
Cost-Efficient and Robust On-Demand Video
Transcoding Using Heterogeneous

Cloud Services
Xiangbo Li , Mohsen Amini Salehi,Member, IEEE, Magdy Bayoumi, Fellow, IEEE,

Nian-Feng Tzeng, Fellow, IEEE, and Rajkumar Buyya, Fellow, IEEE

Abstract—Video streams, either in the form of Video On-Demand (VOD) or live streaming, usually have to be converted (i.e.,

transcoded) to match the characteristics of viewers’ devices (e.g., in terms of spatial resolution or supported formats). Transcoding is

a computationally expensive and time-consuming operation. Therefore, streaming service providers have to store numerous

transcoded versions of a given video to serve various display devices. With the sharp increase in video streaming, however, this

approach is becoming cost-prohibitive. Given the fact that viewers’ access pattern to video streams follows a long tail

distribution, for the video streams with low access rate, we propose to transcode them in an on-demand (i.e., lazy) manner

using cloud computing services. The challenge in utilizing cloud services for on-demand video transcoding, however, is to

maintain a robust QoS for viewers and cost-efficiency for streaming service providers. To address this challenge, in this paper,

we present the Cloud-based Video Streaming Services (CVS2) architecture. It includes a QoS-aware scheduling component

that maps transcoding tasks to the Virtual Machines (VMs) by considering the affinity of the transcoding tasks with the allocated

heterogeneous VMs. To maintain robustness in the presence of varying streaming requests, the architecture includes a

cost-efficient VM Provisioner component. The component provides a self-configurable cluster of heterogeneous VMs. The

cluster is reconfigured dynamically to maintain the maximum affinity with the arriving workload. Simulation results obtained

under diverse workload conditions demonstrate that CVS2 architecture can maintain a robust QoS for viewers while reducing

the incurred cost of the streaming service provider by up to 85 percent.

Index Terms—Cloud services, heterogeneous VM provisioning, QoS-aware scheduling, On-demand video transcoding
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1 INTRODUCTION

THE way people watch videos has dramatically changed
over the past years. From traditional TV systems, to

video streaming on desktops, laptops, and smart phones
through the Internet. Consumer adoption of video stream-
ing services is rocketing. Based on the Global Internet Phe-
nomena Report [1], video streaming currently constitutes
approximately 64 percent of all U.S. Internet traffic. It is esti-
mated that streaming traffic will increase up to 80 percent of
the whole Internet traffic by 2019 [2].

Video contents, either in the form of Video On Demand
(VOD) (e.g., YouTube1 or Netflix2) or live-streaming (e.g.,
Livestream3), need to be converted based on the device char-
acteristics of viewers. That is, the original video has to be con-
verted to a supported resolution, frame rate, video codec, and
network bandwidth to match the viewers’ devices [3]. The
conversion is termed video transcoding [4], which is a computa-
tionally heavy and time-consuming process [3]. One
approach currently used by streaming providers for transcod-
ing is termed pre-transcoding, inwhich several transcoded ver-
sions of a given video are stored to serve different types of
devices. However, this approach requires massive storage
and processing resources. In addition, recent studies (e.g.,
[5]) reveal that the access pattern to video streams follows a
long tail distribution. That is, there is a small percentage of
videos that are accessed frequentlywhile themajority of them
are accessed very infrequently. Therefore, with the explosive
demand for video streaming and the large diversity of view-
ing devices, the pre-transcoding approach is inefficient.

In this research, we propose to transcode the infrequently
accessed video streams in an on-demand (i.e., lazy) manner
using computing services offered by cloud providers.
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The challenge for on-demand video transcoding is how
to utilize cloud services to maintain a robust Quality of Ser-
vice (QoS) for viewers, while incurring the minimum cost to
the Streaming Service Provider (SSP).

Video stream viewers have unique QoS demands. In par-
ticular, they need to receive video streams without any
delay. Such delay may occur either during streaming, due
to an incomplete transcoding task by its presentation time,
or at the beginning of a video stream. In this paper, we refer
to the former delay as missing presentation deadline and the
latter as the startup delay for a video stream. Previous studies
(e.g., [5]) confirm that viewers mostly do not watch video
streams to the end. However, they rank the quality of a
stream provider based on the video stream’s startup delay.
Another reason for the importance of the startup delay is
the fact that once the beginning part of a stream is processed
and buffered, the provider has more time to process the rest
of the video stream. Therefore, to maximize viewers’ satis-
faction, we define viewers’ QoS demand as: minimizing the
startup delay and the presentation deadline violations.

To minimize the network delay, transcoded streams are
commonly delivered to viewers through Content Delivery
Networks (CDNs) [6]. It is worth noting that, this research
is not about the CDN technology. Instead, it concentrates on
the computational and cost aspects of on-demand video
transcoding using cloud services.

The goal of SSPs is to spend the minimum for renting
cloud services, while maintaining a robust QoS for viewers.
To satisfy this goal, in our earlier work [7], we investigated
using homogeneous cloud Virtual Machines (VMs). One
extension, we propose in this work, is to consider the fact
that cloud providers offer heterogeneous types of VMs. For
instance, Amazon EC2 provides General Purpose, CPU-
Optimized, GPU-Optimized, Memory-Optimized, Storage-
Optimized, and Dense-Storage VMs4 with costs varying sig-
nificantly. Moreover, the execution time of different trans-
coding operations varies on different VM types. That is,
different transcoding operations have different affinities
with different VM types. The challenge is how to construct
a heterogeneous cluster of VMs to minimize the incurred
cost of SSPs while the QoS demands of viewers are
respected? More importantly, the heterogeneous VM cluster
should be self-configurable. That is, based on the arriving
transcoding tasks, the number and the type of VMs within
the cluster should be dynamically altered to maximize the
affinity with VMs and reduce the incurred cost.

Based on aforementioned definitions, the specific
research questions we address in this article are:

� How can SSPs satisfy the QoS demands of viewers
by minimizing both the video streaming startup
delay and presentation deadline violations?

� How can SSPs minimize their incurred costs through
utilizing a self-configurable heterogeneous VM clus-
ter while maintaining a robust QoS for the viewers?

Previous works (e.g., [8], [9]) either did not consider on-
demand transcoding of video streams or disregarded the
specific QoS demands. Therefore, to answer these research
questions, we propose the Cloud-based Video Streaming

Service (CVS2) architecture that enables on-demand video
transcoding using cloud services. The architecture includes
a scheduling component that maps transcoding tasks to
cloud VMs with the goal of satisfying viewers’ QoS
demands. It also includes a VM Provisioner component that
minimizes the incurred cost of the SSP through constructing
a self-configurable heterogeneous VM cluster, while main-
taining robust QoS for viewers.

In summary, the key contributions of this paper are as
follows:

� Proposing the CVS2 architecture that enables on-
demand transcoding of video streams.

� Developing a QoS-aware scheduling component
within the CVS2 architecture to map the transcoding
tasks to a heterogeneous VM cluster with respect to
the viewers’ QoS demands.

� Developing a VM Provisioner component within the
CVS2 architecture that forms a self-configurable het-
erogeneous VM cluster to minimize the incurred
cost to the SSPs while maintaining a robust QoS for
viewers.

� Analyzing the behavior of the CVS2 architecture
from the QoS, robustness, and cost perspectives
under various workload intensities.

The rest of the paper is organized as follows. Section 2
provides a background on video streaming and transcod-
ing. In Section 3, we present the CVS2 architecture. The
scheduling and the VM provisioning policies will be dis-
cussed in Sections 4 and 5, respectively. In Section 6, we per-
form performance evaluations. Section 7 discusses related
works in the literature, and finally Section 8 concludes the
paper and provides avenues of future work.

2 BACKGROUND

2.1 Definition of Robustness

Robustness is defined as the degree to which a system can
function correctly in the presence of uncertain parameters
in the system [10].

In a system for on-demand transcoding, the arrival pat-
tern of the streaming requests is uncertain, which can signif-
icantly harm QoS and viewer satisfaction [11]. Ideally, the
system has to be robust against uncertainty in the arrival
pattern of the streaming requests. That is, the system has to
satisfy a certain level of QoS, even in the presence of uncer-
tain arrival of streaming requests.

2.2 Video Stream Structure

A Video stream, as shown in Fig. 1, consists of several
sequences. Each sequence is further divided into multiple
Group Of Pictures (GOPs) with sequence header information
at the beginning. Each GOP essentially comprises a
sequence of frames beginning with an I (intra) frame,
followed by a number of P (predicted) frames or B

(bi-directional predicted) frames. Each frame of a GOP con-
tains several slices that consist of a number of macroblocks
(MB) which is used for video encoding and decoding. In
practice, video streams are commonly split into GOP tasks
(simply termed GOPs in the paper) for processing that can
be transcoded independently [12].4. https://aws.amazon.com/ec2/instance-types
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2.3 Video Transcoding

A video initially is captured with a particular format, spatial
resolution, frame rate, and bit rate. Then, the video is
uploaded to a streaming server where it is adjusted based
on the viewer’s device resolution, frame rate, and video
codec. These conversions are generally termed video trans-
coding [3], [4] operations and are explained as follows:

Bit Rate Adjustment.To produce a high quality video con-
tents, the video is encoded with high bit rate. However, a
higher bit rate also requires larger network bandwidth for
video stream transmission. SSPs usually need to transcode
the video stream to adjust the bit rate based on available
viewer bandwidth [13].

Spatial Resolution Reduction.Spatial resolution indicates
the encoded dimensional size of a video. However, the
dimensional size does not necessarily match the screen size
of the viewer’s device. To avoid losing contents, macroblocks
of an original video have to be removed or combined (i.e.,
downscaled) to produce a lower spatial resolution video [14].

Temporal Resolution Reduction.Temporal resolution reduc-
tion happens when the viewer’s device only supports a
lower frame rate, and hence, some frames have to be
dropped. Due to dependency between frames, dropping
frames can invalidate motion vectors (MV) for the incoming
frames. Temporal resolution reduction can be achieved
using methods explained in [15].

Compression Standard (Codec) Conversion.Video compres-
sion standards vary from MPEG2 to H.264, and to the most
recent one, HEVC. MPEG2 is widely used for DVD and video
broadcasting, while HD or Blu-ray videos aremostly encoded
withH.264. HEVC is the latest andmost efficient compression
standard. Viewer devices usually support a specific codec.
Thus, video streams need to be transcoded from the original
codec to the one supported by the viewer’s device [16].

2.4 Video Transcoding Using Heterogeneous VMs

Cloud providers usually offer numerous VM types. For
instance, Amazon EC2 currently provides more than 40 VM
types. These VM types are heterogeneous both in terms of
their underlying hardware architectures and prices. In Ama-
zon EC2, VMs are categorized in 6 groups based on their
architectural configurations. In particular, these groups

are: General-Purpose, CPU-Optimized, Memory-Optimized,
GPU-Optimized, Storage-Optimized, andDense-Storage.

Our initial evaluations on transcoding the codec of a set
of benchmark videos5: https://goo.gl/B6T5aj(explained in
Section 6.1) demonstrated that transcoding GOPs have dif-
ferent execution times on various VM types. In particular,
we executed GOPs on four VM types, and their perfor-
mance results are shown in Fig. 2.6 We did not consider any
of the Storage Optimized and Dense Storage VM types in
our evaluations as we observed that IO and storage are not
influential factors for transcoding tasks. Due to huge diver-
sity, we selected one VM instance that represents the
characteristics within each category. More specifically, for
GPU instance, CPU-Optimized, Memory-Optimized, and
General-Purpose types we chose g2.2xlarge, c4.

xlarge, r3.xlarge, and m4.large, respectively. The
cost of the chosen instance types are illustrated in Table 1.

The vertical axis of Fig. 2 shows the transcoding time (i.e.,
execution time) for different GOPs of a given video stream.
According to the figure, in general, GPU instances provide
a lower execution time than other VM instance types. How-
ever, for some of the GOPs, the performance difference of
GPU with other VM instances is negligible, while its cost is
remarkably higher (see Table 1). The experiment indicates
that an SSP can utilize heterogeneous VM types to minimize
its incurred cost while satisfying viewers’ QoS demands.

3 CVS2: CLOUD-BASED VIDEO STREAMING

SERVICE ARCHITECTURE

3.1 Overview

The CVS2 architecture aims to deal with a received request
for streaming a video format that is not available in the
repository (i.e., it is not pre-transcoded). An overview of the
architecture is presented in Fig. 3. It shows the sequence of
actions taken place to transcode a video stream in an on-
demand manner. The dashed lines in this figure will be
investigated in our future studies.

Fig. 1. The structure of a video stream. It consists of several sequences.
Each sequence includes multiple GOPs. Each frame of a GOP contains
several MacroBlocks.

Fig. 2. Transcoding time (in seconds) of GOPs using different VM types.
The horizontal axis shows the sequential order of GOP numbers in a
video stream.

5. the workload trace of the benchmark videos are available from
6. Fig. 2 shows the result for one of the benchmark videos. We used

big buck bunny 720p in the benchmark for this experiment. However,
results for other experiments confirm the same observations.
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CVS2 architecture includes eight main components,
namely Video Splitter, Admission Control, Time Estimator, Task
(i.e., GOP) Scheduler, Heterogeneous Transcoding VMs, VM
Provisioner, Video Merger, and Caching. These components
are explained in the next few sections.

3.2 Video Splitter

The Video Splitter splits the video stream into several GOPs
that can be transcoded independently. Each generated GOP
is identified uniquely in form of Gij, where i is the video
stream id and j is the GOP number within the video stream.

Each GOP is treated as a task with an individual dead-
line. The deadline of a GOP is the presentation time of the
first frame in that GOP. In the case of VOD, if a GOP misses
its deadline, it still has to complete its transcoding. We have
made the source code for Video Splitter publicly7 available.

3.3 Admission Control

The Admission Control component includes policies that
regulate GOP dispatching to the scheduling queue. In fact,
the Video Splitter generates GOPs for all requested video
streams. Then, the admission control policies determine the
priority (i.e., urgency) of the GOPs and dispatches them
accordingly to the scheduling queue. The admission control
policies act based on the inputs it receives from Video Split-
ter and Video Merger.

The way Admission Control prioritizes a GOP is based-
on the GOP sequence number in a video stream. Details of
how to prioritize GOP tasks is explained in Section 4.2

3.4 Transcoding Virtual Machines (VMs)

VMs are allocated from the cloud provider to transcode
GOP tasks. As discussed in Section 2.4, cloud providers
offer VMs with diverse architectural configurations.
Although GOPs can be processed on all VM types, their
execution times vary. In fact, the execution time of a
GOP on a particular VM type can depend on factors
such as the size of data it processes or the type of trans-
coding operations it performs.

Each VM is assigned a local queue where the required
data for GOPs are preloaded before execution. The sched-
uler maps GOPs to VMs until the local queue gets full.

3.5 Execution Time Estimator

The role of the Time Estimator component is to estimate the
execution time of GOP tasks. Such estimation of execution
times helps the Scheduler and VM Provisioner components
to function efficiently.

In VOD streaming, a video usually has been streamed
multiple times. Therefore, the transcoding execution time

for each Gij can be estimated from the historic execution
information of Gij [17].

As we consider the case of heterogeneous transcoding
VMs, each GOP has a different execution time on each VM
type. Therefore, the Time Estimator stores the execution time
estimations within Estimated Time to Completion (ETC)
matrices [10]. An entry of the ETC matrix expresses the exe-
cution time of a given GOPGij on a given VM typem.

We note that, even in transcoding the same GOP Gij on
the same type of VM, there is some randomness (i.e., uncer-
tainty) in the transcoding execution time. That is, the same
VM type does not necessarily provide identical perfor-
mance for executing the same GOP at different times [18].
This variance is attributed to the fact that the same VM type
can be potentially allocated on different physical machines
on the cloud. It can also be attributed to other neighboring
VMs that coexist with the VM on the same physical host in
the cloud datacenter. For instance, if the neighboring VMs
have a lot of memory access, then, there will be a contention
to access the memory and the performance of the VM will
be different from the situation that there is no such a neigh-
boring VM. Therefore, to capture randomness that exists in
the GOP execution time, the mean execution time and its
standard deviation of the historic execution time for Gij is
stored in the corresponding entry of the ETC matrix.

3.6 Transcoding (GOP) Task Scheduler

The GOP task scheduler (briefly called transcoding sched-
uler) is responsible for mapping GOPs to a set of heteroge-
neous VMs. Considering the heterogeneity in performance
and cost of different VM types, the scheduler’s goal is to

TABLE 1
Cost of Different VM types in Amazon EC2

VM Type GPU

(g2.xlarge)

CPU Opt.

(c4.xlarge)

Mem. Opt.

(r3.xlarge)

General

(m4.large)

Hourly Cost ($) 0.65 0.20 0.33 0.15

Fig. 3. An overview of the Cloud-based Video Streaming Service (CVS2)
architecture.

7. The source code for GOP task generation is available here:
https://github.com/lxb200709/videotranscoding_gop
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map GOP tasks to VMs with the minimum incurred cost
while satisfying the QoS demands of the viewers.

GOPs of different video streams are interleaved within
the scheduling queue. In addition, the scheduler has no
prior knowledge about the arrival pattern of the GOPs to
the system. Details of the scheduling method are presented
in Section 4.

3.7 VM Provisioner

The VM Provisioner component monitors the operation of
transcoding VMs in the CVS2 architecture and dynamically
reconfigures the VM cluster with two goals: (A) minimizing
the incurred cost to the stream provider; (B) maintaining a
robust QoS for viewers. For that purpose, the VM Provi-
sioner includes provisioning policies that are in charge of
allocating and deallocating VM(s) from the cloud based on
the streaming demand type and rate.

VM provisioning policies generally have to determine
when and how many VMs need to be provisioned (known as
elasticity [7]). For a heterogeneous VM cluster, the policy also
has to determinewhich type of VMneeds to be provisioned.

The VM provisioning policies are executed periodically
and also in an event-based fashion to verify whether or not
the allocated VMs are sufficient to meet the QoS demands.
Once the provisioning policy updates the set of allocated
VMs, it informs the scheduler about the latest configuration
of the VM cluster. Details of the VM provisioning policies
are discussed in Section 5.

3.8 Video Merger

GOPs are transcoded on different VMs independently.
Thus, latter GOPs in a video stream may be completed
before the earlier ones in a stream. The role of Video Merger
is to rebuild the sequence of GOPs in the right order. To
build the transcoded stream, Video Merger maintains an
output window for each video stream.

Video Merger is in contact with the Admission Control
component. In the event that a GOP is delayed (e.g., due to
failure) the Video Merger asks the Admission Control for
resubmission of the GOP. Upon receiving a resubmission
request, Admission Control fetches the requested GOP
from Splitter and resubmits it to the Scheduler with a high
priority.

Video Merger requests for resubmission of a GOP after a
certain time elapsed and it does not need to search for the
missed GOP to see if it has failed or not.

3.9 Caching

To avoid redundant transcoding of the trending videos, the
CVS2 architecture provides a caching policy to decide
whether a transcoded video should be stored or not. If the
video is barely requested by viewers, there is no need to
store (i.e., cache) the transcoded version. Such videos are
transcoded in an on-demand manner upon viewers’
request. We will explore more details of the caching policy
in a future research.

Considering the proposed architecture, in the next
two sections, we elaborate on the methods developed for
the Transcoding Task Scheduler and VM Provisioner
components.

4 QOS-AWARE TRANSCODING (GOP) TASK
SCHEDULER

4.1 Overview

Details of the GOP task scheduler are shown in Fig. 4.
According to the scheduler, GOPs of the requested video
streams are batched in a queue upon arrival to be mapped
to VMs by the scheduling method. To avoid any execution
delay, the required data for GOPs are fetched in the local
queue of the VMs, before the GOP transcoding started. Pre-
vious studies [10] show that the local queue size should be
short. Accordingly, we consider the local queue size to be 2
in all VMs. We assume that the GOP tasks in the local queue
are scheduled in the first come first serve (FCFS) fashion.
Once a free slot appears in a VM local queue, the scheduling
method is notified to map a GOP task from those in the
batch queue to the free slot. We assume that GOP schedul-
ing is non-preemptive and non-multi-tasking.

Recall that the scheduler goal is to satisfy the QoS
demands of viewers by minimizing the average deadline
miss rate and the average startup delay of the video
streams. The scheduling method maps the GOP tasks to a
heterogeneous cluster of VMs where GOPs have different
execution times on different VM types. In such a system,
optimal mapping of GOP tasks to heterogeneous VMs is an
NP-complete problem [19]. Thus, development of mapping
heuristics to find near-optimal solutions forms a large body
of research [10], [20].

In the rest of this section, we explain the details of how
the scheduling component within the CVS2 architecture sat-
isfies the QoS demands. Also, for further clarity, all the sym-
bols used in this paper are listed in Table 2, in Appendix A
Section, which can be found on the Computer Society Digi-
tal Library at http://doi.ieeecomputersociety.org/10.1109/
TPDS.2017.2766069.

4.2 Utility-based GOP Task Prioritization

One approach to minimize the average startup delay of
video streams is to consider a separate dedicated queue for
the startup GOPs of the streams [7]. Such a queue can only
prioritize a constant number of GOPs at the beginning of
the streams, with the rest of the GOPs treated as normal pri-
ority. In practice, however, the priority of GOPs should be
decreased gradually as the video stream moves forward.

To implement the gradual prioritization of GOPs in a
video stream, we define a utility function that operates on
a video stream and assigns utility values to each GOP.

Fig. 4. QoS-aware transcoding scheduler that functions based on the
utility value of the GOPs.
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Equation (1) shows the utility function the admission con-
trol policy uses for assigning utility values. In Equation (1), c
is a constant and i is the order number of GOP in the video
stream. The value of c determines the slope of the utility func-
tion curve. That means, using this parameter we can adjust
the importance of the startup GOPs in a video stream. Higher
values for c create a sharp slope in the curve that implies pri-
oritizing few GOPs in the beginning of the video streamwith
a high utility value and low utility values for the rest of GOPs
in the video stream. Our initial experiments showed that
c ¼ 0:1 provides a reasonable slope in Equation (1).That is, it
assigns a high utility value to the GOPs in the beginning of
the stream and then the utility value gradually decreases for
GOPs positioned later in the stream.

Ui ¼ 1

e

� �c�i
(1)

The utility values assigned to a given video stream are
depicted in Fig. 5. In this figure, the horizontal axis is the
GOP number and the vertical axis is the utility value. As we
can see, the utility function assigns higher utility values
(i.e., higher priority) to earlier GOPs in the stream. The util-
ity value drops for the latter GOPs in the stream.

We would like to note that, although we used
Equation (1) to assign utility values to GOP tasks, our pro-
posed method is general and its operation is not dependent
on this particular utility function. In fact, our proposed
methods can operate under any utility function as long as it
assures that the first part of the video is prioritized more
than the rest of it.

4.3 Estimating Task Completion Time on
Heterogeneous VMs

For each GOP j from video stream i, denoted Gij, the arrival
time and the deadline (denoted dij) are available. It is worth
noting that the GOP deadline is relative to the beginning of
the video stream. Therefore, to obtain the absolute deadline
for Gij (denoted Dij) the relative deadline must be added to
the presentation start time of the video stream (denoted ci).
That is, Dij ¼ dij þ ci.

Recall that the estimated execution time for Gij on VM
typem is available through the ETC matrix (see Section 3.5).
To capture randomness in the estimated execution time of
GOPs, let tmij be the worst-case transcoding time estimation.
That is, in the scheduling, we consider tmij as the sum of

mean historic execution times of Gij and its standard devia-
tion on VMm.

Our scheduling method also needs to estimate the tasks’
completion times to be able to efficiently map them to VMs. To
estimate the completion time of an arriving GOP task Gn on
VMm, we add up the estimated remaining execution time of
the currently executing GOP in VMm with the estimated exe-
cution time of all tasks ahead of Gn in the local queue of
VMm. Finally, we add the estimated execution time of Gn

(i.e., tmn ). Recall that each GOP task has a different execution
time on different VM types that can be obtained from the
ETCmatrix (see Section 3.5). Let tr denote the remaining esti-
mated execution time of the currently executing task on
VMm, and let tc be the current time. Then, we can estimate the
task completion time ofGn on VMm (denoted ’m

n ) as follows:

’m
n ¼ tc þ tr þ

XN
p¼1

tmp þ tmn (2)

where tmp denotes the worst case estimated execution time
of any task waiting ahead of Gn in local queue of VMm and
N is the number of waiting tasks in local queue of VMm.

4.4 Mapping Heuristics

Mapping heuristics are responsible to map tasks from the
batch queue to machine queues (see Fig. 4).Regardless of
their implementation details, mapping heuristics for hetero-
geneous computing systems have a general mechanism that
operates in two main phases [21]. In Phase 1, for all tasks in
the batch queue, the machine (i.e., VM) that provides the
minimum expected completion time is determined. The out-
put of this phase can be considered as pairs of tasks with the
machines that provide the minimum expected completion
time for them. Then, in Phase 2, from the set of task-machine
pairs identified in Phase 1, the mapping heuristic selects the
pair that maximizes its performance objective. This process
is repeated until either all tasks in the batch queue are
assigned or there is no free slot left in machine queues.

Based on the explained mechanism, MinCompletion-
MinCompletion (MM) [22], [23], [24], [25], MinCompletion-
SoonestDeadline (MSD) [10], [26], and MinCompletion-
MaxUrgency (MMU) [10], [26] mapping heuristics are
defined as follows:

MinCompletion-MinCompletion (MM).In Phase 1, the heu-
ristic finds the machine (i.e., VM) that provides the mini-
mum expected completion time for the GOP task. In
Phase 2, the heuristic selects the pair that has the minimum
completion time from all the task-machine pairs generated
in the Phase 1. Once the selected task is mapped to the
selected machine, it is removed from the batch queue.

MinCompletion-SoonestDeadline (MSD).In Phase 1, for
each task in the batch queue, the heuristic finds the VM that
provides the minimum expected completion time. In
Phase 2, from the list of task-machine pairs found in the
Phase 1, MSD assigns the task that has the soonest deadline.

MinCompletion-MaxUrgency (MMU).In Phase 1 of MMU,
for each task in the batch queue, the heuristic finds the VM
that provides the minimum expected completion time. In
Phase 2, from the list of task-machine pairs found in the
Phase 1, MMU assigns the task whose task urgency is the
greatest (i.e., has the shortest slack).

Fig. 5. Utility values of different GOP tasks to indicate their processing
priority within a video stream.
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Although these mapping heuristics are extensively
employed in heterogeneous computing systems, none of
them consider the task precedence based on the utility value
as discussed in Section 4.2.

4.4.1 Utility-Based Mapping Heuristics

Recall that each GOP is assigned a utility value that shows
its precedence. Therefore, in the first phase of our proposed
scheduling method, as shown in Fig. 6, the GOPs with the
highest utility values are selected and put into a virtual
queue. The rest of the scheduling method is applied on the
virtual queue rather than the whole batch queue. Given the
large number of GOPs in the batch queue, making use of
the virtual queue reduces the scheduling overhead.

In the second phase, similar to the heuristics introduced in
Section 4.4, task-VM pairs are formed based on the VM that
provides the minimum expected completion time for each
GOP in the priority queue. Then, in the third phase, the map-
ping decision is made by combining a performance objec-
tive (e.g., SoonestDeadline) and the utility values of the
GOP tasks. For combining, we prioritize the GOP with the
highest utility value from the pairings of a VM, if and only
if it does not violate the deadline of the task selected based
on the performance objective.

To clarify further, we explain the third phase using an
example. Let GOP tasks Ga and Gb denote pairs for VMm.
Also, let SoonestDeadline be the performance objective.
Assume that Ga has a sooner deadline, whereas Gb has a
higher utility value. In this case, Gb can be assigned to VMm,
if and only if it does not violate the deadline ofGa. To assure
that assigning Gb does not cause a violation of the deadline
of Ga, we assume that Gb has already been assigned to VMm

and run the mapping heuristic again to see if Ga can still
meet its deadline or not.

Based on the way the third phase of our proposed map-
ping heuristic functions, we can have 3 variations, namely
Utility-based MinCompletion-MinCompletion (MMUT),
Utility-based MinCompletion-SoonestDeadline (MSDUT),
and Utility-based MinCompletion-MaximumUrgency
(MMUUT).

5 SELF-CONFIGURABLE HETEROGENEOUS VM
PROVISIONER

5.1 Overview

The goal of the VM Provisioner component is to maintain a
robust QoS while minimizing the incurred cost to the
stream provider. To that end, the component includes VM

provisioning policies that make decisions for allocating and
deallocating VMs from cloud.

To achieve the QoS robustness, the SSP needs to define the
acceptable QoS boundaries. Therefore, the SSP provides an
upper bound threshold for the deadline miss rate of GOPs
that can be tolerated, denoted b. Similarly, it provides a
lower bound threshold for the deadline miss rate, denoted a,
that enables the provisioning policies to reduce the incurred
cost of the streamprovider through deallocating VM(s).

The strategy of the VM provisioning to maintain QoS
robustness is to manage the VM allocation/deallocation so
that the deadline miss rate at any given time t, denoted gt,
remains between a and b. That is, at any given time t, we
should have a � gt � b.

The VM Provisioner component follows the scale up early
and scale down slowly principle. That is, VM(s) are allocated
from the cloud as soon as a provisioning decision is made.
However, as the stream provider has already paid for the
current charging cycle of the allocated VMs, the dealloca-
tion decisions are not practiced until the end of the current
charging cycle.

In general, any cloud-based VM provisioning policy
needs to deal with two main questions:

1) When to provision VMs?
2) How many VMs to provision?
The self-configurable VM provisioning, however, intro-

duces a third question to the VM provisioning policies:

3) What type of VM(s) to provision?
In the next sections, we first provide a method to deter-

mine the suitability of VM types for GOP tasks, then we
introduce two provisioning policies, namely periodic and
remedial, that work together to answer the three aforemen-
tioned questions.

5.2 Identifying Suitability of VM Types
for GOP Tasks

Recall that each GOP task has different execution times on
different VM types (see Section 2). In general, GPU provides
a shorter execution time compared with other VM types.
However, for someGOPs, the execution time on GPU is close
to other VM types while its cost is significantly higher (see
Table 1). Therefore, we need ameasure to determine the suit-
ability of a VM type for a GOP based on the two factors.

For a given GOP task, we define suitability, denoted Si, as
a measure to quantify the appropriateness of a VM type i
for executing the GOP task both in terms of performance
and cost. We calculate the suitability measure for a task
based on Equation (3). The measure establishes a trade-off
between the performance (Ti) and the cost (Ci) for a given
GOP on VM type i.

Si ¼ k � Ti þ ð1� kÞ � Ci (3)

The value of k, in Equation ( 3), is determined by the CVS2
user (i.e., video stream provider) and represents her prefer-
ence between performance and cost of VM type i. The value
of Ti is defined based on Equation (4).

Ti ¼ tmax � ti
tmax � tmin

(4)

Fig. 6. Virtual Queue to hold GOPs with the highest utility values from
different video streams. GOPs in Virtual Queue are ready for mapping
to VMs.
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where ti is the GOP execution time on VM type i (obtained
from the ETC matrix). Also, tmax and tmin are the maximum
and minimum GOP execution times across all VM types,
respectively. Nominator of this equation determines the
execution time improvement provided by VM type i for the
GOP. Denominator of this equation ensures that the value
of Ti remains in [0,1] space.

In Equation (3), the value of Ci is determined according
to Equation (5).

Ci ¼ cmax � ci
cmax � cmin

(5)

where ci is the cost of transcoding the same GOP on VM
type i. Also, cmax and cmin are the maximum and minimum
GOP transcoding costs across all VMs, respectively. The
rationale of Equation ( 5) is similar to that of Equation ( 4).
Nominator of the equation determines the cost improve-
ment resulted from VM type i to transcode the GOP and
denominator ensures the value of Ci remains in [0,1].

Based on Equation (3), for a given GOP task, we define
the GOP type based on the type of VM that provides the
highest suitability value. Later, the VM provisioning poli-
cies will utilize the concept of GOP type in their provision-
ing decisions.

5.3 Periodic VM Provisioning Policy

This VM provisioning policy occurs periodically (we term it
provisioning event) to make VM allocation or deallocation
decisions. The policy includes two methods, namely Alloca-
tion and Deallocation.

5.3.1 Allocation Method

Algorithm 1 provides a pseudo-code for the VM allocation
method. The method is triggered when the deadline miss
rate (gt) goes beyond the upper bound threshold b (line 2 in
the Algorithm). The value of b is determined by the video
streaming service provider (i.e., CVS2 user) and represents
how much the provider can tolerate QoS violation in favor
of cost-efficiency.

Algorithm 1. Pseudo-Code for the VMAllocationMethod

Input:
b: upper bound threshold for deadline miss rate
r: streaming request arrival rate

Output:
n: list of number of VMs of each type to be allocated.

1: gt  current deadline miss rate
2: if gt � b then
3: for each VM type i do
4: si  deadline miss rate for each GOP type i
5: fi  ratio of each GOP type i in the batch queue
6: Calculate the demand (vi) for each VM type i
7: ri  minimum utilization in VMs of type i
8: if vi � vth and ri � rth then
9: ni  br�vib

c
10: Allocate ni VM type i
11: end if
12: end for
13: end if

To determine what type of VM(s) to be allocated, we need
to understand the demand for different VM types. Such
demand can be understood from the concept of GOP type,
introduced in Section 5.2. In fact, the number of GOP tasks
from different types can guide us to the types of VMs that
are required. More specifically, we can identify the type of
required VMs based on two factors: (A) the proportion of
deadline miss rate for each GOP type, denoted si, and (B)
the proportion of GOPs of each type waiting for execution
in the batch queue, denoted fi. In fact, factor (A) indicates
the current QoS violation status of the system, whereas fac-
tor (B) indicates the QoS violation status of the system in the
near future.

Based on these factors, we define the demand for each VM
type i, denoted vi, according to Equation (6). The constant
factor 0 � k � 1, in this equation, determines the weight
assigned to the current deadline miss rate status and to the
future status of the system.

For implementation, we experimentally realized that the
value of k should be determined in a way that GOPs waiting
in the batch queue (i.e., fi) are assigned a higher weight,
rather than the current QoS violation of each GOP type (i.e.,
si). The reason is that, the GOP tasks in the batch queue rep-
resent the QoS violation the system will encounter in a near
future which is more important than the QoS violation the
system currently is encountering. Hence, we considered
k ¼ 0:3 (thus, 1� k ¼ 0:7) in Equation ( 6). Based on this jus-
tification, we believe that in a system with a different work-
load scenario than those we considered in our evaluations,
the value of k should remain the same.

vi ¼ k � si þ ð1� kÞ � fi (6)

If the demand for VM type i is greater than the allocation
threshold (vth in line 8), and also the utilization of corre-
sponding VM type (ri) is greater than the utilization thresh-
old (rth), then the policy decides to allocate from VM type i.

Once we determine the type of VMs that needs to be allo-
cated, the last question to be answered is how many VMs of
each type to be allocated (lines 8 - 11 in the Algorithm). The
number of allocations of each VM type depends on how far
is the deadline miss rate of GOP type i is from b. For that
purpose, we use the ratio of vi=b to determine the number
of VM(s) of type i that has to be allocated (line 9). The num-
ber of VM(s) allocated also depends on the arrival rate of
GOP tasks to the system. Therefore, the GOP arrival rate,
denoted r, is also considered in line 9 of Algorithm 1.

5.3.2 Deallocation Method

The VM deallocation method functions are based on the
lower bound threshold (a). That is, it is triggered when the
deadline miss rate (gt) is less than a. Once the deallocation
method is executed, it terminates at most one VM. The rea-
son is that, if the VM deallocation decision is practiced
aggressively, it can cause loss of processing power and
results in QoS violation in the system. Therefore, the only
question in this part is which VM should be deallocated.

In the first glance, it seems that the deallocation method
can simply choose the VM with the lowest utilization for
deallocation. However, this is not the case when we are
dealing with a heterogeneous VM cluster. The utilizations
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of the VMs are subject to the degree of heterogeneity in the
VM cluster. For instance, when the VM cluster is in a mostly
homogeneous configuration, the task scheduler has no ten-
dency to a particular VM type. This causes all VMs in the
cluster to have a similar and high utilization. Hence, if the
deallocation method functions just based on the utilization,
it cannot terminate VM(s) in a homogeneous cluster, even if
the deadline miss rate is low.

The challenge is how to identify the degree of heteroge-
neity in a VM cluster. To cope with this challenge, we need
to quantify the VM cluster heterogeneity. Then, we can
apply the appropriate deallocation method accordingly.

We define degree of heterogeneity, denoted h, as a quantity
that explains the VM diversity (i.e., heterogeneity) that
exists within the current configuration of the VM cluster.
We utilize the Shannon Wiener equitability [27] function to
quantify the degree of heterogeneity within our VM cluster.
The function works based on the Shannon Wiener Diversity
Index that is represented in Equation (7).

H ¼ �
XN
i¼1

pi � ln pi (7)

where, N is the number of VM types, pi is the ratio of VM
type i of the total number of VMs. Then, the degree of het-
erogeneity is defined as follows:

h ¼ H=Hmax (8)

Higher values of h indicates a higher degree of heteroge-
neity in a cluster and vice versa. Once we know the degree of
heterogeneity in a VM cluster, we can build the deallocation
method accordingly. Algorithm 2 provides the pseudo-code
proposed for the VM deallocation method. The method is
triggered when the deadline miss rate (gt) becomes less than
the lower bound threshold a, which is defined by the CVS2
user and represents howmuch the system can tolerate dead-
linemiss rate in favor of cost-efficiency.

Algorithm 2. Pseudo-Code for theVMDeallocationMethod

Input:
a: lower bound threshold for deadline miss rate

1: gt  current deadline miss rate
2: if gt � a then
3: calculate the utilization of each VM in the cluster
4: find VM(s) with the lowest utilization
5: resolve ties by choosing the least powerful VM(s)
6: VMj  resolve ties by selecting the VM with the mini-

mum remaining time to its charging cycle
7: h calculate the degree of heterogeneity
8: if h � hth and rj � rth then
9: No deallocation
10: else
11: Deallocate VMj

12: end if
13: end if

The deallocation method is carried out in 4 main steps. In
the first step, the VM(s) with the lowest utilization are cho-
sen (lines 3–4 in Algorithm 2). In the second step, ties are
broken by selecting the least powerful VM (line 5). If more

than one VM remains, in the third step (line 6), ties are bro-
ken based on the VM with the minimum remaining time to
its charging cycle.

For a VM cluster that tends to a heterogeneous configura-
tion (i.e., h � hth), the policy deallocates the selected VM
(termed VMj in the algorithm) if its utilization is less than
the VM utilization threshold (i.e., rj < rth). The value of hth
determines the boundary between homogeneous and het-
erogeneous configurations in a VM cluster. We experimen-
tally realized that hth ¼ 0:4 can discriminate homogeneous
configurations from heterogeneous ones. The value of rth is
determined by the CVS2 user based on its cost and perfor-
mance trade-off. In contrast, in a VM cluster that tends to a
homogeneous configuration, even if the utilization is high,
the policy can deallocate VMj based on the deadline miss
rate (lines 8–12).

It is worth noting that the deallocation method is also
executed at the end of the charging cycle of the current VMs
to deallocate VMs marked for deallocation. The reason for
enacting VM termination at the end of the VM charging
cycle is that the VM has already been paid for the whole
charging cycle. Therefore, there is no benefit in terminating
it before its charging cycle, even though it is recommended
for deallocation. To implement this and to assure that no
GOP task is left incomplete, the scheduler keeps track of
each VM’s remaining time to its charging cycle and the com-
pletion time of the tasks assigned to that VM. If a VM is
marked for deallocation, before scheduler maps a new GOP
task to it, the scheduler estimates the completion time of
GOPs assigned to that VM, in addition to the completion
time of the new GOP task. If the completion times are larger
than the time remains to the VM’s charging cycle, the GOP
tasks are rescheduled on other VMs. Otherwise, the sched-
uler keeps sending GOP tasks to the VM, even though it is
marked for deallocation.

5.4 Remedial VM Provisioning Policy

The periodic VM provision policy cannot cover request
arrivals to the batch queue that occur in the interval of two
provisioning events.

To cope with the shortage of the periodic policy, we pro-
pose a lightweight remedial provisioning policy that can
improve the overall performance of the VM Provisioner
component. By injecting this policy into the intervals of the
periodic provisioning policy, we can perform the periodic
policy less frequently.

In fact, the remedial provisioning policy provides a quick
prediction of the system based on the state of the virtual
queue. Recall that the Virtual Queue includes the distinction
of streaming requests waiting for transcoding in the batch
queue. Hence, the length of the Virtual Queue implies the
intensity of streaming requests waiting for processing. Such
long batch queue increases the chance of a QoS violation in
the near future. Thus, our lightweight remedial policy only
checks the size of the Virtual Queue (denoted Qs). Then, it
uses Equation (9) to decide for the number of VMs that
should be allocated.

n ¼ Qs

u � b
� �

(9)
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where n is the number of VM(s) that should be allocated; Qs

is the size of the Virtual Queue. u is a constant factor that
determines the aggressiveness of the VM allocation in the
policy. That is, lower values of u leads to allocating more
VMs and vice versa. In the implementation, we considered
u ¼ 10. In the remedial policy, we allocate a VM type that,
in general, provides a high performance per cost ratio (in
the experiments, we used c4.xlarge).

Experiment results indicate that the remedial provision-
ing policy does not incur any extra cost to the stream service
provider. Nonetheless, it increases the robustness of the QoS
by reducing the average deadline miss rate and average
startup delay (see Section 6.5). To verify the performance of
the proposed methods, in the next section, we evaluate
them in different configurations and under various work-
load conditions.

6 PERFORMANCE EVALUATION

6.1 Experimental Setup

We used CloudSim [28], a discrete event simulator, to
model our system and evaluate performance of the schedul-
ing methods and VM provisioning policies. To create a
diversity of video streaming requests, we uniformly
selected videos over the range of [10, 600] seconds from a
set of benchmark videos. We made the benchmarking vid-
eos publicly available for reproducibility purposes.8 We
modeled our system based on the characteristics and cost of
VM types in Amazon EC2. We considered g2.2xlarge,

c4.xlarge, r3.xlarge, and m4.large in our experi-
ments. The VMs represent the characteristics of various VM
types offered by Amazon cloud and form a heterogeneous
VM cluster.

To simulate a realistic video transcoding scenario, using
FFmpeg,9 we performed four different transcoding opera-
tions (namely codec conversion, resolution reduction, bit
rate adjustment, and frame rate reduction) for each of the
benchmarking videos. Then, the execution time of each
transcoding operation was obtained by executing them on
the different VM types.

To capture the randomness in the execution time of
GOPs on cloud VMs, we transcoded each GOP 30 times and
modeled the transcoding execution times of GOPs based on
the Normal distribution.10

To study the performance of the system comprehen-
sively, we evaluated the system under various workload
intensities. For that purpose, we varied the arrival rate of
the video streaming requests from 100 to 1000 within the
same period of time. The inter-arrival times of the requested
videos are generated based on the Normal distribution,
where the mean of inter-arrival time is based on the time
divided by the number of requests and standard deviation
is the mean divided by 3. All experiments of this section
were run 30 times, and the mean and the 95 percent of the
confidence interval of the results are reported for each
experiment. In all the experiments, we considered the val-
ues of a and b equal to 0.05 and 0.1, respectively. That is, we

consider that the SSP chose to keep the deadline miss rate
between 5 percent to 10 percent. Any deadline miss beyond
10 percent is considered as a QoS violation. The QoS bound-
ary is shown in the form of a horizontal line in the experi-
ment results.

6.2 Average Completion Time of Early GOP Tasks

The goal of using utility-based mapping heuristics is to pri-
oritize GOPs with high utility (i.e., earlier GOPs in the
stream) for reducing their completion time. Although this
factor is extended in next experiments through evaluating
the average startup delay. We conduct the experiment to
further evaluate how this goal is satisfied when our utility-
based scheduling methods with different mapping heuris-
tics are applied.

In Fig. 7, the horizontal axis is the GOP number of the
first 20 GOPs in the benchmark video streams and the verti-
cal axis is the average completion time of the GOPs in sec-
onds. For this experiment, we have used 1000 GOP tasks
and VM provisioning policies are in place.

Fig. 7 demonstrates that, in general, the utility-based
heuristics provide a significantly lower average completion
time. Among traditional heuristics, MM performs the best.
This is because MM prioritizes the GOPs with short execu-
tion times, which results in faster processing in the system.
We also observed that MSDUT performs better in compare
with other utility-based heuristics, specifically for GOP
numbers more than 15. This is because the dynamic VM
provisioning policy works based on the tasks deadline miss
rate. Since MSDUT favors tasks with short deadlines, many
GOPs miss their deadlines as the system becomes busy.
Therefore, it allocates more VMs that, in turn, reduces the
average completion time of the GOPs.

6.3 Impact of Utility-Based Mapping Heuristics

To evaluate the impact of utility-based mapping heuristics
on QoS and cost, we compare them with the traditional
mapping heuristics in two scenarios: (1) VM provisioning
performed in the static way (Section 6.3.1) and (2) under
the VM provisioning policies (Section 6.3.2). To construct
a static heterogeneous cluster, we allocate three VMs of
each type.

Fig. 7. Average completion time of early GOPs under different scheduling
methods. The horizontal axis shows the GOP numbers in the video stream
and the vertical axis shows the average completion time of GOPs. We
used 1000GOP tasks and the VMprovisioning policies are applied.

8. The videos can be downloaded from: https://goo.gl/TE5iJ5
9. https://ffmpeg.org
10. The generated workload traces are available publicly from:

https://goo.gl/B6T5aj
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6.3.1 Static Heterogeneous VM Cluster

Fig. 8 compares the results of utility-based mapping heuris-
tics with the traditional batch heuristics under a static het-
erogeneous VM cluster. For traditional mapping heuristics,
Fig. 8a and 8b show that MM provides a significantly lower
average deadline miss rate (by up to 40 percent) than MSD
and MMU, in particular when the system is more oversub-
scribed (i.e., overloaded). However, MSD and MMU pro-
vide a lower average startup delay than MM. This is
because both MSD and MMU function based on the dead-
line and the deadline of the startup GOPs is low since they
are prioritized.

In Fig. 8e, we observe that MMUT provides a signifi-
cantly better average deadline miss rate (around 50 percent
when there are 1000 video requests) in comparison with
MSDUT and MMUUT. More importantly, we can see, in
Fig. 8d, that MMUT provides a low and stable startup delay
in comparison with other heuristics even when the system
is oversubscribed. This is because prioritizing shorter tasks
in MMUT produces a lower average deadline miss rate
which, in return, benefits the startup GOPs to be processed.

We should note that although MMUT provides a lower
start up delay, it yields a higher deadline miss rate than the
traditional MM (see Fig. 9). This is because the utility-based
mapping heuristics prioritize GOPs with higher utility val-
ues (i.e., higher priority) to reduce the start up delay. This
causes a higher deadline miss rate particularly when we use
static resource allocation. As we will explain in the next sec-
tion, utility-based mapping heuristics, in particular MMUT,
significantly outperform traditional mapping heuristics,
when accompanied with dynamic resource provisioning.

We do not observe any major cost difference for more
intensive workloads. This is because in the static cluster, the

workload can be handled within the same time period.
When the system is oversubscribed, there is a minor
increase in cost, as seen in Figs. 8c and 8f. This is because it
takes a longer time to finish the processing of the tasks in
those cases.

6.3.2 Dynamic Heterogeneous VM Cluster

Fig. 9c demonstrates that, regardless of the mapping heuris-
tic, the dynamic VM provisioning policy significantly
reduces the incurred cost (up to 80 percent when the system
is not oversubscribed) in comparison to the static heteroge-
neous VM cluster. The incurred cost increases as the VMpro-
visioning policy needs to allocate additional VMs to
maintain QoS robustness for more video streaming requests.

In Fig. 9a, we can observe that the average startup delay
increases for traditional mapping heuristics. However, it is
more stable in comparison with Fig. 8a with static heteroge-
neous VMs. This is because the VM provisioning policy
adapts the VM provisioning to the workload intensity to
meet the QoS demands of the stream viewers.

Figs. 9d, 9e, and 9f demonstrate the robustness resulted
from applying the utility-based mapping heuristics together
with the VM provisioning policies. That is, with the increase
of the workload, the system all together produces a low and
stable average startup delay and average deadline miss rate
without incurring extra cost to the stream provider. In par-
ticular, we observe the average deadline miss rates of
MMUUT and MSDUT have dramatically decreased. Nor-
mally, MMUUT and MSDUT lead to higher average dead-
line miss rates than MMUT. However, with the dynamic
VM provisioning policies, the high deadline miss rates of
MMUUT and MSDUT trigger the VM provisioning policies
to allocate more VMs that, in turn, reduce the deadline miss

Fig. 8. The results under utility-based mapping heuristics against those under traditional mapping heuristics when the number of video requests
varies. Subfigures (a), (b), and (c), respectively, show the average startup delay, deadline miss rate, and the incurred cost under traditional mapping
heuristics, while (d), (e), and (f) show the same factors under utility-based mapping heuristics are applied. The horizontal dashed line denotes the
acceptable QoS boundary (b).
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rate. Nonetheless, the deadline miss rate of MMUT is not
sufficiently high enough to trigger the allocation method.

Further evaluations and comparisons against previous
works are discussed in Appendix B, available in the online
supplemental material.

6.3.3 Discussion

We can summarize our findings about the proposedmapping
heuristics (discussed in Sections 6.3.1 and 6.3.2) as follows:

1) In both static and dynamic heterogeneous VM provi-
sioning: MMUT provides the lowest and the most
stable average startup delay in compare with all
other mapping heuristics.

2) In both static and dynamic heterogeneous VM provi-
sioning: The three proposedmapping heuristics incur
approximately the same cost to the streamprovider.

3) In static heterogeneous VM provisioning: MMUT
results in a lower average deadline miss rate, in com-
pare with MMUUT and MSDUT.

4) In dynamic heterogeneous VM provisioning:
MMUUT and MSDUT outperform MMUT in terms
of average deadline miss rate. Typically, MMUUT
and MSDUT result in a higher deadline miss rate (as
shown in Fig. 8e, when a static VM provisioning is
used). The reason for the opposite behavior of
MMUUT andMSDUT, in dynamic VM provisioning,
is that their higher deadline miss rate triggers allo-
cating more VMs, hence, their deadline miss rate is
decreased. It is worth noting that, although MMUT
results in a higher deadline miss rate, it is still below
the threshold provided by the video stream provider
(see Fig. 9e).

6.4 The Impact of VM Provisioning Policies

To further investigate the performance of the proposed VM
provisioning policies, we compare it against the case in
which a static homogeneous VM cluster is deployed. For
evaluation, we vary the number of streaming requests in
the system from 100 to 1000. In this experiment, we choose
MMUT as the mapping heuristic. The reason for choosing
MMUT is that, in general, it performs better than other heu-
ristics both in static and dynamic VM provisioning. Albeit,
MMUT does not outperform other heuristics in terms of
deadline miss rate when dynamic VM provisioning is used
(see Fig. 9e). However, even in that case, it can still keep the
deadline miss rate below the QoS threshold provided by the
video stream provider For the static clusters, as it is shown
in Fig. 10, we evaluate clusters with 5 to 10 VMs. In all of
them we utilized GPU VM type (g2.2xlarge). We
observed that the average startup delay, and the average
deadline miss rate are too high when fewer VMs are allo-
cated. Therefore, we do not include them in the graphs. We
would like to note that we also used other VM types to com-
pare against dynamic VM provisioning. However, their per-
formances were even worse than the GPU type.

In Fig. 10a, we can see that as the number of video
requests increases, the average startup delay in all static pol-
icies grows. However, the dynamic VM provisioning policy
provides a low and stable average startup delay. When the
system is not oversubscribed (i.e., number of stream
requests less than 400), the dynamic provisioning policies
provide a slightly higher startup delay than the static policy.
The reason is that when the deadline miss rate is low, the
VM provisioning policies allocate fewer VMs to reduce the
incurred cost. Hence, new GOP tasks have to wait for trans-
coding. However, in the static policy, specifically with a

Fig. 9. The results under utility-base mapping heuristics against those under traditional mapping heuristics when dynamic provisioning policies are
applied. TheX-axis indicates the number of streaming requests, and Subfigures (a), (b), and (c) show the average startup delay, deadline miss rate,
and the incurred cost, respectively, under traditional mapping heuristics, while (d), (e), and (f) show the same factors under utility-based mapping
heuristics. The horizontal dashed line indicates the acceptable QoS boundary (b).
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large number of VMs, GOPs in the startup queue can be
transcoded quickly, reducing the average startup delay.

Fig. 10b illustrates that theVMprovisioningpolicies lead to
low and stable average deadline miss rate in comparison with
the static ones. In the static configuration, as the number of
video requests increases, the average deadline miss rate grows
dramatically. However, we notice that the average deadline
miss rate with the dynamic VM provisioning policies remains
stable, evenwhen the system becomes oversubscribed.We can
conclude from the experiment that the proposed VM Provi-
sioner component in the CVS2 enables the system to tolerate
workload oversubscription. That is, it makes the system robust
against the fluctuations in the arrivalworkload.

In addition to low and stable average startup delay and
average deadline miss rate, Fig. 10c shows that the dynamic
VM provisioning policies reduce the incurred cost by up to
85 percent when the system is not oversubscribed. Even
when the system is oversubscribed (i.e., with more than 500
streaming requests in the system) the dynamic VM provi-
sioning policies reduced the cost to around 50 percent. In
fact, when the streaming request rate is low, VMs are
under-utilized; however, in the static VM cluster, the
streaming service provider still has to pay for them. In con-
trast, with the dynamic VM provisioning, the system deallo-
cates idle VMs when the deadline miss rate is low, which
reduces the incurred cost significantly. As the number of
streaming requests increases, more VMs of the appropriate
types are created, and hence, the incurred cost of the
dynamic VM provisioning policies approaches that of the
static one. We can conclude that, from the cost perspective,
our proposed VM provisioning policies are more efficient,
particularly when the system is lightly loaded.

6.5 Impact of the Remedial VM Provisioning Policy

To evaluate the efficacy of the remedial provisioning policy,
we conduct an experiment on the dynamic VM provisioning
policy in two scenarios: (A) when the VM Provisioner com-
ponent uses both the periodic and remedial polices and (B)
when only the periodic provisioning policy is in place. We
measure QoS in terms of average Deadline Miss Rate
(DMR), average startup delay, and the incurred cost when
the number of streaming requests varies in the system
(along the X-axis in Fig. 11). In this experiment we assume
that the MMUTmapping heuristic is utilized.

As illustrated in Fig. 11, when the system is not oversub-
scribed (i.e., fewer than 500 streaming requests), the

difference between the two scenarios is negligible. This is
because when streaming requests arrived between two pro-
visioning events are not excessive, the VMs allocated by the
periodic VM provisioning policy are sufficient to keep the
QoS robust.

Alternatively, when the system is oversubscribed, the
number of streaming requests that arrive between two pro-
visioning events is high and affects the prediction of the
provisioning policy. Under this circumstance, as depicted
in Fig. 11, relying only on the periodic provisioning policy
leads to a high deadline miss rate. Nonetheless, when the
remedial VM provisioning policy is utilized even with the
system is oversubscribed, the deadline miss rate remains
stable. In addition, as it is shown in the last sub-figure of
Fig. 11, the remedial VM provisioning policy comes without
incurring any extra cost to the stream provider.

7 RELATED WORK

Techniques, architectures, and challenges of video transcod-
ing have been investigated by Ahmad et al. [3] and Vetro
et al. [4]. Cloud-based video transcoding for VOD has been
studied in [29], [30]. However, they all investigated the case
of offline transcoding (i.e., pre-transcoding). A taxonomy of
the researches undertaken on cloud-based video transcod-
ing and the position of our contribution with respect to
them is illustrated in Fig. 12.

Jokhio et al. [31] present a computation and storage
trade-off strategy for cost-efficient video transcoding in the

Fig. 10. Performance comparison under static and dynamic VM provisioning policies. Subfigure (a) illustrates the average startup delay, (b) shows
the average deadline miss rate, and (c) demonstrates the incurred cost to the streaming provider under dynamic and static provisioning policies, with
MMUTapplied as the mapping heuristic.

Fig. 11. Impact of the remedial VM provisioning policy on the startup
delay, deadline miss rate (DMR) and the incurred cost.
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cloud. The trade-off is based on the computation cost versus
the storage cost of the video streams. They determine how
long a video should be stored or how frequently it should
be re-transcoded from a given source video. Zhao et al. [32]
take the popularity, computation cost, and storage cost of
each version of a video stream into account to determine
versions of a video stream that should be stored or trans-
coded. The earlier studies demonstrate that it is possible to
transcode infrequently accessed videos streams in an on-
demand manner [33]. However, they do not explore the
possible ways to carry out the on-demand transcoding effi-
ciently by utilizing appropriate scheduling methods and
VM provisioning policies.

In systems with dynamical task arrival, task scheduling
can be performed either in an Immediate or a Batch
mode [20]. In the former, the tasks are mapped to process-
ing machines as soon as they arrive to the scheduler, whereas
in the latter, few tasks are collected in a batch queue and are
scheduled at the same time. Amini Salehi et al. [10] have
compared these scheduling types in heterogeneous comput-
ing systems and concluded that the batch-mode significantly
outperforms the immediate-mode. The reason is that, in the
batch-mode, tasks can be shuffled and they do not have to be
assigned in the order they arrived. Accordingly, we consider
batch-mode mapping in the scheduling component of the
CVS2 architecture. It is noteworthy that the current batch-
mode scheduling heuristics (e.g., see those in [20]) and even
those in the immediate-mode cannot fulfill the QoS require-
ments of on-demand video transcoding applications, mainly
in terms of the startup delay.

To consider the startup delay, in [7], a startup queue was
considered to prioritize the first few GOPs in video streams.
Alternatively, in this paper, we improve the startup queue
model by assigning a utility value to each GOP. To mini-
mize the startup delay, the earlier GOPs in a video stream
are assigned higher utility values.

Ashraf et al. [8] propose a stream-based admission con-
trol and scheduling approach using a two-step prediction
model to foresee the upcoming streams’ rejection rate
through predicting the waiting time at each machine. Later,
a job scheduling method is utilized to drop some video seg-
ments to prevent video transcoding jitters. However, they

do not consider minimizing the startup delay of video
stream using a heterogeneous cluster of VMs.

Previous works on cloud-based VM provisioning for
video transcoding (e.g., [9], [30]) mostly consider the case
of off-line transcoding. Thus, their focuses are mainly on
reducing makespan (i.e., total transcoding times) and the
incurred costs.

Netflix adopts the scale up early, scale down slowly princi-
ple for its VM provisioning [34] on Amazon EC2. It periodi-
cally checks the utilization of its allocated VMs. The
allocated VMs are scaled up by 10 percent, if their utiliza-
tion is greater than 60 percent for 5 minutes. They are also
scaled down by 10 percent, if the VMs utilizations is less
than 30 percent for 20 minutes. Lorido et al. [34] categorize
current auto-scaling techniques into five main families:
static threshold-based rules, control theory, reinforcement
learning, queuing theory, and time series analysis. Then,
they utilize the classification to carry out a literature review
of proposals for auto-scaling in the cloud.

In our earlier works [7], [35], a QoS-aware VM provision-
ing policy was proposed for on-demand video transcoding.
Nonetheless, the policy did not consider heterogeneous
types of VMs offered by cloud providers. They just consider
one type of VM (i.e., a homogeneous cluster of VMs) and
try to minimize the incurred cost to the stream provider.
Given the affinity between different transcoding types and
VM types, VM provisioning policies are required to allocate
and deallocate from heterogeneous VM types to minimize
the incurred cost. This will enable the creation of a dynami-
cally-formed VM cluster that changes its configurations
based on the arriving transcoding requests. The current
work is different from [7] in several other ways too. We pro-
vide a method to quantify heterogeneity of a VM cluster
and use it in deallocation policy of the VM cluster. We pro-
vide a method to quantify the suitability of each VM type
for various transcoding operations. We develop new sched-
uling heuristics that are QoS-aware and are tailored for het-
erogeneous computing systems. We also provide a utility
function that prioritizes GOPs in a video stream based on
their position in the stream.

8 CONCLUSIONS AND FUTURE WORK

In this paper, we proposed the CVS2 streaming engine for
on-demand video transcoding. In particular, we developed
the Task Scheduler and VM Provisioner components of
CVS2. The components are aware of the viewers’ QoS
demands and aim to maintain QoS robustness while mini-
mizing the incurred cost to the SSP. The components take
advantage of the heterogeneous VMs, offered by the cloud
providers with diverse prices. The Scheduler minimizes the
startup delay and the deadline violations of the streams.
The VM Provisioner is cost-aware in allocating/deallocat-
ing heterogeneous VMs. Experiment results demonstrate
that proposed scheduling reduces the average startup
delay and the deadline miss rate. In addition, heteroge-
neous VM provisioning reduces the incurred cost by up
to 85 percent, particularly, when the system is not over-
subscribed. The VM provisioning is robust against uncer-
tainties in the arrival of streaming requests, without
incurring any extra cost to the provider.

Fig. 12. A taxonomy of video transcoding using cloud. Red blocks posi-
tion the contributions of this work.
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The CVS2 architecture is useful for SSPs to utilize cloud
services and offer on-demand transcoding of video streams
with a low cost. In future, we will extend the admission con-
trol to be failure-aware. We will also consider multiple
cloud scenarios for faster video delivery.
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