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Mobile cloud computing alleviates the limitations of resource-constrained mobile devices
by leveraging the cloud resources. Currently, software-level solutions, also known as com-
putational offloading, migrate the cloud-based mobile applications at runtime to the cloud
datacenter to optimize the application execution time. However, the application execution
frameworks mainly focus on migrating the application without considering the various
critical network-centric parameters, such as traffic load and mobility speed, in application
migration decision. In this paper, we analyze the effect of network-centric parameters on
the application migration process. The performance of the migration process is analyzed
by simulating the migration process in OMNeT++. The effects of various parameters, such
as number of users in a WLAN, size of a file containing the application and its running
states, traffic load on the wireless access point, message length, number of hops to the
cloud, and mobility speed, are studied on the application performance metrics such as
application migration time and packet drop ratio. Our analysis shows that the application
and its running states migration time is affected by the changes in the network conditions.
Based on our research findings, we recommend application execution framework designers
to incorporate the network-centric parameters along with other parameters in the decision
process of the application migration.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Recent developments in mobile and wireless technologies have changed the mobile user preferences that have given
novel directions to application designers of distributed mobile computing. As a result, a number of rich mobile applications
are emerging. Mobile users executing an application on a resource-constrained mobile device want to achieve an application
performance similar to that when running the similar application on a stationary resource-rich system. However, in spite of
all advancements in mobile device technologies, mobile devices always lagged in application performance (responsiveness)
and resources (battery lifetime, memory capacity, and CPU speed) compared with their stationary counterparts [1].
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Therefore, mobile applications are staggering to reduce the disparity in the execution performance. Likewise, node mobility
[2–4], heterogeneity across wireless networks [5], and variable reliability [6] are some of the common factors that negatively
affect the execution of mobile applications in mobile cloud computing (MCC). Currently, MCC has synergistically integrated
mobile computing, wireless technologies, and the cloud to leverage the cloud potential for augmenting mobile resources
[7,8]. MCC facilitates the mobile user in various perspectives, such as enhancing processing power and data storage capacity;
extending battery lifetime; and improving reliability [9]. MCC augments the smart mobile device potential without requiring
new hardware resources by migrating the application at runtime to the cloud datacenter. The migrated application leverages
the higher processing power and data storage resources available at the cloud. The battery lifetime of a smart mobile device
is extended by migrating computation- and data-intensive applications in the cloud. The reliability of data is improved by
providing the backup for the smart mobile device in the cloud. Despite a number of advantages given by MCC, the seamless
execution of the cloud-based mobile applications is an open research challenge because of complex runtime application
migration process [9], intrinsic limitations of wireless technologies [10,30,31], heterogeneity across networking technologies
[11], and highly dynamic network conditions [12,13]. We have defined the seamless application execution in [14] as ‘‘an
uninterrupted application execution with minimal user involvement and interaction to deliver enhanced performance, com-
pared to the local application execution’’.

State-of-the-art application execution frameworks [8] do not incorporate the network dynamic parameters in the migra-
tion decision of the applications. To the best of our knowledge, this is the first research effort to analyze the effect of the
network-centric parameters on runtime application migration. The purpose of the analysis is to highlight the significance
of the network-centric parameters, such as traffic load on the wireless access point, size of file containing the application
and its running states, number of users in the WLAN, message length, number of hops to the cloud, and mobility speed,
in application migration process. The incorporation of these network-centric dynamic parameters in the application migra-
tion decision can help cloud-based mobile application execution frameworks (CMAEFs) in taking the accurate application
migration decision. The contribution of the paper is manifold. We have implemented optical character recognition (OCR)
application in MCC environment. Thereafter, we have collected data traces for the application and used these traces to find
the probabilistic distribution. The parameters for the probabilistic distribution are estimated. We also implement the OCR
application execution in MCC by using these probabilistic distributions in OMNeT++. By using the simulation environment
of OMNeT++, we have investigated the effect of network-centric parameters on the runtime application migration and on the
execution of application in MCC.

The rest of the paper is organized as follows. Section 2 provides the background information on MCC, cloud-based mobile
applications, and cloud-based mobile application execution process to help the reader in understanding the domain. The sec-
tion also provides the motivation for the need to investigate the effect of network-related parameters on the runtime appli-
cation migration process. Section 3 discusses the related work in the domain of MCC by highlighting the main focus of the
current research work on the application migration process. Section 4 presents the performance evaluation by discussing the
network model, performance evaluation parameters, and the results. Finally, we conclude and provide the research direc-
tions in Section 5.
2. Background information

This section provides the background information on MCC, cloud-based mobile application, and cloud-based application
execution process to provide fundamental knowledge to readers to help them in understanding the problem. The section also
provides the motivation for the need to analyze the effect of network dynamic parameters on the runtime application migra-
tion process.
2.1. Mobile cloud computing

MCC is an emerging computing model that extends the vision of computational clouds to resource-constrained smart
mobile devices. Cloud computing provides the centralized resources and on-demand services in the cloud datacenters
[32,33]. MCC provides a distributed computing model that enables the execution of computation-intensive mobile applica-
tions on resource-constrained mobile devices. With the vision of resource augmentation of mobile devices, mobile users
transparently access the resources and services of a computational cloud to leverage the available resources at low cost
on the fly. The attributes of scalability of services, on-demand access to widespread service on the move, unlimited availabil-
ity of resources, and centralized management are the motivating elements for leveraging cloud resources and services for
mobile devices. MCC is an appealing computing model from business perspective because of profitable business options that
lessen the cost (development and execution) of mobile applications. MCC also enables mobile users to use new technology
on a demand basis and on the fly. The augmentation of smart mobile devices can be employed in various manners, such as
storage augmentation, screen augmentation, and application augmentation of smart mobile device [8]. MCC synergestically
integrates three technologies, namely, mobile computing, wireless technologies, and the cloud, to augment the capabilities
of smart mobile device. The mobile devices leverage cellular networks, e.g., 3G, or data networks, e.g., Wi-Fi, to access the
services of the cloud in MCC environment. Fig. 1 shows the architecture of MCC where smart mobile devices leverage the
cloud resources via wireless networking technologies.
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Fig. 1. WLAN-based mobile cloud computing environment.
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2.2. Cloud-based mobile application

Cloud-based mobile applications can run in the cloud and can execute locally in case of network connection lost. The
cloud-based mobile applications have two types of components, transferable and non-transferable [15]. The transferable
components are computation-intensive or memory-intensive and do not interact with the mobile hardware, whereas
non-transferable components perform especial functionality, such as user-interaction, hardware access, and security related
tasks [15]. The division of the application components into two sets, namely, transferable and non-transferable, is called par-
titioning [16]. Partitioning can be performed in three different ways: statically [17], dynamically [18], and semi-dynamically
[15,19,20]. In static partitioning, the programmer annotates the code considering characteristics of the code at application
development time. In dynamic partitioning, the CMAEFs partition the application at runtime based on collected context
information. Runtime dynamic application partitioning is a complex and computation-intensive task. However, in semi-
dynamic application partitioning, application programmers partially annotate the application, and the rest of the application
partitioning decisions are taken at runtime considering the context information.

2.3. Cloud-based mobile application execution

Fig. 2 illustrates the state diagram of cloud-based mobile application execution process. The application starts execution
when a user clicks on an application icon. The control of an application execution enters into the running state to perform
different tasks. When an execution framework pauses the application to migrate it for the execution in the cloud, the appli-
cation saves its running states, and the control is transferred into the paused state. The application components along with
their saved states are transferred to the cloud where the application is resumed and reconfigured using the saved states.
Thereafter, the application enters into the running state of the execution life cycle. After the execution of the application
in the cloud, the results are sent back to the mobile device. On the results reception, the application resumes the execution
on the mobile device and enters into the running state. Finally, the application execution enters into the terminated state.

2.4. Motivation

There are two main reasons that explain the need for conducting the network-centric performance analysis of runtime
application migration in MCC. Currently, the state-of-the-art application execution frameworks are merely focusing on
Fig. 2. State diagram of cloud-based mobile application execution.
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application migration phases, such as partitioning [18,21,22] and offloading [23]. The frameworks are mainly biased toward
the optimization of application partitioning and offloading process on the mobile device side [18,21,23]. Other frameworks
focus on optimizing the execution time in the cloud [24]. Relatively, less consideration is given to incorporate the network-
centric parameters in the offloading decision of the CMAEFs. Another important reason to investigate the effect of network-
centric parameters on the application execution is the highly dynamic nature of the parameters that is affected by runtime
wireless network conditions. According to our research, highly dynamic network characteristics, such as number of users in
the WLAN and mobility speed, have significant effect on the runtime application migration process. Such highly dynamic
network parameters must be incorporated in application migration decision algorithms.
3. Related work

In this section, we discuss some of the credible relevant CMAEFs proposed in MCC with the focus on parameters consid-
ered for the migration decision process.

COMET [25] supports a user-transparent migration process for the multi-threaded applications to execute them on the
local servers. The framework takes the thread migration decision by considering the workload of machines. COMET also
employs one scheduler to schedule the local thread migration between two endpoints to maximize the throughput. The
scheduler uses the information of thread past execution behavior to migrate the thread from the mobile device to the local
server. Although COMET claims to transparently migrate the code to the cloud, the migration decision does not consider the
network-centric parameters. Thus, disruption in the execution occurs due to longer transfer time and packet losses. The
migration time can also vary due to traffic load in the WLAN, thread size, and mobility speed. The proposed framework also
incurs the synchronization overhead between the two endpoints. The synchronization performance of data across two end-
points also depends on the network conditions.

MAUI [15] supports an energy-aware, fine-grained offloading mechanism for application execution in MCC. The frame-
work semi-dynamically partitions the application wherein programmers annotate the application with less effort. The MAUI
profiler assesses a method on the runtime for energy saving, whereas the solver takes the migration decision based on the
input from MAUI profiler. The wrapper for each remotely annotated method is generated on the compile time. The wrapper
method has a similar method signature, with two significant changes: one as input argument and the other as return type.
These additional arguments are used to exchange the states information. Although the framework conserves the energy of
mobile device during application execution, the energy consumption can be further improved by considering the packet loss
ratio and traffic load on the wireless access point and by minimizing the application and its running states transfer size.

Mobile Augmentation Cloud Services (MACS) [21] is an adaptive middleware framework that supports lightweight appli-
cation partitioning and seamless application offloading. MACS facilitates mobile applications by seamlessly offloading into
local cloud or remote cloud servers. The application is not required to be modified by developers to run on the MACS frame-
work. MACS divides the application modules into two groups: one group runs on mobile device and the other runs in the cloud
server. MACS continuously monitors the service execution and environment parameters; and adapts the partitioning and off-
loading. The framework also reduces the complexity of application partitioning and makes the offloading process user-trans-
parent. However, the MACS also does not incorporate the network dynamic conditions for offloading decision. Therefore,
offloading the application in the WLAN where traffic load is high, devastatingly degrades the application performance.

AIOLOS [26] is an adaptive offloading decision engine that considers network connectivity and dynamically available
resources of the server in the offloading decision. The framework selects the execution location of the partition by finding
the estimated execution time for each method at both mobile device and cloud server. The parameters involved in migration
decisions are subsequently monitored and updated based on the changes in mobile device capabilities and network connec-
tivity. The framework incorporates only the network connectivity parameter among the network-centric parameters. Hence,
offloading application in highly dynamic network conditions devastatingly degrades the application performance. The appli-
cation and its states size have also a significant effect on the transfer time; therefore, the size of the application components
and its running states should be reduced to optimize the application execution time in MCC.

CloneCloud [17] seamlessly offloads intensive partitions to the trusted remote cloud without requiring any modification
in mobile applications. The system supports dynamic profiling and static analysis to partition the mobile application. Clone-
Cloud aims to optimize the energy usage and execution time. Similar to COMET, CloneCloud also partitions the application at
the thread level. CloneCloud does not consider the network-centric parameters while taking the migration decision. Clone-
Cloud migrates the entire VM instance to the cloud. Therefore, the effect of network conditions on the execution is relatively
higher while executing the application on CloneCloud framework. The large size of VM induces the higher transmission delay
and consumes more energy.

An application replication-based framework that consists of two types of nodes, namely, WorkerNodes and MasterNodes,
is proposed in [27]. The WorkerNodes execute the migrated classes, whereas the MasterNodes receive the migration
requests from clients and forward these requests to the appropriate WorkerNodes. The application is migrated from the
mobile device for the first execution, but for the subsequent requests, the application is replicated from the previous Work-
erNode. To minimize the latency, the first request has only an identifier of the class to be migrated. However, when a
response from the cloud server shows the absence of the replicated class in the cloud, the class binary is migrated to the
MasterNode. The framework reduces the application migration overhead by replicating the application inside the cloud
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for later use. The migration decisioning is lightweight because the decisioning is performed inside the cloud instead of the
mobile device. However, the migration decisioning in the cloud requires information from the mobile device, such as net-
work connectivity, user preferences, and mobile device capabilities.

The existing application frameworks do not consider the dynamic network-centric parameters in the application migra-
tion decision. Therefore, applications running on those frameworks do not perform well in highly dynamic networking
conditions.
4. Performance evaluation

To evaluate the effect of network-centric parameters on the mobile application migration process, we divide the entire
execution process into three phases: mobile device-side processing, network-centric processing, and execution of the appli-
cation in the cloud. We do not study the complexities involved in mobile device-side processing, such as partitioning, to
focus ourselves to evaluate the effect of network-centric parameters on the application migration process. Furthermore,
we do not study the effect of cloud-server resource diversities on the entire application execution process in MCC. However,
we focus our research to determine the effect of highly dynamic conditions of network on the application migration time.

4.1. Simulation tool: OMNeT++

We have selected OMNeT++ for our simulation. OMNeT++ is an open source, modular, and component-based architecture
for discrete event simulation. The simulator is mainly used for communication networks, but the flexible and generic archi-
tecture make it possible to use in other fields such as hardware architectures and queuing networks. OMNeT++ distribution
comes for both Linux and Windows operating systems. OMNeT++ provides several attractive advantages over other open
source network simulators such as ns-2, ns-3, and J-Sim. The advantages of OMNeT++ are as follows: support of hierarchical
models, graphical analysis tools, graphical editor, multiple random number generator streams, and GUI-based execution
environment. The network simulator ns-2 is another open source simulator that is based on C and Tcl. The ns-2 dual-lan-
guage dependency makes creation of graphical editor for ns-2 practically impossible. The network simulator ns-3 is mainly
implemented in C++ that makes its performance better. However, a limited number of contributed codes is available for ns-3.
Similar to ns-2, J-Sim is another dual-language open source simulator that uses Tcl. Hence, the network simulator J-Sim has
the same shortcomings as with ns-2 because of the use of Tcl. Tcl makes the creation of graphical editor for J-Sim impossible.
Although J-Sim has a graphical editor, the XML native format makes it hard to be read and written by humans. J-Sim is
mainly implemented in Java. Hence, the simulation performance of J-Sim is weaker than the performance of other simulators
that are implemented in C++. Therefore, considering the aforementioned advantages, we opted OMNeT++ for our simulation.
To simulate the application execution process in OMNeT++, we obtain data traces for an OCR application on real mobile
devices. The OCR application is developed for android mobile devices with the support to migrate it on runtime. The entire
application and its running states are migrated at runtime to a cloud server where the application resumes its rest of the
execution.

4.2. Performance evaluation methodology

To evaluate the performance of application execution in MCC environment, we have used the data trace information for
modeling the cloud-based application execution in OMNeT++. We have collected the data for execution of the OCR applica-
tion that takes a text image and converts the image into text by using the cloud server. The mobile phone used for the exper-
iment is Samsung Galaxy S-II I9100 with dual-core 1.2 GHz cortex-A9 CPU and 1 GB RAM. The server is deployed in the local
wireless network, and mobile phones can access the server through WiFi IEEE 802.11 g interface. The local cloud server has
3.20 GHz CPU and 4 GB RAM. In the data trace, the mobile side migration decision processing follows the exponential dis-
tribution, which we have determined by fitting the collected data on the exponential distribution.

We estimated the parameters for the fitted distribution by using maximum likelihood estimation (MLE) in MATLAB. The
function [muhat, muci] = expfit (data) is used to find the exponential distribution fit for the data. The variable muhat repre-
sents the MLE for the mean of exponential distribution. The variable muci represents the confidence interval for the mean.
We have collected data traces for the following two parameters of OCR application in Mobile Cloud: (a) the migration deci-
sion time and (b) application execution time on the server. The migration decision time is the time taken by the application
execution framework to take the application migration decision considering the context of the running environment. The
application execution time on the server is the time taken by the server to execute the application. The migration decision
time and application execution time are measured in seconds.

The MLE of the mean for the migration decision time is 0.86 s. The 95% confidence interval for the mean ranges from 0.50
s to 1.79 s. Similarly, we have also collected data traces on the server for the execution time taken by the OCR application.
The execution time varies on the cloud server as the number of words in the image increases. We have used seven different
types of images with 50, 100, 150, 200, 250, 300, and 350 words. The execution time follows the exponential distribution.
The MLE for the mean of exponential distribution is as follows: (a) 1.85 s with confidence interval of mean ranging from
1.08 s to 3.85 s for the 50 words image; (b) 2.64 s with confidence interval of mean ranging from 1.54 s to 5.51 s for the
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100 words image; (c) 3.15 s with confidence interval of mean ranging from 1.85 s to 6.85 s for the 150 words image; (d) 3.81
s with confidence interval of mean ranging from 2.23 s to 7.93 s for the 200 words image; (e) 4.41 s with confidence interval
of mean ranging from 2.58 s to 9.19 s for the 250 words image; (f) 5.03 s with confidence interval of mean ranging from 2.94
s to 10.48 s for the 300 words image; and (g) 5.63 s with confidence interval of mean ranging from 3.30 s to 11.75 s for the
350 words image. The application is executed 30 times on the server with the same number of words in the images.

Fig. 3 presents the application execution time on the cloud server for different text images along with exponential fitting.
We have implemented the application execution process in OMNeT++ by using the collected data and identified the expo-
nential distribution. The application migration decision time is modeled and implemented by exponential distribution with
mean of 0.86. The data during the migration of application contains the application and its running states including the input
data. The data sizes vary from 800 KB to 11 MB for our OCR application. The size of application migrated data, which is illus-
trated in [28], varies from several hundred kilobytes to 500 MB. We have studied the effect of migration data size in the
range of 1–30 MB. However, the effect of enlarging the data size on migration time shows the increasing trend that can
be further extrapolated for larger sizes of application migration data. The execution time on the cloud server varies with
the increase in number of words per text image. The overall execution time can be calculated by the application migration
decision time, transfer time, and execution time on the cloud server. Moreover, we have used the statistical method of con-
fidence interval to highlight the error margin in measurements. The confidence level is taken as 95%.

4.3. Network model

To collect the data traces of the OCR application execution in MCC, we have deployed a cloud server in the local WLAN.
The server is equipped with 3.20 GHz CPU and 4 GB RAM. The mobile device used to access the cloud server resources is
Samsung Galaxy S-II I9100 with dual-core 1.2 GHz cortex-A9 CPU and 1 GB RAM. The mobile device can access the server
through WiFi IEEE 802.11 g interface. The background traffic consists of five flows running in the network for data trace gen-
eration. We have identified the probabilistic distribution for migration decision time and application execution time from
the data trace file. The distribution for migration decision time and application execution time is exponential with different
mean values. The WLAN standard for the simulation is taken as IEEE 802.11 g. In simulation, the cloud-server has deployed in
the local WLAN; except for the scenario to investigate the impact of number of hops on the application transfer time, where
the server is deployed in the remote networks. For clarification, we have explicitly mentioned the cloud server deployment
location with each scenario. The mobile devices are equipped with single interface of IEEE 802.11 g. Moreover, the mobile
devices are stationary for all scenarios except the mobility scenario. The background traffic is explicitly mentioned in each
scenario that varies for different scenarios. Other configuration parameters are enlisted in Table 1.

4.4. Performance evaluation parameters

We have studied different application performance parameters to investigate the effect of highly dynamic network con-
ditions on the application and its running states migration process. These parameters are transfer time, packet delivery ratio,
and end-to-end per packet delay. We have studied these parameters by simulating the different scenarios of the WLAN in
OMNeT++. The simulation-based performance evaluation provides complete control on the experimental setup to evaluate
the performance considering diverse network conditions.

4.4.1. Transfer time
The transfer time represents the time taken by a file, containing the application and its running states, to travel from the

mobile device to the cloud server. The transfer time is measured in seconds. We have studied the effect of different dynamic
network conditions, such as number of users in the WLAN, size of file containing the application and its running states, traffic
load on the access point, message length, and number of hops to the cloud, on the file transfer time in the MCC environment.

We have investigated various parameters, which affect the transfer time of application and in turn application execution
time. The estimation of each constituent parameter of transfer time helps in making accurate offloading decision in the fol-
lowing ways. (a) In case of high WAN latency, a better approach would be to offload the application in locally available cloud-
let. However, as the cloudlet has not as much resources as the cloud, unnecessary offloading of application in cloudlet
instead of cloud can increase the processing load on the cloudlet. Therefore, the separate estimation of WAN latency is vital
to offload the application on the appropriate platform, local cloudlet, or remote cloud. (b) The increase in transfer time
because of high traffic load and associated number of users with the access point is temporary and will be only for that par-
ticular access point. The application execution framework can provide options to users whether to offload after sometime or
change access point for enabling the application execution in cloudlet. Hence, the estimation of traffic load and number of
users associated with an access point is vital to select the appropriate access point for offloading the application.

4.4.2. Packet delivery ratio
Packet delivery ratio is another important parameter that represents the number of packets successfully delivered to the

cloud server. The packet delivery ratio is measured in terms of the ratio between successful packets delivered and the total
number of packets sent.
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Table 1
Configuration parameters and corresponding values.

Configuration parameters Values

Simulation time 1500 s
Network standard for WLAN IEEE 802.11 g
Transmission range 239 m
Mobility type Circular
Mobility radius 150 m
Message length 1000 bytes
Receiver sensitivity �91 dBm
Maximum data rate 54 Mbps
Transmission power 16 dBm
Wired link bandwidth 100 Mbps
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4.4.3. Total execution time
Total execution time consists of the application migration decision time, application and its running states transfer time,

and application execution time on the cloud server. The application migration decision time and application execution time
are exponentially distributed. The mean for application migration decision time exponential distribution is 0.86, whereas the
mean for application execution time in the cloud depends on the number of words in the text image. The total execution
time is measured in seconds.

4.4.4. Energy consumption
The energy consumption parameter represents the battery power consumed by the mobile device for migrating the appli-

cation and its running states to the cloud server. The energy consumption is measured in joules.

4.4.5. End-to-end per packet delay
End-to-end per packet delay represents the average delay for packets sent between source and destination. The average

end-to-end per packet delay is measured in seconds.

4.5. Result discussions

In this subsection, we discuss the simulation results for different network-centric parameters. The effect of number of
users, file size, number of flows, message length, number of hops, and mobility speed is investigated on the application
and its states transfer time and packet delivery ratio. The effect of mobility speed on the average end-to-end packet delay
is also discussed in this subsection.

4.5.1. Number of users effect on transfer time in WLAN
The number of users in a WLAN represents the number of active users in the network that affect the application migration

time. The higher number of users in WLAN induces higher delay in application migration from the mobile device to the
WLAN server. Wireless is a shared medium where different access mechanisms are employed to give opportunities to all
users in the network. The IEEE 802.11 WLAN employs exponential back-off mechanism that induces significant delay in
accessing the wireless medium with the increasing number of users in the WLAN. We have investigated the effect of users
on the transfer time of the file containing the application and its running states. The configuration parameters of the network
used in the scenarios are given in Table 1. The file size for this scenario is taken as 10 MB.

4.5.1.1. Transfer time. Fig. 4 shows that the application and its running states transfer time is 89.42 � 4.03 s with 0 back-
ground users, 89.42 � 4.26 s with 5 background users, 89.21 � 7.21 s with 10 background users, 163.05 � 7.77 s with 15
background users, 217.48 � 8.80 s with 20 background users, 523.54 � 10.31 s with 25 background users, 693.34 �
11.50 s with 30 background users, 805.67 � 12.51 s with 35 background users, and 957 � 13.81047 s with 40 background
users. When the number of background users is less, from 0 to 10, then the application and its states transfer time is less. The
application and its states transfer time slightly increases when the number of users is from 15 to 20. However, a large
increase is measured when the number of users increase from 20 to 25. The increase in transfer time with the increasing
number of users is mainly due to higher number of retransmissions that enlarge the contention window size of medium
access protocol on each retransmission. Another significant change noticed is that the standard deviation of transfer time
increases with increasing number of users. The increase in transfer time can significantly degrade the performance of
delay-sensitive applications in MCC. CMAEF designers should also incorporate the number of users in WLAN to accurately
estimate the application remote execution time. The method similar to one proposed by Bianchi et al. in [29] can be used
to estimate the number of users by using the packet collision probability on the shared medium. These parameters cannot
be directly monitored without connecting with an access point but can be estimated as done in [29]. Bianchi et al. estimated
the competing nodes in the network on a particular channel by using the packet collision probability on the shared medium.
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Fig. 4. Number of users effect on application and its states transfer time in WLAN.
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Therefore, we can use a methodology similar to one proposed by Bianchi et al., which is based on packet collision probability
on a shared medium, to estimate the number of users and network load without accessing the wireless AP.

4.5.1.2. Packet delivery ratio. The number of users also affects the packet delivery ratio. We have observed through simulation
that the packet delivery ratio gradually decreases with the increase in number of users. When the number of background
users is less, the packet delivery ratio is less, i.e., 0.99 � 0.006. The main reason for the reduction in packet delivery ratio
with the increasing number of users is increased interference in the WLAN that happens when multiple users are active
at the same time in the WLAN. The packet delivery ratios are 0.90 � 0.025 for 10 background wireless users, 0.820727 �
0.033 for 15 background wireless users, 0.74342 � 0.04 for 20 background wireless users, 0.630534 � 0.034 for 25 back-
ground wireless users, 0.57194 � 0.043 for 30 background wireless users, 0.51194 � 0.036 for 35 background wireless users,
and 0.45194 � 0.039 for 40 background wireless users. The packet delivery ratio has significant effect on the performance of
throughput-oriented applications; therefore, the CMAEF designers should also incorporate the number of users in the net-
work to meet the application throughput requirements. Fig. 5 shows the effect of number of users on the packet delivery
ratio in a WLAN.

4.5.2. Application and its states file size
The size of the file containing the application and its running states also affects the transfer time and energy consumption

of mobile device. Herein, we present the results and the discussion to highlight the effect of migrating file size on the transfer
time and energy consumed.

4.5.2.1. Transfer time. The transfer time increases with the increase in the size of the file containing the application and its
running states. We have simulated the scenario with 10 background users. The transfer time for file is 8.46 � 5.86 s for a
1 MB file size, 44.64 � 12.71 s for a 5 MB file size, 89.21 � 16.71 s for a 10 MB file size, 155.45 � 18.56 s for a 15 MB file
size, 200.67 � 19.06 s for a 20 MB file size, 246.13 � 21.28 s for a 25 MB file size, and 302.95 � 25.17 s for a 30 MB file size.
The standard deviation also increases with the increase in application and its running states transfer size. Therefore, in light
of collected results, we recommend the cloud-based mobile application developers and the CMAEF designers to optimize the
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Fig. 5. Number of users effect on packet delivery ratio in WLAN.
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code structure, to minimize the code dependencies, and to reduce the application deployment overhead, thereby reducing
the runtime application transfer time. Fig. 6 shows the effect of file size on the transfer time of file containing the application
and its running states.

4.5.2.2. Energy consumption. To measure the energy consumption of a mobile device, we have used the energy model pro-
vided with the INET framework of OMNeT++. The energy consumption of a mobile device for migrating the application data
is increased with the increasing size of transferred data. The energy consumption is 0.77 � 0.2 J for 1 MB, 2.6 � 0.5 J for 5 MB,
5.3 � 0.9 J for 10 MB, 6.86 � 1.1 J for 15 MB, 8.46 � 1.4 J for 20 MB, 11.7 � 1.6 J for 25 MB, and 14.2 � 1.8 J for 30 MB. Fig. 7
shows the effect of the application and its running states transfer size on energy consumption. As the energy consumption
increases with increase in transferred data size, the cloud-based application developers and CMAEF designers should min-
imize the data exchange between the two end of MCC. The data exchange can be minimized by pre-installations on the cloud
server and by reducing the dependency between non-collocated components.

4.5.3. Total execution time in simulated MCC environment and real MCC environment
To validate our simulation-based results, we have compared the results of simulated MCC execution with the execution

results of real MCC environment. We run an OCR-based application on the locally deployed cloud in WLAN.
The server has 3.20 GHz processor and 4 GB RAM, whereas the mobile device is Samsung Galaxy S-II I9100 with dual-core

1.2 GHz cortex-A9 processor and 1 GB RAM. The total execution time in real MCC environment is 14.56 s for the 50-word
image file, 22.32 s for the 100-word image file, 47.12 s for the 150-word image file, 56.32 s for the 200-word image file,
77.01 s for the 250-word image file, 85.67 s for the 300-word image file, and 104.55 s for the 350-word image file. However,
the total execution time in the simulated MCC environment is 10.31 s for the 50-word image file, 19.76 s for the 100-word
image file, 40.44 s for the 150-word image file, 53.37 s for the 200-word image file, 73.92 s for the 250-word image file, 81.98
s for the 300-word image file, and 98.84 s for the 350-word image file. The small difference in execution time of both envi-
ronment validates the simulated MCC environment in OMNeT++. Fig. 8 shows the total application execution time in sim-
ulation-based MCC and real MCC environment.

4.5.4. Traffic load on the wireless access point
The traffic load is another important parameter that influences the performance of runtime application migration. The

traffic load affects the application migration time and packet delivery ratio. We have investigated the effect of traffic load
in the network by varying the number of flows passing through the wireless access point.

The transfer time dramatically increases with the increasing number of flows on the wireless access point. However, the
packet delivery ratio decreases with the increase in the number of traffic flows passed through an access point of the WLAN.
The number of users in the network is 20; for each number of traffic flows, we enable the flow on a randomly selected node
with the maximum number of traffic flows restricted to 3 on each node. The rest of the network parameters are the same as
given in Table 1. The size of the file containing the application and its running states is taken as 10 MB.

4.5.4.1. Transfer time. The traffic load on the wireless access point also adversely affects the transfer time of the file contain-
ing the application and its running states. The difference in transfer time for zero to eighteen flows is very small; the transfer
time varies from 89.42 � 19.41 s to 91.45 � 19.89 s. The trend of transfer time shows that smaller traffic flow does not
adversely affect the load. However, with the increasing number of flows, the transfer time dramatically increases. The trans-
fer time is 110.534 � 23 s for 24 flows, 165.56 � 24 s for 30 flows, 189.546 � 24 s for 36 flows, 278.56 � 22 s for 42 flows,
501.45 � 23 s for 48 flows, 570.56 � 23 s for 54 flows, and 700.56 � 26.65 s for 60 flows. The transfer time increases with the
increasing number of flows because of the increase in the number of retransmissions caused by the interference. The
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Fig. 6. Effect of application and its states transfer size on transfer time.
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increase in transfer time is also attributed to the increase in the contention window size of the exponential backoff algorithm
implemented in the WLAN standards. Given that the traffic load on the access point has a significant effect on the file transfer
time, the CMAEF designers must incorporate the traffic load on the wireless access point in designing the CMAEFs. Similar to
estimation of number of users in the network, the traffic load parameter can also be estimated using the method proposed by
Bianchi et al. in [29]. The parameter cannot be directly monitored without connecting with an access point but can be esti-
mated as done in [29]. Fig. 9 shows the effect of traffic load on the transfer time of the file containing the application and its
running states.
4.5.4.2. Packet delivery ratio. The traffic load on the wireless access point also significantly effect the packet delivery ratio in
the WLAN. The packet delivery ratio significantly decreases with the increasing number of flows passing through the access
point. When the number of flows is less than six, the flows have a negligible effect on the packet delivery ratio.

We have observed the different packet delivery ratio values for different number of flows passing through the access
point. The packet delivery ratio is 0.99 � 0.006 for 6 background traffic flows, 0.97 � 0.02 for 12 background traffic flows,
0.89 � 0.03 for 18 background traffic flows, 0.87 � 0.035 for 24 background traffic flows, 0.83 � 0.04 for 30 background traf-
fic flows, 0.79 � 0.04 for 36 background traffic flows, 0.73 � 0.045 for 42 background traffic flows, 0.65 � 0.05 for 48 back-
ground traffic flows, 0.59 � 0.05 for 54 background traffic flows, and 0.55 � 0.053 for 60 background traffic flows. The reason
behind the decreasing packet delivery ratio with the increasing number of traffic flows is the interference in the WLAN
caused by the background traffic. The CMAEF designer should also consider the traffic load on the access point when taking
the offloading decision. The traffic load devastatingly affects the performance of delay-sensitive application as well as
throughput-oriented applications. Fig. 10 shows the effect of traffic load on the packet delivery ratio.
4.5.5. Message length
The message length also affects the transfer time of the file containing the application and its running states. For this sce-

nario, the number of wireless users is 15, and the file size is taken as 10 MB. The application and its running states transfer
time is 249.13 � 30.06 s for 500 bytes of packet, 260.53 � 35.67 s for 750 bytes of packet, 163.0587 � 35.56 s for 1000 bytes
of packet, 192.50 � 35.78 s for 1250 bytes of packet, 379.45 � 38.89 s for 1500 bytes of packet, and 1032.7 � 45.51 s for 1750
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Fig. 9. Effect of traffic load on application and its states transfer time.
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bytes of packet. Fig. 11 shows the effect of message length on the transfer time of the file containing the application and its
running states. The results show that neither smaller size of packets nor larger size of packets lessens the file transfer time.
More interestingly, packets with large size such as 1750 bytes increase the overall file transfer time. The reason behind the
increase in file transfer time is contending process after sending each MAC layer frame and the collisions of the packets. The
mobile device has to contend more times for smaller packet sizes to transfer the same file. The larger packet size increases
the collision chance in the wireless networks. Therefore, the transfer time increases because of retransmissions. The appro-
priate packet size can help in reducing the application and its running states migration time, thereby resulting in overall less
execution time in the cloud.

4.5.6. Number of hops to the cloud
The number of hops to the cloud also affects the transfer time of applications and its running states. The scenario is sim-

ulated with 15 wireless devices for transferring the 10 MB file. The packet size is 1000 bytes. The simulation results show
that the application transfer time increases with the increase in the number of hops to the cloud. The file transfer time is
163.05 � 15 s for a cloud with distance of 1-hop, 179.67 � 14.99 s for a cloud with distance of 3-hops, 190.56 � 13.89 s
for a cloud with distance of 6-hops, 199.56 � 15.67 s for a cloud with distance of 9-hops, 209.45 � 15.56 s for a cloud with
distance of 12-hops, and 221.8 � 16.75 s for a cloud with distance of 15-hops.

The increase in transfer time is attributed to the additional delays induced by the queuing, processing, transmission, and
propagation of packet on each hop. CMAEF designer must also incorporate a number of hops-based metric in application
migration decision while designing the framework. A CMAEF should be able to select the cloud based on the shortest dis-
tance in terms of number of hops to the cloud. Fig. 12 shows the effect of number of hops to the cloud on the transfer time
of the file containing the application and its running states.

4.5.7. Mobility speed
The mobility speed affects the end-to-end per packet delay, thereby inducing jitter in application execution that degrades

the quality of experience for real-time applications.
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The effect is observed by simulating scenarios with different mobility speeds and by considering the end-to-end per
packet delay as a performance metric. The scenario is simulated with 15 wireless users and file size of 10 MB. The results
show that with increasing mobility speed, the end-to-end per packet delay also increases. The end-to-end per packet delay
is 1.5 � 0.2 s for the mobility speed of 5 m/s, 2.0 � 0.23 s for the mobility speed of 10 m/s, 2.5 � 0.24 s for the mobility speed
of 15 m/s, 2.67 � 0.25 s for the mobility speed of 20 m/s, and 3 � 0.25 s for the mobility speed of 25 m/s.

The CMAEFs must incorporate the mobility speed in the migration decision as the mobility speed also degrades the appli-
cation performance by inducing jitter in the communication. The exact estimation of application migration time can help in
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taking the correct decision of application migration to the cloud. Therefore, a CMAEF designer should incorporate mobility
speed as a parameter as an input to application migration decision algorithms. Fig. 13 shows the effect of the mobility speed
on the end-to-end per packet delay.
5. Conclusions and future directions

The runtime application migration is a software-level solution in MCC to optimize the application execution by leveraging
the resources of the cloud. The process of application execution relies on the CMAEF that manages the application execution
in MCC. Currently, proposed CMAEFs are more biased toward optimizing mobile-centric operations and cloud-centric oper-
ations. However, network-centric parameters also significantly affect the performance of the application execution in MCC.

In this paper, we analyzed the effect of network-centric parameters on the application migration process. The network-
centric performance of the application migration process was investigated by simulating the migration process in OMNeT++.
The performance evaluation shows that application and its running states transfer time increases with the increasing num-
ber of users in the network. However, the packet delivery ratio decreases with the increasing number of users in the network.
The application and its running states size also directly affect the overall transfer time. The transfer time of an application
and its running states also dramatically increases for high traffic load on the wireless access point. The message length and
the number of hops to the cloud also significantly affect the transfer time of the file containing the application and its run-
ning states. Lastly, we observed that end-to-end per packet delay increases with the increase in mobility speed.

By investigating the runtime application migration, we have observed that application performance metrics are signifi-
cantly affected by the application characteristics and dynamic conditions of the network. Based on our research findings,
we recommend application designers to optimize the applications and its running states size to reduce network transfer
time. The CMAEF designer must incorporate the number of users in the WLAN, mobility speed of a mobile device, and traffic
load on the wireless access point in the application migration decision so that correct application migration decision can be
taken.
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