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ABSTRACT
Narrowband Internet of Things (NB-IoT) is LPWAN operating using narrowband spectrum in IoTs, requiring low data rates and
long battery life. Since NB-IoT does not support handover, the requirement to sustain network connectivity during mobility may
result in fake base station connections, hence applications are limited to stationary use-cases. Researchers propose extending
NB-IoT in mobile applications, owing to higher signal quality and battery life, despite DoS attacks due to low bandwidth. As
NB-IoT is resource-constrained, resources must be allocated based on application with data processing offloaded to optimise per-
formance. Cloud servers, being centralised and memory-intensive, may result in increased computational delay, lower throughput,
and DoS attacks in NB-IoT. Hence, in this paper, we implement fog computing, a decentralised technology, providing scalability,
reduced bandwidth, and enhanced privacy, to provide distributed processing. Additionally, we develop secure handover proto-
cols for private and service-provider-controlled fog networks under normal and cell-splitting conditions to minimise fake base
station attacks and provide seamless handover. We introduce reputation-based mechanisms to determine device integrity and dif-
ferentiate faulty behaviour and attacks. Further, we implement real-time application-aware resource allocation and QoS-based
load-balancing using deep learning to distribute data processing between devices, fog and cloud servers. We simulate and proto-
type protocols on iFogSim2 and Raspberry Pi 4. Security of the fog computing framework is validated against various attacks and
formally verified using Scyther. Evaluation shows that our approach consumes 12% and 43.75% lower power and communication
overhead and approximately 6 and 16 times lower execution time and memory compared with existing solutions, thus making our
approach lightweight.

1 | Introduction

Narrowband Internet of Things (NB-IoT) is a Low Power Wide
Area Network (LPWAN) radio technology standard developed by
3GPP [1] operating at 180 kHz to provide low latency, broader
coverage, extended battery life, etc. NB-IoT operates on a sin-
gle antenna and half-duplex communication channel capable of

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
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handling 32 channels each with a gain of 23 dBm [2], thus opti-
mising the signalling cost and increasing channel capacity and
spectrum efficiency. Various studies have been conducted to min-
imise its power consumption by optimizing Extended Discon-
tinuous Reception (eDRX) and Power Saving Mode (PSM) [3].
These works propose to deploy NB-IoT in stationary applica-
tions such as smart metering, smoke detectors, health trackers [4]
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etc., owing to its easy integrability with the existing cellular net-
work, ability to send a small quantity of data at infrequent inter-
vals of time and ability to communicate in areas with low signal
strength [5].

Since NB-IoT does not support handover, devices deployed in
mobile applications such as public bike-sharing Connected and
Autonomous Vehicles (CAV) are required to manually choose
the visited base station to maintain connectivity across cells [1].
This may lead to devices connecting to fake base stations, infor-
mation theft, and device tracking. Additionally, being resource
and bandwidth-constrained, NB-IoT requires higher power and
time to process data and allocate channel resources suitable
for specific applications. When offloaded to centralised cloud
servers, these operations delay system processes as the cloud
incurs higher latency since its speed depends on the connec-
tivity of virtual machines [6]. Hence, NB-IoT remains unimple-
mented in mobile applications. Owing to NB-IoT’s compatibil-
ity with the existing communication spectrum, long battery life,
ON-demand services, and extended coverage, researchers envi-
sion its application in mobile IoT use cases. A decentralised archi-
tecture such as fog computing, which introduces an intermediary
layer consisting of fog servers between the edge devices and the
cloud, can overcome these limitations.

Fog computing offers a distributed decentralised architecture by
extending the cloud’s features to the edge of the device network
[7]. Fog servers, having smaller storage and computation capac-
ity, act as intermediaries between the device and the cloud. Since
fog servers are close to devices, the system architecture reduces
communication time and requires lower network bandwidth to
transfer data. Further, if NB-IoT devices need excess resources
such as memory, bandwidth, CPU processing power, etc., to pro-
cess data or run complex operations in real-time, the fog comput-
ing framework allocates excess resources in the virtual memory
space in the fog servers [8]. Hence, this technology reduces the
processing time and computational overhead on the NB-IoT and
the dependency on the cloud for data storage, thereby improving
its performance.

Further, cloud storage requires the device to be always connected
to the internet, which requires the devices to be always in ‘Active’
state. NB-IoT requiring optimised ON-OFF periods have inter-
mittent internet connectivity, which may result in unreliable data
processing and communication when connected directly to the
cloud. Since fog servers can operate without the internet [9],
device data can be synchronized with the cloud when the inter-
net connection is re-established, thus ensuring uninterrupted
operation. Additionally, as the cloud is centralised, the num-
ber of device connections may be limited to ensure good per-
formance and low response time. Fog architecture being decen-
tralised overcomes this limitation by allowing multiple NB-IoT
connections, thereby improving scalability [10]. In cases of low
latency requirements for real-time applications such as smart
cities and healthcare or where NB-IoT devices are required to
make rapid decisions, fog computing reduces the round-trip time
to the cloud, thus enabling faster data processing as it brings com-
puting resources closer to the devices.

In this paper, we implement a fog computing architecture to con-
nect NB-IoT devices, as shown in Figure 1, by placing the fog

servers in the resource-adequate base stations. Our work can be
broadly classified into three categories, as listed below.

• Application-aware resource allocation—Applications such
as resource prediction, attack detection, etc., are simulated
on iFogSim 2 and assigned among NB-IoT devices, fog
and cloud servers based on memory requirements. Device
resources, such as memory, CPU usage, etc., are assigned
based on the device’s application and updated in real-time
based on device requirements.

• Authentication and handover protocols—Protocols are
designed on Raspberry Pi 4 to authenticate devices, enable
handover and eliminate the possibility of fake base station
connections as NB-IoT devices travel across cells.

• Reputation-based mechanism—A reputation-based mech-
anism, implemented on the Raspberry Pi 4, differentiates
between faulty devices and attackers and blacklists attackers
from transmitting messages and re-authenticating as they
enter visiting base stations.

The resource-constrained NB-IoT devices form the lowermost
layer (Layer-0), followed by the fog servers (Layer-1) and the
cloud (Layer-2). Each successive layer has increased processing
power and memory compared to the previous layers. We design
the fog architecture to be interoperable [11], that is, enabling
easy movement of devices between fog environments controlled
by independent fog servers and various service providers. Since
the fog architecture includes fog servers deployed by indepen-
dent entities, such as industries, to provide enhanced connectiv-
ity, they are not completely trustworthy [12].

Additionally, attackers may eavesdrop and impersonate devices
to steal sensitive information. To eliminate these attacks, we
introduce a reputation mechanism to track device and base sta-
tion behaviour. If the reputation is less than the threshold value,
the device or base station is blacklisted. To provide uninterrupted
communication and handover when base stations are blacklisted,
we propose an authentication mechanism to split the particular
cell into microcells and enable devices to join the adjacent base
stations at the earliest.

Further, we implement a group authentication mechanism to
enable rapid verification of multiple devices situated in the range
of independent fog servers and registered with these servers as
their home base stations. Application-specific resource alloca-
tion required to determine the load distribution between the
devices, fog nodes and cloud servers, improve Quality of Ser-
vice (QoS), and reduce implementation cost is achieved by lever-
aging deep learning algorithms. To differentiate between nor-
mal system operation and degraded performance due to poor
channel quality, we design base stations to monitor the packet
delay. If the packet delay exceeds the mean of the previous delays
recorded, the base station varies the bandwidth within the allo-
cated QoS range for the specific device application. Further, we
model the secret generation, device authentication and handover
algorithms on iFogSim2 [13] and Raspberry Pi 4 [14] to study
their performance.
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FIGURE 1 | Fog computing architecture.

Additionally, we model the device clustering mechanisms on
iFogSim2 to define the cell limits of base stations and private
fog servers and enable seamless device handover. We formally
evaluate our approach using Scyther [15] and compute execu-
tion time, memory and energy-security trade-offs at each node.
Further, we evaluate the NB-IoT channel performance in terms
of throughput, packet latency and packet drop rate for varying
authentication requests initiated in one ‘Active’ state. We observe
that our framework requires an average of 12% and 43.75% less
power and communication overhead compared to existing solu-
tions. Additionally, memory and execution time measured were
16 times and 6 times lower than the latter, resulting in an energy
and performance-efficient fog computing framework.

1.1 | Primary Contributions

The primary contributions of our paper are listed as follows.

• We propose implementing fog servers in iFogSim 2 as an
intermediary layer between the cloud and NB-IoT devices
to reduce the communication time between the cloud and
devices and minimise the data processing delay by analysing
data even when devices are offline.

• We propose to implement lightweight protocols on Rasp-
berry Pi 4 to achieve seamless handover, authentication and
interoperability to enable device movement across cells and
micro-cells controlled by service providers and independent
fog servers.

• Based on application-specific resource requirements of
devices, we propose to develop deep learning algorithms
to predict the Classes of Service (CoS) [16], determine the
load distribution [17] between the devices, fog layer and
cloud and reallocate the device’s Quality of Service (QoS)
parameters.

• We propose a feedback-based mechanism to monitor packet
delay and regulate the bandwidth to ensure bandwidth is
within the permissible QoS limits across varying CoS.

• We propose a reputation-based mechanism to track the
behaviour of the devices and base stations and blacklist
attackers.

• Security of the fog computing architecture is validated for
various attacks and formally verified using Scyther.

The rest of the paper is organized as follows. Section 2 discusses
the Related Work. Section 3 explains the components of the pro-
posed framework, such as authentication and handover algo-
rithms, Unique ID and authentication secret generation, reputa-
tion update, etc. Section 4 presents security analysis of the pro-
posed framework against known attacks. Section 5 discusses the
experimental prototype implemented on iFogSim 2 and Rasp-
berry Pi 4. Section 6 evaluates the framework’s performance and
provides a formal validation of protocols with Scyther. Section 7
discusses inherent security and regulatory issues in fog com-
puting. Section 8 concludes the paper and describes possible
future work.

2 | Related Work

Few works focus on developing a fog computing framework to
foster handover in NB-IoT. A detailed study showed that a major-
ity of them [18–27] provide support for scalability, whereas only
a few of them [16, 21, 22, 24, 28–30] propose application-specific
resource allocation. However, none support NB-IoT mobility,
behaviour tracking and the elimination of fake devices and base
stations. We categorise existing works as follows.

2.1 | Application of Fog Computing in NB-Iot

Ungurean and Gaitan [18] propose a fog architecture for real-time
IIoT applications. The architecture is designed to receive data
from the devices through field buses to process and share it to
the cloud through a middleware system designed based on DDS
standards. Peruzzi and Pozzebon [19] propose a hybrid architec-
ture connecting LoRaWAN and NB-IoT nodes to fog gateways
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through LoRa and MQTT, respectively. Sensor values thus col-
lected are transmitted to the cloud using the LTE protocol. How-
ever, the authors neither discuss the implementation of the archi-
tecture for mobile applications nor the effect of its performance
on devices’ battery life. Hadi and Fadi [31], Qin et al. [32] and
Prakash et al. [33] provide an extensive survey of fog computing
in various applications such as smart grid, healthcare, agricul-
ture, etc., propose protocols implementable in each of the cases
and discuss prospective research directions. Jia et al. [28] propose
an NB-IoT-based smart street light operating using fog comput-
ing to connect and share information such as light brightness,
abnormal operation and requirements for maintenance. Abedin
et al. [20] develop a game theoretic approach to model load bal-
ancing, resource over-utilisation and optimally schedule packet
transmission.

2.2 | Resource Allocation Using Fog Computing

Guevara et al. [16] propose a method to classify the device oper-
ations into various modes of operation based on quality of ser-
vice (QoS) parameters such as bandwidth, security level, data
storage capacity, etc. The authors further develop a dataset for
various combinations of QoS parameters and use machine learn-
ing and deep learning algorithms to classify the device operation
efficiently. Gia et al. [34] propose connecting the LoRa devices
in remote areas using fog architecture to transmit image data
of crops. The authors develop a CNN-based image compression
technique to reduce the amount of device data transmitted to
the cloud. Zhao, Zou and Boshkani [29] propose a fog archi-
tecture based on Open-source Development Model Algorithm
(ODMA) to efficiently allocate QoS such as service cost, energy
consumption, response time, etc., to achieve resource optimi-
sation. Murtaza et al. [21] develop a feedback-based resource
allocation technique for devices connected using a fog archi-
tecture. The work aims to minimise the end-to-end delay, pro-
cessing time and power consumed by continuously monitoring
the device’s behaviour. A similar approach has been presented
by Wang et al. [35], where deep reinforcement learning is used
to optimise IoT response time and re-distribute the load in fog
servers. Apat et al. [11], Joao et al. [36] and Kashani et al. [37]
present a survey of QoS parameters and evaluation tools required
to achieve efficient resource allocation in fog architecture. Fur-
ther, they present research challenges in implementing interop-
erability, scalability, etc. Tuli et al. [38] and Iftikhar et al. [39]
review various AI-based methods to study the device QoS con-
nected using fog servers, study the integration of AI in multiple
applications such as healthcare, smart homes etc., and propose
the latest trends and challenges in this direction. Lu et al. [40]
propose a heuristic approach of allocating resources to the fog
servers by successively skipping nodes that do not need excess
resources and providing them to nodes based on their impact in
the framework. Taghizadeh et al. [41] propose a sorting genetic
algorithm to optimize resource usage by automatically deploying
data replicas in the fog environment to ensure efficient data man-
agement and improved performance. Khan et al. [42] propose a
similar approach where the cache stores and retrieves frequently
allocated device QoS based on the application instead of repeat-
edly computing them in real time to reduce excessive resource
consumption.

Existing works do not integrate fog computing with NB-IoT to
enable handover in mobile applications. They do not address
security issues in NB-IoT, such as fake base station con-
nection, repeated packet retransmission and impersonation,
replay attacks, differentiate system faults from attacks and
detect the change in device behaviour for varying CoS and
degraded channel quality. Further, some works do not propose
application-specific resource allocation for ensuring longer bat-
tery life and authentication protocols to securely generate device
IDs and authenticate the devices while moving across cells con-
trolled by varying service providers.

2.3 | Our Proposed Method

In contrast to the existing approaches, we propose a fog com-
puting architecture to implement seamless handover in mobile
NB-IoT applications while ensuring scalability, interoperability,
device-specific resource allocation and behavior tracking. We
introduce a feedback-based mechanism to continuously moni-
tor packet delay, vary bandwidth within the device’s QoS lim-
its and improve channel quality. Authentication protocols are
proposed to enable seamless handover between cells and micro-
cells controlled by various service providers. CoS of the device
is determined based on its application and QoS is allocated
according to the limits set by CoS. If the device requests excess
resources, its CoS is updated and virtual hardware is allocated
at the fog servers’ memory. A reputation-based mechanism is
introduced to track the behaviour of the fog servers and devices
and blacklist them if reputation reduces below the threshold. We
analyse energy-performance-security trade-offs of the handover
and authentication protocols and formally evaluate them using
Scyther. Performance is measured in terms of power, memory,
execution time and computational complexity to show that our
approach is energy efficient and secure. A detailed comparison
of our approach with some of the existing works with respect to
primary contributions of our paper, such as memory optimisa-
tion, support for scalability, resource allocation, etc., are given in
Table 1.

3 | Proposed Framework

In this section, we describe the fog computing framework
enabling resource allocation and handover in mobile NB-IoT
applications shown in Figure 2. The framework is designed to
contain the following entities.

a. NB-IoT device: Resource-constrained devices are designed
only to store the permanent address, Unique ID and
Authentication secrets required to prove the integrity and
non-repudiation of the messages transmitted. Devices are
designed only to send data to the fog servers upon authen-
tication and receive QoS recommendations from the fog
servers to maintain channel quality but do not respond to
optimise battery requirements. In this work, we assume that
when the device reaches the edge of the cell, the connec-
tion requests for handover from visited base stations in the
form of visited base station address are made available. The
devices choose the required address and send the handover
request.
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TABLE 1 | Comparison of existing works with our approach (em-dash is written in place of parameters not investigated by authors).

Proposed approach

Detection of
rogue

nodes/base

Performance
optimisation

scheme

Lightweight
architecture

support
Device

security
Support for
scalability

Support for
mobility

Resource
allocation

Support for
interoperability

Guevara et al. [16] No Yes — No No No Yes No
Ungurean and Gaitan [18] No Yes — No Yes No No No
Peruzzi and Pozzebon [19] No No — No Yes No No No
Jia et al. [28] No No — No Yes No Yes No
Abedin et al. [20] No Yes — No Yes No No No
Zhao, Zou and Boshkani [29] No Yes — No No No Yes No
Murtaza et al. [21] No Yes — No Yes No Yes Yes
Goudarzi et al. [22] No Yes — No Yes No Yes No
Amanlou et al. [23] No No Yes Yes Yes No No No
Ali et al. [43] No Yes Yes Yes No Yes No No
Cui et al. [24] No No Yes Yes Yes No Yes No
Kalaria et al. [44] No Yes Yes Yes No Yes No No
Guo et al. [25] No Yes Yes Yes Yes Yes No No
Al-Mekhlafi et al. [26] Yes Yes Yes Yes Yes Yes No No
Mohammed et al. [45] No Yes No Yes No Yes No No
Mohammed et al. [46] Yes Yes Yes Yes No Yes No No
Singh et al. [27] No Yes Yes Yes Yes Yes No No
Pallavi et al. [30] No Yes Yes No No Yes Yes No
Our Work Yes Yes Yes Yes Yes Yes Yes Yes

FIGURE 2 | Proposed fog computing framework.

b. Fog Server: Fog servers are installed at the base station of
every cell. They may be either controlled by the internet
service providers or may be established independently by
private entities for better connectivity at their premises. Fog

servers collect the device QoS in real-time and analyse it
using deep learning to re-allocate system resources, regu-
late channel quality and update CoS based on the device’s
applications. They enable authentication and handover
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protocols by communicating between the device and the
cloud. To avoid data sharing with fake base stations, fog
servers are designed to only upload device QoS to the cloud
and not share among themselves. However, they are allowed
to download QoS from the cloud for accurate analysis of
device behaviour.

c. Microcell Tower: Microcell towers comprise microcell
antennae and NB-IoT devices with higher-than-average
resources. They are designed to relay device communica-
tions to the visited base stations during device handover in
microcells. When base stations are offline, communications
handled by the microcell towers are stored locally. When the
base stations are back online, communications are synchro-
nised, records are updated and deleted locally at microcell
towers.

d. Authentication server: Authentication server handles a
diverse amount of requests, such as handover, authentica-
tion and secret generation, at different points in time. Fur-
ther, Authentication server verifies the details of devices
initiating requests and generates and shares the Authentica-
tion secrets with the devices required for verification during
authentication and handover mechanisms.

e. Cloud Server: Cloud server forms the topmost layer of the
fog architecture and stores the details of all the devices and
fog servers. When the device moves across cells, it gener-
ates a Cloud Secret using the Seed shared by the Authen-
tication server. The cloud server then transmits them for
verification to the visited base station. This design ensures
that the device has been authenticated by the Cloud server
and the Authentication server, thus avoiding imperson-
ation attacks and session hijacking. In cases where the
device’s QoS varies continuously, the cloud server analy-
ses the QoS with the device’s previous performance using
deep learning and blacklists the device if attack behaviour is
observed.

Detailed working of the framework is described below.

3.1 | Fog Architecture

In this paper, we design a fog architecture to connect devices
with fog servers and the cloud to enable mobility in NB-IoT. The
devices are connected to the fog servers present in those particu-
lar cells. Fog servers, in turn, are connected to the Cloud servers
and Authentication servers to enable authentication, handover,
secret generation and storage of device data. Fog servers monitor
packet delay in real-time and send feedback to devices to regulate
bandwidth [47] by improving channel quality using Equations (1)
and (2). This design eliminates the possibility of channel con-
gestion caused by noisy signals or increased packet flow due to
a higher number of devices and authentication requests. Hence,
the feedback mechanism differentiates between natural causes
and attacks such as DoS and jamming attacks, leading to poor
channel quality. Fog servers assign the device with CoS based on
its application and allocate the required QoS as discussed by [16].
If devices request a change in QoS requirements or an update of
CoS, the fog servers use deep learning algorithms such as MLP,
LSTM, autoencoders, etc., to predict the appropriate device QoS
based on the requirements.

When the device QoS requirements vary continuously, the fog
servers send the QoS parameters to the cloud server for verifi-
cation. The cloud server retrieves the device’s transaction data
uploaded by the previous base station it traversed and uses deep
learning to study the QoS variation behaviour. If the behaviour
patterns repeat at specific intervals, the cloud server deduces it as
an internal fault. The other cloud server classifies the behaviour
as an attack and blacklists the device. This design enables uni-
form load distribution across devices, fog and cloud servers.

𝑇Transmit (𝑠) =
Packet Size (𝑏)

Throughput (𝑏∕𝑠) (1)

Throughput (𝑏∕𝑠) = 𝐵𝑊 (Hz) ∗ log2(1 + SINR) (2)

where, 𝑇Transmit = Transmission time, BW = Bandwidth.

As seen in ‘Cell 2’ of Figure 2, the fog layer comprises servers
deployed by various service providers and private entities to pro-
vide better connectivity in their location. Since service providers
are government-registered, in this paper, we assume that the
fog and cloud servers they deploy are trusted. However, private
fog servers deployed by anonymous entities may not be entirely
trusted due to the possibility of fake base station connections [1].
Therefore, we design the fog servers to transfer the device’s QoS
details and transactions to the cloud instead of the visited base
station when the device moves across cells.

To accommodate more devices in a base station and to enable
channel reuse [48], the cell is split into multiple microcells. In
such cases, devices are either connected to the microcell antennae
or to the devices having higher resources to act as a relay dur-
ing handover between microcells and cells and microcells. Since
microcell antennae have much lower memory and data process-
ing capabilities than base stations and are required to operate only
during cell splitting, they are designed to update the base sta-
tion of the communications handled but not store QoS and device
information.

3.2 | Application Model

In this subsection, we describe the application model of our fog
architecture implemented on iFogSim2, given in Figure 3. The
application model defines the execution tasks of the fog com-
puting entities, such as data processing, analysis, etc., maps and
schedules the tasks, allocates resources to optimise performance,
and simulates and evaluates the fog computing framework. The
model defines the workflow, mimics real-world scenarios and val-
idates the feasibility of the application. We classify the application
model of our proposed architecture into 3 phases based on the
execution tasks designated to the NB-IoT device, fog server and
cloud server.

The NB-IoT device contains the Client module, which forms the
device hardware. It is responsible for processing the sensor input
into packets, transmitting them to the fog server, receiving the
fog server’s QoS recommendations, and varying the actuators’
device parameters. The Main module forming the hardware of
the fog server transmits and receives data from the device and the
cloud, respectively. Device performance under standard NB-IoT
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FIGURE 3 | Fog computing application model.

TABLE 2 | NB-IoT device specifications.

Parameters Value Parameters Value

Bandwidth 180 kHz Battery specifications 1 000 mAh, 3.6 V [49]
Uplink power 36 W Downlink power 24 W
Uplink gain 70 Downlink gain 40
Uplink current 21.7𝜇A Transmission mode Frequency-division duplexing
Packet size–uplink 2–125 B [50] Packet Size-Downlink 2–85 B
Carrier frequency range 1 920–1 980 MHz [51] — —

specifications listed in Table 2 is measured offline for varying
CoS and stored as a database in the Data processing module. This
database acts as the training vector for deep learning models in
the Data processing module. Real-time sensor data received from
the devices is preprocessed to remove null and zero values and
split into multiple datasets based on CoS. These datasets, acting
as the testing vector, are inputted to the deep learning algorithms.
The Data processing module’s output predicted from real-time
sensor input in terms of updated CoS, QoS and load distribution
strategy is sent to the Event handler module, which interacts with
the device and the cloud module. The cloud module stores the
data of devices leaving the cells. Further, it analyses the irregular
QoS of devices and base stations using deep learning and black-
lists them if attack patterns are detected; otherwise, the behaviour
is classified as a fault.

3.3 | Assignment of Classes of Service (Cos)

In this subsection, we describe the assignment of CoS and QoS
to the devices based on their application as discussed by Guev-
era et al. [16]. NB-IoT’s performance, that is, power, memory
and execution time, depends on device operations such as band-
width requirement, memory usage efficiency, location in the cell,
packet delay and data processing capacity. Hence, we select the
application requirements discussed in [16] such as Security, Relia-
bility, Data Storage, Data Location and Delay Sensitivity as QoS for
our study representing the device operations. We correlate Relia-
bility to memory usage efficiency, Data Storage to data process-
ing capacity, Data Location to location in cell, Delay Sensitivity

to packet delay and Security to bandwidth requirement depend-
ing on handover procedure complexity as explained in Table 3.
Other features such as Mobility, Scalability and Loss Sensitivity
are not provided by default in NB-IoT [1]. Hence, they have not
been considered.

Further, out of all the CoS categories mentioned in [16], we only
consider the following cases.

• Mission-critical (MC)—Requires highest security and has to
be executed at the earliest, for example, blacklisting a device

• Real-time (RT)—Requires real-time authentication and ver-
ification at the server, for example, handover

• Interactive (IN)—Requires the server to respond to the
device queries, for example, tuning bandwidth to maintain
channel quality

• CPU-Bound (CB)—Requires to analyse data and make deci-
sions, for example, resource allocation and updation of CoS

• Best-Effort (BE)—Requires the device to have longer respon-
sive delays and is concerned with only securely transmitting
messages, for example, normal NB-IoT operation.

Other CoS categories, such as Conversational (CO) and Stream-
ing (ST) requiring VoIP and video streaming support, are not
provided by NB-IoT [1]. Hence, we have not considered them.
To study the NB-IoT behaviour in fog computing, we consider
the ‘Cloud-Fog Computing Dataset’ [52] available on Kaggle. The
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TABLE 3 | Correlation between quality of service (QoS), device requirements and dataset features.

QoS Device requirements Dataset features Correlation

Security Handover complexity Bandwidth usage cost Higher security resulting in increased complexity of
handshake protocols, rises bandwidth usage cost

Reliability Memory usage efficiency Memory usage cost Reliability defining the memory usage efficiency to
store and process QoS is directly proportional to the

memory usage cost
Data Storage Data processing capacity CPU usage cost Data storage representing data processing capacity is

proportional to CPU Usage Cost
Data Location Location in cell Execution time Devices, fog servers and cloud servers require

successively increasing time to collect, process and
retrieve stored data from sensors, devices and fog

servers respectively
Delay Sensitivity Packet delay Execution cost Delay-sensitive CoS, such as MC and RT, requiring

tasks to be executed in real-time significantly raises
execution cost

FIGURE 4 | Fog computing datasets (a) Task memory, (b) CPU and memory cost, (c) Execution time, (d) Execution cost.

dataset contains 1 120 samples of bandwidth, file size, memory
required, and execution time for various tasks executed by the fog
nodes. A screenshot of the Task memory, CPU and Memory cost,
Execution time, and Execution cost datasets is shown in Figure 4.

As NB-IoT is resource-constrained, the device specifications at
which it operates, as shown in Table 2, are taken as the Medium
range. Under normal device operation, due to minor power fluc-
tuations or varying hardware designs, device QoS may vary above
or below the average specified QoS. To account for these design
considerations, the medium range is defined to be between 25%
to 75% of the maximum QoS. Values lower and higher than this
are taken as Low range and High range, respectively, and QoS is
set as shown in Table 4.

3.4 | Resource Allocation and Memory
Optimisation Using Deep Learning

In this subsection, we use deep learning algorithms at the
cloud server to study the device QoS in real-time by comparing
them with the standard QoS limits and predict the device QoS

requirements. In particular, we use LSTM, MLP, CNN, Simple
autoencoder and Multilayer autoencoder algorithms built using
the tensor layers as shown in Tables 5, 6, 7, 8 and 9 respectively.

Among the various deep learning algorithms, LSTM and MLP use
backward propagation to iteratively calculate the weights of hid-
den layers. This optimises the biases through the gradient descent
method and improves prediction accuracy in QoS following
time-series patterns. Additionally, as LSTM uses the Forget gate
to delete the data features with significantly low weights, it elim-
inates the vanishing or exploding gradient problem. Attackers,
internal faults and user requests for resource updates in devices
may result in non-linear QoS. Simple and Multilayer autoen-
coders using non-linear activation functions and dimensional-
ity reduction help capture outliers due to faults and recognise
attack patterns. Further, CNN requires fewer hidden layer deter-
minant computations due to weight sharing and analyses com-
plex QoS data using dimensionality reduction. This reduces over-
fitting caused by internal faults, enables scalability and improves
prediction accuracy.

8 of 31 Software: Practice and Experience, 2024

 1097024x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3392 by T

he U
niversity O

f M
elbourne, W

iley O
nline L

ibrary on [14/12/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



TABLE 4 | Class of service (CoS) range.

Parameters Range Value Parameters Range Value

Reliability Low < 25% of Max(reliability) Security Low < 25% of Max(security)
Important > 25% & < 75% of

Max(reliability)
Medium > 25% & < 75% of

Max(security)
Critical > 75% of Max(reliability) High > 75% of Max(security)

Data storage Transient < 25% of Max(data storage) Data location Local < 25% of Max(data location)
Short duration > 25% & < 75% of Max(data

storage)
Vicinity > 25% & < 75% of Max(data

location)
Long duration > 75% of Max(data storage) Remote > 75% of Max(data location)

Delay
sensitivity

— Yes — — —
No

TABLE 5 | Tensor layers of LSTM.

Parameters Values

Input size 1
Sizes of hidden layers 60
Number of LSTM layers 9
Learning rate 0.001
Number of epochs 100
Loss function Mean square error (MSE)
Optimiser Adam

TABLE 6 | Tensor layers of MLP.

Tensor layer Values

Hidden layer sizes Input shape = (5, 11, 5)
Alpha 0.001
Solver Stochastic gradient descent (SGD)
Shuffle True
Random state 5
Verbose True
Initial learning rate 0.00045

Performance of the devices in terms of QoS operating under
NB-IoT specification limits, that is, Medium QoS range, are mea-
sured before deployment, split into several databases based on
CoS, and stored as training vectors for the deep learning algo-
rithms. Real-time QoS input by the sensor is transmitted to the
fog server. It is pre-processed, converted into a testing vector, and
inputted to deep learning algorithms to predict the corresponding
CoS (𝐶𝑜𝑆

𝑃𝑟𝑒𝑑
), detect high packet delays, and count the number

of QoS variations (N) observed above 𝑇
𝑚𝑎𝑥

(maximum QoS limit)
and below𝑇

𝑚𝑖𝑛
(minimum QoS limit) for each of the CoS ranges as

described in Table 4. The fog server then checks for the following
cases.

• Case 1: If packet delay exceeds the average of previous
packet delays, the fog server sends feedback to the device
to vary SINR and improve throughput and bandwidth.
This mechanism is introduced to eliminate the chances of

TABLE 7 | Tensor layers of CNN.

Tensor layer Values

1𝑠𝑡 Conv2D Size = 1, Kernel size = (1, 1), Activation =
Linear, Input shape = (1, 1, 1), Padding =

‘same’
1𝑠𝑡 LeakyReLU Alpha = 0.1
MaxPooling2D Kernel size = (2, 2), Padding = ‘same’
2𝑛𝑑 Conv2D Size = 10, Kernel size = (1, 1), Activation =

Linear, Padding = ‘same’
Reshape Input shape = (10, 1, 1)
3𝑟𝑑 Conv2D Size = 5, Kernel size = (3, 3), Activation =

Linear, Padding = ‘same’
Flatten —
2𝑛𝑑 LeakyReLU Alpha=0.1
Dense Size = 1, Activation = Sigmoid
Loss Mean absolute error (MAE)
Optimiser Adam

TABLE 8 | Tensor layers of simple autoencoder.

Tensor layer Values

1𝑠𝑡 Dense Size = 1, Activation = tanh, Input Shape = (1, 1)
Dropout 0.2
2𝑛𝑑 Dense Size = 1, Activation = Sigmoid
Flatten —
Loss Mean absolute error (MAE)
Optimiser Adam

poor channel quality caused by low SINR and congested
channels.

• Case 2: If 𝐶𝑜𝑆
𝑃𝑟𝑒𝑑

is the same as device CoS, device QoS is
less than 𝑇

𝑚𝑖𝑛
and N is significantly less (we consider three

QoS variations as the limit), fog servers infer that devices
do not have the required QoS to transmit data efficiently.
Hence, fog servers send feedback to the devices to increase
QoS to 𝑇

𝑚𝑖𝑛
.

9 of 31
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TABLE 9 | Tensor layers of multilayer autoencoder.

Tensor layer Values

1𝑠𝑡 Dense Size = 11, Activation = Relu, Input shape = (1, 1)
2𝑛𝑑Dense Size = 9, Activation = Relu
3𝑟𝑑 Dense Size = 11, Activation = Relu
4𝑡ℎ Dense Size = 13, Activation = Relu
5𝑡ℎ Dense Size = 1, Activation = Sigmoid
Flatten —
Loss Mean absolute error (MAE)
Optimiser Adam

• Case 3: In situations when 𝐶𝑜𝑆
𝑃𝑟𝑒𝑑

is the same as device
CoS, QoS is greater than 𝑇

𝑚𝑎𝑥
and N is significantly less

(i.e., N < 3), fog servers infer that devices require resources
higher than NB-IoT specifications for a short period. As a
result, excess resources are allocated in the fog server’s vir-
tual memory.

• Case 4: In instances where QoS is lower than 𝑇
𝑚𝑖𝑛

or greater
than 𝑇

𝑚𝑎𝑥
, N is moderately higher (i.e., from 4 to 9) and

devices request an update in CoS, the fog servers update CoS
and provide the corresponding QoS.

• Case 5: In cases where the device behaviour is similar to
Case 4 but N is very high (N > 10), a continuous variation
in QoS is observed. In such cases, fog servers transfer QoS to
the cloud servers for further analysis. Cloud servers retrieve
device QoS and packet flow data uploaded by the previous
fog servers that the device has traversed and analyse for sim-
ilar behaviour.
– If either only abnormal packet flows or both the abnor-

mal variation in previous QoS data and packet flows is
observed, the behaviour is inferred as an attack and the
device is blacklisted.

– If QoS variation is observed only under the current
fog server at repeated intervals of time, behaviour is
inferred as a fault. However, some attackers may fol-
low this pattern to avoid being detected. To differenti-
ate between them, cloud servers reduce device’s reputa-
tion by 1 and send feedback to the device to correct the
fault. If reputation reduces to less than 4, the device is
blacklisted.

A detailed working of this mechanism is given in Algorithm 1.
Further, to enable memory optimisation across the fog layers,
the deep learning algorithms study the ‘Input file size’ sent by
the device during message transfer and predict the ‘Memory
required (MB)’. If the predicted memory size is lower than the
device memory, the device processes the task; otherwise, it is
processed in the fog server. Performance of the deep learning
algorithms is evaluated in terms of prediction error rates, such
as Mean Square Error (MSE), Mean Average Error (MAE), and
Root Mean Square Error (RMSE), in addition to power, mem-
ory, and execution time required to execute the program. Output
of the model with the best performance is chosen for resource
allocation.

ALGORITHM 1 | Allocation of class of service (CoS) and quality of
service (QoS).

1: Let𝐶𝑜𝑆
𝑆𝑇𝐷

= Standard CoS,𝐶𝑜𝑆
𝑃𝑟𝑒𝑑

= Predicted CoS,𝑄𝑜𝑆
𝐷

= Present QoS of device, 𝐷[⋅] = Pre-trained QoS dataset
measured offline, 𝐷

𝑇𝑟𝑎𝑖𝑛
[⋅] = Dataset train vector, 𝐷

𝑇𝑒𝑠𝑡
[⋅] =

Dataset test vector, 𝑇
𝑚𝑖𝑛

and 𝑇
𝑚𝑎𝑥

= minimum and maximum
QoS limits for each CoS range,𝑁 = Number of QoS variations
observed above 𝑇

𝑚𝑎𝑥
and below 𝑇

𝑚𝑖𝑛
, Rep = Device reputation

2: Assign 𝐶𝑜𝑆
𝑆𝑇𝐷

based on device application 15
3: Categorise parameters into three CoS ranges, that is, Low (<

25% of 𝑇
𝑀𝑎𝑥

), Medium (> 25% & < 75% of 𝑇
𝑀𝑎𝑥

) and High (>
75% of 𝑇

𝑀𝑎𝑥
), as shown in Table 4

4: Read𝑄𝑜𝑆
𝐷

in real-time and convert to test vector,𝐷
𝑇𝑒𝑠𝑡

[⋅]←
𝑄𝑜𝑆

𝐷

5: Append:𝐷
𝑇𝑟𝑎𝑖𝑛

[⋅]←𝐷[⋅], based on device’s CoS
6: Predict 𝐶𝑜𝑆

𝑃𝑟𝑒𝑑
using deep learning. Check the cases.

7: Case 1: {𝐶𝑜𝑆
𝑆𝑇𝐷

== 𝐶𝑜𝑆
𝑇

} & {Device packet delay >

Avg(Packet delays)} → Feedback to improve bandwidth
8: Case 2: {𝐶𝑜𝑆

𝑆𝑇𝐷
== 𝐶𝑜𝑆

𝑇
} & {𝑄𝑜𝑆

𝐷
<𝑇

𝑚𝑖𝑛
& N < 3}→ Feed-

back to client to increase 𝑄𝑜𝑆
𝐷

upto 𝑇
𝑚𝑖𝑛

9: Case 3: {𝐶𝑜𝑆
𝑆𝑇𝐷

== 𝐶𝑜𝑆
𝑇

} &𝑄𝑜𝑆
𝐷
> 𝑇

𝑚𝑎𝑥
& N < 3 → Allot

excess resources in fog server’s virtual memory
10: Case 4: {𝐶𝑜𝑆

𝑆𝑇𝐷
≠ 𝐶𝑜𝑆

𝑇
} & {(𝑄𝑜𝑆

𝐷
<𝑇

𝑚𝑖𝑛
) || (𝑄𝑜𝑆

𝐷
> 𝑇

𝑚𝑎𝑥
)

& (N>3 & 𝑁<10)} || {CoS updation requested by device} →
Update CoS, assign new 𝑄𝑜𝑆

𝑇

11: Case 5: {𝐶𝑜𝑆
𝑆𝑇𝐷

≠ 𝐶𝑜𝑆
𝑇

} & {(𝑄𝑜𝑆
𝐷
<𝑇

𝑚𝑖𝑛
) || (𝑄𝑜𝑆

𝐷
> 𝑇

𝑚𝑎𝑥
)

& (𝑁 > 10)} → Transfer 𝑄𝑜𝑆
𝐷

to cloud server. Cloud server
retrieves previous𝑄𝑜𝑆

𝐷
and packet flow data. Analyse using

deep learning
12: if {Case 5 || Abnormal packet flow || Both} then
13: Classify behaviour as attack
14: Blacklist Device
15: else
16: Classify behaviour as fault
17: Rep = Rep - 1
18: end if
19: Append:𝐷[⋅]←𝐷

𝑇𝑒𝑠𝑡
[⋅], based on device’s CoS

20: if (Rep < 4) then
21: Blacklist Device
22: end if

3.5 | Generation of Authentication Secrets

In this subsection, we discuss the generation of Authentication
Secrets, that is, the seeds and secret key generation equations
required to compute Cloud Secret and Random Value, by the
Authentication server, whose notations are shown in Table 10.
Device uses Cloud Secret during the handover process to prove its
identity to the Authentication server and Cloud server. Random
Value is used as a verification mechanism by the Authentication
server during the authentication mechanism to ensure that the
response is being received from the intended device. When the
device turns-on each time in its home base station cell, the device
requests Authentication Secrets from the Cloud server before con-
necting to the home base station. The Cloud server verifies the
device’s previous Unique ID and permanent address. It autho-
rises the Authentication server to generate the 𝑆𝑒𝑒𝑑

𝑆𝑒𝑐𝑟𝑒𝑡
and

𝑆𝑒𝑒𝑑
𝑉 𝑎𝑙𝑢𝑒

using ‘python uuid library’. Authentication server then
shares them with the device along with the new Unique ID, secret

10 of 31 Software: Practice and Experience, 2024
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TABLE 10 | Notations used in secret generation, authentication and handover protocols (Parameters stored in multiple locations are the same. An
apostrophe is included to differentiate storage locations).

Storage location

NB-IoT device Fog server Cloud server Description

Cloud secret — Cloud secret’ Secret used by devices to prove their identity
Random value Random value’ — Secret to verify sender’s authenticity
Q — Q’ Secret to verify base station’s authenticity
𝑆𝑒𝑒𝑑

𝑆𝑒𝑐𝑟𝑒𝑡
— 𝑆𝑒𝑒𝑑

′
𝑆𝑒𝑐𝑟𝑒𝑡

Seed required to verify the device identity during authentication with
the Authentication server

— — 𝑆𝑒𝑒𝑑
𝑉 𝑎𝑙𝑢𝑒

Seed required to verify the device identity during handover with the
authentication server

𝑓
𝑆𝑒𝑐𝑟𝑒𝑡

(⋅) — 𝑓
′
𝑆𝑒𝑐𝑟𝑒𝑡

(⋅) Secret key mechanism to compute Cloud secret
𝑓
𝑉 𝑎𝑙𝑢𝑒

(⋅) — 𝑓
′
𝑉 𝑎𝑙𝑢𝑒

(⋅) Secret key mechanism to compute Random value and Q
𝑈
𝑆𝑒𝑐𝑟𝑒𝑡

(⋅) — 𝑈
′
𝑆𝑒𝑐𝑟𝑒𝑡

(⋅) Mechanism to update 𝑆𝑒𝑒𝑑
𝑆𝑒𝑐𝑟𝑒𝑡

after every usage
Unique ID Unique ID’ Unique ID’ Unique ID of the device
Reputation — Reputation’ Device reputation
— Random number — Generated by home base station to approve the device’s handover

request. Stored in fog server and verified by Authentication server as
a proof of home base station’s approval

𝑁
𝑆

— 𝑁
′
𝑆

Number of successful authentication and handover requests for a
particular 𝑆𝑒𝑒𝑑

𝑆𝑒𝑐𝑟𝑒𝑡

𝑁
𝑆 𝐵

— 𝑁
′
𝑆 𝐵

Number of successful authentication and handover requests of a base
station for a particular 𝑆𝑒𝑒𝑑

𝑆𝑒𝑐𝑟𝑒𝑡

key generation and update mechanisms required to generate and
update 𝑆𝑒𝑒𝑑

𝑆𝑒𝑐𝑟𝑒𝑡
as shown in Figure 5.

After every usage of𝑆𝑒𝑒𝑑
𝑆𝑒𝑐𝑟𝑒𝑡

, it is updated using the update rule
𝑈
𝑆𝑒𝑐𝑟𝑒𝑡

(⋅) to ensure unlinkability of the values. 𝑁
𝑆

and 𝑁 ′
𝑆

are
incremented by 1 at both the device and the cloud server to keep
track of successful authentications and to maintain a synchro-
nisation between 𝑁

𝑆
and 𝑁 ′

𝑆
. In cases of failed authentication,

𝑁
𝑆

having been would utilised by the device gets updated; how-
ever, 𝑁 ′

𝑆
remains the same. Hence, to maintain synchronisation

between values, the device requests a new 𝑆𝑒𝑒𝑑
𝑆𝑒𝑐𝑟𝑒𝑡

and resets
𝑁
𝑆

and 𝑁 ′
𝑆

to zero. The equations to calculate the Authentica-
tion Secrets are shown in Equations (3) and (4). The equation to
update the 𝑆𝑒𝑒𝑑

𝑆𝑒𝑐𝑟𝑒𝑡
is given by Equation (5).

𝐶𝑙𝑜𝑢𝑑 𝑆𝑒𝑐𝑟𝑒𝑡 = 𝑓
𝑆𝑒𝑐𝑟𝑒𝑡

(𝑆𝑒𝑒𝑑
𝑆𝑒𝑐𝑟𝑒𝑡

) (3)

𝑅𝑎𝑛𝑑𝑜𝑚 𝑉 𝑎𝑙𝑢𝑒 = 𝑓
𝑉 𝑎𝑙𝑢𝑒

(𝑆𝑒𝑒𝑑
𝑉 𝑎𝑙𝑢𝑒

) (4)

𝑆𝑒𝑒𝑑
𝑆𝑒𝑐𝑟𝑒𝑡

= 𝑈
𝑆𝑒𝑐𝑟𝑒𝑡

(𝑆𝑒𝑒𝑑
𝑆𝑒𝑐𝑟𝑒𝑡

||𝑁
𝑆
) (5)

Authentication server sends a𝑆𝑒𝑒𝑑
𝑉 𝑎𝑙𝑢𝑒

to the device through the
visited base station, which in turn calculates the Random Value
using the mathematical equation 𝑓

𝑉 𝑎𝑙𝑢𝑒
(⋅). The device responds

with Random Value to prove its identity. Additionally, devices use
𝑓
𝑉 𝑎𝑙𝑢𝑒

(⋅) is used to calculate Q using ℎ(𝑁
𝑆
) of the base station

as shown in Equation (6) and compare it with Q’ transmitted by
the Authentication server calculated by Equation (7) to verify the
base station’s authenticity.

𝑄 = 𝑓
𝑉 𝑎𝑙𝑢𝑒

(ℎ(𝑁
𝑆 𝐵

)) (6)

𝑄
′ = 𝑓 ′

𝑉 𝑎𝑙𝑢𝑒
(ℎ(𝑁 ′

𝑆 𝐵
)) (7)

3.6 | Authentication in Cell

In this subsection, we describe the handshake protocols required
to authenticate the device in a cell before sending a message
to the base station. The device sends an authentication request
along with the nonce (N), timestamp (T), hash H calculated using
Equation (8) and a session key (𝑘

𝐴𝐶
) to the base station. Upon

receiving the request from the base station, the cloud server cal-
culates Cloud Secret’ using the 𝑆𝑒𝑒𝑑′

𝑆𝑒𝑐𝑟𝑒𝑡
stored in its database

using 𝐶𝑙𝑜𝑢𝑑𝑆𝑒𝑐𝑟𝑒𝑡′ = 𝑓 ′
𝑆𝑒𝑐𝑟𝑒𝑡

(𝑆𝑒𝑒𝑑′
𝑆𝑒𝑐𝑟𝑒𝑡

).

Q’ is encrypted using 𝑘
𝐴𝐶

at the authentication server to ensure
its confidentiality against possible Man-in-the-Middle and Sybil
attacks on the base station and make it decryptable only by the
device. 𝑄′

𝑘
𝐴𝐶

along with Cloud Secret’ are then encrypted with
the private key of the authentication server and transmitted to
the base station as shown in Figure 6. The base station, in turn,
generates𝐻 ′ as given by Equation (9), verifies the authenticity of
the device, and sends 𝑄′

𝑘
𝐴𝐶

, ℎ(𝑁
𝑆
) and a session key (𝑘

𝐴𝐵
) to the

device, which in turn verifies Q’ with Q and confirms the authen-
tication.

𝐻 = ℎ(𝑁, 𝑇 , 𝐶𝑙𝑜𝑢𝑑𝑆𝑒𝑐𝑟𝑒𝑡) (8)

𝐻
′ = ℎ(𝑁, 𝑇 , 𝐶𝑙𝑜𝑢𝑑𝑆𝑒𝑐𝑟𝑒t′) (9)

3.7 | Authentication in Private Fog Networks

In this subsection, we propose a group authentication mech-
anism given by Algorithm 2 for devices registered under pri-
vate fog servers as their home base stations. Since private fog
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FIGURE 5 | Secret generation.

FIGURE 6 | Authentication in cell.

servers are commonly employed by organisations owing multiple
devices, group authentication [53] would enable rapid authenti-
cation of all the devices simultaneously and blacklist attackers.
Group authentication protocols proposed by existing works [54,
55] require the devices to generate a random value, append it to
the IMSI of the device’s SIM card, encrypt using the group key,
and transmit it to the group leader. The group leader calculates
the XOR of the data, encrypts it using the session key and for-
wards it to the base station for verification. However, as NB-IoT
is resource-constrained, devices would consume significant bat-
teries to implement these protocols. Hence, we modify the algo-
rithms to meet the requirements of NB-IoT.

To enable group authentication, ensure the authenticity of the
device request, and avoid replay of H and blacklisted Unique IDs,

we calculate H by XORing the hash of Cloud Secrets and times-
tamp of all the devices present in the private network, as given by
Equation (10). The fog server verifies the location of the devices
by checking if their home base is the private fog server where
they are present and checks the legitimacy of devices by compar-
ing their Unique ID against the list of blacklisted devices. Further,
the private fog server sends an authentication request and a ses-
sion key to devices, as shown in Figure 7. The device generates
the digital signature of Unique ID and 𝑇

𝐴
and encrypts the com-

munication using the session key. This ensures device legitimacy,
integrity, confidentiality and non-repudiation of H and Unique
ID. Upon receiving H, the fog server transmits H and [Unique ID
and 𝑇

𝐴
] pairs to the Authentication server. The authentication

server calculates H’ given by Equation (11), using 𝑇
𝐴

transmit-
ted by the device and Cloud Secret’ generated using 𝑆𝑒𝑒𝑑′

𝑆𝑒𝑐𝑟𝑒𝑡
,
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ALGORITHM 2 | Group authentication in private fog networks.

1: Let 𝑆𝑒𝑒𝑑
𝑆𝑒𝑐𝑟𝑒𝑡

, 𝑆𝑒𝑒𝑑′
𝑆𝑒𝑐𝑟𝑒𝑡

= Seeds stored in the device and
Authentication server respectively, required to calculate
Cloud Secret, Rep = Device reputation

2: 𝑓
𝑆𝑒𝑐𝑟𝑒𝑡

(⋅), 𝑓 ′
𝑆𝑒𝑐𝑟𝑒𝑡

(⋅) = Mathematical equations stored in the
device and Authentication server to calculate Cloud Secret

3: 𝑓
𝑉 𝑎𝑙𝑢𝑒

(⋅), 𝑓 ′
𝑉 𝑎𝑙𝑢𝑒

(⋅) = Mathematical equations stored in the
device and Authentication server to calculate Random Value

4: Calculate Cloud Secret at device. Cloud Secret =
𝑓
𝑆𝑒𝑐𝑟𝑒𝑡

(𝑆𝑒𝑒𝑑
𝑆𝑒𝑐𝑟𝑒𝑡

)
5: Transmit h(Cloud Secret || T) to fog server
6: XOR the Cloud Secrets at fog server to give H =
ℎ(𝐶𝑙𝑜𝑢𝑑 𝑆𝑒𝑐𝑟𝑒𝑡1||𝑇1)⊕ ℎ(𝐶𝑙𝑜𝑢𝑑 𝑆𝑒𝑐𝑟𝑒𝑡2||𝑇2)⊕ ... ⊕
ℎ(𝐶𝑙𝑜𝑢𝑑 𝑆𝑒𝑐𝑟𝑒𝑡

𝑖
||𝑇

𝑖
)

7: Check for Unique ID in blacklisted devices’ list
8: Transmit H, Unique ID and {Unique ID, 𝑇

𝑖
}𝑠𝑘

𝑖
to Authentica-

tion server
9: Calculate Cloud Secret at Cloud. Cloud Secret’ =
𝑓
′
𝑆𝑒𝑐𝑟𝑒𝑡

(𝑆𝑒𝑒𝑑′
𝑆𝑒𝑐𝑟𝑒𝑡

)
10: Calculate H’ at Authentication server, H’ =

ℎ(𝐶𝑙𝑜𝑢𝑑 𝑆𝑒𝑐𝑟𝑒𝑡′1||𝑇1)⊕ ℎ(𝐶𝑙𝑜𝑢𝑑 𝑆𝑒𝑐𝑟𝑒𝑡
′
2||𝑇2)⊕ ... ⊕

ℎ(𝐶𝑙𝑜𝑢𝑑 𝑆𝑒𝑐𝑟𝑒𝑡′
𝑖
||𝑇

𝑖
)

11: if {H == H’} then
12: All devices authenticated
13: else
14: Transmit 𝑆𝑒𝑒𝑑

𝑉 𝑎𝑙𝑢𝑒𝑖
from Authentication server to all

devices through fog server
15: Calculate 𝑅𝑎𝑛𝑑𝑜𝑚𝑉 𝑎𝑙𝑢𝑒

𝑖
= 𝑓

𝑉 𝑎𝑙𝑢𝑒𝑖
(𝑆𝑒𝑒𝑑

𝑉 𝑎𝑙𝑢𝑒𝑖
)

16: Transmit {𝑈𝑛𝑖𝑞𝑢𝑒𝐼𝐷, ℎ(𝑅𝑎𝑛𝑑𝑜𝑚𝑉 𝑎𝑙𝑢𝑒′
𝑖
)}𝑠𝑘

𝑖
to Authen-

tication server through fog server
17: Calculate 𝑅𝑎𝑛𝑑𝑜𝑚𝑉 𝑎𝑙𝑢𝑒′

𝑖
= 𝑓 ′

𝑉 𝑎𝑙𝑢𝑒𝑖
(𝑆𝑒𝑒𝑑

𝑉 𝑎𝑙𝑢𝑒𝑖
)

18: if {ℎ(𝑅𝑎𝑛𝑑𝑜𝑚𝑉 𝑎𝑙𝑢𝑒
𝑖
) == ℎ(𝑅𝑎𝑛𝑑𝑜𝑚𝑉 𝑎𝑙𝑢𝑒′

𝑖
)} then

19: Device Verified
20: else
21: Rep = Rep - 1
22: end if
23: end if
24: if (Rep < 4) then
25: Blacklist Device
26: end if

compares with H and authenticates devices if verification is suc-
cessful.

𝐻 = ℎ(𝐶𝑙𝑜𝑢𝑑𝑆𝑒𝑐𝑟𝑒𝑡1||𝑇1)⊕ · · ·⊕ ℎ(𝐶𝑙𝑜𝑢𝑑𝑆𝑒𝑐𝑟𝑒𝑡
𝑖
||𝑇

𝑖
) (10)

𝐻
′ = ℎ(𝐶𝑙𝑜𝑢𝑑𝑆𝑒𝑐𝑟𝑒𝑡′1||𝑇1)⊕ · · ·⊕ ℎ(𝐶𝑙𝑜𝑢𝑑𝑆𝑒𝑐𝑟𝑒𝑡′

𝑖
||𝑇

𝑖
)

(11)

In cases where H is not verified, the authentication server ini-
tiates an authentication procedure as shown in Figure 8. The
authentication server transmits 𝑆𝑒𝑒𝑑

𝑉 𝑎𝑙𝑢𝑒
and timestamp (𝑇

𝐶
)

encrypted using 𝑠𝑘
𝐶

to the device through the fog server to
ensure 𝑆𝑒𝑒𝑑

𝑉 𝑎𝑙𝑢𝑒
is not replayed and prove its integrity to the

device. The device calculates the Random Value using Equation
(4) and transmits the Unique ID and h(Random Value) pair to
the authentication server through the base station. The authen-
tication server compares it with h(Random Value’) and veri-
fies the authenticity of the devices individually and blacklists
attackers.

3.8 | Handover Between Cells or a Cell and a
Private Fog Network

In this subsection, we discuss the mechanism required to pro-
vide a seamless handover as devices move across cells con-
trolled by varying service providers and private fog networks
owned by individuals. As some private fog networks may have
different architectures and paging protocols, seamless hard-
ware integration and handover with the remaining fog servers
may not be compatible [56]. To overcome this limitation, our
handover mechanism is designed to be interoperable across
all fog server architectures as it replaces the standard pag-
ing protocols with the verification of device identity using
Random Value.

The device intending to join the visited base station sends a
‘Request to Leave’ to the home base station along with the present
unique ID, reputation and address of the visited base station as
shown in Figure 9. The home base station, in turn, responds with
a Random number to be used as an identification by the authen-
tication server for the home base station’s approval. The Random
number is generated using secrets.token_bytes() from Secrets class
[57] in Python. The home base station then calculates H using
Equation (12) and transmits to the authentication server. The
Authentication server calculates Random Value’ using Equation

FIGURE 7 | Authentication in private fog networks (devices are verified).
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FIGURE 8 | Authentication in private fog networks (devices not verified).

FIGURE 9 | Handover between cells or cell and private fog networks.

(13) and sends h(Random Value’) and 𝑆𝑒𝑒𝑑
𝑉 𝑎𝑙𝑢𝑒

to the visited
base station and device, respectively, which are used to verify the
device’s identity to the visited base station and the authentication
server.

𝐻 = ℎ(𝑅𝑎𝑛𝑑𝑜𝑚𝑛𝑢𝑚𝑏𝑒𝑟,Reputation) (12)

𝑅𝑎𝑛𝑑𝑜𝑚𝑉 𝑎𝑙𝑢𝑒
′ = 𝑓 ′

𝑉 𝑎𝑙𝑢𝑒
(𝑆𝑒𝑒𝑑

𝑉 𝑎𝑙𝑢𝑒
) (13)

The device calculates h(Random Value) using Equation (4) and
transmits it along with the Random number to the visited base

station and Authentication server, respectively. The h(Random
number, reputation) is calculated and verified with H at
the Authentication server. h(Random Value) is checked with
h(Random Value’) at the visited base station. If verified, the
device’s handover request is approved. Once the device enters the
visited cell, it is clustered along with other devices based on their
proximity to the visited base station. The threshold for proximity
is given by the radius of the cell computed using Equation (14) as
described in [58].

14 of 31 Software: Practice and Experience, 2024
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FIGURE 10 | Handover between microcells.

𝑅 =

√
𝑃
𝑡

𝑃
𝑟

∗
𝐴
𝑡
𝐴
𝑟

𝜆2 (14)

where, 𝑃
𝑡
, 𝑃

𝑟
= Tx and Rx power, 𝐴

𝑡
, 𝐴

𝑟
= Tx and Rx antenna

gain, 𝜆 = wavelength of radio signal (𝜆 = 𝑐

𝑓
), c = speed of light

(3 ∗ 108
𝑚∕𝑠), f = carrier frequency of the radio signal.

3.9 | Handover Between Microcells

In this subsection, we propose a handover between micro-
cells when a cell is split to enable channel reuse as shown in
Figure 10. Devices in microcells are provided connectivity by
the base station through microcell towers comprising either
microcell antennae or heavy-load NB-IoT devices having higher
resources. However, microcell towers, when used for handover,
may affect the quality of the signal [59]. Further, as the microcell
towers have fewer resources compared to base stations, they
will not be able to analyse and store data, as is the case in base
stations. Hence, we design the microcell towers to act only
as an intermediary to relay the communications between the
device and base station. As the distance travelled by a device in
a microcell is less, we simplify the handover procedure to enable
rapid verification. The device calculates H using Equation (15)
and transmits it to the fog server which in turn compares it with
H’ calculated using the Unique ID’ and Reputation’ stored in its
database as shown in Equation (16). If verified, the handover
request is approved. Once the device enters a microcell, it

is clustered along with other devices based on the signal
coverage radius of the microcell tower calculated using
Equation (14).

𝐻 = ℎ(UniqueID,Reputation) (15)

𝐻
′ = ℎ(UniqueID′

,Reputation′) (16)

3.10 | Handover When Fog Server is Offline or
Blacklisted

In this subsection, we design handover mechanisms to pro-
vide connectivity in situations where the home base station
is either offline or blacklisted. In such cases, the cell is frag-
mented into multiple microcells, with microcell towers designed
to only forward the device’s communication to the cloud server.
As microcell towers have lower resources than fog servers and
the radius of microcells is low, a simplified handover mecha-
nism is proposed to enable the device to connect with the near-
est base station. Distance between the device and the visited
based station is calculated using Pythagoras theorem, that is,√
(𝑋2 −𝑋1)2 − (𝑌2 − 𝑌1)2, where 𝑋1, 𝑌1 are X and Y coordinates

of the device and𝑋2, 𝑌2 are X and Y coordinates of the visited base
station. To ensure broader signal coverage, the cell radius of the
neighbouring cells is increased by varying the carrier frequency
within the range of 1 920 MHz to 1 980 MHz [51] as given in by
Equation (14).
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FIGURE 11 | Handover when fog server is offline or blacklisted.

Upon receiving the ‘Request to Leave’ from the device through
the microcell tower, the Cloud server shares the 𝑆𝑒𝑒𝑑

𝑉 𝑎𝑙𝑢𝑒
to

the device as shown in Figure 11. h(Random Value’) calculated
using Equation (13) is sent by the Cloud server to the authen-
tication server. The device then calculates h(Random Value)
using Equation (4) and transmits it to the authentication server
through the visited base station, where h(Random Value’) is com-
pared with h(Random Value). If verified, the handover request
is approved. When the home base station is back online, the
communications are synchronised by the microcell towers, and
the list of transactions stored in the microcell towers’ cache is
deleted.

3.11 | Reputation-Based Mechanism

In this subsection, we develop a reputation-based mechanism to
detect malicious nodes and base stations. Due to the low band-
width of 180 kHz, attackers can eavesdrop on NB-IoT devices,
impersonate legitimate nodes, and misuse fog server resources
by continuously varying the QoS requirements. To limit these
attacks, we design the cloud server to detect abnormal device
behaviour by analysing the QoS variations. Further, fog servers
installed by independent entities are only partially reliable, as
attackers may impersonate them to gain unauthorised access to
devices’ information, manipulate stored data, and launch DDoS
attacks. Reputation is updated during handover between cells,
Secret Generation protocol, and in case of attacks. To overcome

these limitations and differentiate between attack and abnormal
QoS, we introduce a reputation-based mechanism in devices and
base stations.

Reputation is ranked between 1 to 10, where 1 and 10 repre-
sent the lowest and highest reputation, respectively. We set 4
as the threshold value. Hence, devices or base stations with a
reputation less than 4 or exhibiting attack behaviour are clas-
sified as malicious. Their ‘Device Address’ is shared with the
other base stations, and requests initiated by such devices are
not serviced, and base stations are decommissioned as shown
in Algorithm 1.

Reputation is calculated by the cloud server as a weighted aver-
age of absolute and relative behaviour. Absolute behaviour is
determined by the votes of the authentication server, cloud
server, base stations and microcell towers, whereas the NB-IoT
devices give relative behaviour. The vote value ranges from -10
to 10. Equations to calculate the device, base station and final
reputation are given by Equations (17) and (18), respectively.
Votes collected from the reputation tracking sensors installed
on the entities are transmitted to the cloud server using Ellip-
tic Curve Cryptography (ECC) [60] along with a nonce and
authentication tag generated using AES-GSM to ensure the con-
fidentiality and integrity of votes. Cloud server calculates the
new reputation and transmits it to the authentication server,
which then updates the device with this value, as seen in
Figures 5, 9 and 11.

16 of 31 Software: Practice and Experience, 2024
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In the case of calculating the device reputation, we consider the
votes of the Authentication server, base stations and the aver-
age of remaining devices present in a particular cell. In the case
of base stations, votes of the Authentication server, cloud server,
microcell towers and devices are considered. As the Authentica-
tion server and base station verify and authenticate the devices,
their votes are given a higher weight of 0.4 each. Cloud server
analysing the device QoS rates the base station based on its load
balancing strategy with a weight of 0.3. The remaining devices
in that particular cell reporting the relative behaviour are given
a weight of 0.2. Microcell towers rate the base stations based on
their rapidity of being back online, with a weight of 0.1.

𝑅
𝐷
+ = (0.4 ∗ 𝑉

𝐴
+ 0.4 ∗ 𝑉

𝐵
+ 0.2 ∗ 𝑉

𝐷
) (17)

𝑅
𝐵
+ = (0.4 ∗ 𝑉

𝐴
+ 0.3 ∗ 𝑉

𝐶
+ 0.2 ∗ 𝑉

𝐷
+ 0.1 ∗ 𝑉

𝑀
) (18)

where,

𝑅
𝐷
= Device reputation,

𝑅
𝐵
= Base station reputation,

𝑉
𝐴
= Authentication server vote,

𝑉
𝐵
= Base station vote,

𝑉
𝐶
= Cloud server vote,

𝑉
𝑀
= Microcell tower vote,

𝑉
𝐷
= Average of votes of all devices present in a particular cell at

the time of vote

3.12 | Computational Complexity

In this subsection, we compute the computational complexity of
the algorithm to calculate H in a private fog server as shown
in Algorithm 2 and memory storage and retrieval of blacklisted
unique IDs in terms of the memory and execution time in base
stations and the authentication server.

3.12.1 | Group Authentication Algorithm in Private
Fog Networks

To verify the authenticity of devices, the private fog server and
authentication server calculate H as shown in Equation (8). H is
calculated by bitwise XORing ℎ(𝐶𝑙𝑜𝑢𝑑 𝑆𝑒𝑐𝑟𝑒𝑡||𝑇

𝐴
) of size 256

bits, transmitted by all the devices.

Space Complexity

The space required to store the hashes of ‘i’ number of devices
is ‘i*256’ bits. Space required for the resulting 256-bit output
is 256 bits. Therefore, the total space complexity would sum to
O(i*256 + 256). Since ‘i*256 + 256’ is a constant, the space com-
plexity simplifies to [(i+1)*256]*O(1). Thus, space complexity
becomes O(1).

Time Complexity

As each of the bits is XORed in sequence, the time complexity is
O(256). Since 256 is a constant, the complexity equation would
simplify to 256*O(1), resulting in a time complexity of O(1).

3.12.2 | Memory Structure to Store Blacklisted
Entities

Blacklisted NB-IoT devices and base stations are stored in the
authentication server, and the rest of the base stations are stored
in a hash table where the entity’s permanent Device Address and
unique IDs assigned to it are stored in the format of key-value
pairs, that is,𝐷𝑒𝑣𝑖𝑐𝑒 𝐴𝑑𝑑𝑟𝑒𝑠𝑠

𝑁
: [𝑈𝑛𝑖𝑞𝑢𝑒 𝐼𝐷1, 𝑈𝑛𝑖𝑞𝑢𝑒 𝐼𝐷2,

. . . , 𝑈𝑛𝑖𝑞𝑢𝑒 𝐼𝐷
𝑀

].

Space Complexity:

Space complexity to store ‘N’ number of key-value pairs each with
‘M’ number of values would be O(N).

Time Complexity:

The time complexity for insertion, deletion, and search in a hash
table using linear probing [61] depends on ‘Load factor’ (𝛼) given
𝛼 = 𝑁

𝑀
. Complexity to insert and search each of the unique IDs

is 𝑂( 1
1−𝛼
). When the number of probes rises exponentially, the

worst-case scenario complexity would sum to O(1).

4 | Security Analysis and Mitigation Strategies

In this section, we analyse the security of the proposed fog com-
puting framework against common cyber attacks and examine
mitigation strategies.

4.1 | Device Anonymity

NB-IoT devices are assigned a Device Address as a permanent ID
by the authentication server when they join the fog architecture
for the first time. h(Device Address) is used by the device only for
authentication with the cloud server during the Secret Generation
process. Devices are assigned a Unique ID as an alias generated
using ‘python uuid library’ with the seed value set to Nonce to
maintain anonymity. Hence, the devices’ anonymity is protected,
as attackers will not be able to predict the Nonce as the authenti-
cation server randomly generates it.

4.2 | Authenticity and Integrity

Message authenticity ensures that the messages transmitted by
a sender originated from it. The security requirement is ensured
by the usage of Nonce, Device ID, 𝑆𝑒𝑒𝑑

𝑆𝑒𝑐𝑟𝑒𝑡
and HMAC in the

authentication protocols. The usage of HMAC ensures the fresh-
ness of the message. In the ‘Secret Generation’ protocol, the device
transmits [[Request for Authentication Secret, h(Device Address),
Unique ID, 𝑁

𝐶
, 𝑇

𝐶
, h(𝑁

𝐶
, 𝑇

𝐶
)]𝑠𝑘

𝐶
]𝑝𝑘

𝐴
to the cloud server as

shown in Figure 5. As Device Address is generated by the Cloud
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server when the device first joins the fog architecture, it is known
only to the device and the cloud server. Hence, attackers eaves-
dropping on the channel cannot decipher it. Further, in the
authentication protocols, the device generates Cloud Secret using
𝑆𝑒𝑒𝑑

𝑆𝑒𝑐𝑟𝑒𝑡
, calculates H = h(𝑁

𝐴
, 𝑇

𝐴
, Cloud secret) and trans-

mits [[Request for authentication, Unique ID, 𝑁
𝐴

, 𝑇
𝐴

, h(𝑁
𝐴

, 𝑇
𝐴

),
H, {𝑘

𝐴𝐶
}𝑠𝑘

𝐴
]𝑠𝑘

𝐴
]𝑝𝑘

𝐵
to the base station as shown in Figure 6.

𝑆𝑒𝑒𝑑
𝑆𝑒𝑐𝑟𝑒𝑡

is updated after every usage. The cloud server shares a
new 𝑆𝑒𝑒𝑑

𝑆𝑒𝑐𝑟𝑒𝑡
in every ‘Active’ state. Hence, eavesdropping and

reusing them to launch attacks is not feasible, thus ensuring the
message’s authenticity.

To ensure messages are not modified in transit, integrity is
ensured by nonce and timestamp as h(𝑁

𝐴
, 𝑇

𝐴
) in the authen-

tication and handover protocols. Receivers store the previous
nonces received. Upon receiving the authentication requests, the
receiver calculates h(𝑁

𝐴
, 𝑇
𝐴

) from𝑁
𝐴

and 𝑇
𝐴

sent in the request
and compares it with h(𝑁

𝐴
, 𝑇
𝐴

) sent in the request. If the hash is
not verified or nonce is re-used, the message is rejected.

In cases of failed authentication, 𝑆𝑒𝑒𝑑
𝑆𝑒𝑐𝑟𝑒𝑡

, having been calcu-
lated to initiate the protocol, is updated at the device end but
remains the same at the authentication server. Further, in some
cases, attackers may gain access to and modify the 𝑆𝑒𝑒𝑑

𝑆𝑒𝑐𝑟𝑒𝑡
.

Hence, to maintain the integrity of 𝑆𝑒𝑒𝑑
𝑆𝑒𝑐𝑟𝑒𝑡

and ensure its
value is identical at both the device and authentication server,
𝑁
𝑆

is appended to 𝑆𝑒𝑒𝑑
𝑆𝑒𝑐𝑟𝑒𝑡

to calculate the updated value as
seen in Equation (5). If 𝑁

𝑆
and 𝑁 ′

𝑆
vary, the device requests a

new 𝑆𝑒𝑒𝑑
𝑆𝑒𝑐𝑟𝑒𝑡

to resynchronise its value with the authentication
server and resets 𝑁

𝑆
and 𝑁 ′

𝑆
to zero. If still a variation in 𝑁

𝑆
is

observed, the device is blacklisted.

4.3 | Man-In-The-Middle Attack

Attackers launch Man-in-the-Middle attacks by eavesdropping
and altering the messages. To prevent these attacks, we intro-
duce nonce (𝑁

𝐴
) and timestamp (𝑇

𝐴
) in the authentication and

handover requests, as seen in Figure 9. 𝑁
𝐴

, 𝑇
𝐴

and ℎ(𝑁
𝐴
, 𝑇
𝐴
)

are transmitted by the device to the home and visited base sta-
tions along with the handover request. Any message tampering
would alter 𝑇

𝐴
, thus making the request invalid as ℎ(𝑁

𝐴
, 𝑇
𝐴
)

would not be verified. Each communication between entities is
encrypted using the private key of the sender (𝑠𝑘

𝐴
) and the pub-

lic key of the receiver (𝑝𝑘
𝐵

) to ensure that unintended entities
do not access the message contents. Additionally, Random Value
and H transmitted by the device calculated using Equations (4)
and (12) are verified at the authentication server and the vis-
ited base station, respectively, thus authenticating the device
identity.

In the authentication protocol proposed in Figure 7, the device
calculates and transmits h(Cloud Secret) to the Authentica-
tion server encrypted using session key (𝑘

𝐴𝐵
) as shown in

[Unique ID, 𝑇
𝐴

, 𝑁
𝐴

, h(𝑇
𝐴

, 𝑁
𝐴

), h(𝐶𝑙𝑜𝑢𝑑 𝑠𝑒𝑐𝑟𝑒𝑡
𝑖
, 𝑇
𝐴

), {Unique
ID, 𝑇

𝐴
}𝑠𝑘

𝐴
]𝑘
𝐴𝐵

. This ensures end-to-end encryption by limit-
ing the message’s visibility only to the receiver. Further 𝑁

𝑆 𝐵
,

Cloud Secret and Random_Value required to verify the identity
of devices in authentication and handover protocols are hashed
using SHA-256 and transmitted across entities. Probability of
sniffing and brute-forcing these packets for ‘n’ number of trials

would be 1 − (1 − 2−256)𝑛, which is nearly zero, thus protecting
its integrity and confidentiality.

4.4 | Impersonation Attack

In impersonation attacks, attackers impersonate devices and base
stations to steal personal information. To avoid these attacks on
the devices, we design the device to send h(Device Address) in
the Secret Generation protocol. As Device Address is maintained a
secret by the device and the Cloud server, impersonation attacks
aimed at stealing 𝑆𝑒𝑒𝑑

𝑆𝑒𝑐𝑟𝑒𝑡
, 𝑓

𝑆𝑒𝑐𝑟𝑒𝑡
(⋅), 𝑓

𝑉 𝑎𝑙𝑢𝑒
(⋅) and 𝑈

𝑆𝑒𝑐𝑟𝑒𝑡
(⋅) sent

by authentication server upon device verification are eliminated.
In authentication protocols, the device generates Cloud Secret
using 𝑆𝑒𝑒𝑑

𝑆𝑒𝑐𝑟𝑒𝑡
and transmits H= h(𝑁

𝐴
, 𝑇
𝐴

, Cloud Secret) along
with the handover request to prove its identity to the Authenti-
cation server. 𝑆𝑒𝑒𝑑

𝑆𝑒𝑐𝑟𝑒𝑡
is appended to 𝑁

𝑆
and updated using

𝑈
𝑆𝑒𝑐𝑟𝑒𝑡

(⋅) after every usage to ensure that it is indecipherable. Fur-
ther, we design the authentication server to calculate Q’ using
ℎ(𝑁

𝑆 𝐵
) and transmit it to the device. The device in turn calcu-

lates Q using 𝑓
𝑉 𝑎𝑙𝑢𝑒

(⋅) and verifies the base station identity. As
𝑁
𝑆 𝐵

is a secret between the Authentication server and the base
station and that 𝑓

𝑉 𝑎𝑙𝑢𝑒
(⋅) is known only to the device and Authen-

tication server, impersonation attacks on the base stations can be
efficiently detected. In the case of handover protocols, as seen
in Figure 11, the cloud server transmits a digital signature, that
is, {𝑆𝑒𝑒𝑑

𝑉 𝑎𝑙𝑢𝑒
}𝑠𝑘

𝐷
to the device to generate Random Value using

𝑓
𝑉 𝑎𝑙𝑢𝑒

(⋅). Random Value proves the device’s identity to the visited
base station and {𝑆𝑒𝑒𝑑

𝑉 𝑎𝑙𝑢𝑒
}𝑠𝑘

𝐷
preserves non-repudiation, thus

limiting impersonation attacks.

4.5 | Replay Attack

Attackers initiate replay attacks by eavesdropping and replaying
a certain portion or the entire conversation to the receiver to gain
illicit access to the device information. To avoid these attacks,
we design the protocols to include a nonce (𝑁

𝐴
) and timestamp

(𝑇
𝐴

) as shown in [[Request for authentication, Unique ID,𝑁
𝐴

, 𝑇
𝐴

,
h(𝑁

𝐴
, 𝑇

𝐴
), H]𝑠𝑘

𝐴
]𝑝𝑘

𝐵
. If the attacker replays the message with

new𝑁
𝐴

and 𝑇
𝐴

, it will not match h(𝑁
𝐴

, 𝑇
𝐴

), leading to the mes-
sage’s rejection. Additionally, in authentication protocols, H cal-
culated using h(𝑁

𝐴
, 𝑇
𝐴

, Cloud Secret) is transmitted by the device
in the authentication request. Cloud Secret is calculated using
𝑆𝑒𝑒𝑑

𝑆𝑒𝑐𝑟𝑒𝑡
shared by the authentication server in every ‘Active’

state and 𝑆𝑒𝑒𝑑
𝑆𝑒𝑐𝑟𝑒𝑡

is updated after every usage using 𝑈
𝑆𝑒𝑐𝑟𝑒𝑡

(⋅).
Hence, the messages replayed will not be able to guess the
current 𝑓

𝑆𝑒𝑐𝑟𝑒𝑡
(⋅), 𝑈

𝑆𝑒𝑐𝑟𝑒𝑡
(⋅) and 𝑆𝑒𝑒𝑑

𝑆𝑒𝑐𝑟𝑒𝑡
, thus avoiding replay

attacks.

In the case of authentication in private fog networks proposed
in Figure 7, to prevent attackers from eavesdropping and replay-
ing the hashed secrets, we hash the appended timestamp and
the cloud secret as seen in {Unique ID, 𝑇

𝐴
, 𝑁

𝐴
, ℎ(𝑇

𝐴
,𝑁

𝐴
),

ℎ(𝐶𝑙𝑜𝑢𝑑 𝑆𝑒𝑐𝑟𝑒𝑡
𝑖
||𝑇

𝐴
), {Unique ID, 𝑇

𝐴
}𝑠𝑘

𝐴
}𝑘
𝐴𝐵

. If attackers
replay the ℎ(𝐶𝑙𝑜𝑢𝑑 𝑆𝑒𝑐𝑟𝑒𝑡

𝑖
||𝑇

𝐴
), the authentication server will

be able to reject the request by checking its authenticity using
𝑇
𝐴

from {Unique ID, 𝑇
𝐴

}𝑠𝑘
𝐴

, where 𝑇
𝐴

is encrypted with the pri-
vate key of the device. Further, attackers creating a dictionary of
unique IDs and hashes and replaying them would not be suc-
cessful as the Device Address is known only to the device, cloud
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and authentication server and it is used only during Secret Gen-
eration requests, as shown in Figure 5. Unique ID, pseudonym,
is updated during handover, and every time authentication and
handover requests fail, the probability of brute-forcing hashes is
nearly zero, as discussed in Section 4.3.

4.6 | Denial of Service (Dos)

Attackers can attempt to disrupt network traffic by launching
DoS and Distributed Denial of Service (DDoS) attacks to flood
transactions in the fog architecture. To avoid these attacks, we
design the authentication and handover protocols to include𝑁

𝐴
,

𝑇
𝐴

and h(𝑁
𝐴

, 𝑇
𝐴

). When attackers initiate multiple transactions,
the receiver checks h(𝑁

𝐴
, 𝑇

𝐴
), ignores attack packets and black-

lists them. A variation of this attack can lead to selfdenial of
service, where a blacklisted device or a base station initiates
authentication requests in private fog networks and negates H
==H’ and h(Random_Value’)== h(Random_Value) checks. This
results in an infinite authentication loop. To alleviate this limi-
tation, the Unique IDs of the blacklisted entities are stored and
updated regularly at the base stations, Cloud and Authentication
servers, which verify the unique ID of the entity against the record
of blacklisted entities and reject them. In cases where devices
manipulate the permanent Device Address to evade blacklist-
ing, the authentication server checks the authenticity of h(Device
Address) during Secret Generation and rejects the request.

4.7 | Sybil Attack

Attackers launch Sybil attacks by creating multiple fake identi-
ties of a single node to inject fake data into the database and
exhaust resources in the fog servers. The cloud server checks
the Device Address to overcome these attacks. It authorises the
authentication server to assign the devices with unique ID and
Authentication secrets when devices enter a new cell. Hence, Sybil
nodes within a particular base station are prevented. Further,
when devices move across cells, 𝑆𝑒𝑒𝑑

𝑉 𝑎𝑙𝑢𝑒
is sent by the cloud

server to the device to calculate Random Value. h(Random Value)
is verified at the visited base station to permit the device into the
cell. The fog server at the home base station sends device data
to the cloud and deletes data locally at its database, thus prevent-
ing multiple entities across various cells. In the case of private fog
servers, group authentication is used to verify device identity. The
devices generate h(Cloud Secret) and transmit it to the fog server,
which in turn calculates 𝐻 = ℎ(𝐶𝑙𝑜𝑢𝑑 𝑆𝑒𝑐𝑟𝑒𝑡1 || 𝑇1)⊕
· · ·⊕ ℎ(𝐶𝑙𝑜𝑢𝑑 𝑆𝑒𝑐𝑟𝑒𝑡

𝑖
|| 𝑇

𝑖
). If multiple h(Cloud Secret) are

detected, a Sybil attack is inferred, and the Cloud server veri-
fies individual devices using 𝑆𝑒𝑒𝑑

𝑉 𝑎𝑙𝑢𝑒
as shown in Figure 8 and

blacklists Sybil nodes.

4.8 | Lateral Movement

Lateral movement is defined as the attackers’ ability to move hor-
izontally across the fog computing infrastructure to gain unau-
thorized access to devices and fog servers. To prevent such attacks
across cells, we design authentication and handover mechanisms
ensuring the authenticity of the devices joining the visited base

stations and the integrity of the messages transmitted. Addition-
ally, the authentication secrets are generated by the cloud every
time the device turns on and are updated after every usage to
ensure unlinkability. Fog servers are designed to share the device
QoS with only the cloud and not the neighbouring fog servers
as described in Section 3.1 since fog servers controlled by private
individuals may not be entirely trusted. To prevent attacks within
cells, the fog servers are designed to transfer device QoS to the
cloud and clear their cache when devices leave cells. Further, we
introduce a reputation-based mechanism to track the device and
base station behaviour. When attacks are detected, reputation is
reduced and devices are blacklisted.

4.9 | Forward Secrecy

Forward secrecy attacks are initiated by attackers to gain access to
the long-term private keys and decrypt past encrypted data. These
attacks can be limited by sharing device secrets and encryption
keys using mutual authentication, generating temporary private
keys and updating the secrets to ensure unlinkability. In our pro-
posed architecture, we design the authentication server to gen-
erate and share 𝑆𝑒𝑒𝑑

𝑆𝑒𝑐𝑟𝑒𝑡
, 𝑓

𝑆𝑒𝑐𝑟𝑒𝑡
(⋅), 𝑓

𝑉 𝑎𝑙𝑢𝑒
(⋅) and 𝑈

𝑆𝑒𝑐𝑟𝑒𝑡
(⋅) every

time the device enters ‘Active’ state and authenticates itself in
the home base station as shown in Figure 5. These secrets are
encrypted using a digital signature to ensure non-repudiation.
They are transmitted to the device along with ‘Request Approved’
encrypted using the session key 𝑘

𝐵𝐶
to ensure the non-reusability

of secrets. Further, the seeds are updated after every usage using
𝑈
𝑆𝑒𝑐𝑟𝑒𝑡

(⋅) to ensure freshness and unlinkability of the value, thus
avoiding forward secrecy.

4.10 | Resource Depletion Attacks

Resources in the fog computing framework can be depleted in the
following ways.

4.10.1 | Malicious Nodes

To deplete fog server resources such as bandwidth, memory,
CPU processing, etc., attackers repeatedly send requests for an
update in QoS or may continuously vary the QoS requirements.
To detect these attacks and to differentiate this behaviour from
faulty devices, the fog server transmits the device QoS to the
cloud. The cloud server retrieves the device’s QoS and packet flow
data uploaded by the previous fog server and checks for simi-
lar behaviour and abnormal packet flows. If either QoS variation
or abnormal packet flows are detected, the cloud classifies it as
an attack, and the cloud blacklists the device. Else, behaviour is
inferred as a fault, and reputation is reduced to isolate attacks
mimicking similar behavior.

4.10.2 | Resource Exhaustion

Resource exhaustion occurs when the QoS demands of the
devices saturate the available computational resources in the fog
server. This leads to the inability of fog servers to cater to the
devices’ needs. To eliminate this limitation, we introduce load
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balancing, where the fog nodes analyse QoS in real-time using
deep learning algorithms and predict the resources required to
process a particular device request. If the predicted QoS is within
the limits of device specifications, the fog server sends feed-
back to the device to allocate the required QoS. If the require-
ment exceeds the device specifications, excess resources are allo-
cated at the fog server’s virtual memory. Further, when a device
leaves the cell, its QoS data is transmitted by the base station
to the cloud and deleted locally at the fog server to enhance
scalability.

5 | Implementation and Experimental Set-Up

In this section, we discuss the software simulator and the hard-
ware set-up required to design the fog computing framework.
We simulate the performance of device movement, load distri-
bution, and device clustering and visited the base station choos-
ing process in fog architecture using the iFogSim 2 simulator
[13]. We implement the handover and authentication protocols
on Raspberry Pi 4 [14]. Further, we formally validate the robust-
ness of the authentication and handover protocols using Scyther
[15] to prove that they are immune to known attacks. Perfor-
mance of the proposed architecture is measured in terms of
cloud execution time, energy, power and memory consumption
on the iFogSim 2 and Raspberry Pi 4 platforms. A brief descrip-
tion of implementation platforms and performance metrics is
given below.

5.1 | Implementation on Raspberry Pi 4

In this subsection, we describe the implementation of the secret
generation, handover and authentication protocols as a UDP
client-server program on the Raspberry Pi 4, where the Raspberry
Pi 4 and laptop were programmed as client and server, respec-
tively, and vice versa. A screenshot of the implementation setup
is shown in Figure 12.

Since authentication, cloud and fog servers are designed to store
and process device data and monitor and predict CoS in real time,
significant RAM is required. Hence, we consider Raspberry Pi
4 with 4GB RAM for implementing IoT gateways, fog and edge
servers due to its built-in Ethernet and wireless connectivity [14]
instead of previous low-memory versions such as Raspberry Pi 3,
Raspberry Pi Pico, etc.

5.2 | Implementation on IFogSim 2

In this subsection, we implement the fog architecture on iFogSim
2. We initialise the cloud as Layer-0, fog servers as Layer-1 and
NB-IoT devices as Layer-2 and simulate the performance for
homogeneous and heterogeneous device configurations. Homo-
geneous configurations refer to the ideal conditions where private
fog servers are not present and all devices and fog servers have
the same system configurations, such as MIPS (computational
power), RAM (memory requirement), Tx and Rx bandwidth, busy
(Active) and idle power. On the contrary, heterogeneous con-
figuration refers to the non-ideal conditions where private fog
servers are present and devices and fog servers have varying sys-
tem configurations. Hence, multiple functions required to cre-
ate fog servers based on individual service provider requirements
are defined using the createFogDevice function present in FogDe-
vice.java. Similarly, sensors and actuators required to input and
execute data are initiated separately to cater to various sensor
and actuator requirements using Sensor class and Actuator class
defined in Sensor.java and Actuator.java, respectively. The time
interval with which sensors sense the inputs is set using sen-
sor.setLatency().

To schedule packet transmission time, the tuple emission rate
is set using the DeterministicDistribution() function. In Secret
Generation protocol, to enable the device to communicate
with the cloud directly, addModuleToDevice (“picture-capture”,
“cloud”), that is, object detector module, and addModuleToDe-
vice (“slot-detector”, “cloud”), that is, object tracker module, a part
of moduleMapping function are declared and set to TRUE. Simi-
larly, device-to-fog server communication is initiated by setting
the above-specified functions to FALSE. To facilitate mobility,
devices and fog servers are assigned X and Y coordinates; a mobil-
ityMap function tracking the continuous variation in (X , Y ) is
defined and mobilityDestinationId function representing the vis-
ited base station ID is set. To cluster devices present inside cells
and to enable new connection to a base station based on its dis-
tance from the device, cell radius and distance between the device
and the base station are calculated using Pythagoras theorem and
Equation (14).

5.3 | Verification and Validation Using Scyther

In this subsection, we formally verify the authentication and han-
dover protocols in the proposed fog computing framework using

FIGURE 12 | Hardware setup.
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Scyther [15]. Scyther is written using Python 3 and works based
on the OpenSSL library [62] to define cryptographic primitives
and functions. Scyther employs Satisfiability Modulo Theories
(SMT) solvers to check the consistency of the protocol satisfying
various security properties. The tool outputs the results in terms
of ‘No attacks’, ‘No attacks within bounds’ and ‘Attacks found’. ‘No
attacks’ shows that the protocol is secure under all possible sce-
narios and conditions without relying on specific assumptions
about the capabilities of attackers. ‘No attacks within bounds’ sug-
gests that the protocol is secure under the given assumptions or
within the defined security boundaries. The tool verifies claims
such as Weakagree, Commit, Secret, Alive, Niagree and Nisync and
shows that the receiver is active during protocol execution, the

receiver has initiated the response, protocol parameters are secret
from eavesdroppers, and the protocol operates with data consis-
tency on all execution steps.

Verification report of the ‘Secret Generation’ given by Figure 13a,
while those of authentication protocols comprising ‘Authentica-
tion in Cells’, ‘Authentication in Private Fog Networks when Devices
are Verified’ and ‘Authentication in Private Fog Networks when
Devices are not Verified’ are shown in Figures 13b and 14a,b
respectively. Output of handover protocols, that is, ‘Handover
between Cells or a Cell and a Private Fog Network’, ‘Handover
between Microcells’ and ‘Handover when Fog Server is Offline or
Blacklisted’ are given in Figures 15a,b and 16 respectively.

FIGURE 13 | Scyther verification results (a) secret generation, (b) authentication in cells.

FIGURE 14 | Scyther verification results for authentication in private fog networks (a) devices verified, (b) devices not verified.
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FIGURE 15 | Scyther verification results for handover between (a) cells or a cell and a private fog network, (b) microcells.

FIGURE 16 | Handover when fog server is offline or blacklisted.

5.4 | Performance Metrics

The performance of the fog computing framework is measured
in terms of power, memory, execution time and network usage.
In contrast, the performance of deep learning algorithms is mea-
sured in terms of MSE, MAE and RMSE in addition to the above
parameters. A brief description of the performance parameters is
given below.

5.4.1 | Power/Energy

Energy in iFogSim 2 is measured using the UpdateEnergyCon-
sumption() function present in the PowerDatacenter class. This
function outputs the energy of all the devices during execution.

While implementing on a Raspberry Pi 4 [63], K2901A Source
Unit [64] was used to power the device at 5.42V and 3A.
Power consumed was recorded by observing the variations dur-
ing run-time.

5.4.2 | Memory

Memory consumed to execute authentication and handover pro-
tocols in Raspberry Pi 4 was measured using the Task Manager.

5.4.3 | Execution Time

Execution time in Raspberry Pi 4 is defined as the cumulative
time required for packet formation, transfer and verification. It
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was measured by computing the difference between the start time
(𝑇
𝑠𝑡𝑎𝑟𝑡

) and stop time (𝑇
𝑠𝑡𝑜𝑝

) taken to execute the protocols as given
by, 𝑇

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛
= 𝑇

𝑆𝑡𝑜𝑝
− 𝑇

𝑆𝑡𝑎𝑟𝑡
.

In the case of iFogSim 2, execution time is measured in terms
of ‘Application loop delay’ defined as the total delay encoun-
tered during workflow execution encompassing the time taken to
transmit authentication and handover requests to the fog or cloud
servers, processing time to simulate and arrange the fog archi-
tecture components, and the latency encountered on account of
generating devices’ sensor output, processing and returning it to
the actuators. Execution time in iFogSim 2 is calculated using
TimeKeeper.getInstance() library.

5.4.4 | Network Usage

Network usage is used in iFogSim 2 to measure the bandwidth
utilization of information transferred through the network inter-
faces for running an application on the fog architecture. It is
calculated using the getNetworkUsage() function, a part of Net-
workUsageMonitor.java in iFogSim 2.

6 | Performance Evaluation

In this section, we evaluate the performance of our architecture,
that is, power, memory and execution time for secret generation,
authentication and handover protocols on Raspberry Pi 4. Fur-
ther, we study the performance of device clustering, system oper-
ation under homogeneous and heterogeneous configurations and
load sharing during handover in terms of energy, execution time
and network usage on iFogSim 2. QoS assigned to devices upon
authentication is predicted using deep learning algorithms in
terms of MSE, RMSE and MAE in addition to power, memory and
execution time. Performance of the NB-IoT channel is studied in
terms of RTT, throughput, and packet delivery ratio. A detailed
analysis of the results observed for each case is given below. Fur-
ther, we compare our results with those of the existing approaches
and show that our approach is lightweight.

6.1 | Protocol Implementation on Raspberry
Pi 4

As NB-IoT does not support seamless handover, we design
and implement ‘Secret Generation’ protocol as described in
Section 3.5, authentication protocols explained in Sections 3.6
and 3.7 and handover protocols as shown in Sections 3.8, 3.9, 3.10
on Raspberry Pi 4. Performance values thus measured along with
those of ECC used to transfer votes from devices and base stations
to the cloud server are recorded in Table 11. We observe that the
performance of algorithms depends on the operation performed,
that is, handover, authentication or secret generation; communi-
cation of the device with a cloud or fog server; number of entities
required to execute the protocol; type of fog servers, that is, service
provider-controlled or private entities and base station communi-
cation range, that is, cell or microcell.

Among the protocols implemented, we observe that ‘Secret Gener-
ation’, requiring only three interacting entities and having lower
protocol complexity as seen in Figure 13a consumes the lowest
power, memory and execution time. It is followed by authen-
tication and handover protocols in order as they are designed
to be immune to Impersonation and Sybil attacks as discussed
in Sections 4.4 and 4.7. ‘Vote transfer using ECC’ consumes
the highest execution time of 3.5029 ms. However, the time
required by the devices and base stations to generate the keys
and transfer the votes was observed to be 0.0099 ms. While the
Cloud server required 3.4930 ms to receive and process the keys
and messages. Hence, ECC was observed to be lightweight on
resource-constrained devices.

Further, we observe that the ‘Handover between Cells or a Cell
and a Private Fog Network’ protocol require high power, memory
and execution time due to four entities interacting using proto-
cols with high complexity to verify device and visited base station
identity while moving between cells as shown in Figure 9. How-
ever, we see an exception in the case of ‘Handover between Micro-
cells’. As the radius of microcells is small and the communica-
tions are relayed through resource-constrained microcell towers,
the handover protocol has been designed to verify the Unique ID
and reputation of the device and permit its movement. Hence,

TABLE 11 | Performance Values of Secret Generation, Vote transfer using ECC, Handover and Authentication Protocols implemented on Raspberry
Pi 4.

Parameter Execution time (ms) Memory (MB) Power (W)

Vote transfer using ECC 3.5029 0.1 0.44
Secret generation 0.1540 0.15 0.45

Handover
Between cells or a cell and a private fog network 0.4724 0.35 1.51
Between microcells 0.1835 0.2 0.91
Fog server is offline or blacklisted 0.2653 0.5 1.52

Authentication
Cell 0.1646 0.15 0.83
Private fog networks (devices verified) 0.1626 0.2 0.6
Private fog networks (devices not verified) 0.1592 0.2 0.53
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power, memory and execution time are lower than other han-
dover protocols.

In the case of ‘Secret Generation’ protocol, the device commu-
nicates with the cloud server to generate Authentication secrets.
However, as the cloud server is designed only to verify device
details and authorise the authentication server to share the
Authentication secrets, the protocol consumes the lowest power,
memory and execution time of 0.45 W, 0.15M⋅B and 0.154 ms,
respectively.

Among the handover protocols implemented, ‘Handover between
Microcells’ and ‘Handover when Fog Server is Offline or Black-
listed’ are designed to rapidly relay device communication to the
home base station and the Cloud server, respectively, through the
resource-constrained microcell towers. Hence, they have the low-
est execution time. Although the devices alone were observed to
consume 0.28 W and 0.05 MB, respectively, of power and mem-
ory to execute, the requirement of cloud servers and base sta-
tions to relay communication, verify devices and authenticate the
requests within a short period results in higher overall battery and
power consumption of 0.5 MB and 1.52 W, respectively.

In the case of ‘Handover between Microcells’ protocol, as the home
base station approves the handover request, authentication using
𝑆𝑒𝑒𝑑

𝑉 𝑎𝑙𝑢𝑒
generated by the Cloud server is not required. There-

fore, this protocol consumes lower power and memory of 0.91 W
and 0.2 MB, respectively. As the protocol needs to be executed
rapidly to lower the communication burden on the microcell tow-
ers, we design the devices only to transmit h(Unique ID, reputa-
tion), nonce and timestamp as shown in Figure 10. As Unique ID
is unique in each cell and reputation and timestamp are unique
for each message request, the protocol ensures device authenti-
cation and non-repudiation as shown in the scyther verification
report, Figure 15b.

To ensure message confidentiality, device authenticity and
non-repudiation in the ‘Handover when Fog Server is Offline or
Blacklisted’ protocol, we design the devices to transmit h(Random
Value) calculated using 𝑆𝑒𝑒𝑑

𝑉 𝑎𝑙𝑢𝑒
shared by the Cloud server.

Due to the absence of the home base station, the device trans-
mits ‘Request to Leave’ to the Cloud server through the microcell
tower. Hence, this algorithm consumes high power and memory
of 0.2653 W and 0.5 MB, respectively.

In the case of ‘Authentication in Private Fog Networks (Devices
are Verified)’ protocol using group authentication, devices gen-
erate 𝑆𝑒𝑒𝑑

𝑆𝑒𝑐𝑟𝑒𝑡
and the private fog server calculates H given

by Equations (3) and (10) respectively, and transmits them to

the cloud server. The cloud server calculates H’ using Equation
(11) and sends it to the fog server for verification. Hence, this
process consumes high power, memory and execution time of
0.6 W, 0.2 MB, 0.1626 ms as seen in Table 11. When devices are
not verified, each device is authenticated individually based on
h(Random Value) generated using 𝑆𝑒𝑒𝑑

𝑉 𝑎𝑙𝑢𝑒
as seen in ‘Authen-

tication in Private Fog Networks (Devices not Verified)’ protocol.
Hence, this process consumes 2.09% and 11.66% lower execu-
tion time and power to authenticate individual devices compared
to the ‘Authentication in Private Fog Networks (Devices are Ver-
ified)’ protocol. However, these values increase proportionally
with additional devices in the private fog network.

Further, in the ‘Authentication in Cell’ protocol, the device is
designed to generate H using Cloud Secret as shown in Equation
(8). Device details are verified by the authentication server Cloud
Secret, which is transmitted to the base station to calculate H’
and verify the device identity. Hence, the protocol consumes a
high power and execution time of 0.83 W and 0.1646 ms, respec-
tively. However, the memory consumed was 0.15 MB, slightly
lower than that observed in private fog networks. Similarly, in
the ‘Handover between Cells or a Cell and a Private Fog Network’
protocol, device identity is verified at the visited base station and
the authentication server using H calculated using Equation (12)
and h(Random Value). Hence, the protocol consumes the high-
est power, memory and execution time of 0.4724 ms, 0.35 MB and
1.51 W, respectively.

6.2 | Qos Prediction Using Deep Learning

Among the deep learning algorithms implemented, Simple
autoencoder, comprising only two dense layers as shown in
Table 8 consumes the lowest power, memory and execution time
of 0.04W, 0.1MB and 0.065ms, respectively. This behaviour, seen
in Table 12, is observed as the amount of power, memory and
execution time consumed is proportional to the number and the
complexity of tensor layers employed to build the model. Sim-
ple autoencoder is followed by multilayer autoencoder, MLP,
LSTM and CNN. Considering the performance values such as
lower power consumption, execution time and RMSE, simple
autoencoder and multilayer autoencoders can be used to pre-
dict the bandwidth required to improve channel quality in the
feedback-based mechanism.

MLP, being a feedforward neural network, does not backprop-
agate output to adjust weights assigned to hidden layers. As
the equations to calculate the output are a linear multiplication
of input and weight of hidden layer as described in [65], MLP

TABLE 12 | Performance of QoS prediction using deep learning algorithms.

Algorithm
Power

(W)
Memory

(MB)
Execution
time (ms) MAE MSE RMSE

LSTM 0.2 0.2 0.09 0.47 0.22 0.47
MLP 0.15 0.2 0.0024 7.054 49.764 7.054
CNN 0.29 0.5 0.1576 38.427 1476.664 38.427
Simple autoencoder 0.04 0.1 0.065 0.268 0.072 0.268
Multilayer autoencoder 0.06 0.1 0.0728 0.315 0.099 0.315
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was observed to have the lowest execution time of 0.0024 ms.
However, as output calculation involves the multiplication of
high-dimensional matrices, MLP consumes a higher power of
0.15 W. Hence, it may be used to update device CoS based on
device application and excess QoS requirements.

Further, as LSTM involves the usage of exponential moving
weight average to decide the importance of data and uses ‘For-
get Gate’ to delete old data, it consumed high power and memory
of 0.2 W and 0.2 MB with a moderate execution time and RMSE
of 0.09 ms and 0.47, respectively. Hence, it may be implemented
in cases where high power consumption is tolerable, such as
analysing and detecting irregular QoS variations to differentiate
between attacks and device internal faults. As seen in Table 12,
simple autoencoder, multilayer autoencoder and MLP have the
lowest MAE, MSE and RMSE. In contrast, CNN has the highest
MAE, MSE and RMSE of 38.427, 1 476.664 and 38.427, respec-
tively. CNN, primarily used for analysing images, overfits the
non-image data as it constructs feature maps of input, analyses
using kernels, and downsizes the output to the input size. Hence,
CNN is not suitable for predicting device QoS.

6.3 | Channel Performance

Channel performance is measured in terms of Round-Trip Time
(RTT), packet delivery ratio and throughput for varying numbers
of authentication requests initiated by a single NB-IoT device in
one ‘Active’ state, as shown in Figure 17. RTT and throughput are
measured for varying packet drop rates of 0, 0.25, 0.5, 0.75 and 1.

In Figure 17a, we observe that the rise in RTT is proportional
to the increase in packet drop rate and authentication requests.
For eight authentication requests, RTT is approximately 0.1589 s,
0.1689 s and 0.1799 s for packet drop rates of 0.25, 0.5 and 0.75,
respectively, which is much less than the maximum latency limit
of 1 s for NB-IoT [66]. For a packet drop rate of zero, RTT is 0.069 s
for the varying number of authentication requests. Further, for
a drop rate of 0.75, as the number of authentication requests
reaches 9 and 10, RTT is 1 000 s, indicating the loss of all packets.
Similar behaviour is observed for a packet drop rate of 1.

We plot the packet drop rate for varying authentication requests
with the resulting throughput to be 13.51 packets/s in Figure 17b.

We infer that the packet drop rate reduces as authentication
requests increase. This behaviour is observed because devices are
only designed to transmit ‘Request for Authentication’ along with
Cloud Secret during the authentication process and only improve
channel quality based on QoS feedback from fog servers but not
respond back. Due to this, transmission channels and devices will
not be overwhelmed with data packets with increased authen-
tication requests. As NB-IoT devices are designed to provide
on-demand service, they enter ‘Active’ state to process authen-
tication requests, after which they enter eDRX state, where
devices only receive data but do not transmit it. Hence, in case
of lower authentication requests, devices would have entered
eDRX by the time re-transmission requests are received. As these
re-transmission requests are not processed, packet drop rate is
high. However, for increased authentication requests, the device
remains in ‘Active’ state longer, leading to the re-transmission of
lost packets, thus reducing packet drop rate.

Figure 17c studies the channel throughput for varying authen-
tication requests plotted for packet drop rates of 0, 0.25, 0.5,
0.75 and 1. As NB-IoT operates on low bandwidth, through-
put decreases for increasing authentication requests as devices
require higher execution time and memory to process them. For
a drop rate of 0, throughput is constant at 14.285 packets/s.
Throughput progressively decreases for increasing drop rates and
reaches 0 packets/s for a drop rate of 0.75 and the number of
authentication requests equal to ten, indicating the loss of all
packets. Similarly, for a drop rate of 1, throughput is observed to
be 0 packets/s.

As observed in Figure 17b, our model has a drop rate of 0.01 for
ten authentication requests sent. This value is within the accept-
able threshold of 1% packet drop rate for real-time applications
[67]. For a drop rate of 0.01, throughput and RTT were observed
to be 14.285 packets/s and 0.069 s, as seen in Figure 17a,c, respec-
tively. RTT thus obtained is within the standard NB-IoT’s RTT
range of 0 to 100 ms [68]. Considering the NB-IoT packet size of
125 bytes as shown in Table 2, throughput of 14.285 packets/s
would translate to 1.743 kbps, which is well within the range of
20 kbps downlink limit [69]. Hence, our model provides good per-
formance under normal operation conditions.

FIGURE 17 | Performance of fog computing architecture (a) Trade-off between round-trip time and packet drop rate, (b) Packet delivery ratio for
varying authentication requests, (c) Trade-off between throughput and packet drop rate.
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6.4 | IFogSim 2

Performance values of handover protocols, regular device oper-
ation and device clustering under a base station and private fog
server to define cell limits and provide connectivity to devices in
their proximity for varied NB-IoT device parameters, such as net-
work usage execution time and battery simulated on iFogSim 2,
are recorded in Table 13. Among the various algorithms imple-
mented, we observe that clustering and regular device oper-
ation with both homogeneous and heterogeneous configura-
tions require the lowest power, memory and network usage.
We observe that heterogeneous configurations require approxi-
mately 0.81% higher CPU, battery and channel resources to oper-
ate compared to homogeneous configurations. This behaviour is
observed because fog servers categorise QoS details specific to
individual device configurations, determine CoS and individually
study their system requirements to improve channel quality and
distribute the load among the device, fog and cloud servers.

Among the clustering mechanisms, ‘Device clustering in private
fog servers’ requires slightly higher energy and network usage of
3.048 J and 1 06 800.5 Hz compared to ‘Device clustering in base
stations’. This behaviour is observed as the private fog servers are
required to verify the devices registered under it as the home base
station and cluster them under its range. The rest of the devices
are provided service by the service provider-controlled base sta-
tion in that cell. On the contrary, the service provider-controlled
base stations must constantly keep track of the devices entering
and leaving the cell and cluster them to provide seamless ser-
vice. Hence, execution time was observed to be 1 111 ms, which is
slightly higher than that of the private fog servers with 1 104 ms.

From Table 13, we observe that among handover mechanisms,
‘Device Handover across Microcells’ requires the lowest execution
time, network and energy of 1 132 ms, 1 06 060.5 Hz and 3.029 J
respectively, as the handover has to be implemented rapidly
to reduce resource consumption on the resource-constrained
microcell towers. This protocol is followed by ‘Device Handover
between Cells and Microcells’, requiring approximately 9% higher
resources. However, we observe that ‘Device Handover between
Cells’ and ‘Device Handover between Cells and Private Fog Servers’

protocols consume the highest resources as they are designed to
provide a secure handover, updated reputation and new Unique
ID by the authentication servers.

6.5 | Comparison With Existing Approaches

In this subsection, we compare the performance of our approach
with that of the existing works proposing fog computing frame-
works operating on low bandwidth. These works focus on per-
formance optimization while introducing low-bandwidth stan-
dards in the fog computing environment. However, authors nei-
ther predict device resources using machine learning nor pro-
pose protocols modifying the fog structure and communication
mechanisms. Hence, we compare our works operating on nor-
mal bandwidth in terms of communication overhead represent-
ing protocol complexity and prediction error/classification accu-
racy of the machine learning and deep learning algorithms, as
shown in Table 14.

Further, we simulate our protocols on a modified architecture
without including fog servers. In such scenarios, devices commu-
nicate directly with the cloud server through the base stations,
acting only as a relay to transmit messages, and the cloud server
is designed to authenticate the devices and analyse QoS in real
time. Communication overhead in [25, 26, 43, 44] is defined as
the overhead (in bits) incurred in calculating nonce, timestamp,
hashing algorithms, etc., at the device required to initiate hand-
shake. While computational overhead is defined as the time taken
(in ms) to XOR hashes, encrypt/decrypt messages with symmet-
ric and asymmetric keys, generate hashes and generate random
secrets. The approximate time required for various cryptographic
functions is given in Table 15.

In our work, the communication overhead to calculate nonce,
timestamp, h(N, T) and unique ID during authentication or han-
dover protocols totals 1 024 bits. This value is about 43.75% lower
compared to those presented by Ali et al. [43], Kalaria et al. [44]
and Guo et al. [25] requiring 3 344.475 bits, 1 505 bits and 1 472
bits, respectively. Similarly, the computational overhead of our
approach calculated by 8𝑇

ℎ
+5𝑇

𝑆𝑒𝑐
+2𝑇

𝑋𝑂𝑅
+9𝑇

𝐴𝑆𝐸
+𝑇

𝑆𝐸
+𝑇

𝐸𝐶𝐶
,

TABLE 13 | Performance values of device clustering, normal fog operation and load sharing during handover implemented on iFogSim 2.

Parameter Execution time (ms) Network usage (Hz) Energy (J)

Device clustering
Base stations 1 111 1 06 404.0 3.012
Private fog servers 1 104 1 06 800.5 3.048

Configuration of devices in fog servers
Homogeneous configuration 1 107 1 04 882.0 2.979
Heterogeneous configuration 1 116 1 06 533.5 3.008

Load sharing during device handover
Across cells 1 187 1 08 002.5 3.085
Across microcells 1 132 1 06 060.5 3.029
Between cells and microcells 1 140 1 07 119.0 3.057
Across cells and private fog servers 1 182 1 07 898.5 3.026
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TABLE 14 | Performance values of frameworks in proposed approaches.

Proposed
approach

Execution
time (s)

Power
(W)

Memory
(MB)

ML prediction
error

ML classification
accuracy (%)

Communication
over head (bits)

Computational
complexity

Computational
overhead (ms)

Normal bandwidth

Guevara et al. [16] 0.035 — — — 100 — — —

Ali et al. [43] — 0.528 — — — 2 816 5𝑇
𝑒𝑐𝑚
+1𝑇

𝑒𝑐𝑎
+ 528.475

1𝑇
𝑓𝑒
+26𝑇

ℎ

Cui et al. [24] 0.062 — — — — — — —

Kalaria et al. [44] — — — — — 1 504 𝑇
𝑎𝑠𝑒
+𝑇

𝑠𝑒
+ 68

2𝑇
𝑚
+2𝑇

ℎ

Guo et al. [25] — — — — — 1 472 14𝑇
ℎ
+2𝑇

𝑠𝑝
1.498

Al-Mekhlafi — — — — — 672 (n+1)𝐴
𝑒𝑐𝑐
+ 0.6749n+

et al. [26] (n+5)𝑀
𝑒𝑐𝑐

3.3621

Data intensive/low bandwidth

Amanlou et al. [23] 4.25 0.71 — — — — — —

Peralta et al. [72] — 0.528 — — — — — —

Cheng et al. [70] 2.3 — 3.8 — — — — —

Ibrahim et al. [71] 1.058 — — — — — — —

Our work (with 0.1540 0.6 0.2 0.268 — 1024 8𝑇
ℎ
+5𝑇

𝑆𝑒𝑐
+2𝑇

𝑋𝑂𝑅
+ 3.8422

Fog servers) 9𝑇
𝐴𝑆𝐸

+𝑇
𝑆𝐸
+𝑇

𝐸𝐶𝐶

Our work (without fog
servers)

0.2865 1.04 0.25 0.268 — 1 024 — —

TABLE 15 | Approximate Time required for Cyptographic Operations.

Notation Operation
Approximate

time (ms) Notation Operation
Approximate

time (ms)

𝑇
ℎ

Hash function 0.005 𝑇
𝑠𝑒

Symmetric encryption/decryption 0.009
𝑇
𝑎𝑠𝑒

Asymmetric encryption/decryption 0.006 𝑇
𝑋𝑂𝑅

XOR hashes 0.0001
𝑇
𝑆𝑒𝑐

Random secret generation 0.237 𝑇
𝐸𝐶𝐶

ECC execution 3.5029
𝑇
𝑒𝑐𝑚

ECC point multiplication 63.075 𝑇
𝑒𝑐𝑎

ECC point addition 10.875
𝑇
𝑓𝑒

Fuzzy extractor function 63.075 𝑇
𝑚

Message transmission 67.975
𝑇
𝑆𝑃

Symmetric polynomial MAC 0.102 𝐴
𝑒𝑐𝑐

Point addition operation 0.0031
𝑀
𝑒𝑐𝑐

Point multiplication operation 0.6718 — — —

as seen in Table 14, amounts to 3.8422ms, where 𝑇
𝐸𝐶𝐶

being
3.5029ms forms the major factor.

We observe that the existing works operating on normal band-
width applications have the lowest execution time of around
0.035s, which is around 77.27% lower than our approach. In con-
trast, the architectures working on low bandwidth, that is, Aman-
lou et al. [23], Cheng et al. [70] and Ibrahim et al. [71], are
recorded to consume a higher execution time of 4.25 s, 2.3 s and
1.058 s, respectively, which is 6 times higher than that consumed
by our framework of 0.154 s. However, power consumed by vari-
ous approaches was observed to be similar in the range of 0.6 W,
being approximately 12% higher than that of our architecture.
Further, the memory required to execute the protocols proposed
by Cheng et al. [70] was recorded to be 3.8 MB, which is approx-
imately 16 times higher than that consumed by our approach of
0.2 MB.

As seen in Section 3.4, we utilise deep learning algorithms in
regression mode to analyse real-time QoS data and predict the
updated CoS and QoS suitable based on the device’s application.
Hence, we use prediction errors, that is, MSE, MAE and RMSE, to

determine the error rate of the predicted values as opposed to the
percentage accuracy used in the case of classification. Our work
records an RMSE of 0.268 for the Simple autoencoder (having
one hidden layer), indicating good prediction accuracy. Addition-
ally, Guevara et al. [16] propose several neural network models
with varying numbers of hidden layers to classify CoS. Hence, in
Table 14, we have included the classification accuracy of 100%
for the neural network having one hidden layer, which resem-
bles the structure of the simple autoencoder implemented in our
paper. Further, we see that our architecture, when implemented
without fog servers, consumes 1.04 W, 0.25 MB and 0.3865 s of
power, memory and execution time, respectively. These values
are approximately 73.33%, 25% and 86.03% higher than that con-
sumed by the architecture with fog servers, as shown in Table 14.

7 | Discussion

This section highlights the security challenges and regulatory
issues in implementing fog computing architecture, particularly
in NB-IoT. A detailed discussion of these issues is given below.
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7.1 | Security Risks

Some security risks encountered while implementing fog com-
puting architecture are authentication and trust issues, black
holes, side channel attacks, DDoS, and node cloning. Of these,
only the vulnerabilities arising due to authentication and trust
issues are addressed in our proposed framework by implement-
ing secret generation, authentication and handover protocols as
described in Section 3.

In the case of black hole attacks, the attackers can send fake
routes to the sender, trying to determine the best route to the
receiver. The attacker nodes act as a sinks and route packets to
their addresses to eavesdrop on or disrupt packet flow. These
attacks can be prevented by routing verification, user authenti-
cation and trust-based mechanisms. In our framework, we use
Cloud Secret and Random Value at the base stations and cloud
server, respectively, to verify sender and receiver identity and
ensure non-repudiation. Additionally, trust-based mechanisms
in the form of device and base station reputation are implemented
to analyse device behaviour, detect attack nodes and blacklist
them. However, our design is still vulnerable to packet flow dis-
ruption as verification of routes is beyond the scope of our work.

Side-channel attacks are launched by attackers using the infor-
mation leaked by IoTs, such as power consumption, timing infor-
mation, data cache, etc., to gain access to passwords and cryp-
tography keys. Of these possibilities, attackers will not be able
to access data caches as the 𝑆𝑒𝑒𝑑

𝑆𝑒𝑐𝑟𝑒𝑡
, 𝑓

𝑆𝑒𝑐𝑟𝑒𝑡
(⋅), 𝑓

𝑉 𝑎𝑙𝑢𝑒
(⋅) and

𝑈
𝑆𝑒𝑐𝑟𝑒𝑡

(⋅) is generated and shared by the cloud server each time
the device switches-on in its home base station. Additionally,
𝑆𝑒𝑒𝑑

𝑆𝑒𝑐𝑟𝑒𝑡
is updated after every use to ensure unlinkability. How-

ever, the fog architecture is still susceptible to attacks caused by
the abovementioned factors.

DDoS attacks caused by cryptographic weakness in protocols are
limited by the use of N, T and h(N, T) in handshake protocols
as described in Section 4.6. However, there might arise situations
where attackers launch variations of DDoS attacks [73] such as
ICMP flood, Ping of death or SYN flood to overwhelm the net-
work with excess ping or SYN requests for an undefined period.
Additionally, in the case of Slowloris DoS attacks, attackers keep
the channel busy for a long time by progressively launching more
attack packets to avoid detection until the channel is entirely
flooded. Designing our fog architecture to be resilient to these
attacks, which are challenging to mitigate, is beyond the scope
of our research.

Attackers introduce fault injection attacks by injecting malicious
packets, inserting a trojan during IC manufacturing to cause
device malfunction and manipulating the IC clock to disrupt the
authentication process and access the device’s secrets. Of these
attacks, only DoS attacks caused due to malicious packet injec-
tion can be prevented, as discussed in Section 4. Further, node
cloning attacks where attackers can either physically damage and
retrieve device hardware or eavesdrop on data can be launched
to impersonate or create multiple device identities. Of these, only
eavesdropping can be prevented by the proposed fog architecture
as discussed in Section 4. However, the proposed architecture is
still vulnerable to other factors mentioned.

7.2 | Regulatory Issues

Some stakeholders involved in implementing a fog architecture
to connect NB-IoT devices are government organisations, law
enforcement and business investors. To provide a secure and scal-
able framework, base stations and data servers controlled by ser-
vice providers and private individuals must seek clearance from
government and law enforcement agencies to limit the possibility
of fake base stations. Researchers must work with the stakehold-
ers to understand the industry-specific regulations and continu-
ously update the protocols per the international and national laws
to make them resilient to the ever-growing security challenges.
The researchers must also be liable for security violations and
be responsible for regularly fine-tuning the protocols to enhance
trust and data secrecy in the fog architecture.

7.3 | Feasibility of Edge Computing

Edge computing offers decentralised data processing capabili-
ties similar to fog computing. Edge servers are located physically
on the device or in proximity to a group of deployed devices.
Hence, they are ideal for making rapid decisions in real-time
applications. However, edge servers are designed to transmit
unprocessed or partially processed data to the cloud for further
analysis [74].

In our architecture, the fog servers installed on base stations
analyse real-time CoS and QoS, determine the resource alloca-
tion and only transmit QoS to the cloud if abnormal behaviour
is observed. The cloud compares the QoS with previous device
data and classifies the abnormality as an attack or internal fault.
Edge servers might be incapable of completely processing the
data when placed at base stations. Hence, they may be unable to
replace the fog servers. Additionally, considering the edge servers’
placement nearer the device clusters, they may not be imple-
mentable on the base stations serving the cells with a few kilo-
meters of radius. However, edge servers may be effectively used
in place of private fog servers and microcell towers servicing the
device requests within a small radius of private organisations and
microcells, where edge servers verify the authenticity of devices
by validating the hashes and transmitting real-time data directly
to the cloud.

8 | Conclusion and Future Work

In this paper, we developed a fog computing framework to pro-
vide secure and seamless network connectivity across cells and
microcells controlled by service providers and private individu-
als in mobile NB-IoT applications. We alleviate the limitations
of fake base station connections by designing secret genera-
tion, authentication and handover protocols to be implementable
irrespective of the hardware requirements varying across ser-
vice providers. The device QoS parameters are set based on its
application and updated regularly based on the device require-
ment or updated application. QoS was analysed in real-time using
deep learning algorithms to improve channel quality and detect
abnormal behaviour. A reputation-based mechanism is intro-
duced to track the device and fog server behaviour and blacklist
them if their reputation reduces below the threshold. Further, we
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implemented the framework on iFogSim 2 and Raspberry Pi 4
and analysed energy-performance-security trade-offs with those
of the existing works. Scyther was used to verify the security of the
proposed framework formally. Our approach consumes an aver-
age of 12% and 43.75% lower power and communication overhead
and approximately 16 times and 6 times lower memory and exe-
cution time compared to the existing solutions, thus making it
a lightweight alternative. We propose extending our research to
develop algorithms capable of predicting attacks in advance using
QoS and game-theory models and implementing the necessary
preventive measures for application-specific NB-IoT.
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