S. Kayalvili, M. Selvam, Hybrid SFLA-GA algorithm for an optimal resource
allocation in cloud, Clust. Comput. 22 (Supplement) (2019) 3165–3173.

[52] S. Nama, A.K. Saha, A bio-inspired multi-population-based adaptive backtracking
search algorithm, Cogn. Comput. 14 (2) (2022) 900–925.

[53] L. Fu, H. Ouyang, C. Zhang, S. Li, A.W. Mohamed, A constrained cooperative
adaptive multi-population differential evolutionary algorithm for economic load
dispatch problems, Appl. Soft Comput. 121 (2022) 108719.

[54] C.B. Djaballah, W. Nouibat, A new multi-population artificial bee algorithm based
on global and local optima for numerical optimization, Clust. Comput. 25 (3)
(2022) 2037–2059.

[55] Y. Zuo, Z. Fan, T. Zou, P. Wang, A novel multi-population artificial bee colony
algorithm for energy-efficient hybrid flow shop scheduling problem, Symmetry
13 (12) (2021) 2421.

[56] Y. Sun, Y. Chen, Multi-population improved whale optimization algorithm for
high dimensional optimization, Appl. Soft Comput. 112 (2021) 107854.

[57] X. Zhang, Z. Zhan, W. Fang, P. Qian, J. Zhang, Multipopulation ant colony
system with knowledge-based local searches for multiobjective supply chain
configuration, IEEE Trans. Evol. Comput. 26 (3) (2022) 512–526.

[58] Y. Tian, R. Liu, X. Zhang, H. Ma, K.C. Tan, Y. Jin, A multipopulation evolu-
tionary algorithm for solving large-scale multimodal multiobjective optimization
problems, IEEE Trans. Evol. Comput. 25 (3) (2021) 405–418.

[59] K. Yang, J. Zheng, J. Zou, F. Yu, S. Yang, A dual-population evolutionary
algorithm based on adaptive constraint strength for constrained multi-objective
optimization, Swarm Evol. Comput. 77 (2023) 101247.

[60] L. Wu, Z. Chen, C. Chen, Y. Li, S. Jeon, J. Zhang, Z. Zhan, Real environment-
aware multisource data-associated cold chain logistics scheduling: A multiple
population-based multiobjective ant colony system approach, IEEE Trans. Intell.
Transp. Syst. 23 (12) (2022) 23613–23627.

[61] G. Li, W. Wang, W. Zhang, Z. Wang, H. Tu, W. You, Grid search based multi-
population particle swarm optimization algorithm for multimodal multi-objective
optimization, Swarm Evol. Comput. 62 (2021) 100843.
22
[62] X. Zhang, S. Wen, D. Wang, Multi-population biogeography-based optimization
algorithm and its application to image segmentation, Appl. Soft Comput. 124
(2022) 109005.

[63] C. Dhaenens, L. Jourdan, Metaheuristics for big data, 2016.
[64] J. Cao, J. Zhang, F. Zhao, Z. Chen, A two-stage evolutionary strategy based

MOEA/D to multi-objective problems, Expert Syst. Appl. 185 (2021) 115654.
[65] F. Kiliç, Y. Kaya, S. Yildirim, A novel multi population based particle swarm

optimization for feature selection, Knowl.-Based Syst. 219 (2021) 106894.
[66] T. Karpagalingam, K. Muneeswaran, An elitism based self-adaptive multi-

population Poor and Rich optimization algorithm for grouping similar
documents, J. Ambient Intell. Humaniz. Comput. 13 (4) (2022) 1925–1939.

[67] B. Rezaei, F.G. Guimarães, R. Enayatifar, P.C. Haddow, Combining genetic
local search into a multi-population imperialist competitive algorithm for the
capacitated vehicle routing problem, Appl. Soft Comput. 142 (2023) 110309.

[68] H. Cui, X. Li, L. Gao, An improved multi-population genetic algorithm with
a greedy job insertion inter-factory neighborhood structure for distributed
heterogeneous hybrid flow shop scheduling problem, Expert Syst. Appl. 222
(2023) 119805.

[69] J. Huang, J. Wan, B. Lv, Q. Ye, Y. Chen, Joint computation offloading and
resource allocation for edge-cloud collaboration in internet of vehicles via deep
reinforcement learning, IEEE Syst. J. 17 (2) (2023) 2500–2511.

[70] J. Wang, J. Hu, G. Min, A.Y. Zomaya, N. Georgalas, Fast adaptive task offloading
in edge computing based on meta reinforcement learning, IEEE Trans. Parallel
Distrib. Syst. 32 (1) (2021) 242–253.

[71] J. Wu, W. Yang, X. Han, Y. Qiu, A. Gudkov, J. Song, Hotspot resolution in
cloud computing: A 𝛤 -robust knapsack approach for virtual machine migration,
J. Parallel Distrib. Comput. 186 (2024) 104817.

[72] W. Tian, M. Xu, Y. Chen, Y. Zhao, Prepartition: A new paradigm for the load
balance of virtual machine reservations in data centers, in: IEEE International
Conference on Communications, ICC 2014, Sydney, Australia, June 10-14, 2014,
IEEE, 2014, pp. 4017–4022.

[73] V. Priya, C.S. Kumar, R. Kannan, Resource scheduling algorithm with load
balancing for cloud service provisioning, Appl. Soft Comput. 76 (2019) 416–424.

[74] A. Ghasemi, A.T. Haghighat, A multi-objective load balancing algorithm for
virtual machine placement in cloud data centers based on machine learning,
Computing 102 (9) (2020) 2049–2072.

[75] G. Ismayilov, H.R. Topcuoglu, Neural network based multi-objective evolutionary
algorithm for dynamic workflow scheduling in cloud computing, Future Gener.
Comput. Syst. 102 (2020) 307–322.

[76] O. Hadary, L. Marshall, I. Menache, A. Pan, E.E. Greeff, D. Dion, S. Dorminey,
S. Joshi, Y. Chen, M. Russinovich, T. Moscibroda, Protean: VM allocation
service at scale, in: 14th USENIX Symposium on Operating Systems Design
and Implementation, OSDI 2020, Virtual Event, November 4-6, 2020, USENIX
Association, 2020, pp. 845–861.

[77] W. Lin, C. Xiong, W. Wu, F. Shi, K. Li, M. Xu, Performance interference of virtual
machines: A survey, ACM Comput. Surv. 55 (12) (2023) 254:1–254:37.

[78] M.C.S. Filho, C.C. Monteiro, P.R.M. Inácio, M.M. Freire, A distributed virtual-
machine placement and migration approach based on modern portfolio theory,
J. Netw. Syst. Manag. 32 (1) (2024) 2.

[79] M. Xu, W. Tian, R. Buyya, A survey on load balancing algorithms for virtual
machines placement in cloud computing, Concurr. Comput. Pract. Exp. 29 (12)
(2017).

[80] M. Kumar, S.C. Sharma, A. Goel, S.P. Singh, A comprehensive survey for
scheduling techniques in cloud computing, J. Netw. Comput. Appl. 143 (2019)
1–33.

[81] Z. Mahmoodabadi, M. Nouri-Baygi, An approximation algorithm for virtual
machine placement in cloud data centers, J. Supercomput. 80 (1) (2024)
915–941.

[82] W. Lin, W. Wu, L. He, An on-line virtual machine consolidation strategy for dual
improvement in performance and energy conservation of server clusters in cloud
data centers, IEEE Trans. Serv. Comput. 15 (2) (2022) 766–777.

[83] L. Fenaux, T. Humphries, F. Kerschbaum, Gaggle: Genetic algorithms on the
GPU using pytorch, in: S. Silva, L. Paquete (Eds.), Companion Proceedings of the
Conference on Genetic and Evolutionary Computation, GECCO 2023, Companion
Volume, Lisbon, Portugal, July 15-19, 2023, ACM, 2023, pp. 2358–2361.

[84] J.R. Cheng, M. Gen, Accelerating genetic algorithms with GPU computing: A
selective overview, Comput. Ind. Eng. 128 (2019) 514–525.

[85] E. Zitzler, D. Brockhoff, L. Thiele, The hypervolume indicator revisited: On the
design of Pareto-compliant indicators via weighted integration, in: S. Obayashi,
K. Deb, C. Poloni, T. Hiroyasu, T. Murata (Eds.), Evolutionary Multi-Criterion
Optimization, 4th International Conference, EMO 2007, Matsushima, Japan,
March 5-8, 2007, Proceedings, in: Lecture Notes in Computer Science, vol. 4403,
Springer, 2007, pp. 862–876.

[86] K. Shang, H. Ishibuchi, L. He, L.M. Pang, A survey on the hypervolume indicator
in evolutionary multiobjective optimization, IEEE Trans. Evol. Comput. 25 (1)
(2021) 1–20.

[87] J. Blank, K. Deb, Pymoo: Multi-objective optimization in python, IEEE Access 8
(2020) 89497–89509.

[88] T. Goh, Taguchi methods: some technical, cultural and pedagogical perspectives,
Qual. Reliab. Eng. Int. 9 (3) (1993) 185–202.

http://refhub.elsevier.com/S2210-6502(24)00113-5/sb35
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb35
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb35
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb35
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb35
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb36
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb36
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb36
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb37
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb37
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb37
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb37
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb37
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb38
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb38
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb38
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb38
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb38
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb39
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb39
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb39
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb39
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb39
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb40
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb40
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb40
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb40
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb40
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb41
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb41
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb41
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb41
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb41
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb42
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb42
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb42
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb42
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb42
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb42
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb42
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb42
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb42
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb43
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb43
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb43
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb44
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb44
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb44
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb44
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb44
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb45
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb45
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb45
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb45
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb45
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb46
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb46
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb46
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb46
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb46
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb47
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb47
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb47
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb47
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb47
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb47
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb47
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb48
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb48
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb48
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb48
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb48
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb49
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb49
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb49
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb50
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb50
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb50
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb50
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb50
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb51
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb51
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb51
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb52
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb52
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb52
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb53
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb53
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb53
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb53
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb53
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb54
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb54
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb54
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb54
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb54
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb55
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb55
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb55
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb55
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb55
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb56
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb56
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb56
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb57
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb57
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb57
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb57
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb57
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb58
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb58
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb58
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb58
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb58
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb59
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb59
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb59
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb59
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb59
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb60
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb60
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb60
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb60
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb60
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb60
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb60
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb61
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb61
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb61
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb61
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb61
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb62
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb62
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb62
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb62
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb62
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb63
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb64
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb64
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb64
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb65
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb65
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb65
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb66
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb66
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb66
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb66
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb66
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb67
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb67
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb67
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb67
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb67
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb68
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb68
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb68
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb68
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb68
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb68
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb68
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb69
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb69
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb69
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb69
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb69
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb70
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb70
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb70
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb70
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb70
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb71
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb71
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb71
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb71
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb71
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb72
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb72
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb72
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb72
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb72
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb72
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb72
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb73
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb73
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb73
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb74
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb74
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb74
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb74
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb74
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb75
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb75
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb75
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb75
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb75
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb76
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb76
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb76
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb76
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb76
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb76
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb76
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb76
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb76
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb77
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb77
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb77
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb78
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb78
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb78
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb78
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb78
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb79
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb79
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb79
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb79
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb79
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb80
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb80
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb80
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb80
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb80
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb81
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb81
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb81
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb81
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb81
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb82
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb82
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb82
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb82
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb82
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb83
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb83
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb83
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb83
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb83
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb83
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb83
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb84
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb84
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb84
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb85
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb85
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb85
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb85
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb85
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb85
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb85
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb85
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb85
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb85
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb85
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb86
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb86
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb86
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb86
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb86
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb87
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb87
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb87
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb88
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb88
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb88

Swarm and Evolutionary Computation 87 (2024) 101575G. Zhou et al.
[89] X. Sun, Z. Shi, J. Zhu, Multiobjective design optimization of an IPMSM for EVs
based on fuzzy method and sequential taguchi method, IEEE Trans. Ind. Electron.
68 (11) (2020) 10592–10600.

[90] M. Li, X. Yao, Quality evaluation of solution sets in multiobjective optimisation:
A survey, ACM Comput. Surv. 52 (2) (2019) 26:1–26:38.

[91] AzurePublicDataset. https://github.com/Azure/AzurePublicDatase.

Guangyao Zhou received Bachelor’s degree and Master’s
degree from School of architectural engineering, Tianjin
University, China. He is now a Ph.D candidate at School
of information and software engineering, University of
Electronic Science and Technology of China. His research in-
terests include scheduling algorithms in Cloud Computing or
Edge Computing, image recognition especially facial expres-
sion recognition, algorithmic theory of machine learning,
BigData processing, parallel training of large-scale model
and evolution algorithms especially genetic algorithms.

Yuanlun Xie is now a Ph.D. candidate at the School of
information and software engineering, University of Elec-
tronic Science and Technology of China. His main research
interests include algorithmic theory of machine learning,
facial expression recognition by deep learning, evolution
algorithms, attention mechanism and BigData processing.

Haocheng Lan received Bachelor’s degree from the School
of information and software engineering, University of Elec-
tronic Science and Technology of China. He is now a Master
candidate at the School of information and software engi-
neering, University of Electronic Science and Technology of
China. His main research interests include NLP, machine
learning, evolution algorithms and BigData processing.
23
Wenhong Tian received a Ph.D. degree from the Depart-
ment of Computer Science, North Carolina State University,
Raleigh, NC, USA. He is now a professor at the School of in-
formation and software engineering, University of Electronic
Science and Technology of China (UESTC). His research
interests include scheduling in Cloud computing and Bigdata
platforms, image recognition by deep learning, algorithmic
theory of machine learning, parallel training of large-scale
model, mixture of experts and evolution algorithms. He has
more than 110 journal/conference publications and 5 books
in related areas.

Rajkumar Buyya is a Redmond Barry Distinguished Profes-
sor and Director of the Cloud Computing and Distributed
Systems (CLOUDS) Laboratory at the University of Mel-
bourne, Australia. He is also serving as the founding CEO of
Manjrasoft, a spin-off company of the University, commer-
cializing its innovations in Cloud Computing. He served as
a Future Fellow of the Australian Research Council during
2012–2016. He received the Ph.D. degree in Computer
Science and Software Engineering from Monash Univer-
sity, Melbourne, Australia, in 2002. He has authored over
750 publications and seven text books. He is one of the
highly cited authors in computer science and software en-
gineering worldwide (h-index=160, gindex=340, 134600+
citations). He is recognized as a ‘‘Web of Science Highly
Cited Researcher’’ for six consecutive years since 2016, and
Scopus Researcher of the Year 2017 with Excellence in
Innovative Research Award by Elsevier for his outstanding
contributions to Cloud Computing and distributed systems.

Kui Wu received the B.Sc. and M.Sc. degrees in computer
science from Wuhan University, Wuhan, China, in 1990
and 1993, respectively, and the Ph.D. degree in computing
science from the University of Alberta, Edmonton, AB,
Canada, in 2002. In 2002, he joined the Department of Com-
puter Science, University of Victoria, Victoria, BC, Canada,
where he is currently a professor. His current research
interests include network performance analysis, online social
networks, Internet of Things, and parallel and distributed
algorithms.

http://refhub.elsevier.com/S2210-6502(24)00113-5/sb89
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb89
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb89
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb89
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb89
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb90
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb90
http://refhub.elsevier.com/S2210-6502(24)00113-5/sb90
https://github.com/Azure/AzurePublicDatase

	Information interaction and partial growth-based multi-population growable genetic algorithm for multi-dimensional resources utilization optimization of cloud computing
	Introduction
	Related Work
	Optimization Algorithms
	Multi-Population Evolutionary Algorithms

	System Model and Problem
	Methodology: MPGGA
	GGA with Partial Growth
	MP and Information Interaction Strategies
	Growth Quota Reallocation Strategies
	MPGGA and its System Architecture

	Performance Evaluation in UPMDR of Cloud
	Experiments Setting
	Ex1: Evaluation of the MP Strategy
	Ex2-Ex4: Ablation Studies
	Ex5: Evaluation of Growth Quotas
	Ex6: Comparison with the State-of-the-art for the Problem minω(1)
	Ex7: Adaptation Test for MPGGA
	Summary of Experiments

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix A. GPU based acceleration and architecture for MPGGA
	Appendix B. Performance Evaluation of MPGGA in MoATSP
	References

