
IEEE TRANSACTIONS ON COMPUTERS 1

Inverse Queuing Model based Feedback Control
for Elastic Container Provisioning of Web

Systems in Kubernetes
Zhicheng Cai, Member, IEEE, Rajkumar Buyya, Fellow, IEEE,

Abstract—Container orchestration platforms such as Kubernetes and Kubernetes-derived KubeEdge (called Kubernetes-based
systems collectively) have been gradually used to conduct unified management of Cloud, Fog and Edge resources. Container
provisioning algorithms are crucial to guaranteeing quality of services (QoS) of such Kubernetes-based systems. However, most
existing algorithms focus on placement and migration of fixed number of containers without considering elastic provisioning of
containers. Meanwhile, widely used linear-performance-model-based feedback control or fixed-processing-rate based queuing model
on diverse platforms cannot describe the performance of containerized Web systems accurately. Furthermore, a fixed reference point
used by existing methods is likely to generate inaccurate output errors incurring great fluctuations encountered with large arrival-rate
changes. In this paper, a feedback control method is designed based on a combination of varying-processing-rate queuing model and
linear-model to provision containers elastically which improves the accuracy of output errors by learning reference models for different
arrival rates automatically and mapping output errors from reference models to the queuing model. Our approach is compared with
several state-of-art algorithms on a real Kubernetes cluster. Experimental results illustrate that our approach obtains the lowest
percentage of service level agreement (SLA) violation and the second lowest cost.

Index Terms—Cloud, Fog and Edge Computing, Kubernetes, Container auto-scaling, Qos control, Queuing theory, Feedback control

F

1 INTRODUCTION

ONE of the most effective approaches to share resources
of diverse systems such as private data centers, Cloud

Computing, Fog and Edge Computing [1] among multiple
applications is using containers which are more lightweight
and portable than virtual machines (VMs) [2]. Kubernetes
[3] is one of the popular container orchestrating systems and
is gradually used to manage Cloud, Fog and Edge resources
by containers seamlessly leading to many derivative plat-
forms such as KubeEdge [4]. Kubernetes’s Pods (consisting
of one or more containers) of different applications are
deployed on VMs rented from public Clouds or physical
machines (PMs) of Fog and Edge nodes. Meanwhile, Web
applications and services (called Web systems collectively)
are very common in Cloud, Fog and Edge Computing
providing various functions to end users via different micro-
services deployed in the form of containers. One of the
most crucial problems is to design container auto-scaling
algorithms to control response time of each micro-service in
Kubernetes-based platforms.

Most existing container provisioning algorithms focus
on placement and migration of fixed number of containers
on PMs or VMs rather than auto-scaling of containers [5],
[6], [7]. However, the number of containers allocated to each
micro-service has a great impact on request response times.

• Zhicheng Cai is an Associate Professor of School of Computer Science and
Engineering, Nanjing University of Science and Technology, Nanjing,
China. He is also a visiting scholar of the University of Melbourne,
Australia from Sep 2019 to Sep 2020. (caizhicheng@njust.edu.cn)

• Rajkumar Buyya is a Professor and Director of the Cloud Computing
and Distributed Systems (CLOUDS) Laboratory, the University of Mel-
bourne, Australia

Kubernetes’s build-in auto-scaling scheduler [8] and most
threshold-based methods [9] only add or remove container
replicas based on resource usage rates which are indirect
metrics for controlling response times. Therefore, the main
goal of this paper is to design container auto-scaling meth-
ods for Kubernetes which adjust the number of containers
allocated to each micro-service automatically to decrease
resource consumption while guaranteeing quality of ser-
vices (QoS). The main challenges of designing such auto-
scaling algorithms include non-linear performance model
of multi-container systems and finding appropriate output
error computing methods.

Non-linear performance characteristics of Web systems
make resource auto-scaling complex. QoS control has been
studied extensively for traditional Web systems involving
elastic provisioning of application resources, PMs or VMs.
However, most existing methods belong to pure queuing-
theory-based feed-forward control [10], [11], [12], [13] or
linear-model-based feedback control [14], [15], [16] which
lack feedback ability or cannot describe complex non-linear
multi-container systems accurately. Although linear-model-
based feedback control has been used to amend the inaccu-
racy of queuing models taking advantage of queuing and
control theory together, the reference-point-derived linear
performance model only works well when the system is
near the reference point [17], [18].

The deviation between the reference point (e.g., reference
response time) and the real-time response time is called
output error which has a great influence on control perfor-
mance. Selecting appropriate reference points to compute
output errors is helpful to obtaining a stable control perfor-
mance. In existing methods [19], reference points are usually

IEEE TRANSACTIONS ON COMPUTERS 2

selected manually and kept unchanged for different arrival
rates. However, a fixed reference point is likely to incur
great control fluctuations because there are different stable
working points for different arrival rates. Meanwhile, the
inconsistency between the profiled performance model and
sampled reference models is unavoidable which makes out-
put errors mismatch with the profiled performance model
leading to fierce fluctuations in some cases.

In this paper, an inverse-queuing-model-based feedback
control method (FeedBack InverseQM) is proposed to guar-
antee the QoS of container-based Web systems in Kuber-
netes. The main contributions of our work are as follows.
(1) A hybrid of varying-processing-rate-based queuing

model and linear model is applied to describe the per-
formance of the multi-container system more accurately.
Inverse-queuing model is used to linearize the control
system to simplify the controller design.

(2) An online reference model learning method is designed
to find appropriate reference points for different arrival
rates increasing the accuracy of output errors.

(3) An adaptive output-error-mapping method is proposed
to amend the inconsistency between sampled reference
models and the profiled performance model avoiding
fierce control fluctuations.
The rest of this paper is organized as follows. Section 2

is the related work and Section 3 describes Web systems in
Kubernetes. The proposed method is introduced in Section
4. Section 5 and 6 include performance evaluation on a real
Kubernetes cluster, conclusions and future work.

2 RELATED WORK

Resource provisioning algorithms have been designed for
Web systems in private data centers, Cloud, Fog and Edge
Computing which mainly involve with allocation of appli-
cation resources, PMs, VMs or containers.

2.1 Application Resource Provisioning
QoS control is one of the most important objectives of
building self-adaptive computing systems [20], [21]. QoS
control of traditional Web applications deployed on a single
or multiple PMs usually involves application resources like
Web server processes, sessions or database connections [22].
Feedback control is an essential method for application
resource allocation problems. Linear-performance-model-
based fixed gain [14], [15], adaptive [16] or multi-model
switching [23] feedback control methods have been pro-
posed for application resource auto-scaling.

Queuing models describe relations among the average
response time, the request arrival rate and allocated re-
sources of Web systems more accurately than linear models.
Therefore, queuing models have been used to improve the
performance of feedback control. For example, feedback
control was used by Sha et al [17] and Xu et al. [18] to
minimize residential errors produced by queuing models.
Linear models, derived from queuing models which de-
scribe the linear relation of output-error changes and the
adjustment of allocated resources near the reference point,
are usually used to design feedback controllers. However,
queuing-model-derived linear models only work well near
reference points.

2.2 VM and PM Provisioning
VM placement, migration and auto-scaling are three impor-
tant VM provisioning problems in Cloud, Fog and Edge
Computing. The main objective of VM placement and mi-
gration is to decrease power consumption, total network
latency [24] or improve resource utilization by placing or
migrating a fixed number of VMs appropriately. For ex-
ample, a fixed number of VMs are migrated among Fog
Cloudlets to trace their mobile users [24] which only focuses
on network latency affected by geography locations of VMs.
Game theory is applied to deploy fixed number of VMs
on Cloud and Edge hosts in terms of energy, performance
and cost [25]. VM auto-scaling algorithms usually aim to
minimize resource consumption by adjusting the number of
allocated VMs to each application while guaranteeing QoS.
Auto-scaling algorithms are the basis of VM placement and
migration algorithms for improving the QoS collaboratively.

Threshold, reinforcement learning, queuing-and-control-
theory-based methods have been widely used for VM auto-
scaling problems. For threshold-based method, it is very
tricky to set thresholds and control strength [20], [26]. Q-
table and deep-neural-network based reinforcement learn-
ing methods proposed by Li et al. [27], Barrett et al. [28] and
Tesauro et al. [12] have been used to allocate VMs or PMs to
Web systems elastically. However, both Q-table and neural-
network based methods need long training periods [26].
M/M/1 [12], M/M/N [10], [11], heterogeneous M/M/N
[29] queuing models and queuing networks [13] have been
used to determine the minimum number of VMs or PMs
for guaranteeing QoS of Web systems. Nonetheless, pure
queuing-model-based methods lack the ability of reacting
to real-time output errors. Therefore, M/M/1-model-based
feedback controller is designed to adjust the arrival-rate
adjustment coefficient of a loosely coupled M/M/N model
[30] based on output errors. However, this method is tai-
lored for avoiding over-control incurred by interval-based
charging models of Cloud VMs. For guaranteeing QoS of
stream applications, VMs are allocated by comparing the
real-time queuing length with the Little’s Law determined
queuing length [31]. However, the number of VMs adjusted
each time is determined by experience.

2.3 Container Provisioning
Container deployment, migration and auto-scaling prob-
lems considering load balancing, power consumption or
QoS are becoming increasingly common on diverse under-
lying resources such as Cloud VMs [6], Fog Cloudlets [7],
Edge nodes [32] and private data centers [9]. The number of
containers allocated to each application are fixed or variable,
and the total capacity of underlying resources is fixed or
elastic too.

Most existing works focus on deploying and migrating
a fixed number of containers on private or elastically rented
underlying resources which can be modeled as bin-packing
problems [7] and solved by CPLEX [6] or heuristic methods
such as best fit decreasing bin packing (BFD) and time-
bin BFD [5], [33]. These bin-packing methods are usually
combined with VM auto-scaling algorithms such as cost-
efficiency-based greedy method [5], [33] to implement con-
tainer deployment on elastically rented VMs. Reinforcement

IEEE TRANSACTIONS ON COMPUTERS 3

learning is another method to deploy and migrate contain-
ers considering geography locations of Fog nodes and user
mobility [7]. Game theory is also used to schedule batch
tasks to a fixed number of containers and deploy these
containers on Edge hosts to minimize energy consumption
and SLA violations [32]. For Web systems, response times
are usually not only affected by geography distances, but
also the number of deployed container replicas. However,
auto-scaling of containers is not considered in these works.

Container auto-scaling algorithms mainly include work-
load prediction based proactive methods [34], threshold
[9], [35] and control theory [19] based reactive methods.
Time series analysis and machine learning methods have
been used to predict workloads based on which containers
are auto-scaled [34]. However, proactive methods lack the
ability of reacting to real-time errors and workloads are not
predictable for some cases. Some other works set a threshold
to each application regarding CPU, Memory or performance
metrics. One container is added when existing resources
have been used up [9] or a fixed number of containers are
added when the real-time response time is larger than a
threshold [36]. Genetic algorithms [35] and linear program-
ming [37] have been used to find the optimal container
distribution policy among multiple applications assuming
that each application has a performance-degrading resource
threshold or the utility of provisioning different numbers of
containers to each application has been profiled in advance.
The difficulty of threshold-based methods is how to select
appropriate threshold values suitable for different arrival
rates [34]. An inverse proportional performance model,
which is more accurate than linear models, was used to
design a feedback control method by Baresi et al. [19] to
allocate containers to Web applications with fixed reference
point of 0.9×SLA.

2.4 Comparison with Existing Algorithms

Table 1 shows a comparison of our approach with existing
resource provisioning algorithms. Firstly, linear or queuing-
model-derived linear models used in most existing feedback
control methods cannot describe the container based sys-
tems accurately [38]. On the contrary, our approach applies
a feedback controller based on a more accurate perfor-
mance model which is the hybrid of varying-processing-rate
M/M/N model and linear model. Secondly, most existing
works use a fixed reference point obtained by experience to
compute output errors directly. However, appropriate refer-
ence points are different for various request arrival rates.
Therefore, our approach applies an automatic reference
point identification method and an adaptive output error
mapping method to improve the control stability. Finally,
performance of many container auto-scaling algorithms is
only evaluated on simulation platforms while our approach
is implemented as a user-level scheduler of real Kubernetes-
based platforms.

3 WEB SYSTEMS IN KUBERNETES

It is flexible and inter-operable to organize diverse Web
systems using micro-service-based architecture as shown in
Figure 1. Each tier of such Web systems can be implemented

Performance

Monitoring

Master

Worker

CloudCellular Nodes

Worker

Pod

Container Auto-

scaling Controller

Users

Container

Cloudlet Nodes

Cloud, Fog and Edge PMs and VMs

Fig. 1. Architecture of container-based Web Systems in Kubernetes

as a micro-service which runs in parallel containers to
support large-scale requests. Each micro-service provides a
single function and is usually encapsulated as a RESTful
or SOAP-based Web service. Since Kubernetes manages re-
sources in the form of Pods [3], containers of micro-services
are embedded in Pods and deployed on PMs or VMs of
Cloud, Fog and Edge Computing which are managed by
Kubernetes-based systems uniformly. It is very common
that one Pod only contains one container. Pods with differ-
ent colors in Figure 1 consist of containers of different micro-
services. User requests of the same micro-service are dis-
tributed to containers using different balancing algorithms
by nginx-ingress-controllers [41]. Real-time performance of
each micro-service is monitored through Kubernetes java-
client-interface [42]. Based on collected performance met-
rics, the container Auto-scaling Controller (ASC) is imple-
mented as a user-level plugin to allocate appropriate num-
ber of containers (Pods) to each micro-service separately.
Although geography locations of containers influence the
response time either, it is assumed that containers with
the same configuration on Cloud and Edge hosts have the
same performance. The auto-scaling considering geography
locations will be considered in future works. Each micro-
service has its own ASC, i.e., a decentralized controlling
method is applied [19].

The average response time and resource cost are two
crucial metrics of containerized Web systems. In the SLA of a
micro-service, it is usually defined that k% of response times
should be smaller than a given threshold Wsla. Because
identical containers are usually required by the same micro-
service, one Container Unit (CU) is defined to be the cost
of allocating one container to a micro-service in one control
interval. The objective of this article is to design container
auto-scaling algorithms for ASCs to decrease the number of
consumed CUs while guaranteeing SLAs.

4 PROPOSED FEEDBACK CONTROL METHOD

In this paper, an Inverse-Queuing-Model-based feedback
control method (Feedback InverseQM) is proposed. A hy-

IEEE TRANSACTIONS ON COMPUTERS 4

TABLE 1
Comparison of our approach with existing resource provisioning algorithms for Web Systems

Resource Types Problems Objectives Techniques Platforms Works

Application
resources Auto-scaling

Absolute or relative
average response

time

Linear-model-based feedback
control

A single Web Server [14], [15],
[16], [23]

Queuing-model-derived linear
model based hybrid control

A single Web Server [17], [18]

VMs or PMs

Deployment and
migration

Power consumption,
Load balancing,
Migration costs,

Resource utilization

Heuristics, meta-heuristics CloudSim, iFogSim, Other
simulation platforms

[24], [25],
[39], [40]

Auto-scaling Average response
time

Threshold Private VM clusters [26]

Reinforcement learning Private VM or PM clusters,
Public Clouds, MATLAB

[12], [26],
[27], [28]

Queuing models Simulation, OpenStack,
Private VM clusters

[10], [11],
[12], [13], [29]

Queuing-length-based feedback
control

CometCloud [31]

Queuing-model-arrival-rate-
adjusting-coefficient based

hybrid control

CloudSim, Private VM
clusters

[30]

Containers

Deployment and
migration, Fixed

capacity

Power consumption,
Total network

latency

Deep Q-learning Private VM clusters [7]

Deployment and
migration, Elastic

capacity

Deployment Cost CPLEX, BFD, Time-bin BFD,
Cost-efficiency-based greedy

algorithms

Kubernetes, Simulation [5], [6], [33]

Auto-scaling

Resource usage,
Average response

time

Threshold IaaS, Docker Swarm [9] [36]

Threshold distance,
Load balance,

Reliability, Total
network latency

Threshold, Genetic algorithm Simulation [35]

Average response
time

Simple non-linear model based
feedback control

ECOWARE [19]

Inverse-M/M/N-model based
feedback control

Kubernetes Our approach

brid of varying-processing-rate-based M/M/N model and
linear model is first adopted to describe the system accu-
rately. Then an automatic reference model learning method
is developed to generate accurate output errors. Based
on the performance model and output errors, an inverse-
queuing-model-based Integral controller is designed. Next
an adaptive output error mapping method is investigated to
amend the inconsistency between sampled reference models
and the profiled queuing model. Finally, a queuing-length-
based scheduling method is used to provision containers
when the system is unstable.

4.1 Varying-processing-rate-based Performance Model
Experimental results illustrate that average processing rates
of each container decreases as the request arrival rate
increases in Kubernetes because of scheduling overhead.
Meanwhile, the current average response times is also af-
fected by past values. Traditional queuing models with fixed
processing rates cannot describe this system accurately.
Therefore, a hybrid of inverse-proportional-processing-rate-
based M/M/N queuing model and linear model is pro-
posed.

Let λ be the request arrival rate and N be the number of
containers. The processing rate of each container is

µ = µb + c/λ (1)

where µb is the basic processing rate and c is the inverse-
proportional coefficient of λ. Larger arrival rates mean
smaller processing rates. According to M/M/N model, the
probability of no requests in the whole system is

P0 = [
N−1∑
k=0

1

k!
(
λ

µ
)k +

λN

N !(1− λ
N×µ)µ

N
]−1 (2)

The expectation of the number of requests in the waiting
queue and under processing is

Ls(N,λ, µ) =
(λµ)

N λ
N×µ

N !(1− λ
N×µ)

2
P0 +

λ

µ
(3)

The expectation of the average response time is

Ws(N,λ, µ) =
Ls(N,λ, µ)

λ
(4)

IEEE TRANSACTIONS ON COMPUTERS 5

TABLE 2
Common Notations

Label Description

λ Real-time request arrival rate

µ Studied varying processing rate which is the func-
tion of arrival rates

Wsla Maximum response time of the micro-service de-
scribed in SLA

k Index of control steps

yk Real-time average response time of step k

Nk Output container number of control step k

Nm Maximum number of available containers for one
microservice

Lr Real-time queuing length

uk Integeral controller output

mk Reference model of step k with maximum arrival
rate deviation of 5/s

m
′
k Mature reference model of step k with maximum

arrival rate deviation of 20/s

W r

m
′
k

Reference response time of m
′
k

nr

m
′
k

Minimum number of containers fulfilling SLA in
m
′
k

The average response time yk of control step k is set to be a
weighted combination of the past value yk−1 and M/M/N
queuing model with varing processing rates as

yk = a× yk−1 + (1− a)×Ws(N,λ, µ) (5)

To obtain values of parameters a, µb and c, the least square
method is applied based on historical data collected from
Kubernetes platforms under 0 < a < 0.3, µb > 0 and c > 0
constraints.

4.2 Automatic Reference-Model Learning
For container-based queuing systems, the given Wsla might
be far from response times of stable working points. Appro-
priate reference response times smaller than Wsla should
be found to compute output errors which is the basis of
feedback control rather than using Wsla directly. Because
request arrival rates have a great impact on stable points,
different reference points should be found for different ar-
rival rates. An automatic reference-model learning method
(ARML) is proposed to profile reference models for different
arrival rates based on samples in the form of s = (ns, λs, ys)
in which ns is the container number, λs is the arrival rate
and ys is the average response time. For model m with
reference arrival rate λm, a reference response time W r

m

and a lower bound of container-number nrm will be studied
from samples. A reference-model set M is used to store
studied models and new models are gradually added. In
order to decrease the number of studied reference models,
the difference between any two models’ reference arrival
rates should be larger than a gap g (e.g., 5/s). Samples with
similar arrival rates are used to profile the same model.

Formal description of ARML is shown in Algorithm 1. In
auto-scaling step k, a new sample s will be collected and a
corresponding reference model mk = argminm∈M{λd =

|λm − λ|, λd < g} is tried to be found. If mk = null,
a new model mk with reference arrival rate λ is created
and added to M . Otherwise, s will be added to mk only
if mk = mk−1. In each model, samples are stored in a
hashmap hmk

=< n, btn > where container number n is
the key and bucket btn contains average response times of
samples with container number n. For each n, only latest
10 average response times are stored in btn and values
with distances larger than 0.4 × average(btn) from the
average value average(btn) are filtered. Then average(btn)
is updated based on filtered values for each n and added
to a set Y . Finally, the i−th (e.g., third) largest value in Y is
taken as the reference response time W r

mk
. When ys > Wsla,

ns is used to update the lower bound of container number
nrmk

if ns < nrmk
or nrmk

= null. Whenever a new sample
s is collected from the system, W r

mk
and nrmk

are updated
as mentioned above. Only when nrmk

has been assigned a
value and the number of hashmap’s keys (hkeysmk

) is larger
than 4, the modelmk is called mature and added to a mature
model set M

′
.

After s is added to mk, a mature reference model
m
′

k = argminm∈M ′{λd = |λm − λ|, λd < g
′} is tried

to be found. g
′

is usually set to be larger than g (e.g.,
20/s) to allow mature models to guide more scenarios with
larger arrival-rate differences. m

′

k = mk only when mk is
mature. If m

′

k can be found, W r
m
′
k

is selected as the reference
response time which will be used as the reference point of
feedback control. Otherwise, a sampling method is activated
to collect more samples for mk. Let nsmk

and nlmk
be the

smallest and largest keys of hmk
. If nsmk

− 1 > nrmk
or

nrmk
= null, container number Nk of current step k is set to

be nsmk
− 1. Otherwise, Nk = nlmk

+ 1.

4.3 Inverse Queuing Model based Controller Design
If a mature reference performance m

′

k can be found, feed-
back control is applied to follow the reference time W r

m
′
k

.
The control error is

ek =W r
m
′
k

− yk (6)

A controller should be designed based on performance
model in Equation (5) and ek. However, designing a feed-
back controller based on the hybrid non-linear performance
model directly is very complex. Therefore, an inverse func-
tion of queuing model is used to linearize the performance
model which simplifies the design of feedback controllers
[19], [30] as shown in Figure 2. Because it is complex
to deduce an inverse-queuing function from Equation (4)
directly, an exhausted search method is used to implement
the inverse-queuing function to find the corresponding Nk
given uk as shown in Algorithm 2. The queuing function
from Nk to u

′

k (queuing model part) in the performance
model is counteracted by the inverse-queuing function from
uk to Nk. In other words, u

′

k = uk, if queuing model part
is accurate in describing multi-container systems. Then the
linearized performance model is

yk = a× yk−1 +(1− a)u
′

k−1 = a× yk−1 +(1− a)uk−1 (7)

and the Z-transfer function of the performance model is

Y

U
=

1− a
z − a

(8)

IEEE TRANSACTIONS ON COMPUTERS 6

Algorithm 1: Automatic Reference Model Learning
(ARML)

input : s, λ, mk−1, Wsla

1 Initialize i← 3, g ← 5/s, g
′ ← 20/s, Y ← ∅ ;

2 mk ← argminm∈M{λd = |λm − λ|, λd < g};
3 if mk = null then
4 Create a new model mk;
5 λmk

← λ, M ←M ∪ {mk};
6 if mk = mk−1 then
7 Store s in hashmap hmk

;
8 foreach n ∈ hkeysmk

do
9 Calculate average(btn);

10 Y ← Y ∪ {average(btn)};
11 W r

m ← the i-th largest value in Y ;
12 if ys > Wsla and (ns < nrmk

or nrmk
= null) then

13 nrmk
← ns;

14 if nrmk
6= null and |hkeysmk

| > 4 then
15 M

′ ←M
′ ∪ {mk};

16 m
′

k = argminm∈M ′{λd = |λm − λ|, λd < g
′};

17 if m
′

k = null then
18 if nsmk

− 1 > nrmk
or nrmk

= null then
19 Nk ← nsmk

− 1;
20 else
21 Nk ← nlmk

+ 1 ;

22 return null, Nk;
23 else
24 return m

′

k, null;

+

-
𝑦𝑘Average Response Time

𝑊
𝑚𝑘

′
𝑟

𝜇 = 𝜇𝑏 + Τ𝑐 𝜆

𝑢𝑘
′

𝑢𝑘

𝑦𝑘 = a × 𝑦𝑘−1 + (1 − 𝑎) × 𝑢𝑘−1
′

𝑁𝑘

Integral Control based on

Linearized Performance Model

Linear Part

𝑢𝑘
′ = 𝑊𝑠(𝜆, 𝜇, 𝑁𝑘)

𝑁𝑘 = 𝐼𝑛𝑣𝑒𝑟𝑠𝑒𝑄𝑀(𝜆, 𝜇, 𝑢𝑘)

Queuing Model based Performance Model

Inverse Queuing Model

Reference Response Time

Control Input

M/M/N Queuing Model Part

Linearizing the Performance Model

Container Number

𝜇 = 𝜇𝑏 + Τ𝑐 𝜆

Fig. 2. Architecture of hybrid control for container-based Web Systems

An integral feedback controller is designed based on
the linear part merely ignoring the queuing model part as
follows

uk = uk−1 +KI × ek (9)

Z-transfer function of the integeral controller is

U

E
=

KIz

z − 1
(10)

Algorithm 2: Inverse Queuing Model (InverseQM)
input : λ, µ, uk

1 Nk ← dλµe;
2 while Ws(Nk, λ, µ) > uk do
3 Nk ← Nk + 1;

4 return Nk

Z-transfer function of the whole feedback system is

FR(z) =
Y

R
=

1−a
z−a

KIz
z−1

1 + 1−a
z−a

KIz
z−1

=
(1− a)KIz

z2 + [(1− a)KI − 1− a]z + a

(11)

Through linearization, queuing theory and feedback control
are combined to provide accurate performance modeling
and feedback abilities simultaneously.

4.4 Adaptive Output Error Mapping Method
In order to keep the system stable, uk should be smaller
than Wu

s = Ws(n
r
m
′
k

, λ, µ) to make Nk larger than nr
m
′
k

.

Meanwhile, uk cannot be smaller than W d
s = Ws(Nm, λ, µ)

to allocate no more than the maximum number of available
containers Nm. Because nr

m
′
k

is determined by one sample
and may be not accurate. To allow sampling on nr

m
′
k

again,
Wu
s is set to be

Wu
s =

Ws(n
r
m
′
k

, λ, µ) +Ws(n
r
m
′
k

− 1, λ, µ)

2
(12)

The output error ek, which is calculated based on reference
model m

′

k, will be used to adjust uk of the queuing model
by Equation (9). However, there are still unavoidable de-
viation between reference model m

′

k and profiled perfor-
mance model as shown in Figure 3. When the deviation
is too large, uk is likely to change greatly and exceed the
lower or upper bounds [W d

s ,W
u
s] of the queuing model

part. Let [W d
m
′
k

,Wu
m
′
k

] be the lower and upper bounds of

reference model m
′

k which are the smallest and largest
response times smaller thanWsla, respectively. To guarantee
the bounds [W d

s ,W
u
s], an adaptive output-error mapping

method (AOM) is proposed to map ek from the reference
model space to e

′

k in the queuing model space.

Theorem 1. If ek is mapped to e
′

k in proportional, there is

e
′

k = ek ×Ka (13)

Ka =

uk−1−Wd

s

yk−Wd

m
′
k

yk > W r
m
′
k

Wu
s −uk−1

Wu

m
′
k

−yk Otherwise
(14)

Proof 1. Let ur be the reference point in queuing model
space which is the corresponding map of W r

m
′
k

of ref-

erence model. When yk > W r
m
′
k

, e
′

k = uk−1 − ur .
If mapping is done in proportion, the ratio of ek to
yk − W d

m
′
k

is equal to the ratio of the output error to
the maximum decreasing range of response times in the

IEEE TRANSACTIONS ON COMPUTERS 7

𝑊
𝑚𝑘
′

𝑟

𝑊𝑠
𝑢

𝑊𝑠
𝑑

𝑢𝑘−1

𝑊
𝑚𝑘
′

𝑑

𝑊
𝑚𝑘
′

𝑢

Mapping

𝑦𝑘

𝑒𝑘
′

𝑢𝑘−1 −𝑊𝑠
𝑑

𝑒𝑘

𝑦𝑘 −𝑊
𝑚𝑘
′

𝑑

𝑢𝑟

Reference Model

Queuing Model

Fig. 3. Mapping from the reference model to profiled queuing model

profiled performance model, then equal to the ratio of e
′

k

to uk−1 −W d
s of the queuing model part as follows

ek
yk −W d

m
′
k

=
(a× yk−1 + (1− a)uk−1)− (a× yk−1 + (1− a)ur)
(a× yk−1 + (1− a)uk−1)− (a× yk−1 + (1− a)W d

s)

=
(1− a)(uk−1 − ur)
(1− a)(uk−1 −W d

s)

=
e
′

k

uk−1 −W d
s

(15)

When yk ≤W r
m
′
k

, the prove is similar.

In order to avoid large fluctuations, Ka is trimmed to 1
when Ka > 1. By substituting Equation (13) into Equation
(9), the integral controller becomes

uk = uk−1 +K
′

I × ek (16)

where K
′

I = KI ×Ka is called adaptive control gain.

4.5 Queuing-length-based Unstable State Scheduling
When the arrival rate λ is larger than the total processing
ability µ, the system is unstable and Equations (2), (3) and
(4) are not valid. Therefore, it is not suitable to determine
Nk based on ek directly. In unstable states, the real queuing
length Lr is larger than Ls(Nk, λ, µ) and increases continu-
ally until the allowed maximum number of waiting connec-
tions is reached, i.e., queuing lengths represent the blocking
degrees. Therefore, a queuing-length-based unstable state
provisioning method is applied as shown in Algorithm 3. In
lines 1 to 5, the minimum number of containers N fulfilling
Wsla according to M/M/N queuing model is first obtained.
Then Nk should be larger than Nk−1 and not smaller than
N in lines 6 to 8. Next Nk is increased one by one to make
sure that Lr can decrease to Ls in Tr (e.g., 10) seconds by
increasing Nk − Nk−1 containers. Finally, uk is updated to
guarantee that Nk containers are still rented in the next
control step if there is no output errors.

Algorithm 3: Queuing-length-based provisioning
(QLP)

input : λ, µ, Wsla, Nk−1, Lr
1 N ← dλµe, Tr ← 10 ;
2 W

′

s ← a× yk−1 +Ws(N,λ, µ)× (1− a);
3 while W

′

s > Wsla do
4 N ← N + 1;
5 W

′

s ← a× yk−1 +Ws(N,λ, µ)× (1− a);
6 Nk ← Nk−1 + 1;
7 if Nk < N then
8 Nk ← N

9 while µ× (Nk −Nk−1)× Tr < Lr −Ls(Nk, λ, µ) do
10 Nk ← Nk + 1;

11 if (Nk − 1)× µ > λ then
12 uk ← Ws(Nk,λ,µ)+Ws(Nk−1,λ,µ)

2 ;
13 else
14 uk ←Ws(Nk, λ, µ) + ε

15 return Nk

4.6 Formal Description of Feedback InverseQM

Formal description of Feedback InverseQM is shown in
Algorithm 4. At first, performance model is profiled using
historical data. Then QLP is invoked, if the real queuing
length Lr is larger than α (e.g., 10) times of the theory
queuing length Ls(Nk, λ, µ) or yk is larger than β (e.g.,
1.2) times of the largest stable response time Ws(N,λ, µ).
Otherwise, ARML is called to get a reference model m

′

k or
obtain a sampling Nk. If m

′

k 6= null, Equation (16) is used to
obtain uk, and InverseQM is applied to get the real control
action Nk. Finally, the number of containers allocated to the
Web system is adjusted to be Nk.

Algorithm 4: Inverse queuing model based feed-
back control (FeedBack InverseQM)

input : λ, Lr , yk
1 Initialize α← 10, β ← 1.2;
2 µb, c, a←Profiling the performance model;
3 µ = µb + c/λ, N ← dλµe;
4 if Lr > Ls(Nk, λ, µ)× α or yk > Ws(N,λ, µ)× β

then
5 Nk ← QLP(λ, µ, Wsla, Nk−1, Lr);
6 else
7 m

′

k, Nk ← ARML(s, λ, mk−1, Wsla);
8 if m

′

k 6= null then
9 uk ← Equation (16);

10 Nk ← InverseQM(λ, µ, uk);

11 Allocate Nk containers to the system;

5 PERFORMANCE EVALUATION

Our proposed FeedBack InverseQM is implemented as a
user-level scheduler for Kubernetes. It is compared with ex-
isting algorithms on a real Kubernetes cluster which locates
on four physical machines with the configuration of 6∼12

IEEE TRANSACTIONS ON COMPUTERS 8

1 161 320 480 640 799 959 1119 1278 1438
Time (m)

3388
3940
4492
5044
5596
6149
6701
7253
7805
8357

R
eq

ue
st

 A
rr

iv
al

 R
at

e
(/m

)

Fig. 4. Request arrival rates of applied Wikipedia access traces

virtual CPU cores and 8∼16 GB Memory. The Kubernetes
cluster consists of one Master and four Worker nodes. A
service for calculating Fibonacci numbers is adopted as
the test-bed and the input of the service is the length of
the generated Fibonacci series which is selected from the
interval [26, 33] for each request randomly. Requests of the
service are redirected to different containers by the nginx-
ingress-controller using exponentially weighted moving av-
erage (EWMA) as the load-balancing algorithm [41]. The
connection timeout time is set to 10 seconds and the allowed
maximum number of connections is 500 per container. The
user access traces of Wikipedia [43] as shown in Figure 4
with common peaks and valleys of Web systems are used to
generate requests through JMeter [44].

FeedBack InverseQM is first compared with Feed-
back QMDL which is a classical feedback control method
for QoS control based on queuing-model-derived linear
models [17], [18]. Although Feedback QMCA [30] is tailored
for hourly-priced VM provisioning, FeedBack InverseQM is
still compared with Feedback QMCA by removing the VM-
releasing status checking. Finally, Feedback InverseQM is
also compared with Feedback InverseP [19] which is one
of the elastic container provisioning algorithms considering
QoS control. Average response times of requests obtained
from logs of nginx-ingress-controllers every minute and the
total consumed CUs are two adopted metrics of algorithm
comparison. The length of control interval of all algorithms
is 250 seconds. Since FeedBack InverseQM has an initial
sampling period, the cost of each compared algorithm is
only the accumulation of consumed CUs after the initial 500
minutes for fair comparison.

5.1 Parameter Tunning
The control gain KI determines the poles of the system
which has a great impact on the settle time and overshoot.
Poles can be derived by setting z2+[(1−a)KI−1−a]z+a =
0 given KI . For example, poles p1 = 0.44 + 0.32619013j
and p2 = 0.44− 0.32619013j when KI = 0.6. According to
root locus which draws the figure of poles as KI changes
[22], larger KI usually means larger overshoots, and too
small or too large KI are likely to incur long settle times.
A set of candidate values Ski = {0.05, 0.1, 0.15, 0.3, 0.6}
are selected based on root locus. Then the real perfromance
of KI ∈ Ski is evaluated by experiments. Figures 5 and 6
show consumed container numbers and average response
times of FeedBack InverseQM with different KI which
illustrate that container numbers of FeedBack InverseQM

4
6
8

10
12
14
16
18

Cost:2454.0

Container Number FeedBack_InverseQM
0.05

4
6
8

10
12
14
16
18

Cost:2158.0 0.1

4
6
8

10
12
14
16
18

Cost:2250.0 0.15

4
6
8

10
12
14
16
18

Cost:2057.0 0.3

1 160 320 479 639 798 958 1117 1277 1436
Time (m)

4
6
8

10
12
14
16
18

Cost:2290.0 0.6

Fig. 5. Container numbers of FeedBack InverseQM with different KI

0.0000
0.1333
0.2667
0.4000

Response Time (s) FeedBack_InverseQM

0.05

0.0000
0.1333
0.2667
0.4000 0.1

0.0000
0.1333
0.2667
0.4000 0.15

0.0000
0.1333
0.2667
0.4000 0.3

1 160 320 479 639 798 958 1117 1277 1436
Time (m)

0.0000
0.1333
0.2667
0.4000 0.6

Fig. 6. Response times of FeedBack InverseQM with different KI

changes more quickly as KI increases in total. For smaller
KI , FeedBack InverseQM reacts to excess containers and
SLA violations very slowly. For example, excess containers
cannot be released in time consuming the most cost (2454
CUs) whenKI = 0.05 and SLA is violated for many periods
whenKI = 0.1. On the contrary, for largerKI , the container
number fluctuate fiercely leading to more SLA violations
when KI ≥ 0.3 and extremely large KI = 0.6 even incurs
the second most cost (2290 CUs) because of frequent con-
tainer allocating and deallocating. Therefore, KI = 0.15 is
finally selected which obtains the most appropriate control
strength leading to fewer SLA violations and a lower cost
simultaneously.

According to the performance tuning results of [30],
poles of Feedback QMDL and Feedback QMCA are set to

IEEE TRANSACTIONS ON COMPUTERS 9

0 200 400 600 800 1000
Time (m)

0.0283

0.0432

0.0581

0.0731

0.0880

0.1029

0.1179
R

es
po

ns
e

Ti
m

e
(s

)
Real value
Estimated value (varying)
Estimated value (fixed)

Fig. 7. Real response times and estimated values of profiled perfor-
mance models using fixed and varying processing rates, respectively

TABLE 3
Percentages of SLA violations and Costs

Algorithms SLA Violations Costs

Feedback InverseQM 2.36% 2250 CUs

Feedback QMDL 10.80% 2289 CUs

Feedback QMCA 21.26% 1989 CUs

Feedback InverseP 52.99% 2487 CUs

be 0.9 and 0, respectively. The pole of Feedback InverseP is
set to be 0.95 consistent with [19]. Parameters µb = 7.771,
c = 1574.510 and a = 0.215 of the varying-processing-rate-
based performance model were obtained based on the given
historical data which may change over time. Parameters
of the fixed-processing-rate-based performance model can
be acquired similarly by setting c = 0. Figure 7 shows
real response times and estimated values of profiled perfor-
mance models which illustrates that the proposed varying-
processing-rate-based method (blue dots) describes the sys-
tem more accurately than the fixed-request-processing-rate
based method (green dots).

5.2 Experimental Results

Table 3 shows percentages of SLA violations and costs of
compared algorithms which illustrate that proposed Feed-
Back InverseQM obtains the lowest percentage of SLA vio-
lation with the second lowest cost (2250 CUs) in total.

Figure 8 shows container numbers and response times
of FeedBack InverseQM which denotes that most re-
sponse times are smaller than Wsla. Reasons of Feed-
Back InverseQM’s best performance are as follows. Firstly,
ARML of FeedBack InverseQM is helpful to improve the ac-
curacy of output errors. Because different arrival rates have
different stable working points, samples are collected by
ARML to study reference response times for diverse arrival
rates leading to some fluctuations in the initial stage of Fig-
ure 8. Studied reference response times are shown in Figure
9 which increases the accuracy of output errors. Secondly,
AOM of FeedBack InverseQM is able to improve control
stability. FeedBack InverseQM is sensitive to output errors

1 161 320 480 640 799 959 1119 1278 1438
Time (m)

4

6

8

10

12

14

16

18

C
on

ta
in

er
 N

um
be

r

FeedBack_InverseQM(Cost:2250.0)

0.028

1.420

2.812

4.204

5.596

6.988

R
es

po
ns

e
Ti

m
e

(s
) FeedBack_InverseQM

SLA

1 161 320 480 640 799 959 1119 1278 1438
Time (m)

0.000

0.036

0.072

0.108

0.144

0.180

R
es

po
ns

e
Ti

m
e

(s
)

Fig. 8. Container numbers and response times of FeedBack InverseQM

1 42 83 124 165 206 247 288
Control Step (250 s/per step)

0.03208
0.03412
0.03617
0.03822
0.04027
0.04231
0.04436
0.04641
0.04845
0.05050

R
ef

er
en

ce
 R

es
po

ns
e

Ti
m

e
(s

)

Fig. 9. Reference response times of control steps with mature models

when uk−1 is near relatively flatten parts of the queuing
model as shown in Figure 3. Flatten parts of performance
models reflect the nature of queuing systems which enable
controllers react to SLA violations quickly. However, there
are unavoidable deviations between the reference model
and the profiled queuing model because of arrival rate
differences and inaccuracy of queuing models. Sometimes,
the original output errors generated by the reference model
are so large that it makes uk fluctuate drastically. Figure
10 shows adaptive control gains of different steps gener-
ated by AOM which are used to map output errors from
the reference model to the queuing model in proportion
to avoid fierce fluctuations. Both ARML and AOM make

IEEE TRANSACTIONS ON COMPUTERS 10

1 42 83 124 165 206 247 288
Control Step (250 s/per step)

0.0000

0.0222

0.0445

0.0667

0.0889

0.1111

0.1333

0.1556

0.1778

0.2000

A
da

pt
iv

e
C

on
tro

l G
ai

n

Fig. 10. Adaptive control gains (KI ×Ka) of different control steps

1 161 320 480 640 799 959 1119 1278 1438
Time (m)

4

6

8

10

12

14

16

18

C
on

ta
in

er
 N

um
be

r

FeedBack_QMDL(Cost:2289.0)
FeedBack_InverseQM(Cost:2250.0)

0.026

1.525

3.025

4.524

6.023

7.522

R
es

po
ns

e
Ti

m
e

(s
) FeedBack_QMDL

SLA

1 160 319 479 638 797 956 1116 1275 1434
Time (m)

0.000

0.036

0.072

0.108

0.144

0.180

R
es

po
ns

e
Ti

m
e

(s
)

Fig. 11. Container numbers and response times of FeedBack QMDL

FeedBack InverseQM obtain the most stable performance
as shown in Figure 8 except the initial sampling stage.

Figure 11 illustrates that FeedBack-QMDL reacts slowly
to fast arrival-rate changes leading to SLA violations or
delaying the release of excess containers. The reason is
that the output container number of FeedBack-QMDL is
the plus of M/M/N model’s output and an additional
value determined by feedback control. Meanwhile, different
arrival rates need quite different additional values, and the
changing speed of the additional value cannot meet the
requirement when the arrival rate changes quickly. How-
ever, the changing speed of the additional value cannot

1 161 320 480 640 799 959 1119 1278 1438
Time (m)

4

6

8

10

12

14

16

18

C
on

ta
in

er
 N

um
be

r

FeedBack_QMCA(Cost:1989.0)
FeedBack_InverseQM(Cost:2250.0)

0.030

1.516

3.002

4.489

5.975

7.461

R
es

po
ns

e
Ti

m
e

(s
) FeedBack_QMCA

SLA

1 161 320 480 640 799 959 1119 1278 1438
Time (m)

0.000

0.036

0.072

0.108

0.144

0.180

R
es

po
ns

e
Ti

m
e

(s
)

Fig. 12. Container numbers and response times of FeedBack QMCA

be increased by setting smaller poles (e.g., 0.6) anymore,
because it is likely to allocate or release excess containers
incurring more SLA violations or higher costs for scenarios
with slow arrival rate changing speeds. The main reason
is that the changing speed of the additional value is fixed
and linear to the output errors without considering various
arrival rates with different changing speeds.

Figure 12 demonstrates that FeedBack QMCA is very
likely to allocate or deallocate excess containers leading to
frequent large fluctuations (larger overshoots) at periods
with slow arrival-rate changing speeds of which the rea-
sons are as follows. In FeedBack QMCA, the inaccuracy of
queuing model is fixed by an arrival-rate adjustment coef-
ficient. Experimental results illustrate that different arrival
rates need quite different adjustment coefficients. When the
arrival rate changes quickly, it takes a long time to adjust
the coefficient leading to SLA violations or higher costs
given small control gains. Therefore, the current propor-
tional control gain has been increased as large as possible to
speed up the changing speed of the adjustment coefficient to
meet the requirement of fast arrival rate changes. However,
the controller gain, which fulfills the fast-changed arrival
rates, makes the system fluctuate when arrival rates change
slowly. It is hard to find an appropriate gain suitable for
different arrival-rate changing speeds. Meanwhile, a fixed
reference point is not able to generate suitable output errors
for all arrival rates which misleads the controller to release
or rent excess containers incurring SLA violations or higher
costs.

IEEE TRANSACTIONS ON COMPUTERS 11

1 161 320 480 640 799 959 1119 1278 1438
Time (m)

4

6

8

10

12

14

16

18

C
on

ta
in

er
 N

um
be

r
FeedBack_InverseP(Cost:2487.0)
FeedBack_InverseQM(Cost:2250.0)

0.031

1.558

3.084

4.611

6.137

7.664

R
es

po
ns

e
Ti

m
e

(s
) FeedBack_InverseP

SLA

1 160 320 479 638 798 957 1116 1276 1435
Time (m)

0.000

0.036

0.072

0.108

0.144

0.180

R
es

po
ns

e
Ti

m
e

(s
)

Fig. 13. Container numbers and response times of FeedBack InverseP

Figure 13 shows that the container number of Feed-
Back InverseP fluctuates fiercely and SLA is violated fre-
quently although a large pole of 0.95 (long settle times) has
been given. Both FeedBack-QMDL and FeedBack QMCA
use a gradually changed additional value or arrival-rate
coefficient to amend the inaccuracy of queuing mod-
els which avoids fierce fluctuation of container numbers.
On the contrary, similar with FeedBack InverseQM, Feed-
Back InverseP’s inverse-proportional performance model is
also very sensitive to output errors when uk−1 is near the
relatively flatten parts of the performance model. How-
ever, a fixed reference point and inconsistency between
the inverse-proportional performance model and the real
system cannot always generate appropriate output errors
for different arrival rates incurring fierce fluctuations of
container numbers.

6 CONCLUSIONS AND FUTURE WORK

In this paper, an inverse-queuing-model-based feedback
control method has been proposed to provision contain-
ers to Web systems in Kubernetes-based platforms elas-
tically for guaranteeing QoS. Experimental results show
that the hybrid of varying-processing-rate-based queuing
model and linear model is able to increase the accuracy of
performance model. Meanwhile, automatic reference-model
learning and adaptive output-error mapping increase the
accuracy of output errors which decreases the percentage of
SLA-violation by 8.44 % and obtains the second lowest cost.

Designing container auto-scaling algorithms considering ge-
ography distribution of Cloud, Fog and Edge resources is
promising future work.

ACKNOWLEDGEMENTS

This work is supported by the National Natural Sci-
ence Foundation of China (Grant No.61972202), the Fun-
damental Research Funds for the Central Universities
(No.30919011235) and China Scholarship Council. This
work is mainly accomplished during the visiting of the
first author in the CLOUDS Laboratory of the University
of Melbourne.

REFERENCES

[1] R. Buyya and S. N. Srirama, Fog and edge computing: principles and
paradigms. John Wiley & Sons, 2019.

[2] A. Hegde, R. Ghosh, T. Mukherjee, and V. Sharma, “Scope: A
decision system for large scale container provisioning manage-
ment,” in 2016 IEEE 9th International Conference on Cloud Computing
(CLOUD). IEEE, 2016, pp. 220–227.

[3] “Kubernetes: Production-grade container orchestration,” Kuber-
netes Web site, Kubernetes, 2020, https://kubernetes.io/.

[4] “KubeEdge, a kubernetes native edge computing framework,”
2020, https://kubeedge.io/en/.

[5] Z. Zhong and R. Buyya, “A cost-efficient container orchestra-
tion strategy in kubernetes-based cloud computing infrastructures
with heterogeneous resources,” ACM Transactions on Internet Tech-
nology (TOIT), vol. 20, no. 2, pp. 1–24, 2020.

[6] M. Nardelli, C. Hochreiner, and S. Schulte, “Elastic provisioning
of virtual machines for container deployment,” in Proceedings
of the 8th ACM/SPEC on International Conference on Performance
Engineering Companion. ACM, 2017, pp. 5–10.

[7] Z. Tang, X. Zhou, F. Zhang, W. Jia, and W. Zhao, “Migration mod-
eling and learning algorithms for containers in fog computing,”
IEEE Transactions on Services Computing, vol. 12, no. 5, pp. 712–725,
2018.

[8] U. Altaf, G. Jayaputera, J. Li, D. Marques, D. Meggyesy, S. Sarwar,
S. Sharma, W. Voorsluys, R. Sinnott, A. Novak et al., “Auto-
scaling a defence application across the cloud using docker and
kubernetes,” in 2018 IEEE/ACM International Conference on Utility
and Cloud Computing Companion. IEEE, 2018, pp. 327–334.

[9] S. He, L. Guo, Y. Guo, C. Wu, M. Ghanem, and R. Han, “Elastic
application container: A lightweight approach for cloud resource
provisioning,” in 2012 IEEE 26th International Conference on Ad-
vanced Information Networking and Applications. IEEE, 2012, pp.
15–22.

[10] J. Jiang, J. Lu, G. Zhang, and G. Long, “Optimal cloud resource
auto-scaling for web applications,” in 13th IEEE/ACM International
Symposium on Cluster, Cloud, and Grid Computing, 13th IEEE/ACM
International Symposium on Cluster, Cloud, and Grid Computing.
IEEE, May 2013, pp. 58–65.

[11] G. Huang, S. Wang, M. Zhang, Y. Li, Z. Qian, Y. Chen, and
S. Zhang, “Auto scaling virtual machines for web applications
with queueing theory,” in 2016 3rd International Conference on
Systems and Informatics. IEEE, Nov 2016, pp. 433–438.

[12] G. Tesauro, N. K. Jong, R. Das, and M. N. Bennani, “A hybrid rein-
forcement learning approach to autonomic resource allocation,” in
2006 IEEE International Conference on Autonomic Computing. IEEE,
June 2006, pp. 65–73.

[13] J. Vilaplana, F. Solsona, I. Teixidó, J. Mateo, F. Abella, and J. Rius,
“A queuing theory model for cloud computing,” The Journal of
Supercomputing, vol. 69, no. 1, pp. 492–507, Jul 2014.

[14] Chenyang Lu, Ying Lu, T. F. Abdelzaher, J. A. Stankovic, and Sang
Hyuk Son, “Feedback control architecture and design methodol-
ogy for service delay guarantees in web servers,” IEEE Transactions
on Parallel and Distributed Systems, vol. 17, no. 9, pp. 1014–1027,
Sep. 2006.

[15] W. Pan, D. Mu, H. Wu, and L. Yao, “Feedback control-based
qos guarantees in web application servers,” in 2008 10th IEEE
International Conference on High Performance Computing and Com-
munications. IEEE, Sep. 2008, pp. 328–334.

IEEE TRANSACTIONS ON COMPUTERS 12

[16] Y. Hu, G. Dai, A. Gao, and W. Pan, “A self-tuning control for web
qos,” in 2009 International Conference on Information Engineering and
Computer Science. IEEE, Dec 2009, pp. 1–4.

[17] Lui Sha, Xue Liu, Ying Lu, and T. Abdelzaher, “Queueing model
based network server performance control,” in 23rd IEEE Real-
Time Systems Symposium. IEEE, Dec 2002, pp. 81–90.

[18] C. Xu, B. Liu, and J. Wei, “Model predictive feedback control for
qos assurance in webservers,” Computer, vol. 41, no. 3, pp. 66–72,
March 2008.

[19] L. Baresi, S. Guinea, A. Leva, and G. Quattrocchi, “A discrete-
time feedback controller for containerized cloud applications,” in
Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering. ACM, 2016, pp. 217–228.

[20] Y. Al-Dhuraibi, F. Paraiso, N. Djarallah, and P. Merle, “Elasticity
in cloud computing: State of the art and research challenges,”
IEEE Transactions on Services Computing, vol. 11, no. 2, pp. 430–447,
March 2018.

[21] S. Shevtsov, M. Berekmeri, D. Weyns, and M. Maggio, “Control-
theoretical software adaptation: A systematic literature review,”
IEEE Transactions on Software Engineering, vol. 44, no. 8, pp. 784–
810, Aug 2018.

[22] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury, Feedback
control of computing systems. Hoboken, NJ: John Wiley and Sons,
Inc., 2004.

[23] T. Patikirikorala, A. Colman, J. Han, and L. Wang, “A multi-model
framework to implement self-managing control systems for qos
management,” in Proceedings of the 6th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems. ACM,
2011, pp. 218–227.

[24] L. F. Bittencourt, M. M. Lopes, I. Petri, and O. F. Rana, “Towards
virtual machine migration in fog computing,” in 2015 10th Interna-
tional Conference on P2P, Parallel, Grid, Cloud and Internet Computing.
IEEE, 2015, pp. 1–8.

[25] M. Zakarya, L. Gillam, H. Ali, I. Rahman, K. Salah,
R. Khan, O. Rana, and R. Buyya, “epcaware: A game-based,
energy, performance and cost efficient resource management
technique for multi-access edge computing,” IEEE Transactions
on Services Computing, 2020, in press. [Online]. Available:
https://doi.org/10.1109/TSC.2020.3005347

[26] X. Dutreilh, A. Moreau, J. Malenfant, N. Rivierre, and I. Truck,
“From data center resource allocation to control theory and back,”
in 2010 IEEE 3rd International Conference on Cloud Computing, July
2010, pp. 410–417.

[27] H. Li and S. Venugopal, “Using reinforcement learning for control-
ling an elastic web application hosting platform,” in Proceedings
of the 8th ACM International Conference on Autonomic Computing.
ACM, 2011, pp. 205–208.

[28] E. Barrett, E. Howley, and J. Duggan, “Applying reinforcement
learning towards automating resource allocation and application
scalability in the cloud,” Concurrency and Computation: Practice and
Experience, vol. 25, no. 12, pp. 1656–1674, 2013.

[29] X. Wang, Z. Du, Y. Chen, S. Li, D. Lan, G. Wang, and Y. Chen, “An
autonomic provisioning framework for outsourcing data center
based on virtual appliances,” Cluster Computing, vol. 11, no. 3, pp.
229–245, 2008.

[30] Z. Cai, D. Liu, Y. Lu, and R. Buyya, “Unequal-interval based
loosely coupled control method for auto-scaling heterogeneous
cloud resources for web applications,” Concurrency and
Computation: Practice and Experience, p. e5926, July 2020, in
press. [Online]. Available: https://doi.org/10.1002/cpe.5926

[31] R. Tolosana-Calasanz, J. Diaz-Montes, O. F. Rana, and M. Parashar,
“Feedback-control queueing theory-based resource management
for streaming applications,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 28, no. 4, pp. 1061–1075, April 2017.

[32] K. Kaur, T. Dhand, N. Kumar, and S. Zeadally, “Container-as-
a-service at the edge: Trade-off between energy efficiency and
service availability at fog nano data centers,” IEEE wireless com-
munications, vol. 24, no. 3, pp. 48–56, 2017.

[33] A. Chung, J. W. Park, and G. R. Ganger, “Stratus: Cost-aware
container scheduling in the public cloud,” in Proceedings of the
ACM Symposium on Cloud Computing, 2018, pp. 121–134.

[34] M. Imdoukh, I. Ahmad, and M. G. Alfailakawi, “Machine
learning-based auto-scaling for containerized applications,” Neu-
ral Computing and Applications, vol. 32, pp. 9745–9760, 2020.

[35] C. Guerrero, I. Lera, and C. Juiz, “Genetic algorithm for multi-
objective optimization of container allocation in cloud architec-
ture,” Journal of Grid Computing, vol. 16, no. 1, pp. 113–135, 2018.

[36] M. Abdullah, W. Iqbal, and F. Bukhari, “Containers vs virtual ma-
chines for auto-scaling multi-tier applications under dynamically
increasing workloads,” in International Conference on Intelligent
Technologies and Applications. Springer, 2018, pp. 153–167.

[37] G. Santos, H. Paulino, and T. Vardasca, “Qoe-aware auto-scaling of
heterogeneous containerized services (and its application to health
services),” in Proceedings of the 35th Annual ACM Symposium on
Applied Computing, 2020, pp. 242–249.

[38] M. Litoiu, M. Mihaescu, D. Ionescu, and B. Solomon, “Scalable
adaptive web services,” in Proceedings of the 2Nd International
Workshop on Systems Development in SOA Environments. ACM,
2008, pp. 47–52.

[39] N. M. Calcavecchia, O. Biran, E. Hadad, and Y. Moatti, “Vm
placement strategies for cloud scenarios,” in 2012 IEEE Fifth Inter-
national Conference on Cloud Computing. IEEE, 2012, pp. 852–859.

[40] B. Xu, Z. Peng, F. Xiao, A. M. Gates, and J.-P. Yu, “Dynamic
deployment of virtual machines in cloud computing using multi-
objective optimization,” Soft computing, vol. 19, no. 8, pp. 2265–
2273, 2015.

[41] “Nginx ingress controller,” NGINX Ingress Controller Web site,
2020, https://kubernetes.github.io/ingress-nginx/.

[42] “Kubernetes java client,” Kubernetes Java Client Interface Web
site, 2020, https://github.com/kubernetes-client/java.

[43] “Wikipedia access traces,” WikiBench Web site, WikiBench, 2020,
http://www.wikibench.eu/?page id=60.

[44] “Apache jmeter: Workload generator,” Apache JMeter Web site,
Apache, 2020, https://jmeter.apache.org/.

Zhicheng Cai received his Ph.D. degree in
Computer Science and Engineering from South-
east University, China, in 2015. He is an asso-
ciate professor at Nanjing University of Science
and Technology, China. He is also a visiting
scholar of the University of Melbourne from Sep
2019 to Sep 2020. His research interests focus
on resource scheduling of Web systems and
batch tasks in Cloud, Fog and Edge Computing.
He is the author of more than 15 publications in
journals such as IEEE Transactions on Services

Computing, IEEE Transactions on Cloud Computing, IEEE Transactions
on Automation Science and Engineering, Future Generation Computer
Systems, journal of Grid Computing, Concurrency and Computation:
Practice and Experience and at conferences such as ICSOC, ICPADS,
ISPA, ICA3PP, SMC, CBD and CASE.

Rajkumar Buyya is a Redmond Barry Distin-
guished Professor and Director of the Cloud
Computing and Distributed Systems (CLOUDS)
Laboratory at the University of Melbourne,
Australia. He has authored over 625 publica-
tions and seven text books including” Master-
ing Cloud Computing”. He also edited several
books including” Cloud Computing: Principles
and Paradigms”. He is one of the highly cited
authors in computer science and software en-
gineering worldwide (h-index=137, g-index=304,

100,700+ citations). Microsoft Academic Search Index ranked Dr. Buyya
as]1 author in the world (2005-2016) for both field rating and citations
evaluations in the area of Distributed and Parallel Computing.” A Scien-
tometric Analysis of Cloud Computing Literature by German scientists
ranked Dr. Buyya as the World’s Top-Cited (]1) Author and the World’s
Most-Productive (]1) Author in Cloud Computing. He is recognized as a
”Web of Science Highly Cited Researcher” in 2016, 2017, and 2018 by
Thomson Reuters, a Fellow of IEEE, and Scopus Researcher of the Year
2017 with Excellence in Innovative Research Award by Elsevier for his
outstanding contributions to Cloud computing. He is currently serving
as Co-Editorin-Chief of Journal of Software: Practice and Experience.
www.buyya.com.

