
Improving CNN Model Training Time Efficiency using
MPI-driven Parallelization and Ensemble Learning

Zia Ur Rehman1,*, Saif ul Islam2, Uzair Hassan1, Jalil Boudjadar3, and Rajkumar Buyya4

1Institute of Space Technology, Islamabad, Pakistan,
2WMG, University of Warwick, Coventry, UK,

3Aarhus University, Aarhus, Denmark,
4The University of Melbourne, Melbourne, Australia

*Email: zia.rahman@ist.edu.pk

Abstract

Convolutional Neural Networks (CNNs) have proven remarkably effective in various computer vision applications, such
as object detection, image segmentation, medical imaging, and classifying handwritten numbers. On the other hand, CNN
training on large datasets can be highly compute-intensive, resulting in lengthy training times. To address this problem,
this paper proposes a novel method to reduce CNN training time for classification problems. To achieve this, we divide the
training dataset across several CPU cores using Message Passing Interface (MPI) parallelization. Furthermore, we employ
an ensemble learning method that combines the predictions of separate models trained on various subsets of the dataset
using a majority voting scheme. We consider the MNIST dataset for the experiments. The results of our experiments show
that, while retaining promising accuracy, the approach we propose significantly reduces the CNN model’s training time up
to 45.13% and 91.67% depending upon the machine specifications compared to the sequential approach.

1 Introduction
In recent years, deep learning models, particularly Convolu-
tional Neural Networks, have shown remarkable performance
in various fields such as computer vision, natural language
processing, and weather forecasting [1]. CNNs have demon-
strated outstanding performance across various applications,
significantly transforming the landscape of computer vision
[2]. Specifically, CNN model for RGB-D image-based high-
accuracy 6D pose estimation, an unsupervised anomaly local-
ization by CNN framework, and an object classification by
Voxel Graph CNN [3–5]. CNNs are excellent at identifying
features from images, which enables them to interpret deep
patterns and connections in the data.

Due to their complexity, CNNs for object recognition and
classification are usually tested as prototypes on powerful com-
puting platforms such as GPU cards. Although these systems
allow many algorithms to be implemented in real time, they
have a major power consumption disadvantage. To implement
CNNs as effectively as possible, there has been a recent rise
in the creation of specialized processors and hardware acceler-
ators emphasizing decreasing the loss of power and inference
time [6].

Utilizing multiple CPU cores can divide the training pro-
cess into smaller tasks that can be executed simultaneously.
This parallel processing allows for faster training times and
improved overall performance of the CNN model. Further-
more, parallelization of training on CPU cores can also help
overcome the speed and power consumption limitations often
associated with CNN models [6]. This is important in real-
life applications with critical time and power constraints. By
utilizing CPU core parallelization, the training time for CNN
models can be significantly reduced, allowing for faster model

development and deployment in various applications.
Training CNNs can be costly and time-consuming, espe-

cially with large datasets. This is primarily due to the sequen-
tial nature of typical CNN training, which processes data one
sample at a time. Modern multi-core processors are limited in
their ability to be used due to their sequential nature, which
slows training and prevents widespread use for time-sensitive
real-world tasks. This paper investigates how CPU core par-
allelization using MPI affects CNN model training time. We
demonstrate the efficiency of our proposed method using the
MNIST dataset [7], a popular benchmark for handwritten
digit classification. We evaluate the accuracy and training
time of a CNN model trained sequentially against a model
trained using MPI parallelization. According to our research,
MPI parallelization can reduce training times without affect-
ing classification accuracy, allowing CNNs to be trained and
used more quickly in practical applications.

In this paper, we investigate the performance and training
time of the Convolutional Neural Network (CNN) model on
a CPU with and without parallelization. Processor efficiency
drops when a CPU’s single core is used instead of multiple
cores, which results in slower execution times and reduced
overall performance. CPU parallelization resolves this prob-
lem and saves energy and time by utilizing MPI to divide work
across several CPU cores. Initially, we implemented a CNN
model for the MNIST dataset without parallelization to mea-
sure test accuracy and training time. Next, we implement MPI
to create a distributed CNN training method in which each
MPI process trains a local model on a subset of the MNIST
dataset. Each process receives a portion of the dataset and
uses it to construct and train a CNN model locally. Following
training, all trained models are combined at the root process,
using a majority voting scheme to generate predictions on the
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test dataset. This produces an ensemble model with the same
accuracy as a model without parallelization but requires less
training time.

The rest of the paper is organized as follows: In section
2, we discuss related work consisting of CNN classifiers, MPI,
and ensemble learning and their detailed discussion. Section 3
presents the methodology, which involves the proposed MPI-
based technique and algorithm for parallelization. Section 4
presents the experimental evaluation, which includes a discus-
sion related to the dataset, model configurations, hardware
and software setup, results, and discussions. Finally, section
5 concludes the paper.

2 Related Work
Computer vision is an essential component of artificial intel-
ligence. It uses human vision patterns to recognize and in-
terpret things in pictures and videos. It has a wide range of
applications, including facial recognition, self-driving automo-
biles, and medical diagnostics.

2.1 Convolutional Neural Networks
Convolutional Neural Networks are powerful instruments for
image-oriented tasks. They effectively utilize encoded char-
acteristics for picture classification and contribute to the ad-
vancement of computer vision technology [8]. A CNN is an
effective deep-learning technique for image analysis that min-
imizes the need for manual preprocessing by using filters ac-
quired during training to identify significant features. It uses
convolution to extract features and pooling to minimize di-
mensions, frequently with maximum or average pooling, to
excel in image classification and sequential data applications
like natural language processing [8].

In CNN, the input layer contains pixel data. ReLU acti-
vation comes after the convolutional layer computes neuron
outputs based on local input areas. Pooling lowers spatial
dimensions, fully connected layers produce class scores, and
ReLU enhances interlayer performance. CNN layer parame-
ters use learnable kernels that slide across input dimensions
to produce 2D activation maps in convolutional layers. By di-
viding the input into 2D spaces and using techniques like max
and average pooling, pooling layers reduce dimensionality and
improve noise robustness.

Activation function ReLU improves nonlinear features and
trains more quickly because of its computational efficiency and
simplicity than other CNN activation functions like sigmoid
or hyperbolic tangent. In a CNN, fully connected layers con-
sider every component of the input feature and compute the
weighted sum of the previous layer features to identify partic-
ular targets.

Marina et al. [6] investigate CNN requirements for a va-
riety of applications, with an emphasis on inference time
and power consumption. The study elaborates on the
importance of keeping time and power limits to set up
CNN effectively. It also emphasizes the necessity of ef-
fective hardware use by highlighting the connection be-
tween execution time and power consumption. It also
highlights how important low power consumption is, es-
pecially for battery-powered computers, and how dif-

ferent application domains have varied time limitations.

Figure 1: Sequential Technique for Training a CNN Model.

Figure 1 illustrates the traditional sequential technique for
training a CNN model, starting with preprocessing steps like
normalization, attribute selection, and handling missing val-
ues. The dataset is then split into training and testing sets,
with the training set used to train the CNN model and the
testing set to evaluate its performance. The resulting trained
classifier is assessed based on training time and the accuracy
of the predicted results.

2.2 Massage Passing Interface
Message Passing Interface, or MPI, is a standardized message-
passing system that can operate on various parallel computers.
For scientific languages like Fortran, C, C + +, and Python,
it enables parallel programming in multi-core systems and de-
fines syntax and semantics for library functions.

Multiprocessing becomes possible for Python by MPI,
which expands these capabilities. It allows for effective paral-
lel processing in Python and has an object-oriented interface
that corresponds precisely with MPI-2 C++ connectors [9].

MPI enables parallel programming on multi-core systems
by allowing communication and coordination between multiple
processes. Python programs can use MPI to split tasks among
several cores, using each core’s processing capacity. This al-
lows for the effective running of experiments, data processing
jobs, and parallel computer programs, which results in large
computation time savings. Additionally, MPI’s standardized
message-passing protocol guarantees flawless portability and
interoperability across multiple parallel computing architec-
tures.

Zina et al. explore the development of Python parallel
programming, focusing on the historical issues brought up by
the Global Interpreter Lock (GIL) [10]. They investigate vari-
ous Python packages and frameworks that facilitate multipro-
cessing and parallel processing. A special focus is on MPI, a
necessary tool for distributed memory and multi-core systems
to achieve parallelism. The study focuses on how MPI helps
accelerate processing in many fields, such as cyber security,
multimedia, high-performance computing, and optimization
methods. The research also emphasizes the importance of us-
ing MPI in Python ecosystems to utilize parallel computing
resources efficiently [10].

The study [11] presents mpi4py futures, a utility that uses
the MPI to speed up Python task execution. This tool is
easy to integrate into existing codebases because it closely
mimics the interface of Python’s concurrent futures pack-
age. Performance tests on distributed and shared memory
systems showed that mpi4py.futures outperformed Python’s
native concurrent futures package in terms of throughput and
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bandwidth. Furthermore, on a Cray XC40 system, mpi4py
futures performed better overall than Dask, a well-known
Python parallel computing library, in several scenarios [11].

The article [12] examines the features that modern ma-
chine learning and deep learning frameworks provide to facil-
itate development. It explores how training and inference can
be greatly accelerated by adjusting these aspects, particularly
parallelism.

2.3 Ensemble Learning

Through numerous voting mechanisms and various data pre-
dictions, ensemble learning uses many machine learning or
deep learning algorithms to improve predictions than those
produced by individual algorithms [13].

The fundamental concept of a typical ensemble classifica-
tion model is shown in Figure 2, which involves two primary
steps. First, a consistency function combines the various clas-
sification outcomes using several weak classifiers. The final
forecast results from this procedure are obtained through var-
ious voting techniques. Ensemble models improve predicted
accuracy and performance in classification problems by utiliz-
ing the combined expertise of several classifiers [13].

Deep learning architectures are now beating standard mod-
els in ensemble learning, which integrates multiple models for
enhanced adaptability. Deep ensemble models improve gener-
alization by combining ensemble and deep learning methods.
The authors in [14] categorize modern deep ensemble models
and their applicability in different fields. They also suggest
possible directions for future ensemble learning research.

Figure 2: Ensemble Learning Classification [13].

3 Proposed Method

As shown in Figure 3, the proposed technique divides the
training dataset into subsets and distributes them to multi-
ple CPU cores. The proposed approach trains a local CNN
model on each core with an assigned data subset. After train-
ing, the cores communicate to gather the trained models on
the root process.

The gathered models from each core are integrated using
an ensemble learning technique, such as majority voting, to
generate the final model. Finally, the overall performance of
this final model is assessed using a different testing dataset.

Figure 3: Proposed MPI Based Ensemble Learning Model for
CNN Classification on multi-core systems.

Algorithm 1: MPI Based Parallel Ensemble Learning

1: Input: MNIST Dataset
2: Output: Average training time of models, ensemble

model test accuracy, precision, recall, F1-score, and ac-
curacy

3:
4: procedure ParallelCNNModelTraining
5: MPI Initialization
6: Load and preprocess the MNIST dataset
7: Data distribute among MPI processes
8: Define the CNN model architecture
9: Build the local CNN model
10: Train the local CNN model on the training data chunk
11: Gather total training times from all processes to pro-

cess 0
12: Gather all trained models to process 0
13: if rank = 0 then
14: Predict classes for the test dataset using all models
15: Majority voting scheme for Ensemble prediction
16: Calculate ensemble model test accuracy
17: Calculate precision, recall, F1-score, and accuracy
18: Print ensemble model test accuracy, precision, re-

call, F1-score, and accuracy with average training time
19: end if
20: end procedure

Algorithm 1 works as follows: MPI is initialized to enable
coordination and communication between parallel processes.
Subsequently, the total number of processes is identified, and
each process is given a distinct rank (a unique identification
number). The number of MPI processes determines the split-
ting of the training dataset into chunks. The model is trained
on each process’s unique subset of data.

TensorFlow/Keras is used to build the CNN model archi-
tecture. To normalize pixel values and one-hot encode labels,
the MNIST dataset is loaded and preprocessed. The main
function trains the CNN model using a specified subset of
the training data and gathers the models on the root process.
Every MPI process simultaneously builds its local model and
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trains it on the assigned chunk of the data. The time module
determines how long each process takes to train the model.
The MPI function comm.gather is used at the root process to
collect the total training time of each process. Following model
training, each model makes predictions on the test dataset.
The final ensemble prediction is then made by combining all
of the predictions by a majority voting scheme. The model’s
accuracy is determined by comparing the ensemble model’s
predictions with the test dataset’s actual true labels. The
MPI-based parallelization approach significantly reduces aver-
age training time without sacrificing model accuracy, making
it appropriate for large-scale deep learning tasks on multi-core
systems. It divides the training workload among multiple pro-
cesses and aggregates the results using the ensemble learning
technique.

4 Performance Evaluation
This section presents the experimental setup and discusses the
results. In the experimental setup, we explain dataset and
model configurations and specify hardware and software de-
tails in Table 1 and Table 2. Later on, we discuss experimental
results.

4.1 Experimental Setup
4.1.1 Dataset

Handwritten digit recognition has long been used as a bench-
mark for machine learning and deep learning algorithms, and
it forms a fundamental challenge in recognizing optical char-
acters. The widely used MNIST database makes evaluating
such algorithms easier, which provides pre-processed hand-
written digits for comparison [7]. The MNIST database was
created by adapting and modifying the NIST database. It
consists of 10,000 test photos taken from the same distribu-
tion and 60,000 training images, some of which can be used
for cross-validation. They are normalized in size and center
with a fixed size, 28x28 pixels, and black and white numbers
in each image. As a result, every picture sample vector has
784 dimensions and binary elements. For practitioners look-
ing to use machine learning and deep learning algorithms on
real-world data with no preparation work, MNIST provides
an easy-to-use dataset [7].

4.1.2 Model Configurations

The CNN model used in our research recognizes handwritten
digits on images with a pixel size 28x28. The architecture
gradually reduces spatial dimensions by starting with three
convolutional layers and ending with max pooling layers. The
output shape gradually changes after each convolutional layer,
going from 26x26x32 to 11x11x64 and finally 3x3x64. The out-
put is then reshaped by a Flattened layer into a 576-size one-
dimensional array to make it easier for Dense layers to process.
The retrieved features are refined by these dense layers with
ReLU activation, leading to a final Dense layer that outputs
probabilities for 10 classes (digits 0-9). Using the Adam opti-
mizer and categorical cross-entropy loss, the model, which has
93,322 parameters in total, is trained on the MNIST dataset.

Figure 4: CNN model and configurations used in experiments.

Table 1: Machine 1 hardware & software specifications

Hardware Details

System Lenovo K14 Gen 1

Processor 11th Gen Intel(R) Core(TM) i5-
1135G7 @ 2.40GHz 2.42 GHz (8
cores)

RAM Capacity 8.00 GB (7.70 GB usable)

Software Details

Operating System Windows 11 Pro 64-bit

Integrated Development
Environment

Visual Studio Code

Programming Language Python

Jupyter Notebook Ex-
tension

Jupyter extension for Visual Studio
Code

Programming Language Python (version: 3.11.4)

Tensorflow (Version:2.15.0)

mpi4py (Version: 3.1.5)

Table 2: Machine 2 hardware & software specifications

Hardware Details

System Supermicro GPU SuperServer SYS-
220GP-TNR

Processor Intel(R) Xeon(R) Gold 6354 CPU
@ 3.00GHz (72 cores)

RAM Capacity 256 GB

Software Details

Operating System Ubuntu

Integrated Development
Environment

Visual Studio Code

Programming Language Python

Jupyter Notebook Ex-
tension

Jupyter extension for Visual Studio
Code

Programming Language Python (version: 3.11.4)

Tensorflow (Version:2.15.0)

mpi4py (Version: 3.1.5)
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4.2 Results and Discussions

We consider the accuracy [15] and training time as evaluation
metrics to evaluate the performance of the proposed approach
against sequential technique.

The experimental findings show that the combination of
MPI-based parallelization and ensemble learning approaches
significantly improves the effectiveness of the Convolutional
Neural Network (CNN) training procedure.

Figure 5 presents the accuracy in % and training time in
seconds for sequential technique on two machines. The graph
shows that Machine 2 has a slightly higher accuracy (98.53%)
compared to Machine 1 (98.20%) using the sequential tech-
nique. Additionally, Machine 2 achieves a significantly lower
training time (58.55 seconds) than Machine 1 (77.65 seconds).
This suggests that Machine 2 produces marginally better ac-
curacy and trains the model much faster than Machine 1.

Figure 5: Accuracy and training time for sequential technique
on Machine 1 and 2.

In Figure 6, the accuracy on Machine 1 shows a minimal vari-
ance between 98.11% and 98.29% when increasing the number
of cores, revealing that increasing cores has a small impact on
the accuracy of the model.

Training time decreases significantly as the number of cores
increases: as shown in Figure 5, drops are 22.52% for two
cores, 26.57% for three cores, 28.07% for four cores, 37.96%
for five cores, 38.64% for six cores, 41.06% for seven cores, and
45.13% for eight cores. This shows that increasing the num-
ber of cores on Machine 1 substantially cuts down on training
time; the decrease becomes more noticeable as the number of
cores exceeds 5.

As a result, on Machine 1, training time significantly de-
creases when more cores are used, indicating that Machine
1 can efficiently take advantage of multi-core processing to
speed up the training process, even though accuracy is unaf-
fected by the number of cores.

Figure 6: Decrease in training time (%age) of the proposed ap-
proach in comparison to the sequential technique and accuracy
when training on MNIST Dataset against the number of Cores
on Machine 1.

Figure 7: Decrease in training time (%age) of the proposed ap-
proach in comparison to the sequential technique and accuracy
when training on MNIST Dataset against the number of Cores
on Machine 2.

In the graph shown in Figure 7 for Machine 2, the ac-
curacy slightly fluctuates and overall remains stable across
different numbers of cores, ranging from 97.42% to 98.98%,
indicating that the number of cores does not significantly in-
fluence the model’s accuracy. The training time shows drops
of 17.69% with 2 cores, 56.55% with 3 cores, 82.72% with 4
cores, 90.49% with 5 cores, 90.74% with 6 cores, 91.29% with
7 cores, 91.49% with 8 cores, 91.39% with 10 cores, 91.65%
with 11 cores, 91.47% with 12 cores as the number of cores
increases. This shows a steep decrease initially, with a major
drop at 4 cores and less significant improvements beyond 5
cores. When comparing Machine 2 to Machine 1, we observe
that both machines maintain stable accuracy regardless of the
number of cores. However, the decrease in training time shows
a different pattern.

Both machines show that increasing the number of cores
can reduce training time without compromising accuracy as
much. Machine 1 shows a more linear improvement with ad-
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ditional cores, while Machine 2 shows a rapid improvement up
to 4 cores with diminishing returns thereafter. These observa-
tions can help determine the optimal number of cores to use
for efficient training on each machine, maximizing resource
utilization without unnecessarily increasing hardware costs.
This suggests that parallelization and ensemble learning did
not compromise the quality of the trained models when using
the proposed approach.

This notable boost in training efficiency shows the value
of parallel computing paradigms, particularly in utilizing the
computational capability of multi-core platforms. The compu-
tational resources are used more efficiently when the training
effort is split over numerous processes using MPI, significantly
reducing the total training time without sacrificing the model’s
predictive performance. Moreover, the trained model’s ro-
bustness and reliability are further improved by incorporating
ensemble learning approaches. By employing ensemble pre-
diction strategies like majority voting, the model’s accuracy is
maintained while taking advantage of the various forecasting
abilities of several separately trained models.

The results demonstrate the potential of ensemble learning
and MPI-based parallelization as effective tactics for speeding
up the training of deep learning models on sizable datasets.
When training time is a significant barrier, these strate-
gies provide valuable options for researchers and practition-
ers looking to maximize the computational efficiency of their
machine-learning and deep-learning algorithms.

5 Conclusion
Our study highlights the effectiveness of ensemble learning
and MPI-based parallelization in reducing CNN training time.
We retained excellent accuracy while significantly reducing
training time by spreading the training workload over mul-
tiple CPU cores. This method provides a feasible way to opti-
mize deep learning workflows, especially when training time is
crucial. The results demonstrate how ensemble learning and
parallel computing can speed up deep learning model train-
ing on datasets. The proposed method has the potential to
advance research and be applied in a variety of fields where
fast model training is crucial for timely decision-making. The
proposed approach is not limited to this use case and can be
applied to various machine learning and deep learning models
to reduce training time.

Software Availability:
The paper source code can be downloaded from:
https://github.com/ZiaUrRehman-bit/CNN-Using-MPI
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