
The Journal of Systems & Software 176 (2021) 110943

T
a

M
b

o
c
c
t
m
h
a
s
s
a

s
a
m
t
s

a

h
0

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

SLA-awaremultiplemigration planning and scheduling in
SDN-NFV-enabled clouds✩

ianZhang He a,∗, Adel N. Toosi b, Rajkumar Buyya a

Clouds Computing and Distributed Systems (CLOUDS) Laboratory, School of Computing and Information Systems, The University of
elbourne, Parkville, VIC 3010, Australia
Department of Software Systems and Cybersecurity, Faculty of Information Technology, Monash University, Clayton, VIC 3800, Australia

a r t i c l e i n f o

Article history:
Received 1 July 2020
Received in revised form23 September 2020
Accepted 4 March 2021
Available online 6 March 2021

Keywords:
Live VMmigration
Software-defined networking
Deadline violation
Multiple migration performance
Energy consumption
Quality of Service

a b s t r a c t

In Software-Defined Networking (SDN)-enabled cloud data centers, live migration is a key approach
used for the reallocation of Virtual Machines (VMs) and Virtual Network Functions (VNFs). Using
live migration, cloud providers can address their dynamic resource management and fault tolerance
objectives without interrupting the service of users. However, performing multiple live migrations
in arbitrary order can lead to service degradation. Therefore, efficient migration planning is essential
to reduce the impact of live migration overheads. In addition, to prevent Quality of Service (QoS)
degradations and Service Level Agreement (SLA) violations, it is necessary to set priorities for different
live migration requests with various urgency. In this paper, we propose SLAMIG, a set of algorithms that
composes deadline-aware multiple migration grouping algorithm and on-line migration scheduling to
determine the sequence of VM/VNF migrations. The experimental results show that our approach with
reasonable algorithm runtime can efficiently reduce the number of deadline misses and has a good
migration performance compared with the one-by-one scheduling and two state-of-the-art algorithms
in terms of total migration time, average execution time, downtime, and transferred data. We also
evaluate and analyze the impact of multiple migrations on QoS and energy consumption.

© 2021 Elsevier Inc. All rights reserved.
1. Introduction

With the rapid adoption of cloud computing, the requirement
f providing Quality of Service (QoS) guarantees is critical for
loud services, such as Web, big data, virtual reality, and scientific
omputing. For the benefit of cloud administrators, it is essential
o prevent violations of Service Level Agreements (SLAs) and
aintain QoS in heterogeneous environments. Therefore, there
as been a notable focus on the quality, efficiency, accessibility,
nd robustness of cloud services. For instance, the latency of
ervice function chaining (SFC) (Halpern and Pignataro, 2015)
hould be optimized to benefit both network service providers
nd end users.
As one of the major virtualization technologies to host cloud

ervices, Virtual Machine (VM) is used to provide computing
nd network resources hosted in cloud data centers. Live VM
igration is one of the key technology to relocate VMs be-

ween physical machines without disrupting the accessibility of
ervices (Clark et al., 2005). Therefore, as a dynamic resource

✩ Editor: [RAFFAELA MIRANDOLA].
∗ Corresponding author.

E-mail addresses: tianzhangh@student.unimelb.edu.au (T. He),
del.n.toosi@monash.edu (A.N. Toosi), rbuyya@unimelb.edu.au (R. Buyya).
ttps://doi.org/10.1016/j.jss.2021.110943
164-1212/© 2021 Elsevier Inc. All rights reserved.
management tool, live VM migration can realize various objec-
tives in resource rescheduling of data centers, such as consolida-
tion, load balancing, host overbooking, fault tolerance, scheduled
maintenance, or even Virtual Network Functions (VNF) relocat-
ing from edge to cloud data centers due to the change of user
location (Cziva et al., 2018).

Although researchers have been trying to achieve the ob-
jectives of dynamic resource rescheduling through live migra-
tion (Cziva et al., 2018; Son et al., 2017), few studies have fo-
cused on the impact of live migration overheads (Deshpande
and Keahey, 2017; Mann et al., 2012; He et al., 2019) and the
sequencing of multiple migrations (Ghorbani and Caesar, 2012;
Bari et al., 2014; Wang et al., 2019). Due to the end of life of
some VMs and the variance of workloads in cloud computing,
dynamic resource management constantly generates many mi-
gration requests in optimization rounds. As a result, multiple
migration requests need to be scheduled. For example, dynamic
resource management policies for performance efficiency and
energy-saving (Beloglazov and Buyya, 2012) can generated up to
12500 migrations within 10 days. Moreover, commercial cloud
platforms provides live migration to keep VM instances running
during the host event, such as hardware or software update. For
example, in Google Cloud Compute Engine, live migration occurs
to one VM at least once every two weeks due to the software or

https://doi.org/10.1016/j.jss.2021.110943
http://www.elsevier.com/locate/jss
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2021.110943&domain=pdf
mailto:tianzhangh@student.unimelb.edu.au
mailto:adel.n.toosi@monash.edu
mailto:rbuyya@unimelb.edu.au
https://doi.org/10.1016/j.jss.2021.110943

T. He, A.N. Toosi and R. Buyya The Journal of Systems & Software 176 (2021) 110943

h
c
E
V
i
t
2
b
l

e
o
b
d
(
p
t
t
s
t
c
c
m
o

s
r
d
w
b
t
o
w
p
r
p
i
t
m

o
n

u
o
z
f
f
t
v
L
d
t
n
d

p
a
l
a
f

i

p

ardware update.1 In 2020, to make the compute infrastructure
ost effective, reliable and performant, Google Cloud Compute
ngine also introduced dynamic resource management for E2
Ms through performance-aware live migration.2 Therefore, it is
mportant to determine the order (sequence) of the migration
asks to optimize the total migration time (Ghorbani and Caesar,
012; Wang et al., 2019; Bari et al., 2014), which is the interval
etween the start of the first migration and the completion of the
ast migration.

In cloud data centers, Software-Defined Networking (SDN) can
nable the centralized control of network resources in terms
f network topology, connectivity, flow routing, and allocated
andwidth. The Virtual Network Functions (VNFs) hosted in cloud
ata centers can also be linked as a Service Function Chaining
SFC) (Halpern and Pignataro, 2015) by SDN controller. Migration
lanning for VNFs in the chain is not trivial since SFC requires
raffic to traverse through a certain sequence of VNFs. In addi-
ion, because migrations share the network resources with other
ervices, it is necessary to efficiently plan and schedule migration
asks to reduce the overhead impact on the QoS of other appli-
ations. The migration planner and scheduler based on the SDN
ontroller can manage the network resources in a fine-grained
anner for the migration tasks and application services in terms
f network routing and bandwidth allocation.
Connectivity and Sequence: Compared with services such as

cientific computing, the connectivity and corresponding network
equirement of links in SFC between source and destination are
ynamically changing. This will also cause the remaining band-
idth of the migration to change. Furthermore, as the available
andwidth of the physical link changes according to the connec-
ivity of the SFC, we also need to carefully consider the impact
f the new placement of the VNF. As a result, the new placement
ill affect the rest of the migration requests that use the same
ath. In addition, two migrations could be performed concur-
ently if there are no shared paths between them. However,
erforming multiple live migrations in arbitrary order will result
n service quality degradation. Therefore, efficient planning of
he migration sequence is crucial to reduce the impact of live
igration overheads.
In addition to the optimization of total migration, several

ther parameters that affect migration performance are largely
eglected:
Scheduling window (deadline): Migration, such as sched-

led maintenance, disaster evacuation, load balancing policy, and
ther dynamic allocation algorithms (Cziva et al., 2018; Tsakalo-
os et al., 2017), is usually associated with a time window (de-
ined deadline) that requires the VM or VNF to be evacuated
rom the source and run on the destination host. For instance,
he deadlines for SLA-related migration tasks are based on the
iolation speed and the cumulative violations threshold of Service
evel Objective (SLO), such as response time and end-to-end
elay. The scheduling window refers to the time interval between
he arrival of migration task request and the deadline for the
ew placement. Failure to meet the deadline will result in QoS
egradation and SLA violation.
Allocated bandwidth: During the live VM migration, the ap-

lications running inside VM constantly modify the local stack
nd variables in the memory. The memory modified during the
ast round of dirty memory transmission needs to be transferred
gain. The goal of live migration is to reduce the memory dif-
erence between the source and destination hosts in order to

1 Google Cloud Compute Engine. https://cloud.google.com/compute/docs/
nstances/setting-instance-scheduling-options.
2 Dynamic resource management in E2 VMs. https://cloud.google.com/blog/
roducts/compute/understanding-dynamic-resource-management-in-e2-vms.
2

stop the VM and copy the remaining dirty memory pages to
the destination. A smaller memory difference in the stop-and-
copy round means that the service has much shorter downtime.
Therefore, live migration is highly dependent on the network for
dirty memory transmission. We can consider live migration as a
non-preemptive task. If the available bandwidth is lower than the
rate of memory dirtying during the iterative transmission, then
the data transferred previously used for migration convergence
will be in vain. Furthermore, although the average bandwidth
for the entire process of a migration might be the same, the
insufficient bandwidth at the beginning may severely extend the
migration time. Therefore, we should carefully allocate available
paths to multiple migration requests.

To help cloud providers guarantee QoS and SLAs during the
multiple live migrations, we investigate the problem of optimiz-
ing the total migration time, transferred data, downtime, and
average execution time of multiple VM/VNF migrations within
the scheduling window in software-defined cloud data centers.
We propose SLAMIG (SLA-aware Migration), which is a set of
algorithms that includes the deadline-aware concurrent migra-
tion grouping for multiple VM/VNF migrations and an on-line
migration scheduler to minimize the total migration time by
considering the migration deadlines.

The main contributions of this paper are summarized as
follows:

• We modeled the multiple migration planning problem to
optimize total migration time and deadline missing in the
context of VMs/VNFs connectivity.
• We are the first to introduce the scheduling window for

multiple migration scheduling.
• We investigated the impact of allocated bandwidth on the

beginning of one migration.
• By maximizing the concurrent migration groups with mini-

mal weight, we proposed a heuristic algorithm that achieves
good performance for multiple migrations by considering
the migration deadline.
• We designed an on-line migration scheduler to dynamically

schedule migrations from different migration groups.
• We not only analyzed the multiple migration scheduling in

total migration time and downtime, but the average exe-
cution time, total transferred data, deadline violations, QoS,
and energy consumption.

The rest of the paper is organized as follows. Section 2 intro-
duces the system overview and background of the live migration.
In Section 3, we present the motivation example, the impact
of migration bandwidth, the model of sequential/parallel migra-
tions, deadline of the migration, and the problem formulation
of multiple migration planning. The summary of observation,
rationales of algorithm design, and the details of proposed algo-
rithms are presented in Section 4. In Section 5, experiment design
and results are shown. Finally, we review the related work in
Section 6 and conclude the paper in Section 7.

2. System overview and background

In this section, we first discuss the system overview (Fig. 1)
and then we present the mathematical model of single live mi-
gration.

2.1. System overview

In data centers, physical machines host VMs/VNFs to provide
various cloud services. By utilizing the virtualization, we can
separate the network functions (such as Intrusion Detection Sys-
tems (IDS), and Firewalls (FW)), web applications, and scientific

https://cloud.google.com/compute/docs/instances/setting-instance-scheduling-options
https://cloud.google.com/compute/docs/instances/setting-instance-scheduling-options
https://cloud.google.com/blog/products/compute/understanding-dynamic-resource-management-in-e2-vms
https://cloud.google.com/blog/products/compute/understanding-dynamic-resource-management-in-e2-vms

T. He, A.N. Toosi and R. Buyya The Journal of Systems & Software 176 (2021) 110943

c
s
h
a
d
e
2
V
s
i
r

N
m
N
t
f
d
d
c
r
i
s
a
d
f
c
a
t
o
f
m
o
S

c
a
t
p
s
t
b
d
m
o

Fig. 1. System overview.
omputing servers from underlying computing and network re-
ources. Thus, VNFs and VMs could be migrated from one physical
ost to another through live migration without disruption. To
lleviate SLA violations and meet the QoS guarantees in the
ynamic environment, the resource management policies (Cziva
t al., 2018; Son et al., 2017) or migration selectors (Mann et al.,
012; Xu et al., 2014) determine which, when and where a
NF or VM should be migrated by predicting the future system
tate based on the historical data and current state of comput-
ng resources (physical hosts and virtual instances) and network
esources (loads of links).

The instance provisioner or VM manager (such as OpenStack
ova) controls the computing resources, while the SDN controller
anages the network resources. By merging Software Defined
etworking (SDN) (Son and Buyya, 2018) into cloud computing,
he SDN-enabled cloud data centers provide a comprehensive and
lexible solution to the increasing end-user applications and the
ynamic network environment needed by SFC. By separating the
ata and control plane of network routing, the SDN controller
an dynamically allocate bandwidth to services and control the
outing of each network flow. With its centralized controller,
t also provides a global view of the network topology, switch
tatus, profiling, and monitoring the link statistics (bandwidth
nd latency), as well as dynamic connection management of
ifferent cloud services. For example, it can monitor on-going
lows, calculate the ‘best’ paths for migration requests and other
loud services, and dynamically connect VNFs and VMs to SFCs
nd Virtual Data Centers (VDCs) by pushing the forwarding rules
hrough the OpenFlow protocol (McKeown et al., 2008). On the
ther hand, the VM and VNF managers are responsible for con-
iguring and assigning all computing and storage resources, and
anaging the lifecycle of VNF and VM. It also monitors the status
f each VNF and VM, such as the dirty page rate and the speed of
LO violations.
Based on the centralized information of both network and

omputing resources, the orchestrator can calculate the optimal
llocation of all VNFs and VMs. According to the optimal alloca-
ion, it generates multiple migration requests. Then, the migration
lanner needs to decide the sequence of multiple migrations con-
idering the contention on the shared resources between migra-
ions, such as network path and bandwidth. This can be realized
y using an SDN controller which provides the network topology,
ynamic network routing and bandwidth allocation. Then, the
igration scheduler schedules migration tasks either sequentially

r concurrently based on the shared resources.

3

Our proposed system framework assumes that there is a
queue for migration requests. Each migration task is defined by
the following items: (1) the migrating VM/VNF; (2) the source–
destination host pair and corresponding network routings; (3) the
scheduling window (deadline). As shown in Fig. 1, our proposed
approach SLAMIG includes three components: (1) the migration
planning module; (2) the on-line migration scheduler; and (3)
the dynamic routing module. The objective of our approach is to
plan and schedule migration tasks so that all migration tasks are
completed within the deadline while meeting the SLA, thereby
minimizing the impact of multiple migrations.

2.2. Mathematical model of live migration

In order to better understand the impact of multiple migra-
tions and the scheduling problem, we first need to establish
the mathematical model of single live migration. Live migration
can be categorized into the pre-copy (Clark et al., 2005) and
post-copy (Shribman and Hudzia, 2012) memory migration. In
the pre-copy live migration, the virtual machine monitor (VMM)
iteratively copies dirty memory pages of VM/VNF running on the
source host to the destination host. Since the pre-copy migration
is the most commonly used technology for hypervisors (KVM,
Xen, etc.), we consider it as the base model used in the multiple
migration planning.

According to the live migration process (Clark et al., 2005),
the pre-copy live migration includes 8 steps, as shown in Fig. 2:
Pre-migration, Initialization, Reservation, Iterative memory copy,
Stop-and-Copy, Commitment, Activation and Post-migration. We
can classify the three parts of migration overhead into computa-
tion (pre/post-migration) and network-related (iterative network
transmission). The migration time or execution time refers to the
time interval from the initialization of the pre-migration process
on the source host to the successful completion of the post-
migration process on the destination host (He et al., 2019). There-
fore, the total single migration time Tmig (also known as execution
time in multiple migration scenario Texe) can be represented as:

Tmig = Tpre + Tmem + Tpost (1)

When Tmem represents the iterative memory copy and stop-
and-copy phases, the components of pre-migration and post-
migration overheads can be expressed as:

Tpre = PreMig+ Init+ Reserv
(2)
Tpost = Commit+ Act+ PostMig

T. He, A.N. Toosi and R. Buyya The Journal of Systems & Software 176 (2021) 110943

t
o

Fig. 2. Pre-copy Live Migration.
i
a

T

V
h
b
v
C

In the pre-copy live migration, the memory of VM is trans-
ferred over the network when the VM continues to operate (Clark
et al., 2005). Thus, the modified memory during the previous
iteration of memory copying needs to be transferred again. There
will be a small number of hotspot pages with the high frequency
of updates which will be transferred within the stop-and-copy
phase. The downtime refers to the time interval between the VM
suspension due to the stop-and-copy, commitment, and activa-
tion phases, as shown in Fig. 2. From the user’s perspective, the
service is unavailable during the downtime. The dirty page rate
is the rate of page dirtying per second traced by the page table of
the hypervisor, e.g. Xen and KVM. Since the behavior of the page
dirtying is known at every point in time, the total transferred
data in the stop-and-copy phase can be estimated and hence the
downtime (Clark et al., 2005). Furthermore, in order to prevent
extensive downtime and a large number of iteration rounds due
to a high page dirty rate compared to the available bandwidth,
we need to set a threshold (upper-bound) for the downtime and
the total number of allowed iteration rounds in practice.

We use M to denote the memory size of VNF/VM, and let ρ

represent the average compression rate used in memory com-
pression algorithm (Svärd et al., 2011). Let Ri and Li denote the
average dirty page rate and bandwidth in iteration round i. In
otal n rounds of memory copying, Ti denotes the time interval
f ith iteration. As shown in Fig. 2, the transferred volume Vi of ith

round can be calculated as:

Vi =

{
ρ ·M

ρ · Ti−1 · Ri−1

if i = 0
otherwise

(3)

where the ρ is the percentage number of average compression
rate, and the unit of M is bits, Ti−1 is seconds (s), and Ri−1 and Li
are bits per seconds (bps).

Based on Eq. (3), the transmission time of first round (i =
0) can be calculated as T0 = ρ ·M/L0. By submitting Eq. (3)
into the result of first round, we get T1 = ρ · T0 · R0/L1 =
ρ2
·M · R0/L0 · L1.
Thus, the transmission time of ith round Ti can be represented

as:

Ti = Vi/Li =ρ i+1
·

i−1∏
j=0

Rj ·M

/
i∏

j=0

Lj (4)

When Ri and Li are constant, for the convergence migration,
the average dirty page rate must be no more than the bandwidth
in every iterations 0 ≤ σ < 1. Let ratio σ = ρ · R/L. Then,
Ti = ρ ·M · σ i/L. Therefore, the total memory copying time Tmem
is:

Tmem =
ρ ·M

·
1− σ n+1

(5)

L 1− σ

4

Let Θ denote the maximum allowed number of iteration
rounds and Tdthd denotes the downtime threshold. Then, Vthd =

Tdthd ∗ Ln−1 as remaining dirty page need to be transferred in the
stop-and-copy phase can be calculated. We can calculate the total
iterations n by using the inequality Vn ≤ Vthd in Eq. (5):

n = min
(⌈

logσ

Vthd

M

⌉
, Θ

)
(6)

Therefore, by using T ′post as the reassignment time of comput-
ng resources and network ports for the migrated instance, the
ctual downtime is represented as:

down = Td + T ′post < Tthd + Tpost (7)

3. System model and problem formulation

3.1. Motivation example

In this section, we discuss the problem and our motivation us-
ing an example of optimizing the total migration time to show the
impact of migration orders on the total migration time, VNF/VM
downtime, and SFC/VDC migration time and downtime.

Migration processes produce elephant flows which take a dis-
proportionate part of network resources for a long time. At the
end of each migration, the network flows within the data center
network are redistributed accordingly due to the relocation of
VNFs or VMs and their connectivity. With the change of avail-
able bandwidth in Data Center Network (DCN), the result of one
migration will affect subsequent migrations that share the links
with the completed one. The objective of migration planning is to
find the orders of migrations to optimize the total live migration
time of all requested migrations with certain constraints, such as
the priority, required bandwidth, residual bandwidth on the links,
and capacity of CPU, memory, and storage resources.

In the network of tree topology shown in Fig. 3, there are 4
switches which include 2 top-of-rack (S1 and S2), 2 aggregation
switches (S3 and S4), and 4 hosts (H1 to H4). All the hosts and
switches are connected through 10Gbps links. One SFC G1, one
DC G2 and four other VMs (v3

1 to v6
1) are hosted in different

osts accordingly. Fig. 4 shows the connectivity and reserved
andwidth of virtual links among instance with different fla-
ors (Table 1) of G1 and G2, as well as the dirty page rate and
PU, memory, and storage requirements. SFC G1 contains 4 VNFs

where v1
2 and v1

3 are the same type of VNF. The migration time
is composed of the processing time of pre-migration and post-
migration overheads on computing resources and the network
transmission time of the dirty memory. We assume the process-
ing time of pre-migration and post-migration overheads on the
single core are 0.8 s and 1.2 s, respectively.

Fig. 3 illustrates the initial mapping of these VNFs/VMs and
migration requests for another possible mapping in the physical

T. He, A.N. Toosi and R. Buyya The Journal of Systems & Software 176 (2021) 110943

T
C

a

d

t

t
m
S
s
t
(
(
s
t
w
t

v

2
i
r
d
A
d
t
d
w

3

i
o
t
d
w
h
d
e
s
o
s
p
t
t
w
r

able 1
onfigurations of different flavors.
No. Flavor Mem CPU Disk No. Flavor Mem CPU Disk

(GB) (cores) (GB) (GB) (cores) (GB)

1 xlarge 64 12 1 5 Tiny 2 1 2
2 Large 16 8 60 6 Micro 1 1 1
3 Medium 8 4 20 7 lb/ids/fw 8 10/12/16 8
4 Small 4 2 10 8 web/app/db 256 8/4/12 1000

Fig. 3. Initial mapping for VM/VNF v
j
i of VDC/SFC Gj , migration requests (sj, dj),

nd available bandwidth u of upload/download interfaces.

Fig. 4. SFC and VDC configurations of <flavor, dirty page rate, migration
eadline>.

opology. Let u denote the residual bandwidth on the links. Ac-
cording to the reserved requirements of virtual links, we calculate
the initial available inbound and outbound bandwidth of each
network interface.

At the time t0 = 0, the coordinator receives several migra-
ion requests at the same time based on the configured opti-
al reallocation interval as shown in Fig. 3. Other VDCs and
FCs which are unrelated to the migration in the host are not
hown. The maximum memory copy round is 30 and the down-
ime threshold is 0.5 s. There are two of possible orders: S1 =
v1
1, v

2
2, v

1
4), (v

2
1), (v

3
1, v

4
1, v

5
1, v

6
1) and S2 = (v2

1, v
1
4), (v

1
1, v

3
1),

v4
1), (v

5
1), (v

6
1), (v

2
2), shown in Fig. 5. Migration tasks within the

ame group could perform concurrently. For subsequent migra-
ions from different concurrent migration group, the scheduler
ill start a migration as soon as a sharing-resource migration in
he other group is finished. For example, migration of v2 will start
1

5

Fig. 5. Results of different scheduling orders.

after the migration of instance v1
1 is finished (Fig. 5(a)). After each

migration, all virtual links connected to the migrated instance
will be rerouted to the destination host. Therefore, the available
bandwidth of the remaining migrations will be updated according
to the new instance placement at the end of each migration.

By leveraging simulation capabilities for both computing and
networking, we implemented and extended the corresponding
components based on the CloudSimSDN (Son et al., 2019) to sim-
ulate each phase of pre-copy live migration. As shown in Fig. 5,
the total migration time Ttotal of two migration scheduling orders
is 377.645 and 511.625 s, respectively. The average downtime
ΣTd/n is 0.317 and 0.353 with maximum 0.807 and 1.538 s for
v2
1 instance. Furthermore, for the migrations of v3

1, v
4
1, v

5
1 , and

6
1 instance, as the processing time of computing overheads is
.0 s, the total migration time from the start of migration v3

1
s 4.691 and 10.593 s by using parallel and sequential method,
espectively. The average value of the remaining scheduling win-
ow Σξ/n of two orders is 26.104 and −99.708, respectively.
lthough these orders both perform concurrent migrations that
o not share the same resources, the first scheduling order leads
o a better performance in terms of total migration time, average
owntime, SFC/VFC migration time, and remaining scheduling
indow (i.e. less SLO violations).

.2. Impact of bandwidth and dirty rate

First, we argue that the bandwidth allocated to the early
terative transmission rounds can highly affect the performance
f a migration. Based on the mathematical model shown in Sec-
ion 2.2, Fig. 6 illustrates the migration performance under three
ifferent bandwidth functions, where: (1) begins with low band-
idth then increases the bandwidth for each iteration round; (2)
as a constant bandwidth; (3) starts with high bandwidth then
ecreases the bandwidth for each iteration round. It indicates that
ven with the same average bandwidth during the migration, in-
ufficient bandwidth in the early steps will cause a huge amount
f dirty pages remained to transfer for the subsequent transmis-
ion rounds (Eq. (4)). This causes a much slower convergence
rocess to reach the point that remaining dirty pages satisfies
he downtime threshold. Furthermore, according to the migration
hreshold and round constraints (Eq. (6)), starting the migration
ith insufficient bandwidth results in a large accumulation of the
emaining dirty pages in the previous rounds. In other words,

T. He, A.N. Toosi and R. Buyya The Journal of Systems & Software 176 (2021) 110943

w
g
l
t

f
t
c

Fig. 6. Migrations with xlarge flavor under various bandwidth functions.

in order to complete the migration within a reasonable time,
an unacceptable service downtime will occur regardless of the
downtime threshold due to the migration round constraint.

3.3. Deadline-related migration

In this section, we discuss deadline-related migration. As one
of the reasons for SLA violation, the Service Level Objective (SLO)
violation speed and total violation threshold are the main mon-
itoring parameters. If the cumulative violations of SLO exceed
the threshold, one SLA violation happens. In this situation, the
migration request is generated due to the SLO violations under
the current placement of VMs/VNFs with the workload bursting,
end-user mobility, and resource over-subscription (Cziva et al.,
2018; Son et al., 2017; Guo et al., 2014). The SLO thresholds are
configured by the cloud infrastructure management to alert on
the significant events. A migration request can be issued due to
the SLO violations under the current situation. For instance, VNF
need to be relocated to the cloud before exceeding the threshold
of cumulative violation due to current SLO violation rate in terms
of response time and latency (Cziva et al., 2018), and VMs need
to be migrated from the overbooked hosts due to the service
workload burst (Guo et al., 2014). The burst of workload and loca-
tion changing of end users can cause serious SLA violations and
QoS degradation. Thus, VM/VNF migrations need to be finished
before a certain deadline to prevent the cumulative SLO violations
exceeding the threshold.

Thus, the deadline for the VM migration can be estimated
based on the threshold of total allowed SLO violations and the
current SLO violation speed. Based on the new optimal allocation,
the placement algorithm will request corresponding VM migra-
tions to prevent the accumulated SLO violations from exceeding
the threshold. Among these migration tasks, different services
and VNFs have several levels of urgency in terms of the current
average SLO violation cumulative rate ω based on the monitoring,
the current number of cumulated violations Yt , and the threshold
of total violations θ . Therefore, when the dynamic resource policy
triggered at time t by the configured period, the deadline of
migration task can be calculated as:

D = (θ − Yt)/ω (8)

For the migration tasks which specify the scheduling window
(e.g., scheduled maintenance), the deadlines can be directly used
as the input for migration scheduling.

Furthermore, there are time-critical migration requests with
specific deadline D(Gi) for the whole SFC or VDC Gi. In other
ords, all related VMs/VNFs inside the SFC/VDC need to be mi-
rated and run in the destination hosts before the required dead-
ine. A simple solution is to directly assign the group deadline
o each migration task. For better performance, the deadline for
6

each task can be calculated by subtracting the sum of the worst
execution time of other migration tasks from the group deadline:

Dk = D
(
Gi)
−

∑
nj∈Gi/nk

T j
exe (9)

In practice, live VM migrations can be scheduled in low ac-
tivity periods (Tsakalozos et al., 2017). VMs or VNFs interact
with different groups of end users with geographical variances
or applications with different access features. For instance, VMs
of Web applications allocated in the same physical host serve
different areas, such as China, Japan, Australia, and Europe, may
experience hours or minutes low-activity scheduling window.
As a large amount of VMs/VNFs with various features allocated
in relative limited physical hosts, the low activity window for
migration scheduling can be extremely limited.

3.4. Problem formulation

In this section, we formally define the problem of live SFC/VDC
migration planning as a Mixed Integer Linear Programming
(MILP) problem. In the model, the physical data center is repre-
sented by a graph G = (N, E), where N denotes the set of nodes
including physical hosts, switches, and routers, and E denotes the
set of directed links between nodes. The remaining CPU, memory,
and disk in the destination node N should be larger than the
resources required by the migrating VM.

Let τ denote the instant of time when a migration starts or
inishes. From the beginning of the first migration to the end of
he last migration, at least one migration is in progress in the data
enters. Let T i

mig denote the response time (single execution time
of the migration i plus the waiting time to start). Then, for a more
concise expression, we use τ0 as the start time instant and τK as
the end time instant for a total of K migration tasks.

τi ∈
[
0, T 1

mig , . . . , T
K
mig

]
= [τ0, τ1, . . . , τK] (10)

where the total K migrations are sorted by the completion time
and τi ≥ τi−1, i = 0, 1, . . . , K . It converted the original problem
to total K discrete state.

Let X τi
k ∈ {0, 1} denote the binary variable that indicates

whether the migration k ∈ R+ occurs at time interval τ ∈

[τi, τi+1). Therefore, the response time of migration k can be
calculated as:

τk = T k
mig =

k∑
i=1

X τi
k · (τi − τi−1), 1 ≤ k ≤ K (11)

As mentioned in Section 2.2, the migration task cannot be pre-
empted (stopped) after it is started. For memory state synchro-
nization, the transferred memory data (dirty pages) in previous
iterative rounds will become infeasible and cause an unaccept-
able overhead on the DCNs. Thus, we need to add the following
constraint to the binary variable:

X τi
k ≥ X τi−1

k , 0 ≤ τi < τk (12)

Furthermore, let Zj,k denote the binary variable indicating
whether two migrations j and k can be performed concurrently:

Zj,k = Xj · Xk =

{
1,
0,

indep.
sharing.

(13)

If migration j and k share the same pair of source and destina-
tion or network paths, thereby affecting the available bandwidth
allocated to either migration, the two migrations are resource
dependent (sharing). Otherwise, two independent migrations can
be performed concurrently.

T. He, A.N. Toosi and R. Buyya The Journal of Systems & Software 176 (2021) 110943

T
L

a

l

f
v
∀

m
f
d
τ

e
T
a
f

l

l

w
n
b
m

f
p
w

l

v

m

s
t

d
s
e
c
r
t
t
e

4

p
h
o
f

4

g
r
s
o
o
t

able 2
ist of commonly used notations.
Notation Description

M Memory size of VM/VNF
R Dirty page rate
L Bandwidth assigned to Migration
Tpre Pre-migration processing time
Tpost Post-migration processing time
Tnetwork Memory copy network transmission time
Vi The transferred data of ith round of memory copy
Ti The time interval of ith round of memory copy
Tdthd The downtime threshold
ρ The memory compression rate
σ The ratio of R to L multiple ρ

λ(p) The maximum allowed parallel number in path p
r The processing speed of one compute core
T n
network Parallel Tnetwork of n migrations in the same path

mj The memory size of migration j;
sj, dj The ordered pair of source and destination
N The set of physical network nodes
E The set of physical network links
N i Nodes set of VDC/SFC Gi

E i Links set of VDC/SFC Gi

P Set of all paths in the network
Pj Set of all paths between (sj, dj)
c(e) Capacity of link e
u(e) Residual bandwidth in link e
u(p) Available bandwidth of path p
Dj Deadline of migration j
D(Gj) Deadline of all migrations that nj ∈ Gi

θ Maximum tolerant number of SLA violations
ω Cumulative SLA violation rate
ξ Remaining migration scheduling window
Yt Cumulated violations at time stamp t

Let Pk denote the set of paths p available for the migration
k. The relation between allocated bandwidth for migration k and
vailable bandwidth along the path p can be represented as:

k =
∑
p∈Pk

x (p) (14)

According to the SFC/VDC Gj and physical DCN G, the total
lows including migration transmission p and reserved service
irtual links p′ cannot exceed the capacity u(e) of link e. For
τi, i = 0, 1, . . . , K , we calculate the available bandwidth for
igration lτik under the new input because the migration i is

inished at time instant τi and the virtual links need to be rerouted
ue to the new placement. The constraint during time interval
= [τi, τi+1) can be represented as follows:∑

p∈Pe

x (p)+
∑
p′∈Pe

x
(
p′
)
≤ u (e) ,∀e ∈ E (15)

Moreover, the allocated bandwidth for migration k cannot
xceed the interface capacity of source and destination hosts.
here is no allocated bandwidth before the migration begins and
fter it is completed. Thus, we have the constraints expression as
ollows:

k ≤ min
{
Ck
s , C

k
d

}
(16)

τ
k ≤ X τ

k · Ψ (17)

here Ck
s , C

k
d denote the interface capacity of source and desti-

ation host. Ψ ∈ R+ is a constant larger than the maximum
andwidth of paths in the network that could be allocated to the
igration.
In addition, as shown in Section 3.2, if the allocated bandwidth

or the first few transmission rounds is smaller than the dirty
age rate, there will be a huge performance degradation. Thus,
e add the extra constraint to lτ0k for the migration start:

τ0 > r (18)
k k

7

The problem of minimizing the total migration time and SLO
iolations during the scheduling can be formulated as:

in

(
K∑

i=1

X τi
K · (τi − τi−1)+

K∑
k=1

(τk − Dk)

)
(19)

ubject to constraints (10)–(18). The commonly used notations in
he paper are shown in Table 2.

The problem is NP-hard to solve because it generalizes the
ata migration problem (Bari et al., 2014) without the extra con-
traints of resources and migration deadline. The model in Wang
t al. (2019) also represents the same problem, but it did not
onsider the impact of flow relocation on the performance of
emaining migrations. They are all proved to be NP-hard. Solving
he MILP problem in a reasonable time is not feasible, because
he general algorithms supported in MILP solver will lead to
xtremely high time complexity.

. Algorithm design

In this section, we describe the details of our algorithm. The
roposed deadline-aware multiple migration planning algorithm
as two main components: the migration group planning and the
n-line scheduler. Observations and algorithm rationales are as
ollows:

• Since live migration is highly dependent on available net-
work bandwidth, migrations with different network paths,
source and destination hosts can be performed concurrently.
The scheduling algorithm should maximize the number of
resource-independent tasks migrating at the same time. In
addition, for a single migration, multi-path transmission can
improve performance.
• Due to the computational overhead, migrations with low

dirty page rate and small VM memory size can be migrated
in parallel through the same paths by treating them as one
migration (He et al., 2019). On the other hand, for migra-
tions with large memory and dirty page rate, the sequential
schedule for resource-dependent migrations can optimize
the total migration time.
• One physical host interface can only receive one and send

one migration at the same time, i.e, one pair of ordered
source and destination hosts (sj, dj) can only be assigned to
one migration at the same time.
• After each migration completion, the network resources

used by both migrations and cloud services will change.
For migration plans such as consolidation, migrations with
small execution time quickly free up more bandwidth for
subsequent migrations, thereby reducing the total migration
time. On the other hand, migrations that negatively affect
network bandwidth will increase the execution time of
other migrations.
• If the available bandwidth is smaller than the dirty page

rate, the migration should not be started as the accumulated
dirty pages will become bigger after each round of memory
copy, resulting in unacceptable migration execution time
and downtime.

.1. Multiple migration planning

The proposed heuristic algorithm for concurrent migration
roup is shown in Algorithm 1. Given the input of migration
equests in terms of flavor, dirty rate, compression ratios, the
cheduling windows of migration tasks (deadlines), and the pair
f source and destination host, the algorithm will return the
rdered list of concurrent migration groups where each group is
he maximal resource-independent migration group.

T. He, A.N. Toosi and R. Buyya The Journal of Systems & Software 176 (2021) 110943

m
t
t
m

i
m
i
i
b
(
c
d
u
t
X
(

d
o
s
a
T
4

Algorithm 1: Heuristic graph-based algorithm of concurrent
migration grouping

Input: {n : sn → dn}
Result: migGroups {GSq

mig}

1 {Creating Dependency Graph Gdep of Mig Tasks}
2 Gdep ← null;
3 foreach nj in FeasibleMigs do
4 for nj+1 in FeasibleMigs do
5 if IsIndependent(mk,mj)== 0 then
6 addEdge(Gdep,(mk,mj));

7 {Creating resource-dependent complete subgraphs}
8 {Ndep} ← ∅;
9 foreach nj ∈ Gdep do

10 if IsVisited(nj)== False then
11 N j

dep ← {nj}; //complete graph contains mig j;
12 SetVisited(nj)← Ture;

CreateCompleteDepGroup(nj,Gdep,N
j
dep);

13 {Ndep} ← {Ndep} ∪ N j
dep;

14 {Scoring and Sorting each node}
15 foreach N i

dep ∈ {Ndep} do
16 foreach nj in N i

dep do
17 cost

(
nj
)
← α · T j

mig + β ·

(
T j
mig − Dj

)
+ γ · Ij;

18 N i
dep ← sorting(N i

dep,{cost(nj)});

19 {Get migration groups from node-weighted subgraphs}
20 return {GSq

mig} ← GetConcurrentGroup({Ndep});

Algorithm 2: Creating concurrent migration groups
GetConcurrentGroup({Ndep}):

1 Sq ← 0; //scheduling priority for migration groups;
2 GSq

mig ← ∅;
3 foreach nj ∈ {Ndep} do
4 new← Ture;
5 for s = 0 to Sq do
6 flag ← True;
7 foreach nk ∈ Gs

mig do
8 if getEdge(nj, nk,Gdep) then
9 flag ← False;

10 if flag == True then
11 Gs

mig ← Gs
mig ∪ {nj}

12 new← False;
13 break;

14 if new == True then
15 Sq ← Sq + 1;
16 GSq

mig ← {nj};

17 delete(Gdep, {Ndep}, nj);

18 sorting({GSq
mig},

∑
cost(nj ∈ Gs

mig));

19 return {GSq
mig}

First, we need to assign the deadline to each SLO-related
igration task based on Eqs. (8) and (9). Secondly, considering

he computing overheads, the migration tasks need to preprocess
he integrated network-sharing migrations that suit the parallel
ethod. In other words, if the migration time not exceeds the
8

deadline and the total migration time is reduced, the scheduler
will perform the parallel method for such migration.

From line 2–5 in Algorithm 1, the dependency graph Gdep
s created for all feasible migration tasks. If two tasks share
igration resources (dependent), the edge (nj, nk) will be added

nto Gdep. As we allow multi-path transmission for memory copy-
ng, not only the ordered pair of source and destination (s, d)
ut also intersected network paths of migrations with different
s, d) will be shared. Therefore, whether two migrations can be
oncurrently performed is described in Algorithm 3, where Pk
enotes the set of paths that can be allocated to migration k,
(Pk) denotes the total available bandwidth, and Ck

s , C
k
d denote

he interface capacity of source and destination hosts. In addition,
j ∗ Xk = 0 denotes that migration j and k share resources
dependent). Otherwise, the two migrations with Xj ∗ Xk = 1 can
be performed concurrently.

Algorithm 3: Check independence of two migrations with
multi-paths and interface constraints

Input: Pk, Pj, (sk, dk), (sj, dj)
Result: Xj ∗ Xk = 1 or 0
Function IsIndependent(mk,mj):
if sk == sj and dk == dj then

return Xj ∗ Xk = 0;
else

if sk ̸= sj and dk ̸= dj then
if u

(
Pj
)
− u

(
Pj ∩ Pk

)
≥ min

(
u
(
Pj
)
, C j

s, C
j
d

)
and

u (Pk)− u
(
Pk ∩ Pj

)
≥ min

(
u (Pk) , Ck

s , C
k
d

)
then

return Xj ∗ Xk = 1;
end

else
return Xj ∗ Xk = 0;

end
end

From line 7–13 in Algorithm 1, we divide the dependency
graph Gdep into the largest complete dependency subgraph of
the remaining graphs {Ndep}, where each migration is depen-
ent on others. One migration j exist and can only exist in
ne complete subgraph nj ∈ N i

dep as the complete dependency
ubgraph |Ndep| is the largest. Between complete subgraphs, there
re links remained according to the original dependency graph.
he corresponding recursive algorithm is described in Algorithm
.

Algorithm 4: Create Complete dependency Subgraph

CreateCompleteDepGroup(nj,Gdep,N
j
dep):

1 N j
adj ← adjacency(Gdep, nj);

2 SetVisited(nj)← Ture;
3 for nk ∈ N j

adj do
4 if IsVisited(nk)== False and IsCompleteGraph(N j

dep, nj)
then

5 N j
dep ← N j

dep ∪ {nk};
6 CreateCompleteDepGroup(nk,Gdep,N

j
dep);

7 if |N j
dep| larger than previous then

8 return N j
dep

From line 15–18, in each complete subgraph, we calculate the
score of each migration (line 17) and sort them from the smallest

T. He, A.N. Toosi and R. Buyya The Journal of Systems & Software 176 (2021) 110943

t
c

r

g
p

I

w
e
i

c
m
2
s
d
g
c
o
g
I
m

c
n
o
a
p
o
c
n

4

b
s
n
t

4

v

p
t

i
m
a
t
t
i
p
s

5

e
p
e
t
t
(
o
i
e
e
m
o
c

5

p
t
t
t

o the largest based on the score. For the function of migration
ost cost(nj), it is the weighted sum of the migration time (Eq. (1),
(5), and (6)), minus slack time, and the impact of migration j on
other migrations, where α, β , γ are coefficients. In our algorithm,
as the cost of each individual migration is evaluated separately,
we categorize the benefit of single migration into direct and
potential impact Ij = a · Idirectj + b · Ipotentj , where a + b = 1. The
direct impact of migration j can be represented as:

Idirectj =

(∑
nk∈{Ndep}−nj

T k
exe
′
−
∑

nk∈{Ndep}
T k
exe

)
+

(∑
nk∈{Ndep}−nj

(
T k
mig
′
− Dk

)
−
∑

nk∈{Ndep}

(
T k
mig − Dk

)) (20)

where {Ndep} is the set of all complete dependency subgraphs.
T k
exe
′ and T k

mig
′ denotes the execution time and the migration time

after the migration nj is completed. If the migration nk and nj are
esource dependent, T k

mig
′ will be the sum of T k

exe
′ and T j

exe.
The potential impact considers the possibility of decreased mi-

ration time when the bandwidth of some parts of the migration
aths increases. Then, it can be represented as:

potent
j =

∑
nk∈{Ndep}−nj

∑
p∈Pk

⏐⏐{ê}⏐⏐
|p|
·

(
T k,u(ē)
mig − T k

mig

)
(21)

here
⏐⏐{ê}⏐⏐ is the number of links with increased bandwidth and

ˆ ∈ p, p ∈ Pk. The migration time T k,u(ē)
mig is based on the minimal

ncreased bandwidth among the links u(ē) = min(u(ê)).
In the final step (line 18), the cost-driven algorithm creates

oncurrent migration groups (Algorithm 2), where the selected
igrations are resource independent. As shown in Algorithm
, according to the sorted N j

dep ∈ {Ndep}, it will always first
elect a migration nj with the lowest score from each complete
ependency subgraph N j

dep ∈ {Ndep} (line 3). If there is no mi-
ration group feasible for nj (new == true), it will create a new
oncurrent migration group Gs

dep. After adding the migration to
ne migration group Gs

mig , it will be deleted from the dependency
raph Gdep and the corresponding subgraph N j

dep ∈ Ndep (line 17).
n line 18, migration groups are added to the sorted list from
inimum to maximum score in seconds.
When additional migration tasks arrive after the initial pro-

essing, the on-line migration scheduler will first remove the
ode from the migration dependency graph after completing
ne migration. If additional migration tasks arrive, our proposed
lgorithm will add the new tasks to the existing migration de-
endency graph. The planning algorithm will also remove the
ngoing migrations from the dependency graph. Then, it recal-
ulates the plan based on the current system status (available
etwork and computing resources).

.2. Time complexity analysis

Let N denote the total migration tasks number. Then, the
process for creating dependency graph requires O (N). For the
readth-first research in dependence graph to create complete
ubgraphs, it requires O (N + N (N − 1)/2). Let E denote the total
umber of physical links. Then, the time complexity of cost func-
ion (Line 16) is O (NE). Thus, The worst case time complexity
of scoring and sorting is O

(
N2E + N log (N)

)
. The worst case

for creating concurrent migration group is O
(
N2
)
. Therefore, the

time complexity of worst case of Algorithm 1 is O
(
N2E

)
.

.3. On-line migration scheduler

For the real data center environment, the network workloads
ary greatly over time. Therefore, it is impracticable to set the
 (

9

Algorithm 5: Updating and scheduling feasible migrations
Data: migGroups, currentGroupNum
Result: Start feasible migrations and groups

1 foreach G in migGroups do
2 groupNum = getGroupNum(G);
3 if groupNum<= currentGroupNum then
4 foreach mig in G do
5 if isMigFeasible(mig) then
6 processMigrationStart(mig);

7 {Scheduling migration in subsequent group};
8 if hasNext(Gcurrent) then
9 Gnext = getNextGroup(Gcurrent);

10 flag = False; for mig in Gnext do
11 if isMigFeasible(mig) then
12 preocessMigrationStart(mig);
13 flag = true;

14 if flag then
15 Gcurrent = Gnext ;

16 else
17 if size(inMigrationList) == 0 and size(migPlan)==0 then
18 setTotalMigTime(migPlan);

start time of each migration just based on the prediction model
and the available bandwidth at the current time τ = 0. The
roposed on-line migration scheduler can dynamically schedule
he subsequent migrations at the end of each migration.

The algorithm used by the SDN-enabled migration scheduler
s shown in Algorithm 5. It includes two steps: (1) check feasible
igrations in the previous and current migration groups; (2) start
ll feasible migrations in the next group. By only considering
o start the next migration group in the ordered list at each
ime, it prevents the occurrence of priority inversion. The priority
nversion refers to the migration group with a higher score (lower
riority) may start to migrate before the group with a smaller
core.

. Performance evaluation

In this section, we first introduce the configuration of our
vent-driven simulation system, then the various scenarios and
arameters to be evaluated in both inter and intra-datacenter
nvironments. In the end, we analyze the results and conclude
he experiments. We compare the performance of SLAMIG with
he one-by-one scheduling and other two state-of-art algorithms
Bari et al., 2014; Wang et al., 2019). The results indicate that
ur proposed algorithms achieve good migration performance
n terms of the total migration time, total transferred data, av-
rage migration time, and average downtime, meanwhile can
fficiently reduce the deadline violations during the multiple live
igrations. Furthermore, we evaluate and analyze the impact
f multiple migration planning and scheduling on the energy
onsumptions and the QoS of applications.

.1. Simulation system configuration

In this section, we first introduce the details of our experiment
latform for SDN and NFV-enabled cloud data centers. To evaluate
he performance of large-scale multiple live migrations, we ex-
ended the CloudSimSDN-NFV (Son et al., 2019) by implementing
he phases of live VM migration and corresponding parameters
Table 3 and Fig. 2). It is an event-driven simulation environment

T. He, A.N. Toosi and R. Buyya The Journal of Systems & Software 176 (2021) 110943
Table 3
Simulation events in MigrationScheduler, SDNDataCenter, and NetworkOperatingSystem.
Num. Event and Operation Function

0 SDN_VM_MIG_PRE Check available network and set up the migration routing
1 SDN_VM_MIG_START Start the pre-copy phases
2 SDN_PACKET_COMPLETE Check the application and migration flows, estimate the

downtime and send the remaining dirty page
3 SDN_PACKET_SUBFLOW_COMPLETE Check the completion of multiple migration flows
4 SDN_VM_PAUSE Pause the VM/VNF based on the downtime and iteration

threshold
5 SDN_VM_RESUME Resume the VM/VNF on the dest host after the completion

of the stop-and-copy flow
6 SDN_VM_MIG_POST Shut and delete the original instance and rerouting the

flows to the new VM/VNF.
7 SDN_VM_MIG_SCHEDULER Process the migration scheduling in the current time.
Table 4
Parameters supported in event-driven simulator.
Type Parameters

Computing CPU Memory Disk Workloads Task scheduling Task priority Overbooking ratio
Networking Bandwidth Topology Switch Buffer Ports Channel Control plane Data plane
Monitoring Statistic Energy consumption Utilization Response time Network delay Fault handling
Live migration Dirty page rate Mig. time Downtime Transferred data Deadline Available bw Flow path
Fig. 7. MigrationScheduler to simulate single live migration follows the
sequence of MigrationPlanning.

supporting SDN-enabled cloud computing. It also provides the
mechanism of auto-scaling of VNF and automatic load balanc-
ing through different SFCs. Table 4 illustrates some parameters
supported by the extended version.

Fig. 7 illustrates the implemented components regarding live
VM migration: Migration Class contains all the information re-
garding one migration task, such as the migrating VM/VNF (RAM
size, dirty page rate, data compression ratio, remaining dirty
pages), source and destination hosts, the scheduling window,
assigned routings, the current phase of live migration, etc. The
MigrationPlanner takes the current migration tasks in the waiting
queue as input and calculates the sequence of multiple migrations
and sends the result to the MigrationScheduler. If there are addi-
tional migration tasks arrive, it will calculate the sequence again
based on the on-going and waiting to schedule migration tasks.
MigrationScheduler takes charge of starting the migration task
based on the output of the MigrationPlanner. When a migration
is complete, the SDNDataCenter will send the event 7 (Table 3)
to trigger the scheduler to start new migrations according to the
remaining scheduling plan. With the events of live migration,
the Class SDNDataCenter emulates the live migration in every
phase as shown in Fig. 2: (1) checking the availability of network
and computing resources; (2) sending the memory and dirty
pages to the destination hosts iteratively; (3) checking the current
estimated downtime and iterative rounds with the thresholds; (4)
10
pausing the workload processing and refusing the new packets
arrive at the instance; (5) resuming the workload processing and
rerouting the network packets to the new location. (6) notic-
ing the on-line scheduler about the completion; (7) if selected,
storing the statistic for every migration step. The NetworkOper-
atingSystem calculates the routings and allocated bandwidth to
the migration flows based on the selected network routing policy
and bandwidth sharing scheme. It simulates the network packet
transmission based on the bandwidth and delay along the path,
packs and unpacks the contents from and to the compute nodes.

5.2. Evaluation scenarios and configurations

In this section, we list the details of various evaluation scenar-
ios and corresponding setups regarding the physical datacenter
topologies, virtual topologies (applications), and workloads.

For the physical data center topology, we evaluated the per-
formance of multiple migrations planning algorithms in both (1)
WAN environment for Inter-Data Centers Network (Knight et al.,
2011) and (2) Intra-Data Center Network (FatTree). The three-tier
8-pod FatTree (Al-Fares et al., 2008) intra-data center network
consists of 128 physical hosts with the configuration of 24 cores,
10 000 MIPS each, 10240 GB RAM, 10 PB storage, and 10 Gbps
for all physical links. The inter-data center network used in the
experiment is shown in Fig. 8. Each link between routers has
10 Gbps bandwidth. Each router as the gateway connects to the
local data center cluster through the 40 Gbps link. Each local data
center includes 2048 hosts with the same configuration of the one
in FatTree which designed to be sufficient for all instances during
the experiments.

Regarding the types of virtual topology (application), we se-
lected them by different flavors and connectivity. Table 1 il-
lustrates the flavors we used for different applications, such as
multi-tier web applications and SFCs. In general, we generated 4
different types of virtual topologies: (1) single; (2) star-to-slave;
(3) sfc; and (4) wiki (multi-tier web application with SFCs).

There is no connection or network communication between
VMs in the single topology. For every group of star-to-slave, there
is one master instance that connects to other slave instances in a
star fashion. The network requests and workloads are only sent
from the master to the slave instance. Fig. 9(a) indicates a star-to-
slave virtual topology where v0

0 is the master instance and v0
1 to v0

4
are the slave instances. The sfc consists of VNFs chained together
where each tier can have multiple identical VNFs with the same

T. He, A.N. Toosi and R. Buyya The Journal of Systems & Software 176 (2021) 110943

t
t
w
t
r
s

s
n
S
t
d

S
m
t
c
d
p
g
a
(
i

Fig. 8. AARNET as the inter-datacenter WAN (Knight et al., 2011).

function. The workloads are sent evenly to the VNFs with same
function as shown in Fig. 9(b). Each request generated between
two VMs/VNFs in star-to-slave and sfc experiments consists of
hree parts: computing workload in the sender VM (instruc-
ion numbers), data transmission workload (bits), and computing
orkload in the recipient VM. The request is first processed in
he sender VM. Then, network data is generated and sent to the
ecipient VM. Finally, the recipient VM processes the request. The
ervice request’s arrival time of star-to-slave and sfc experiments
are generated in a finite time interval based on the Poisson distri-
bution with a mean as 20 and 200 per second, respectively. Each
packet size (pSize) is generated in the normal distribution with
pSize as the mean value and 0.1pSize as the variance. The CPU
processing workloads in the sender and recipient are generated
based on the given workload size (loadsize) of request sender and
recipient in the normal distribution with loadsize as the mean
value and 0.2loadsize as the variance. The pSize of each packet is
5 Mbits. The loadsize for request sender and recipient is 100 and
50, respectively.

In the scenarios of wiki, we simulate the three-tier web appli-
cations consisting of web (web), application (app), and database
(db) servers. We generate synthetic workloads based on
Wikipedia trace (Van Baaren, 2009) following the three-tier ap-
plication model (Ersoz et al., 2007). Network traffics between
servers is forwarded to different types of VNFs: Load Balancer
(lb), Firewall (fw), and Intrusion Detection System (ids). The
configuration of different types of servers and VNFs are shown in
Tables 1 and 5. As shown in Fig. 9(c), flows from the web servers
are forwarded to VNF lb1 then fw before reach to the app servers.
Meanwhile, flows from the app servers are forwarded to VNF lb2
and ids before reach to the db servers. For those flows coming
back to the web servers from db servers, they need to through
VNFs ids and lb2 then app servers and the VNF lb1. In addition to
those general VM specifications, VNFs have a specific field named
MIPO (million instructions per operation) (Son et al., 2019), which
models the throughput of the VNF. The MIPO specifies the CPU
workload length for a single network operation provided by a
VNF. Thus, it can provide the throughput of the VNF along with
the MIPS. For example, a VNF with 10000MIPS and 10MIPO can
handle 100 operations (request) per second. We assign MIPO to
Load Balancer, IDS, Firewall as 20, 200, and 800, respectively.

5.3. Results and analysis

In this section, we evaluate the performance of our proposed
algorithms SLAMIG through several experiments, including mi-

gration performance, QoS awareness, deadline awareness, and l

11
Table 5
Experiment scenarios profile of wiki.
Scenarios VNFs # VMs # Reser. bw Target Rate Mig.

lb1 fw lb2 ids web app db (Mbps) (Request/s) #

wiki-s1 1 3 1 3 8 24 2 2 7.8402 34
wiki-s2 2 6 2 6 32 96 8 2 1.9601 118
wiki-s3 2 6 2 6 80 240 20 2 1.5680 180

energy consumption. In order to compare with other multiple
migration scheduling algorithms (Bari et al., 2014; Wang et al.,
2019), we use the similar simulation settings in terms of initial
placement and dynamic resource management policy. Using the
settings, we highlight the benefits of our multiple migration
planning and scheduling algorithm compared to other algorithms.
Note that, given the multiple migration requests provided by
the dynamic resource management policies, multiple migration
planning and scheduling algorithms are not confined to any spe-
cific resource reallocation scenario. The initial placement of all
instances are generated in the way that connected VMs and VNFs
are distributed among hosts in Least Full First (LLF) manner. The
dynamic resource algorithm generates migration requests to con-
solidate all connected VMs and VNFs into the same host as com-
pactly as possible, and if not, allocate them to the most full hosts.
The configuration can simulate a large amount of resource con-
tention between the multiple migration requests for the dynamic
resource management to efficiently utilize the cloud resources.
We compare the performance of SLAMIG with the one-by-one
migration policy as the baseline and the other two state-of-art
algorithms. One algorithm (CQNCR) (Bari et al., 2014) migrates
VMs by groups. The other is the approximation algorithm (FPTAS).
It optimizes the total migration time by maximizing the total
assigned network bandwidth to migrations (Wang et al., 2019).

5.3.1. Migration performance
In this section, we evaluated the migration performance in

terms of total migration time, total downtime, average execution
time, total transferred data, and processing time. In experiment
single, we randomly generated a total of 100 to 1000 instances
with flavor from micro to large in the inter-data center topology
or Wide Area Network (WAN) (Fig. 8). We use the dirty page
factor in the simulation experiments, which is the ratio of the
dirty memory rate (bits per seconds) to the total memory of the
VM (bits) being migrated. For the scenarios of migrating instances
with low and high dirty page rate, we randomly generate the dirty
page factor from 0.01 to 0.05 and from 0.01 to 0.15, perspectively.
The dirty page rate (Gbps) is the product of the total memory size
and the dirty page factor.

Furthermore, we evaluate the migration performance of wiki
cenarios in FatTree. Table 5 illustrates the details of three sce-
arios in the wiki experiment, including the virtual topologies of
FCs and multi-tier web applications, reserved virtual bandwidth,
he request arrival rate, and the number of migration tasks. The
irty page factor is set as 0.001 for all instances.

ingle VM topology in inter-data centers. First, we evaluated the
igration performance in a large scale manner from 100 to 1000

otal migration tasks (Fig. 10). The results indicate that in SLAMIG
an achieve the best total migration time without scarifying the
owntime performance in both high dirty page rate and low dirty
age rate cases. Regarding the processing time of multiple mi-
ration planning, our algorithm is less time consuming than the
pproximated algorithm (FPTAS) and iterative heuristic grouping
CQNCR). In the scenarios of the low-dirty-page-rate single exper-
ment, the total migration time of SLAMIG is 62.85% to 63.69%

ess than the baseline and 10.50% to 39.41% less than the FPTAS.

T. He, A.N. Toosi and R. Buyya The Journal of Systems & Software 176 (2021) 110943

B
t
r
F
m

S
c
I
t
8

Fig. 9. Virtual Topologies used in the experiments.
Fig. 10. Live migration of non-connected VM (single) in AARNET.
t
t
t
o
a
n
i
t
t
w

y starting the migrations group by group at the same time, the
otal migration time of CQNCR is only marginally smaller than the
esult of the baseline (maximum 9.06%). Meanwhile, as shown in
ig. 10(b), the total downtime of SLAMIG is at least 40.27% and at
ost 55.87% less than the FPTAS.
For the result of algorithm running time, we observe that the

LAMIG algorithm can significantly reduce the computation time
ompared to solving the approximate MIP problem in FPTAS.
n addition to Fig. 10(d), when there are 1000 migration tasks,
he processing times of CQNCR, FPTAS, SLAMIG are 15471.29,
9.94, and 30.23 s respectively. When performing 500 migration
 o

12
asks, the processing time of SLAMIG (24.64 s) is 44.70% less
han that of FPTAS. The runtime of sequential scheduling is less
han 1 s, because in our experiments, the available sequence
nly needs to be calculated once as all sequential combinations
re schedulable. For the algorithm CQNCR, after updating the
etwork bandwidth and computing resources in each round, it
teratively groups the migrations in a greedy manner and selects
he migration group with the most positive impact. Thus, when
he number of migration tasks increases, the processing time
ill increase dramatically (Fig. 10(d)). Compared with CQNCR,
ur proposed algorithm can calculate all concurrent migration

T. He, A.N. Toosi and R. Buyya The Journal of Systems & Software 176 (2021) 110943

g
a
p
a
o
m
t
c
t

s
a
m
w
o
p
t
g
M
m
w
n
t
b
c

W
w
g
t
s
w
l
S
8
F

Fig. 11. Live migration of multi-tier applications with SFCs (wiki) in FatTree.
roups in one round. Since each migration task has been given
weight in the dependency graph, we also generate the largest
ossible migration group with minimal weight. Therefore, it can
chieve better performance in total migration time. Note that in
ur algorithm, generating a migration dependency graph takes up
ost of the processing time in multiple routing environments. For

he single routing environment such as FatTree, we only need to
heck the source and destination hosts, which will further reduce
he processing time.

Fig. 10(c) shows the details of the experiment of single in-
tances with a high dirty rate. Compared with the other two
lgorithms, SLAMIG can maintain the performance of the total
igration time. By allowing other migration tasks to be initiated
hen there is a small amount of bandwidth to maximize the
verall network transmission rate, FPTAS may cause significant
erformance degradation in both total migration time and down-
ime. In the worst case, the total migration time shown is even
reater (106 times) than the result of one-by-one scheduling.
oreover, all migration start times are based on the prediction
odel in CQNCR. Inevitably, in the worst case, several migrations
ill start when their resource-dependent migration tasks have
ot been completed, which will cause the allocated bandwidth
o be less than the dirty page rate. In other words, the allocated
andwidth is insufficient to converge the migration in the worst
ase.

eb application topology in FatTree. In the experiment of wiki,
e evaluated the algorithm performance regarding the total mi-
ration time, total downtime, average execution time, and total
ransferred data during the live migrations (Fig. 11). In all three
cenarios, the SLAMIG achieves the optimal total migration time
hile maintaining other migration performance criteria at the

evel of sequential scheduling. Compared with the baseline, the
LAMIG reduces the total migration time by 60.74%, 74.41%, and
7.13%. The results are −5.66%, 83.47%, and 73.02% less than
PTAS and 21.41%, 94.96%, and 43.17% less than CQNCR.
13
In some cases, such as wiki-s1 in Fig. 11(a), we noticed that
the total migration time of FPTAS may be slightly better than
our algorithm. It is because several migration tasks can be sched-
uled in the same paths when a small amount of bandwidth is
available to maximize the overall network transmission rate. One
migration can be started even the allocated bandwidth is smaller
than the dirty page rate. Although the sum of migration execution
time is larger, the total migration time may be smaller due to the
early start time. As mentioned in Section 3.2, we argue that it
will increase the average execution time of each migration task
(Fig. 11(c)), resulting in larger downtime (Figs. 10(b) and 11(b))
and total transferred data (Fig. 10(d)).

Considering total downtime, average execution time, and total
transferred data, we should concurrently schedule the resource-
dependent migration tasks to alleviate the impact of multiple live
migrations on the system and guarantee the QoS of the migrating
instances. The results indicate that there is no statistical differ-
ence between SLAMIG and the sequential scheduling in these
parameters. However, the FPTAS and CQNCR drastically increase
the total downtime by 1.75/1.66, 44.19/458.23, 7.77/1.28 times,
the average execution time by 4.006/5.03, 28.44/59.92, 14.51/3.60
times, and the total transferred date by 0.66/0.83, 4.70/9.88,
2.41/0.60 times, respectively. Although FPTAS and CQNCR can
achieve a better performance of total migration time compared
to the baseline in other scenarios, bandwidth sharing among
resource-dependent instances with large memory and high dirty
page rate will lead to unacceptable results (wiki-s2).

Summary. (1) SLAMIG achieves the optimal migration perfor-
mance in terms of the total migration time, downtime, average
execution time, and total transferred data, while the processing
time is less than the CQNCR iterative grouping and FPTAS ap-
proximation algorithm. (2) The prediction model of migration is
used to estimate the execution time of one migration and the
total migration time of a concurrent migration group. However,
it is not efficient to assign a fixed start time for a live migration

T. He, A.N. Toosi and R. Buyya The Journal of Systems & Software 176 (2021) 110943

p

o
g
g
t
d
t
t
m
t
s
t
s
t
t
b
o
d
F
t
r
d
f
d
t
t
o
r
a
a
i
a
e
m

5

t
o

t

t
t
p
b
r

Fig. 12. Average network transmission time without live migration with different number of links and reserved virtual link bandwidth under ratio bandwidth sharing
olicy.
nly based on the prediction model. In an independent migration
roup, the execution time varies, which leads to multiple time
aps between the completion time and the estimated start time of
he next group. Moreover, in the real environment, the real-time
irty page rate may be different from the historical statistics and
he current monitoring value. In a dynamic network environment,
he available network bandwidth used in the prediction model
ay also change over time. In short, the prediction execution

ime is not necessarily identical to the actual time during the
cheduling, which will cause two resource-dependent migrations
o run concurrently. Therefore, it is essential for the on-line
cheduler to dynamically schedule migration tasks according to
he plan. (3) By maximizing the total network transmission rate,
he total migration time can be reduced to a certain extent,
ut the optimal migration performance cannot be achieved. If
ne migration starts with the allocated bandwidth below its
irty page rate, it will extremely enlarge the execution time.
or migrations with large dirty page rates, allocating bandwidth
hat is just slightly larger than the dirty page rate will still
esult in an unacceptable migration performance with a large
owntime and number of memory-copy iteration rounds. There-
ore, we should not neglect the concurrency or resource sharing
ependencies between different migration tasks. (4) Regarding
he performance and impact of multiple migration scheduling,
otal migration time is not the only parameter that needs to be
ptimized. The average bandwidth for each migration can also
eflect the efficiency of multiple migration scheduling. A larger
llocated bandwidth means smaller single migration execution
nd downtime. As shown in Eq. (6), it will also result in fewer
teration rounds for dirty page copying. Thus, we should also
chieve better performance in terms of the average bandwidth of
ach migration resulting in better total/average execution time,
igration downtime, and transferred data.

.3.2. QoS-aware
In this experiment, we evaluated the impact of multiple migra-

ion planning on QoS in terms of the network transmission time
f application requests.
There are three network bandwidth sharing policies to manage

he migration flow in Section 5.3.1: (1) free used by FPTAS; (2)
reserved used by CQNCR; and (3) ratio used by SLAMIG and
OneByOne. The bandwidth sharing solutions proposed by FPTAS
and CQNCR which do not consider the bandwidth competition
can only be adopted in an ideal scenario where the remaining
bandwidth for the live migration is sufficient. For the free policy,
he live migration can only utilize the available bandwidth along
he network paths left by other service traffic. For the reserved
olicy, the live migration only use the remaining unreserved
andwidth left by other virtual links. The available bandwidth

eserved by other services cannot be allocated to the migration

14
flow. Therefore, under the free or reserved bandwidth sharing
policy, the live migration flow will not affect the network trans-
mission time of other services in terms of network bandwidth
competition. Note that in the separated control (migration) net-
work (Tsakalozos et al., 2017), the migration flow will not affect
the bandwidth allocation of service traffic. However, we argue
that the free and reserved policies can only be adopted when
the remaining bandwidth for the live migration is sufficient to
converge the live migration in time. Furthermore, in some worst
cases, as shown in Fig. 11, the massive downtime caused by the
free or reserved policy will seriously affect the request response
time of the migrating service.

When other service traffic and migration flows compete on the
network bandwidth, studies (Clark et al., 2005; He et al., 2019)
show the effect of single live migration on the service response
time of the migrating VM. Research He et al. (2019) also evaluates
the impact on the TCP and UDP traffic and Xu et al. (2014),
Deshpande and Keahey (2017) investigate the effect on other
service traffic during the migration. For the ratio policy, the actual
allocated bandwidth of a network flow is based on the ratio of the
reserved bandwidth of the flow to the total bandwidth demand
along the network path. It is practical to use ratio bandwidth
sharing policy when the remaining bandwidth for the migration
flow is insufficient to converge the migration or it is urgent to
finish the migration to avoid QoS degradation and SLA violations.

With the ratio policy, we first explain the principle of the
impact of live migration on the network traffic between VMs. In
the experiment, we control the number of virtual links between
VMs along the network path of one migration. The network
traffic between two VMs is generated based on the wiki work-
load. Fig. 12 illustrates the average network transmission time
of network traffic between VMs, where reserved bandwidth size
for each virtual link, the total number of virtual links in the
evaluating network path, and the available bandwidth of the eval-
uating network path are controlled variables. The results indicate
that when the total bandwidth of reserved virtual link is lower
than the physical bandwidth, the reserved bandwidth of each
virtual link can be satisfied. As the number of links increases,
the actual bandwidth allocated for each virtual link decreases,
which leads to the longer network transmission time. Fig. 13
shows the average network transmission time when the service
traffic is sharing the bandwidth with one live migration under
the ratio policy. In our experiments, the reserved bandwidth for
live migration is equal to the physical network bandwidth. As
the physical network bandwidth increases, the impact of live
migration on the network transmission time of other service
traffic decreases. Furthermore, it also indicates that when the
number of virtual links along the migration path or the reserved
bandwidth for each virtual link increases, the live migration has

less impact on the network transmission time of service traffic.

T. He, A.N. Toosi and R. Buyya The Journal of Systems & Software 176 (2021) 110943

p

s
a
c
t
s
d
g
t
s
w
o
w
i
p

m
(
d
n
i
s

g
a
t
w
r
r

Fig. 13. Average network transmission time during live migration with different number of links and reserved virtual link bandwidth under ratio bandwidth sharing
olicy.
Fig. 14. Average network transmission time of application requests under ratio policy.
Table 6
Simulation configurations of star-to-slave and sfc experiments.
Group star-to-slave vm link bw (Mbps) Mig # sfc vnf link bw (Gbps) Mig #

5 star-s1 25 100 19 sfc-s1 21 1.0 19
10 star-s2 50 100 37 sfc-s2 43 1.0 40
15 star-s3 75 100 55 sfc-s3 69 1.0 65
8
n
a
a
w
r
d
t
m
p
t
t
w
F
s
s
s
a

S
p
i
l
b
r
b
o
m

To demonstrate the performance of different migration
cheduling algorithms with ratio bandwidth sharing policy, in
ddition to the wiki experiment configuration in the FatTree data
enter network, we also added the experimental results from
wo types of virtual topologies: (1) start-to-slave and (2) sfc. The
tar-to-slave and sfc experiments are both evaluated in the inter-
ata center network. Table 6 describes the configuration of the
roup number, instance number, link reserved bandwidth, and
he number of migration tasks in these two experiments. We
et up the network resources in the way that network traffic
ithin the host can take full advantage of the reserved bandwidth
f the virtual link between VMs/VNFs. For the master instance
ith small flavor, the dirty page factor is 0.12, and for the slave

nstance with tiny flavor and a VNF with large flavor, the dirty
age factor is 0.02.
Figs. 14(a) and 14(b) demonstrate the average network trans-

ission time of applications in the initial placement (nomig):
1) In the star-to-slave experiment, applications experience large
elay from master to slave instances; (2) In sfc experiment, the
etwork transmission time between applications is small in the
nitial placement. The average network transmission time is 2.48
, 0.02 s, and 0.02 s, respectively.
The results of star-to-slave indicate that the consolidating mi-

rations can efficiently reduce the delay encountered by the
pplication. The SLAMIG achieves the minimal average network
ransmission time of application requests in all three scenarios
hich are 0.14 s, 0.32 s, and 0.64 s less than the second-best
esults. Compared to the non-migration situation, it can also

educe the network transmission time by 95.79%, 90.70%, and m

15
9.25%. In the experiment of sfc, FPTAS excessively increases the
etwork transmission time of application requests. As the FPTAS
lgorithm intends to maximize the network transmission rate of
ll migration tasks, it significantly reduces the transmission band-
idth among the application servers. In scenario sfc-s1, SLAMIG
educes the average network transmission time due to consoli-
ation. Because less total migration time and average execution
ime will result in a shorter network transmission time during the
ultiple migrations. For the scenario sfc-s2 and sfc-s3, the initial
lacement is sufficient to provide enough bandwidth according
o the virtual link reservation. SLAMIG does not increase network
ransmission time in sfc-s2, and only increases 0.35 s in sfc-s3,
hich can guarantee the QoS during the multiple live migrations.
or the experiment of wiki, SLAMIG can maintain the QoS at the
ame level of the sequential scheduling with ratio bandwidth
haring policy. However, the average transmission time of all
ervice requests increases by 0.04s, 0.131s, and 0.272s in FPTAS
nd 0.08s, 0.193s, and 0.269s in CQNCR.

ummary. Although the migration downtime is an important
arameter to evaluate the impact of migration on the migrating
nstances, the QoS of other services in the data center network is
argely ignored (He et al., 2019). By utilizing the free and reserved
andwidth sharing policy, the transmission time of application
equests will not be affected. However, in the case where ratio
andwidth sharing policy is required to converge the migration,
ur proposed algorithms can minimize the impact of multiple
igrations on the application, thereby ensuring the QoS and

itigating SLA violations.

T. He, A.N. Toosi and R. Buyya The Journal of Systems & Software 176 (2021) 110943

T
E

d
p

i
e

w
t
a
a
a
n
d
t
r
a
o
r
a

S
d
c
o
S
o
m
t

5

m
s
p
l
c
A
g
I

e
r
t
1
t
e

S
t
a
s
s
t
h
r
T
b
D
t
o

6

b
T
v
o
b
a
o
r
c
m
t
o
n
2
l
o
V
r

i
r
e
i
a
a
m
d
i
g
d
t

m
p
w
n
m
g

able 7
valuation scenarios of deadline-related migrations.
Name vm nfv D(star) (s) D(sfc) (s) Total mig

star-sfc-5 25 23 100 300 46
star-sfc-10 50 40 200 500 87
star-sfc-15 75 75 300 800 138

5.3.3. Deadline-aware
In this section, we evaluate and analyze the performance of

ifferent multiple migration plans under various urgency and
riorities. In the experiment star-sfc, we evaluated the deadline

awareness in the remaining scheduling window and the number
of total missing deadlines. In Table 7, as shown in the QoS-
aware experiment, instances in star-to-slave have large delays due
to the burst workloads, so the deadlines are tight. Meanwhile,
the deadline for migration VNFs in sfc with sufficient bandwidth
s larger. The dirty page factor is 0.02 for all instances in this
xperiment.
Fig. 15 illustrates the results of the remaining scheduling

indow and the total missing deadlines. By ignoring the na-
ure of migrations with various urgency and priorities, the two
lgorithms (FTPAS and CQNCR) as a comparison have unaccept-
ble performance in terms of the remaining scheduling windows
nd the number of migration deadline violations. The average
umber of remaining scheduling window of FPTAS is negative
ue to the large execution time by allowing insufficient migra-
ion bandwidth. In all three scenarios, SLAMIG has the most
emaining scheduling window, which can reduce SLA violations
nd guarantee the QoS during the migration with different pri-
rities. Compared with FPTAS, CQNCR, and the baseline, FPTAS
educes the deadline violations by 100%, 96.875%/88.89%/95.56%,
nd 90.65%/64.29%/83.08%.

ummary. By comprehensively considering the scheduling win-
ow, execution time, and the impact of one migration, SLAMIG
an efficiently reduce the deadline missing while achieving the
ptimal migration performance. As a result, the total number of
LO violations can be minimized. Due to the flexibility of SLAMIG,
ne can also change the weight function to further reduce the
igration deadline violations by trading off the performance of

otal migration time.

.3.4. Energy consumption
In this section, we evaluate and analyze how different multiple

igration plans can affect the energy consumption of hosts and
witches. Switch (Wang et al., 2012) and Host (Pelley et al., 2009)
ower models are used to calculate the overheads of multiple
ive migrations in the data centers. Fig. 16 shows the power
onsumption of host and switch in experiment star-sfc and wiki.
s fewer hosts are involved after the consolidation, earlier mi-
ration convergence can reduce the host power consumption.
n the experiment of star-sfc, SLAMIG reduces the host power
consumption by 63.26%, 26.99%, and 12.86% compared to the non-
migration and reduces by 26.03%, 16.20%, and 7.45% compared to
the second-best results. We also observed similar results of host
energy consumption in wiki-s1 and wiki-s2 scenarios. In wiki-
s3, due to involved hosts are consistent after migrations, there
are only ignorable variances of host energy consumption among
different algorithms.

For the power consumption in networking resources
(switches), the main contribution comes from the elephant flows
of migrations from source to destination hosts. Another con-
tribution comes from the application communications, where
requests are sent between different physical hosts. In Fig. 16(b),
the networking energy consumption of FPTAS is much larger than
16
other algorithms because it allows small bandwidth allocation
to maximize the global migration network transmission rate.
Our proposed approach is 29.70%, 17.61%, 10.85% less than the
second-best result. Fig. 16(d) indicates that SLAMIG also con-
sumes the least energy during the multiple migrations in wiki
xperiment. Compared with the sequential scheduling, SLAMIG
educes by 17.16%, 13.83%, and 26.45%. As mentioned, although
he total migration time of FPTAS is smaller in wiki-s1, it costs
97.94Wh more than the SLAMIG. Therefore, the average migra-
ion execution time is also related to the migration overhead of
nergy consumption.

ummary. Although smaller total migration time can reduce the
otal energy consumption due to consolidation, maintaining the
verage execution time is critical to the network power con-
umption. Due to the heavy usage of network resources, the
witches consume a lot of energy during the migration. Even
hough consolidation and dynamic switching off the switches and
osts can help data centers save energy, migrating high-dirty-
ate instances will increase the energy consumption of switches.
herefore, multiple migration tasks must be carefully planned
ased on the migrating candidates, sources and destination hosts.
ynamic resource management policies also need to consider the
rade-off between the optimal allocation and migration energy
verheads.

. Related work

Akoush et al. (2010) explored the important parameters, link
andwidth and page dirty rate, that affect migration performance.
hey conducted experiments on migration performance under
arious workloads and proposed two simulation models based
n the assumption of average memory dirty rate and history-
ased dirty rate of VM to predict migration performance. There
re some works on the VM migration selector to minimize the
verall cost and reduce interference. Remedy (Mann et al., 2012)
elied on the SDN controller to monitor the state of the data
enter network and predict the cost of VM migration. The VM
igration controller of heuristic destination selector minimizes

he migration impact on the network by considering the cost
f migration, the available bandwidth for migration, and the
etwork balance achieved after migration. iAware (Xu et al.,
014) proposed a simple and light-weight interface-aware VM
ive migration strategy. It jointly estimates and minimizes the
verall performance overhead of both migration interference and
M co-location interference with respect to I/O, CPU, and memory
esources during and after migration.

There are Few studies related to the (soft) real-time issue
n live VM migration. These studies mainly focused on how to
educe the execution time of a single live migration. Tsakalozos
t al. (2017) studied the live VM migration with time-constraints
n the sharing-nothing IaaS-Clouds, where the cloud operator can
ssign specific scheduling windows for each migration task. For
lleviating the SLA violations, they proposed a migration broker to
onitor and limit the resource consumption, that is, to reduce the
irty page rate to force certain migrations to converge on time. By
nvestigating the computing and network resources used by sin-
le live migration, Checconi et al. (2009) presented a method to
elay the frequent page dirtying in order to reduce the execution
ime and downtime of a single live migration.

Furthermore, there are several works focus on optimizing
ultiple live VM migration planning. Ghorbani and Caesar (2012)
roposed a simple one-by-one heuristic VM migration planning,
hich did not consider parallel VM migration through different
etwork paths. Sun et al. (2016) explore the optimal planning for
ultiple VM migrations by mixing pre-copy and post-copy mi-
ration. Based on the fact of application network traffic direction

T. He, A.N. Toosi and R. Buyya The Journal of Systems & Software 176 (2021) 110943

c
s
(
p
f
V
s
m
b
m
b
i
o
g
m
V
s
r
S
i

Fig. 15. Deadline-related experiments in inter-datacenter.
Fig. 16. Energy consumption in hosts and switches.
haracteristic, it maximizes the available bandwidth to improve
erial and parallel migrations. Similarly, Deshpande and Keahey
2017) improved the live migration performance by considering
re-copy or post-copy migration based on the application traf-
ic direction. CQNCR (Bari et al., 2014) focuses on the multiple
M migration planning in one data center environment by con-
idering the available bandwidth and network traffic cost after
igration. They modeled the multiple VM migration planning
ased on a discrete-time model as a Mixed-Integer Program-
ing (MIP) problem. A heuristic migration grouping algorithm
y setting the group start time based on the prediction model
s proposed. However, because there are different combinations
f migration grouping, grouping and weighting the migration
roups directly can lead to performance degradation of the total
igration time. Without considering the connectivity between
Ms and the change of bandwidth, FPTAS (Wang et al., 2019)
implifies the problem by maximizing the net transmission rate
ather than minimizing the total migration time. In the context of
DN, the primary contribution compared to other research is the
ntroduction of the multipath transmission when migrating VMs.
17
As a MIP problem, they propose a fully polynomial-time approxi-
mation by further omitting certain variables. Table 8 summarizes
the comparison of live migration planning and scheduling meth-
ods for the objectives to be migrated, and whether the deadline
of different migration tasks, QoS of applications, the energy con-
sumption of hosts and switches, concurrent migration scheduling,
and enables the multiple routing of migration flows and online
scheduler to manage migration tasks are considered. The dash
mark indicates the parameter of the work is not relevant.

7. Conclusions and future work

Due to the limited computing and network resources as well
as migration overheads, it is essential to intelligently schedule
the migration tasks in data centers to achieve optimal migra-
tion performance, while mitigating the impacts of migration on
cloud services and preventing SLO violations during the migration
schedule. In this paper, we proposed SLAMIG which includes con-
current migration grouping and the on-line migration scheduler.
Instead of grouping migrations directly, SLAMIG can optimize the

T. He, A.N. Toosi and R. Buyya The Journal of Systems & Software 176 (2021) 110943

T
C

i
a
m
r
t
s
m
d
i
w
a
c
a
g
w
e
o
e

m
r
n
t
t

C

w
W
r

able 8
omparison of approaches on multiple migration planning and scheduling.

Approach Deadline QoS Energy Concurrent mig. Online mig. Multipath Objectives
awareness awareness consumption scheduling scheduler routing

(Checconi et al., 2009) ✓ x x x x x Reduce the dirty memory
transmission

(Ghorbani and Caesar, 2012) x ✓ x x x x Sequence for loop-free and
bandwidth constraints

(Mann et al., 2012; Xu et al., 2014) x ✓ x – – – Select migrating VMs to minimize
interference

(Bari et al., 2014) x ✓ x ✓ x x Total mig. time and downtime with
reserved bandwidth sharing

(Tsakalozos et al., 2017) ✓ x x – ✓ x Converge migration tasks before
deadline

(Wang et al., 2019) x x x ✓ x ✓ Total mig. time and downtime with
free bandwidth sharing

SLAMIG ✓ ✓ ✓ ✓ ✓ ✓ Total mig. time, downtime, avg. exe.
time, and transferred data
order of concurrent migration groups by sorting each migration
based on complete dependency subgraphs. In addition to the dirty
page rate, extra bandwidth constraints can significantly improve
the performance. The on-line migration scheduler can guarantee
the concurrency and scheduling order of different migrations in
a dynamic network environment.

We argued that along with the total migration time, optimiz-
ng the average execution time, transferred data, and downtime
re essential metrics to evaluate the multiple migration perfor-
ance. The total migration time is more related to the time

equirements (for example, migration deadlines and SLO viola-
ions), while the sum of execution time, transferred data, and
ervice downtime are related to the actual overheads. By opti-
izing the total migration time, we can guarantee the SLA and
ynamic performance requirements of cloud services. By optimiz-
ng the sum of execution time, transferred data, and downtime,
e can guarantee the QoS of services and achieve more revenue
s the cloud provider. Experimental results showed that SLAMIG
an efficiently reduce the number of migration deadline missing
nd meanwhile achieve good migration performance in total mi-
ration time, average execution time, downtime, transferred data
ith acceptable algorithm runtime. Furthermore, the average
xecution time is an essential parameter to minimize the impact
f multiple migration scheduling on the QoS of applications and
nergy consumption.
Live container migration has been introduced to facilitate user

obility to guarantee service delays in the edge computing envi-
onment. In the future work, we intend to investigate the plan-
ing and scheduling algorithms for live container migration in
erms of the algorithm scalability and networking management in
he edge computing or cloud radio access network environment.

RediT authorship contribution statement

TianZhang He: Term, Conceptualization, Methodology, Soft-
are, Formal analysis, Investigation, Writing - original draft,
riting - review & editing, Visualization. Adel N. Toosi: Writing -

eview & editing, Supervision. Rajkumar Buyya: Writing - review
& editing, Supervision, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.
18
Acknowledgments

This work is partially supported by an Australian Research
Council (ARC) Discovery Project (ID: DP160102414) and a China
Scholarship Council - University of Melbourne PhD Scholarship.
We thank Editor-in-Chief, Area Editor, and reviewers for their
valuable comments and suggestions that helped in improving the
paper significantly.

References

Akoush, S., Sohan, R., Rice, A., Moore, A.W., Hopper, A., 2010. Predicting the
performance of virtual machine migration. In: Proceedings of 2010 IEEE
International Symposium on Modeling, Analysis & Simulation of Computer
and Telecommunication Systems. MASCOTS, IEEE, pp. 37–46.

Al-Fares, M., Loukissas, A., Vahdat, A., 2008. A scalable, commodity data center
network architecture. ACM SIGCOMM Comput. Commun. Rev. 38 (4), 63–74.

Bari, M.F., Zhani, M.F., Zhang, Q., Ahmed, R., Boutaba, R., 2014. CQNCR: Optimal
VM migration planning in cloud data centers. In: Proceedings of 2014 IFIP
Networking Conference. IEEE, pp. 1–9.

Beloglazov, A., Buyya, R., 2012. Optimal online deterministic algorithms and
adaptive heuristics for energy and performance efficient dynamic consoli-
dation of virtual machines in cloud data centers. Concurr. Comput.: Pract.
Exper. 24 (13), 1397–1420.

Checconi, F., Cucinotta, T., Stein, M., 2009. Real-time issues in live migration
of virtual machines. In: Proceedings of European Conference on Parallel
Processing. Springer, pp. 454–466.

Clark, C., Fraser, K., Hand, S., Hansen, J.G., Jul, E., Limpach, C., Pratt, I., Warfield, A.,
2005. Live migration of virtual machines. In: Proceedings of the 2nd Confer-
ence on Symposium on Networked Systems Design & Implementation, Vol.
2. USENIX Association, pp. 273–286.

Cziva, R., Anagnostopoulos, C., Pezaros, D.P., 2018. Dynamic, latency-optimal vNF
placement at the network edge. In: Proceedings of IEEE INFOCOM 2018-IEEE
Conference on Computer Communications. IEEE, pp. 693–701.

Deshpande, U., Keahey, K., 2017. Traffic-sensitive live migration of virtual
machines. Future Gener. Comput. Syst. 72, 118–128.

Ersoz, D., Yousif, M.S., Das, C.R., 2007. Characterizing network traffic in a cluster-
based, multi-tier data center. In: Processing of 27th International Conference
on Distributed Computing Systems. ICDCS’07, IEEE, p. 59.

Ghorbani, S., Caesar, M., 2012. Walk the line: consistent network updates with
bandwidth guarantees. In: Proceedings of the First Workshop on Hot Topics
in Software Defined Networks. ACM, pp. 67–72.

Guo, T., Sharma, U., Shenoy, P., Wood, T., Sahu, S., 2014. Cost-aware cloud
bursting for enterprise applications. ACM Trans. Internet Technol. (TOIT) 13
(3), 10.

Halpern, J., Pignataro, C., 2015. Service Function Chaining (SFC) Architecture. RFC
Editor, http://dx.doi.org/10.17487/RFC7665, RFC 7665, October.

He, T., Toosi, A.N., Buyya, R., 2019. Performance evaluation of live virtual machine
migration in SDN-enabled cloud data centers. J. Parallel Distrib. Comput. 131,
55–68.

Knight, S., Nguyen, H.X., Falkner, N., Bowden, R., Roughan, M., 2011. The internet
topology zoo. IEEE J. Sel. Areas Commun. 29 (9), 1765–1775.

http://refhub.elsevier.com/S0164-1212(21)00040-6/sb1
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb1
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb1
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb1
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb1
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb1
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb1
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb2
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb2
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb2
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb3
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb3
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb3
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb3
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb3
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb4
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb4
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb4
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb4
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb4
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb4
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb4
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb5
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb5
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb5
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb5
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb5
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb6
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb6
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb6
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb6
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb6
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb6
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb6
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb7
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb7
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb7
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb7
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb7
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb8
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb8
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb8
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb9
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb9
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb9
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb9
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb9
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb10
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb10
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb10
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb10
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb10
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb11
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb11
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb11
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb11
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb11
http://dx.doi.org/10.17487/RFC7665
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb13
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb13
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb13
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb13
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb13
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb14
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb14
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb14

T. He, A.N. Toosi and R. Buyya The Journal of Systems & Software 176 (2021) 110943

M

M

P

S

S

S

S

S

S

T

V

W

W

X

ann, V., Gupta, A., Dutta, P., Vishnoi, A., Bhattacharya, P., Poddar, R., Iyer, A.,
2012. Remedy: Network-aware steady state VM management for data cen-
ters. In: Proceedings of International Conference on Research in Networking.
Springer, pp. 190–204.

cKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J.,
Shenker, S., Turner, J., 2008. OpenFlow: enabling innovation in campus
networks. ACM SIGCOMM Comput. Commun. Rev. 38 (2), 69–74.

elley, S., Meisner, D., Wenisch, T.F., VanGilder, J.W., 2009. Understanding and
abstracting total data center power. In: Workshop on Energy-Efficient Design,
Vol. 11.

hribman, A., Hudzia, B., 2012. Pre-copy and post-copy vm live migration for
memory intensive applications. In: Proceedings of European Conference on
Parallel Processing. Springer, pp. 539–547.

on, J., Buyya, R., 2018. A taxonomy of software-defined networking
(SDN)-enabled cloud computing. ACM Comput. Surv. 51 (3), 59:1–59:36.

on, J., Dastjerdi, A.V., Calheiros, R.N., Buyya, R., 2017. SLA-aware and energy-
efficient dynamic overbooking in SDN-based cloud data centers. IEEE Trans.
Sustain. Comput. 2 (2), 76–89.

on, J., He, T., Buyya, R., 2019. CloudSimSDN-NFV: Modeling and simulation
of network function virtualization and service function chaining in edge
computing environments. Softw. - Pract. Exp. 49 (12), 1748–1764.

un, G., Liao, D., Anand, V., Zhao, D., Yu, H., 2016. A new technique for efficient
live migration of multiple virtual machines. Future Gener. Comput. Syst. 55,
74–86.

värd, P., Hudzia, B., Tordsson, J., Elmroth, E., 2011. Evaluation of delta compres-
sion techniques for efficient live migration of large virtual machines. ACM
SIGPLAN Not. 46 (7), 111–120.

sakalozos, K., Verroios, V., Roussopoulos, M., Delis, A., 2017. Live VM migration
under time-constraints in share-nothing IaaS-clouds. IEEE Trans. Parallel
Distrib. Syst. 28 (8), 2285–2298.

an Baaren, E.-J., 2009. Wikibench: A Distributed, Wikipedia Based Web
Application Benchmark (Master’s thesis). VU University Amsterdam.

ang, H., Li, Y., Zhang, Y., Jin, D., 2019. Virtual machine migration planning in
software-defined networks. IEEE Trans. Cloud Comput. 7 (4), 1168–1182.

ang, X., Yao, Y., Wang, X., Lu, K., Cao, Q., 2012. Carpo: Correlation-aware
power optimization in data center networks. In: Proceedings of 2012 IEEE
INFOCOM. IEEE, pp. 1125–1133.

u, F., Liu, F., Liu, L., Jin, H., Li, B., Li, B., 2014. iaware: Making live migration
of virtual machines interference-aware in the cloud. IEEE Trans. Comput. 63
(12), 3012–3025.
19
TianZhang He received the B.S. and M.S. degrees from
Northeastern University, China, in 2014 and 2017,
respectively. He is working towards the Ph.D. de-
gree at the Cloud Computing and Distributed Systems
(CLOUDS) Laboratory, University of Melbourne, Aus-
tralia. His research interests include Software-Defined
Networking, Edge and Cloud Computing, and Network
Function Virtualization.

Adel N. Toosi is a lecturer (a.k.a. Assistant Professor) at
the Department of Software Systems and Cybersecurity,
Faculty of Information Technology, Monash Univer-
sity, Australia. Before joining Monash, Dr Toosi was a
Postdoctoral Research Fellow at the University of Mel-
bourne from 2015 to 2018. He received his Ph.D. degree
in 2015 from the School of Computing and Information
Systems at the University of Melbourne. His Ph.D.
thesis was nominated for CORE John Makepeace Ben-
nett Award for the Australasian Distinguished Doctoral
Dissertation and John Melvin Memorial Scholarship for

the Best Ph.D. thesis in Engineering. Dr Toosi made significant contributions to
the areas of resource management and software systems for cloud computing.
His research interests include Cloud/Fog/Edge Computing, Software-Defined
Networking, Green Computing and Energy Efficiency. Currently, he is working
on green energy harvesting for Edge/Fog computing environments. For further
information, please visit his homepage: http://adelnadjarantoosi.info.

Rajkumar Buyya is a Redmond Barry distinguished
professor and the director with the Cloud Computing
and Distributed Systems (CLOUDS) Laboratory, Univer-
sity of Melbourne, Australia. He has authored over
625 publications and seven textbooks including ‘‘Mas-
tering Cloud Computing’’ published by McGraw Hill,
China Machine Press, and Morgan Kaufmann for Indian,
Chinese and international markets, respectively. He is
one of the highly cited authors in computer science
and software engineering worldwide (h-index=143,
g-index=319, 110,000+ citations).

http://refhub.elsevier.com/S0164-1212(21)00040-6/sb15
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb15
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb15
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb15
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb15
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb15
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb15
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb16
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb16
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb16
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb16
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb16
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb18
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb18
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb18
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb18
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb18
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb19
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb19
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb19
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb20
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb20
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb20
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb20
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb20
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb21
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb21
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb21
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb21
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb21
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb22
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb22
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb22
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb22
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb22
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb23
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb23
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb23
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb23
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb23
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb24
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb24
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb24
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb24
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb24
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb25
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb25
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb25
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb26
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb26
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb26
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb27
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb27
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb27
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb27
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb27
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb28
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb28
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb28
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb28
http://refhub.elsevier.com/S0164-1212(21)00040-6/sb28
http://adelnadjarantoosi.info

	SLA-aware multiple migration planning and scheduling in SDN-NFV-enabled clouds
	Introduction
	System overview and background
	System overview
	Mathematical model of live migration

	System model and problem formulation
	Motivation example
	Impact of bandwidth and dirty rate
	Deadline-related migration
	Problem formulation

	Algorithm design
	Multiple migration planning
	Time complexity analysis
	On-line migration scheduler

	Performance evaluation
	Simulation system configuration
	Evaluation scenarios and configurations
	Results and analysis
	Migration performance
	QoS-aware
	Deadline-aware
	Energy consumption

	Related work
	Conclusions and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

