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Summary

Cloud computing utilizes heterogeneous resources that are located in various datacenters to

provide an efficient performance on a pay-per-use basis. However, existing mechanisms, frame-

works, and techniques for management of resources are inadequate to manage these appli-

cations, environments, and the behavior of resources. There is a requirement of a Quality of

Service (QoS) based autonomic resource management technique to execute workloads and

deliver cost-efficient and reliable cloud services automatically. In this paper, we present an intel-

ligent and autonomic resource management technique named RADAR. RADAR focuses on two

properties of self-management: firstly, self-healing that handles unexpected failures and, sec-

ondly, self-configuration of resources and applications. The performance of RADAR is evaluated

in the cloud simulation environment and the experimental results show that RADAR delivers bet-

ter outcomes in terms of execution cost, resource contention, execution time, and SLA violation

while it delivers reliable services.
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1 INTRODUCTION

Cloud computing offers various services like Software as a Service (SaaS), Platform as a Service (PaaS), and Infrastructure as a Service (IaaS).

However, providing dedicated cloud services that ensure various Quality of Service (QoS) requirements of a cloud user and avoid Service Level

Agreement (SLA) violations is a difficult task. Based on the availability of cloud resources, dynamic services are provided without ensuring the

required QoS.1 To fulfill the QoS requirements of user applications, the cloud provider should change its ecosystem.2 Self-management of cloud

services is needed to provide required services and fulfill the QoS requirements of the user automatically.

Autonomic management of resources manages the cloud service automatically as per the requirement of the environment, therefore maximiz-

ing resource utilization and cost-effectiveness while ensuring the maximum reliability and availability of the service.3 Based on human guidance, a

self-managed system keeps itself stable in uncertain situations and adapts rapidly to new environmental situations such as network, hardware, or

software failures.4 QoS based autonomic systems are inspired by biological systems, which can manage the challenges such as dynamism, uncer-

tainty, and heterogeneity. IBM's autonomic model3 based cloud computing system considers MAPE-k loop (Monitor, Analyze, Plan, and Execute)

and its objective is to execute workloads within their budget and deadline by satisfying the QoS requirements of the cloud consumer. An autonomic

system considers the following properties while managing cloud resources1-3:

• Self-healing recognizes, analyzes, and recovers from the unexpected failures automatically.

• Self-configuring adapts to the changes in the environment automatically.

In this paper, we have developed a technique for self-configuRing and self-heAling of clouD bAsed Resources, called RADAR, with the focus of two prop-

erties of autonomic-management that provide self-healing by handling unexpected failures and self-configuration of resources and applications.

The performance of RADAR is evaluated in the cloud environment and the experimental results show that RADAR delivers better outcomes in terms

of QoS parameters and delivers cost-efficient and reliable cloud services. The key contributions of this research work are outlined as follows:
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i) RADAR provides self-configuration of resources and applications by the re-installation of outdated or missing components and self-healing is

offered by managing unexpected faults or errors automatically.

ii) RADAR schedules the provisioned cloud resources automatically and optimizes user's QoS requirements, which improves user satisfaction and

reduces the human intervention. Therefore, the cloud providers provide effective cloud service delivery and avoid SLA violations.

iii) Based on self-managed properties of an autonomic system, RADAR offers algorithms for its four different phases (monitor, analyze, plan, and

execute). RADAR monitors QoS value continuously during workload execution, analyzes the alert in case of degradation of performance, plans

an appropriate action to manage that alert, and implements the plan to preserve the system's efficiency.

iv) RADAR reduces SLA violations, energy consumption, and resource contention and improves availability and reliability of cloud services when

implemented in a cloud environment.

The rest of the paper is organized as follows. Section 2 presents the related work. The proposed technique is presented in Section 3. Section 4

presents the performance evaluation and experimental results. Section 5 presents conclusions and future work.

2 RELATED WORK

Autonomic resource management (also known as self-management) is a big challenge due to the discovery and allocation of a best

workload-resource pair for execution of cloud workloads. As the literature on this topic is vast, we focus on self-configuring and self-healing of

resources for enhancing the quality of cloud services during workload execution. Interested readers can find a detailed survey on the QoS-aware

autonomic management of cloud resources in the work of Singh and Chana.1 This section briefly discusses the related work of self-configuring and

self-healing in the cloud environment.

2.1 Self-healing

An early attempt to incorporate self-healing into cloud resource management is done by Chen et al4; they proposed a self-healing framework (SHelp)

for management of multiple application instances in a virtual cloud environment to reduce software failures. The authors applied error virtualiza-

tion techniques and weighted rescue points to develop applications to avoid the faulty path. Further, SHelp uses a rescue point database, which

stores the error handling information to decrease the forthcoming faults generated by similar bugs. SHelp improves the fault detection rate and

recovers a system quickly from faults, but it executes only homogeneous cloud workloads. Mosallanejad et al5 proposed an SLA based Self-Healing

(SH-SLA) model to develop hierarchical SLA for the cloud environment, which effectively monitors SLA and detects SLA violation automatically.

Further, related SLAs (with same QoS requirements) communicate with each other in a hierarchical manner. The SH-SLA model performs effec-

tively in fault detection, but it is not able to prevent the fault occurrence, which reduces user satisfaction. Similar work has been done by

Mosallanejad et al,6 who applied a replication technique for fault management.

Alhosban et al7 proposed a Self-Healing Framework (SHF), which uses the previous history to detect the occurrence of faults in cloud-based

systems. Moreover, SHF develops a recovery plan to avoid future faults generated by similar bugs, but it needs an autonomic fault prevention mech-

anism to improve the performance of the system. Da Silva et al8 proposed a Self-Healing Process (SHP) for effective management of operational

workflow incidents on distributed computing infrastructures. Further, incident degrees of workflow activities (ie, task failure rate due to application

errors) are measured using different metrics such as data transfer rate, application efficiency, and long-tail effect to detect faults occurring during

the execution of workloads. Moreover, Virtual Imaging Platform9 is used to evaluate the performance of SHP, which demonstrates the improvement

in execution time of workloads.

Li et al10 proposed a Self-Healing Monitoring and Recovery (SHMR) conceptual model, which composes cloud services into value-added ser-

vices to fulfill the changing requirements of cloud users. SHMR works in three different steps: It (1) monitors the working of the system to identify

the occurrence of faults, (2) finds out the properties of faults, and (3) recovers the fault using an undo strategy. Magalhaes and Silva11 proposed

a Self-healing Framework for Web-based Applications (SFWA) to fulfill the user SLA and improve resource utilization simultaneously through

self-adaption of cloud infrastructure. Experimental results show that SFWA adjusts the infrastructure dynamically to detect anomalies, which

reduces the delay during workload execution. Similar work has been done by Xin,12 who suggested that the combination of data analytics and

machine learning can be utilized to improve automatic failure prediction for cloud-based environments.

Rios et al13 proposed an Application Modeling and Execution Language (AMEL) based conceptual model for self-healing, which models the

multi-cloud applications in the distributed environment. Further, AMEL uses a security modeling language to design SLA in terms of security and

privacy aspects. Azaiez and Chainbi14 proposed a Multi-Agent System Architecture (MASA) for self-healing of cloud resources by analyzing the

resource utilization continuously. Further, a checkpointing strategy is used in MASA to manage the occurrence of faults and it only considers static

checkpoint intervals for a fault tolerance mechanism. The main difference between these works and ours is that none of them considers auto-

nomic fault prevention mechanism for self-healing with dynamic checkpoint intervals, which is presented in this paper. The existing self-healing

frameworks4-12 focus on monitoring of faults to maximize fault detection rate, whereas our work focuses on fault detection and prevention

mechanisms.
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2.2 Self-configuring

de Sa et al15 examined the problem of fault tolerance for distributed systems, which deals with the accuracy and speed of detection of faults. The

authors proposed a QoS-based Self-Configuring (QoS-SC) framework, which uses feedback control theory for detection of faults automatically.

The MATLAB based performance evaluation testbed is used to validate the proposed framework. Maurer et al16 investigated the impact of SLA vio-

lation on resource utilization in autonomic cloud computing systems. Further, an Adaptive Resource Configuration (ARC) framework is proposed

for the effective management of cloud resources to execute the synthetically generated workloads. As a part of their work, a case-based reasoning

approach is used to maintain the execution details of the workload in a centralized database. The ARC framework improves the utilization of cloud

resources. Their framework considers multiple resources such as bandwidth, storage, memory, and CPU, whereas our model contains bundles of

resources, ie, VM instances. Salaun et al17 proposed a Self-Configuration Protocol (SCP) for management of distributed applications in a cloud envi-

ronment without using centralized database,16 and SCP measures the execution time of workloads with the different number of virtual machines.

Similar work has been done by Etchevers et al,18 who used reconfigurable component-based systems to design distributed applications to minimize

execution time, but it increases their configuration interdependencies. Panica et al19 and Wolinsky et al20 examined the problem of execution of

legacy distributed applications using self-configuration of cloud infrastructure to maximize the availability and reliability of cloud services.

Sabatucci et al21 investigated the concept of composing mashups of applications in the autonomic cloud environment. Sabatucci et al22 pro-

posed a Goal-Oriented Approach for Self-Configuring (GOASC) for automatic composing mashups of applications distributed over the geographical

cloud environment. In GOASC, available functionalities are defined in terms of capabilities (for example, maximum reliability and availability) at the

cloud user side, whereas mashup logic (maximum resource utilization and energy efficiency) is defined in terms of goals at the cloud provider side.

Cordeschi et al20 proposed an Energy-Aware Self-Configuring (EASC) approach for virtualized networked data centers to execute workloads with

the minimum value of energy consumption. As a part of their work, an energy-scheduler is also developed to enable a scalable and distributed cloud

environment for scheduling of energy-efficient cloud resources. Their approach considers homogenous workloads, whereas our model considers

both homogenous and heterogeneous workloads.

Lama and Zhou23 proposed an Autonomic Resource allOcation MechAnism (AROMA) for effective management of cloud resources for work-

load execution, while satisfying their QoS requirements as described in SLA. Further, auto-configuration of Hadoop jobs and provisioning of cloud

resources are performed using a support vector machine-based performance model. AROMA uses previous details of resource execution for

allocation of resources to new workloads, which improves utilization of resources. Konstantinou et al24 proposed a Cost-aware Self-Configured

(COCCUS) framework for effective management of cloud query services, which execute queries for optimization of cloud services in terms of QoS

parameters. Initially, a cloud user specifies his QoS requirements (budget and deadline constraint) and then COCCUS executes the user queries on

the available set of resources within their deadline and budget. The details of every user and their query are maintained in a centralized component

that is called CloudDBMS.

Bu et al25 proposed a VM based Self-Configuration (CoTuner) framework to provide a coordination between virtual resources and user applica-

tions using a model-free hybrid reinforcement learning approach. CoTuner handles the changing requirements of user workloads using a knowledge

guided exploration policy, which uses the information of memory and CPU utilization for self-management of cloud resources to improve the learn-

ing process. Their framework considers scheduling of single queued workload, whereas our model considers clustering of workloads based on their

QoS requirements. There is a large body of research devoted to self-configuration of cloud resources for execution of homogenous cloud work-

loads only.15-25 However, the limited investigation has been done on the execution of heterogeneous workloads in the context of autonomic cloud

computing. Further, there is a need to execute workloads without the violation of SLA. The QoS-aware autonomic resource management approach

(CHOPPER)26 is an extended version of RADAR, which considers the self-optimization for improving QoS parameters and self-protection against

cyber-attacks as well.

2.3 Comparison of RADAR with existing techniques

The proposed technique (RADAR) has been compared with existing resource management techniques, as described in Table 1. The existing research

works have considered either self-healing or self-configuring, but none of the existing works considers self-healing and self-configuring simul-

taneously in a single resource management technique to the best of the knowledge of authors. Moreover, most of the existing works consider

homogeneous cloud workloads. None of the existing work considers provisioning-based resource scheduling. Existing techniques consider the exe-

cution of single queued workload instead of clustering of workloads. RADAR schedules the provisioned resources for the execution of clustered

heterogeneous workloads with maximum optimization of QoS parameters.

3 RADAR: PROPOSED TECHNIQUE FOR SELF-CONFIGURING AND SELF-HEALING OF CLOUD
RESOURCES

Figure 1 shows the architecture of RADAR, which provides self-healing by handling unexpected failures and self-configuration of resources and

applications for improving the utilization of resources and reducing human intervention. SLA is used to describe the QoS parameters for execution
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FIGURE 1 RADAR architecture

of workloads using RADAR. RADAR is an autonomic resource management technique, which ensures to serve a huge number of requests without

SLA violation and manages the cloud resources dynamically.

For an execution of cloud-based applications, the mapping of cloud workloads to appropriate resources is found to be an optimization problem.

Mathematically, the problem of resource scheduling for workload execution can be expressed as a set of independent workloads {w1,w2,w3, … ,wm}

mapped on a set of cloud resources {r1,r2,r3, … ,rn}. For the continuous problem, R = {rk | 1 ≤ k ≤ n} is a resource set where n is the total number of

resources, whereas W = {wi | 1 ≤ i ≤ m} is a workload set where m is the total number of cloud workloads. RADAR comprises the following units.

3.1 Workload manager

To identify its QoS requirements of a workload, workload manager looks at different characteristics of that workload. Workload manager consists

of three subunits: workload queue, workload description, and bulk of workloads, as shown in Figure 2. The Bulk of workloads are those which are

submitted by users for execution. The QoS requirements and user constraints such as deadline and budget are described as workload description.

Table 2 lists the various types of workloads and their QoS requirements,3,26,27 which are considered for evaluation.

All the feasible user workloads are stored in a workload queue for provisioning of resources before actual resource scheduling.26 Further, a

K-means based clustering algorithm is used for clustering the workloads for execution on the different set of resources.28 The final set of workloads

that we have chosen for evaluation is shown in Table 3.

Workload manager decides the type of workload after submission based on their priority: non-QoS (non-critical workloads) or QoS-oriented

workloads (critical workloads). The priority of execution of workload is calculated based on their deadline.

3.2 QoS manager

Based on their QoS requirements, QoS Manager puts the workloads into non-critical (non-urgent workloads) and critical queues (urgent

workloads),2,27 as shown in Figure 2. For critical workloads, it calculates the expected execution time of a workload and identifies the completion time

of a workload, which is an addition of execution time and waiting time.3 The expected execution time of the workloads can be derived from work-

load task length or historical trace data.27 All the QoS oriented workloads are put into the critical queue and sorted based on their priority decided

by QoS Manager. The resources are provisioned immediately with the available resources if completion time is lesser than desired deadline.26 Oth-

erwise, SLA is negotiated again for the extra requirement of resources and gets required resources from the reserved pool for workload execution,

as shown in Figure 2. A penalty will apply in case of not fulfilling the deadline of critical workloads.

For non-critical workloads, the QoS manager checks whether the resources are free for execution. If required resources are available, then the work-

load will be executed directly; otherwise, put the workload into a waiting queue of non-critical workloads. If there is no condition (more requirement

of resources and urgency), then use available resources to execute the workload immediately; otherwise, (if the required resources are lower than

the provided resources) put that workload into an under-scheduling state (the workload in a waiting state due to unavailability of resources) till the

availability of required resources.
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3.2.1 QoS based metrics

The following metrics2,3,26-29 are used to calculate the value of QoS parameters such as reliability, availability, execution time, energy consumption,

throughput, waiting time, resource contention, fault detection rate, resource utilization, turnaround time, execution cost, and SLA violation rate.

Resource Utilization is a ratio of an execution time of a workload executed by a particular resource to the total uptime of that resource. The total

uptime of resource is the amount of time available with a cloud resource set for execution of workloads. We have designed the following formula to

calculate resource utilization (Ru) [Equation 1]:

Ru =
n∑

i=1

(
execution time of a workload executed on the ith resource

total uptime of the ith resource

)
, (1)

where n is the number of resources.
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TABLE 2 Cloud workloads and their key QoS requirements

Workload Name QoS Requirements

Technological computing1 Computing capacity

Websites High availability, high network bandwidth, and reliable storage

E-commerce Customizability and variable computing load

Graphics oriented Visibility, data backup, latency, and network bandwidth

Backup and storage services Persistence and reliability

Endeavor software2 Correctness, customer confidence level, high availability, and security

Productivity applications3 Security, data backup, latency, and network bandwidth

Critical Internet applications4 Usability, serviceability, and high availability

Mobile computing services Portability, reliability, and high availability

Software/project development and testing Testing time, flexibility, and user self-service rate

Central financial services Integrity, changeability, high availability, and security

Online transaction processing Usability, Internet accessibility, high availability, and security

Performance testing SLA violation rate, resource utilization, energy, cost, and time

1Technological computing: It contains numerical computations, atmospheric modeling, and bioinformatics. 2Endeavor
software: It contains enterprize content management, SAP (System Application and Product), and email servers.

3Productivity applications: It contains word editors and users signing up for emails. 4Critical Internet applications: It
contains web applications including the huge amount of scripting languages.

Energy Consumption: The energy model is developed on the basis that resource utilization has a linear relationship with energy consumption.29

Energy Consumption (ENCN) of resources can be expressed as [Equation 2]

ENCN = ENCNProcessor + ENCNTransceivers + ENCNMemory + ENCNExtra. (2)

ENCNProcessor represents the processor's energy consumption, ENCNTransceivers represents the energy consumption of all the switching equipment.

ENCNMemory represents the energy consumption of the storage device. ENCNExtra represents the energy consumption of other parts, including fans,

the current conversion loss, and others. For a resource rk at given time t, the resource utilization RESUt, k is defined as [Equation 3]

RESUt,k =
m∑

i=1

rut,k, i, (3)

where m is the number of cloud workloads running at time t and rut, k, i is the resource usage of workload wi on resource rk at given time t. The actual

energy consumption (Econ) is ECONt, k of a resource rk at given time t, which is defined as [Equation 4]

Econ = ECONt,k = (ENCNmax − ENCNmin) × RESUt,k + ENCNmin, (4)

where ENCNmax is the energy consumption at the peak load (or 100% utilization) and ENCNmin is the minimum energy consumption in the active/idle

mode (or as low as 1% utilization), which can be calculated using [Equation 2].

Execution Cost (Ecost): It is the minimum cost spent to execute workload and measured in terms of Cloud Dollars (C$) and is defined as [Equation 5]

Ecost = min (c (rkwi)) for 1 ≤ k ≤ n and 1 ≤ i ≤ m , (5)

where c(rk, wi) is the cost of workload wi, which executes on resource rk, as defined below:

c(rk,wi) =
completion (wi,rk)
completionm (wi)

+ Penalty Cost. (6)

completionm(wi) denotes the maximal completion time of the cloud workload. Before the estimation of the execution time, the completion time of a

resource should be defined as

completionm (wi) = maxrk∈R completion (wi,rk). (7)

Completion time or completion (wi,rk) is the time in which a resource can finish the execution of all the previous workloads in addition to the execution

of workload wi on resource rk, which is defined as

completion (wi,rk) = available_timerk
± PTCm (wi) , (8)

where

PTCm (wi) = maxrk∈R PTC (wi,rk), (9)

where m is the number of workloads. available_timerk
is the switching time to transfer workload from a waiting queue to ready queue for execution

on resource rk. Penalty Cost is defined as an addition to penalty cost for different workloads (if applicable).

Penalty Cost =
C∑

i=1

( PCi) (10)
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TABLE 3 K-means based clustering of workloads

Cluster Cluster Name Workloads

C1 Compute Performance testing and technical computing

C2 Storage Backup and storage services and E-commerce

C3 Communication Mobile computing services, critical Internet applications, and websites

C4 Administration Graphics oriented, software/project development and testing, productivity applications,

central financial services, online transaction processing, and endeavor software

TABLE 4 A 10 × 6 subset of the PTC matrix

Workloads r1 r2 r3 r4 r5 r6

w1 112.14 141.44 136.65 109.66 170.46 137.58

w2 152.61 178.26 149.78 114.26 198.92 148.69

w3 147.23 190.23 180.26 121.65 141.65 152.69

w4 103.62 159.63 192.85 107.69 139.89 139.36

w5 178.65 171.35 201.05 127.65 169.36 201.66

w6 193.62 142.65 205.36 132.26 188.33 207.72

w7 187.24 138.23 217.58 147.69 112.39 210.98

w8 124.13 110.65 212.39 141.26 135.88 169.35

w9 138.56 123.65 170.26 181.65 116.61 142.87

w10 131.29 129.65 142.69 199.34 125.36 147.69

Delay time is defined as the time difference between expected completion time and actual completion time. It is expressed as

Delay Time = Expected Completion Time − Actual Completion Time (11)

PC =
⎧⎪⎨⎪⎩

Penaltyminimum, if Expected Completion Time ≥ Actual Completion Time

Penaltyminimum +
[
Penalty Rate × |Delay Time|] , if Expected Completion Time < Actual Completion Time,

(12)

where c ∈ C, C is the set of penalty costs with different levels specified in RADAR.

Execution Time (Etime): It is the finishing time Lw of the latest workload and can also be represented as PTC workload wi on resource rk.

Etime = min(Lwi
) wi ∈ W. (13)

The value of [Number of workloads × number on resources] for every workload on resources is calculated from the Predictable Time to Compute

(PTC) matrix.29 The columns of the PTC matrix demonstrate the estimated execution time for a specific resource, whereas the rows on the PTC

matrix demonstrate the execution time of a workload on every resource. In this research work, the PTC benchmark simulation model is used, which

was introduced in the work of Braun et al30 to address the problem of resource scheduling. The expected execution time of the workloads can be

derived from workload task length or historical trace data. A high variation in execution time of the same workload is generated using the gamma

distribution method. In the gamma distribution method, a mean workload execution time and coefficient of variation are used to generate the PTC

matrix.31 Table 4 shows a 10 × 6 subset of the PTC matrix and the results provided in this research work used the matrix of size 90 × 36.

The columns of the PTC matrix demonstrate the estimated execution time for a specific resource, whereas rows on the PTC matrix demonstrate

the execution time of a workload on every resource.

Resource Contention: It occurs when the same resource is shared by more than one workload.26 The main reasons for resource contention are

(i) when the same resource is used to execute more than one workload, (ii) unavailability of a required number of resources to execute the current

set of workloads, and (iii) the number of workloads with an urgent deadline, which are trying to access the required same resources; more workloads

with an urgent deadline creates more resource contention. Resource contention (ResCon) is defined during scheduling of resources at time t and is

calculated as

ResCon (t) =
∑

r∈ResourceList

ResCon (t, r) (14)

ResCon (t, r) =
∑

rt∈ResourceType

ResCon (t, r, rt), (15)

where r is the list of resources and rt specifies the type of resource (overloaded or not). We have considered WQ as a set of total workloads

(Equation 16), which is executed by different resources.

WQ = {W1,W2, ...............Wm} (16)
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During the execution of workloads, some workloads overload the resources, which is denoted by a set called OVERLOAD (Equation 17).

OVERLOAD = {W1,W2, ...............Wo} (17)

RCStatus (t, r, rt) specify the current status of resource contention (Equation 18) in terms of Boolean statements, ie, True or False.26

RCStatus (t, r, rt) =
⎧⎪⎨⎪⎩

1,
∑

w∈WQ (tr)

(
rt ∈ w.OVERLOAD == TRUE?1 ∶ 0

)
≥ 1

0, otherwise,
(18)

where w. OVERLOAD specifies the set of workloads, which overloads the resource at time t. (rt ∈ w. OVERLOAD = = TRUE ? 1 : 0) finds the status of a

resource, which is overloaded or not. If its value is equal to or more than one, then the value of RCStatus (t, r, rt) is one; otherwise, its value is zero.

ResCon (t, r, rt) =
⎧⎪⎨⎪⎩

∑
w∈WQ (tr) ∧ rt∈w.OVERLOAD

w.ResourceRequirment [rt], RCStatus (t, r, rt) = 1

0, otherwise,
(19)

w. ResourceRequirment specifies the resource requirement of w in terms of capacity (storage, processor, or memory), and throughout all experiments,

this value, measured in seconds, is as a value for comparison and not an exact time for resource contention.

SLA violation Rate is defined as the product of Failure rate and weight of SLA3 and is calculated as

List of SLA = < m1,m2 ....................mn >,where n is the total number of SLAs.

Failure (m) =
⎧⎪⎨⎪⎩

1, m is not violated

0, m is violated
(20)

Failure rate (Equation 21) is computed as a ratio of the summation of all the SLA violated to the total number of SLAs.

Failure Rate =
n∑

i=1

(
Failure (mi)

n

)
(21)

SLA violation rate is a product of failure rate and summation of every weight for every SLA.

SLA Violation Rate = Failure Rate ×
n∑

i=1

(wi), (22)

where wi is the weight for every SLA, which is calculated using (Equation 23). The consequence of collected data is used by the following formula27

to calculate the weight of quality attributes (Equation 23):

wi =
1

N f × (Mv + q)
×

Nf∑
a=1

Ra × 100, (23)

where i is cloud workload, q is level of measurement of quality attribute (q-value), Nf is number of research papers used to collect data, Mv is max-

imum value for a quality attribute, and Ra is the sum of responses for an attribute; the value of wi will be in the range 0% - 100%. An analysis

has been conducted to acquire the data from different research papers of cloud computing from reputed journals about cloud workloads with

the objective to know that how to assign the weights to the quality attributes according to significance.27 Subsequently receiving the responses,

TABLE 5 Conversion metric

Approximate Weight (%) Weight

0-20 1

20-40 2

40-60 3

60-80 4

80-100 5

TABLE 6 Level of measurement of quality attribute

Level of Measurement of Quality Attribute q-Value

High 3

Medium 2

Low 1
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an industry standard baseline and adequate weights to the quality attributes have been defined. The conversion metric is used to assign the values

(minimum = 1 and maximum = 5) corresponding to the percentage,28 as shown in Table 5.

The level of measurement of a quality attribute will be of three types: High, Medium, and Low, as described in Table 6. The result of the data

analysis is as follows; the number of research papers of different contexts have been studied and the maximum probable value for a quality attribute

is 5. For example, computing the average of the “Availability” quality attribute under workload “Websites” is as follows.

Nf =11 , Workload=Website and Quality Attribute=Availability, Mv =5, q=3 (because availability should be high, described in QoS requirements

of SLA and the q-value has been calculated with the help of QoS metrics) and the sum of the responses
∑11

k=1 Ra = 29.

wi =
1

11 × (5 + 3)
× 29 × 100 = 32.95.

For wi =32.95, the average weight assigned for availability is 2 by using Table 5. Through this technique,27,28 the average weights for every quality

attribute have been calculated.

Fault Detection Rate is the ratio of the number of faults detected to the total number of faults existing. Fault Detection Rate (FDR) is calculated as

FDR = Number of Faults Detected
Total number of Faults

. (24)

Faults can be a network, software, or hardware, which is detected based on the violation of SLA.

Throughput is the ratio of the total number of workloads to the total amount of time required to execute the workloads, and it is calculated as

Throughput = Total Number of Workloads (Wn)
Total amount of time required to execute the workloads (Wn)

. (25)

Reliability of the resource has to be checked for scheduling of the resources.29 With the help of the reliability parameter, we can check the fault

tolerance of the resource. Reliability of the resource is calculated as

re = e−𝜆t. (26)

re = reliability of resource, t = time for the resource to deal with its request for any workload's execution, and 𝜆= the failure rate of the resource at

the given time, which is calculated using [Equation 21].

Availability is defined as an interval of the real line. Availability is represented as

A =
c∑

t=0

A (t), (27)

where c is an arbitrary constant (c > 0) and its value is chosen to select the time interval, for which the availability of system can be tested. We have

used c = 850 seconds for Test Case 4 to find the experiment statistics (Section 4). Therefore, the availability A (t) at time t > 0 is represented by

A (t) = Pr
[
X(t) = 1

]
= E

[
X(t) = 1

]
. (28)

Further, the status function is defined as

X (t) =
⎧⎪⎨⎪⎩

1, RADAR functions at time t

0, Otherwise.
(29)

Average Waiting Time or Waiting Time is a ratio of the interval computed between workload execution start time (WEi) and workload submission

time (WSi) to the number of workloads. It is calculated as

W (n) =
n∑

i=1

(
WEi − WSi

n

)
, (30)

where n is the number of workloads.

Turnaround Time is a ratio of the interval computed between workload completion time (WCi) and workload submission time (WSi) to the total

number of workloads. It is calculated as

T (n) =
n∑

i=1

(
WCi − WSi

n

)
, (31)

where n is the number of workloads.

3.3 SLA manager

An SLA document is prepared based on SLA information finalized between user and provider. The SLA document contains information about SLA

Violation (the value of minimum and maximum deviation and compensation or penalty rate in case of violation of SLA). The deviation status estimates

the deviation of QoS from predictable values.3 A penalty will be imposed if the deviation is more than the allowed for urgent workloads, and penalty
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TABLE 7 Types of workloads and their urgency details

Workload Type Slack Time Delay Time Deviation Minimum Penalty Rate

(Seconds) (Seconds) Status Penalty

Non-Critical (Relaxed 60 0-50 5% 50 Seconds 2%

Deadline) 51-100 10% 100 Seconds 3%

101-150 15% 150 Seconds 4%

Critical (Urgent 10 0-50 5% 200 Seconds 5%

Deadline) 51-100 10% 400 Seconds 6%

101-150 15% 600 Seconds 7%

can be an allocation of reserve resources to a specific workload for compensation. RADAR minimizes the effect of inaccuracy by (1) adding slack

time during scheduling and (2) considering the penalty-compensation clause in SLAs in case of its violation. The SLA manager of RADAR tries to

execute the workload within user-specified deadline and budget with maximum resource utilization and without violation of SLA.

Based on the workload deadline, workloads are classified into two categories: (i) critical and (ii) non-critical. Table 7 describes the details about

Non-Critical (Relaxed Deadline) and Critical (Urgent Deadline) workloads and the calculation of compensation and penalty.26

The following example shows the estimation of penalty or compensation for “CRITICAL” workload with Delay Time = 50 (Deviation Status = 5%)

seconds:

Compensation = Penaltyminimum +
[
Penalty Rate × Delay Time

]
Compensation = 200 Seconds +

[
5 × 50 Seconds

]
= 450 Seconds.

It will provide 450 seconds free cloud service as a compensation or penalty.

3.4 Service manager

Initially, submitted workloads are moved to workload queue (WQ= {W1, W2, ............... Wm}) as an input. The Matchmaker maps the workloads to

the suitable resources using Q-aware,27 which uses SLA information for resource provisioning. Q-aware27 is a resource provisioning technique,

in which resource provisioner provisions resources to different cloud workloads based on their QoS requirements, as described in SLA. Further, the

resource scheduler of QoS based Resource Scheduling Framework (QRSF) schedules the provisioned resources28 for workload execution. Figure 3

shows the interaction of the cloud user, the SLA manager, and the service manager for execution of workloads, in which SLA is signed initially. Based

on SLA information, RADAR generates the workload schedule. A workload will be executed within its specified budget and deadline with maximum

resource utilization and without violation of SLA. In case of the SLA violation, RADAR uses STAR3 to renegotiate SLA again with a new deadline and

budget. Workload will be dispatched for execution after verification of every critical parameter, and the resource executor executes the workload

after payment.

RADAR returns the resources to resource pool after successful execution of workloads. Finally, updated workload's execution information returns

to the corresponding cloud user. Figure 2 shows the execution of workloads using subunits of an autonomic model3 such Monitor [M], Analyze and

Plan [AP], and Executor [E]. The performance monitor monitors the performance of workload execution continuously and generates alerts in case

of degradation of performance. RADAR generates following alerts in two different cases, as shown in Figure 2.

• Alert 1: If there is an unavailability of required resources for workload execution, then perform an Action 1 for Reallocation of resources.

• Alert 2: If the value of SLA deviation is more than allowed, then perform an Action 2 to Renegotiate SLA.

RADAR performs the same action two times. The system is treated as down if RADAR fails to correct it. To interact with the outside environment,

RADAR uses two interfaces of an autonomic model3: Sensors and Effectors. Sensors read the QoS value to check the performance of the system.

Initially, the coordinator node gets the updated information (QoS value, faults or new updates) from processing nodes and transfers this information

to Monitors. For example, the energy consumption of workload execution can be one reason for performance degradation. Sensors read the value

of consumption of energy and compare with its threshold value to test the performance of the system. RADAR continues the workload execution if

the value of consumption of energy is less than its threshold value. Otherwise, add new resources to improve energy efficiency using these steps:

(i) declare the current node as dead, (ii) eliminate the node, (iii) add new resources, and (iv) start the execution after reallocation of resources and

send the updated information to the coordinator node.29,32 Effector exchanges the updated information about new alerts, rules, and policies to the

other nodes. Service Manager works in two phases: self-configuring and self-healing, as shown in Figure 3.

3.4.1 Self-configuring

Some components of the system need updates, and other components need reinstallation due to changing conditions of a computing environ-

ment. Based on the generated alert, RADAR offers self-configuring of installation of outdated or missed components automatically. We propose

an algorithm for self-configuring, which offers an autonomic installation of new components or reinstallation of outdated or missed components.
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[Algorithm 1: Self-Configuring] works in three different sub-modules: (i) monitoring, (ii) analyzing and planning, and (iii) executing. Figure 4 shows

the graphical representation of the pseudocode of Algorithm 1.

Initially, Monitor gathers the updated information (QoS value) from different sensors and monitors the performance variations continually by

doing the comparison between the actual and expected value of QoS. Basically, an expected value of QoS is considered as its threshold value, which

also contains the maximum value of SLA deviation. We have observed the actual value of QoS based on SLA violation, new updates (missing or

outdated components), and faults (hardware, software, or network).

For Monitoring Module, Figure 4 shows that RADAR checks the status of active components in the monitoring unit by using a software and hard-

ware component agent. The software component agent monitors the status of active software components, which can be ‘MISSING’ or ‘OUTDATED.’

If the status is ‘MISSING,’ then the software component agent reinstalls the component after uninstalling the existing component. If the status is

‘OUTDATED’, then the software component agent installs the new version of that component. The hardware component agent monitors the status

of active hardware components, and it uses the log information to track the status of different hardware components and generate an alert in case of

error. Log information26 has fields such as (1) Time Stamp (the time of occurrence of error in that event, (2) Event Type (the type of event occurred, ie,

‘CRITICAL’ OR ‘ERROR’), (3) Source (source is the software that logged the event, which can be either a program name, such as “SQL Server,” or a com-

ponent of the system or of a large program, such as a driver name), and (4) Event Id (Event has a unique identity number). An alert will be generated

if any of the events (‘CRITICAL’ OR ‘ERROR’) occurs and uses log information [Component_Name and Component_Id] to update the database.

A “machine checks log” is used in a RADAR to manage the failures of hardware components and it can generate an alert for internal errors quickly.

RADAR uses a centralized database to maintain the machine check logs related to hardware. Further, lexical analyzer-based freeware tools such as

MCat (windows) and MCELogs (Linux)33 are used to refine the log information (Event Id, Event Type (EventType), Time Stamp and Source) before storing

it into the database. RADAR captures logs with the event type: “CRITICAL” or “ERROR”.

Analyzing and Planning Module analyzes the generated alert and behavior of a software and hardware component. For hardware component, it

declares the component as ‘DOWN’ if the status of a component is either ‘CRITICAL’ OR ‘ERROR’ and restarts it to its status again. If its status

changes to ‘ACTIVE’, then continue execution; the otherwise ‘INACTIVE’ component will be replaced with a new component and start execution.26

For software component, if its status is either ‘MISSING’ or ‘OUTDATED’ (Event Type), then the software agent performs the following steps:
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(1) if Event Type is ‘MISSING,’ then reinstall the component and, (2) if Event Type is ‘OUTDATED,’ then that component is replaced with an updated

version. After analysis of the status of hardware and software component, RADAR makes a plan to correct these errors automatically. Further,

RADAR checks the status of active components [SetActive components] continually for future performance analysis.

For new component, the Execution module implements the plan and binds the new component with existing components by exchanging messages

between them. Further, it starts the execution of a new component, as shown in Figure 4. During the execution of workload, the value of Execution

Time (Etime), Average Cost (Ecost), and Energy Consumption (Econ) is calculated for every workload. If this condition ([Etime ≤ Dt && Ecost ≤ BE] or [ECon ≤

EThreshold]) is false, then generate an alert and replace this component with another qualified component.

EThreshold is the maximum allowed value for energy consumption.26,28 The estimated budget ( BE) is the maximum value of cost that the user wants to

spend and measured in Cloud Dollars (C$). Deadline Time (Dt) is defined as the time duration between the current time (Cti) and workload deadline

(Wdi) and Equation (32) is used to calculate Deadline Time.

Deadline Time (Dti) =
n∑

i=1

(Wdi − Cti), (32)

where Wdi is the workload deadline and Cti is the current time. For the existing component, restart the component after saving its state if an error

occurs. If the component is still not performing effectively, then the issue can be resolved in two ways: (a) install an updated version of a component

or (b) reinstall the component. Further, RADAR manages all the updates and stores in a centralized database and maintains its backup as a database

replica. Backup Database (BD) can be used in the future if master Data Base (DB) goes down33 and BD acts as the master until the master database

is up again.

3.4.2 Self-healing

RADAR offers self-healing to ensure the proper functioning of a system by making mandatory changes to recover from the different types of faults,

which can be a network, software, or hardware fault. Network fault can occur due to network breakage, physical damage, packet loss, and lack of

scalability in distributed networks. Hardware fault can occur due to non-functioning of components such as hard disk, RAM, or processor. Software

fault can occur due to unavailability of a required number of resources, storage space, resource contention (deadlock), and unhandled exception in

high resource intensive workloads. [Algorithm 2: Self-Healing] is working in three different sub-modules: (i) monitoring, )ii) analyzing and planning,

and (iii) executing. Figure 5 shows the graphical representation of the pseudocode of Algorithm 2. Monitoring Module comprises of hardware, network,

and a software agent to manage the different types of faults. The hardware agent continually monitors the performance of hardware components

such as CPU and MEMORY.
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FIGURE 5 Process of self-healing

To maintain the performance of the system, RADAR performs hardening34 to ensure that the driver is working properly. Hardware Hardening

is the process in which the driver works correctly even though faults occur in the device that it controls or other faults originating from outside

the device.34 A hardened driver should not hang the system or allow the uncontrolled spread of corrupted data as a result of any such faults.33

Whenever the node is added to the network, Hardware Hardening Agent (HHA) checks for its device drivers and performs the process of hardening.

[ALGORITHM 3: Hardware Hardening Process (HHP)] shows the process of hardware hardening in RADAR.

Initially, HHA starts the process of hardening by scanning the drivers to be hardened.33 Further, when the new node is added, a replica of the

original drivers is created. RADAR uses the concept of Carburizer,34 which pushes the code on that node when a new node is added. The process of

hardware hardening consists of these consecutive steps: (1) scan the source code for all drivers, (2) find the chance of failure in the code, (3) replace

the code after identification of the code, (4) replace the original drivers with the hardened drivers after hardening, (5) the hardware agent monitors

the performance of the hardened driver continuously, and (6) replaces the hardened driver with original driver in the case of performance degrada-

tion. RADAR uses machine check log to maintain the database of hardware failures. RADAR continually monitors the status of the system, which

contains the information about the event [Event Type, Event Id, Timestamp] and event type, which can be either ‘CRITICAL’ OR ‘ERROR’. Further, the

hardware agent generates the alert and maintains the log information [Node_Name and MAC_Address], as shown in Figure 5. The software compo-

nent agent checks the usage of CPU and MEMORY continually. To test the performance of MEMORY and CPU, RADAR fixes the threshold value of

their usage.
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Figure 5 shows that the system generates an alert if the value CPU and MEMORY usage is greater than its threshold value. RADAR uses the

network agent to monitor the data transfer rate from one node to another. Manager nodes receive the status from all the processing nodes in a

specific network. There can be network failure if processing nodes do not respond periodically.

The Analyzing and Planning unit analyzes the alert for software or hardware, which is generated by the software or hardware agent, as shown in

Figure 5. The hardware agent changes status of node N as ‘DOWN’ if the event type is either ‘ERROR’ OR ‘CRITICAL’ and restarts the failed node

using the restart agent. Further, it measures the status of restarted node again and continues execution if the status of node changes to ‘ACTIVE’;

otherwise, it generates an alert and replaces the current node (down) with another stable node. The stability of a node is identified from their log

information during their past performance. The software agent analyzes an alert if the value of CPU and MEMORY usage is greater than its threshold

value and restarts the node using a restart agent, as shown in Figure 5. Further, it measures the status of the restarted node again and continues

execution if the status of the node changes to ‘ACTIVE’; otherwise, it generates an alert for replacement of the current node with a more stable node

to continue execution. The network agent analyzes the behavior of the network and finds out the reason of failure, which can be network breakage,

physical damage, packet loss, and lack of scalability in distributed networks. Then, the network agent selects a plan from the past network log to

correct it. The Restart agent reboots the system automatically to recover the system from hardware failures.

The Execution module implements the plan by replacing the current node (down) with a different node, which is more stable among available nodes.

This module also saves the state of the node and performs restarting if an error occurs during workload execution. Further, a faulty component will

be replaced by a new component if restart fails to recover from failure.

4 PERFORMANCE EVALUATION

Figure 6 shows the cloud testbed, which is used to evaluate the performance of RADAR. We have modeled and simulated a cloud environment

using the CloudSim toolkit.35 For the experimental setup, the computing nodes are simulated that resembles resource configuration, as shown in

Table 8. Three servers with different configurations have been used to create virtual nodes in this experimental work. Each virtual node consists of

Execution Components (ECs) for workload execution, and the cost for every EC is defined in C$/EC time unit (Sec). The configuration details of the

cloud testbed are shown in Table 8, and we have assigned manually an access cost in Cloud Dollars (C$). When ECs have different capabilities, then

this cost does not essentially reflect the execution cost.26,29,32 In this experimental work, access cost is translated into C$ for each resource to find

out the relative execution cost for workload execution.

4.1 Fault management

We have used Fault Injection Module (FIM-SIM)36 to inject faults automatically to test the reliability of RADAR. FIM-SIM is working based

on event-driven models and injects faults into the CloudSim35 using different statistical distributions at runtime. We selected the Weibull

Distribution37 to inject faults in this research work. We have injected three types of faults: VM creation failures, host failures (Processing Elements

failure and memory failure), and high-level failures like cloudlets failures (which are caused by any networking problem that CloudSim35 cannot

handle). The injection of faults affects cloud resources during the simulation period. Interested readers can find detailed information about fault

injection in the work of Nita et al.36 Carburizer34 is used in RADAR to harden the device drivers in the Fault Manager to detect the faults and prevent

the system from faults efficiently.
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FIGURE 6 Cloud testbed

TABLE 8 Configuration details

Resource Configuration Specifications Operating Number of Virtual Number of Price (C$/EC time unit)

System Node ECs

Intel XEON E 52407-2.2 GHz 2 GB RAM and 160 GB HDD Linux 2 (1 GB and 60GB) 6 4

Intel Core i5-2310-2.9GHz 4 GB RAM and 160 GB HDD Linux 4 (1 GB and 40 GB) 12 3

Intel Core 2 Duo - 2.4 GHz 6 GB RAM and 320 GB HDD Windows 6 (1 GB and 50 GB) 18 2

4.2 Workloads

For performance evaluation, we have selected four different types of cloud workload from every cluster of workloads, as given in Table 3. Table 9

shows the different cloud workloads, which are considered to test the performance of RADAR. To find the experiment statistics, 3000 different

workloads are executed. RADAR processes different workloads using the different number of resources to test its performance with different

resource configuration. RADAR also maintains the details of every executed workload and stores into the workload database, which can be used to

test the efficiency of RADAR in the future. Figure 6 shows the execution of the “Performance Testing” workload; similarly, we executed other work-

loads [(i) Storage and Backup Data, (ii) Websites, and (iii) Software Development and Testing] with the same experimental setup. Note: The detailed

description of heterogeneous workloads is described in our previous research work.3
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TABLE 9 Details of cloud workloads

Workload Cluster Description

Performance Testing Compute (C1) RADAR processes and converts an image file (713 MB) to PNG format from JPG

format.38,29 The conversion of a single JPG file into PNG is considered as a

workload (in the form of Cloudlet).

Storage and Backup Data Storage (C2) Storing a larger amount of data (5 TB) and creating a backup of data3 are considered as

workload

Websites Communication (C3) A large number of users accessing a website of Thapar Institute of Engineering and

Technology [http://www.thapar.edu] during admission period of the year 2016 are

considered as workload.3

Software Development Administration (C4) Developed and tested Agri-Info Software to find out the productivity of a crop39 is

and Testing considered as a workload.
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4.3 Experimental results

RADAR has been verified for two aspects: (1) self-configuring and (2) self-healing. We selected existing resource management techniques from liter-

ature to test the performance of RADAR in the cloud environment. All the experiments have been conducted with 500 to 3000 workloads to validate

RADAR. We have considered 1500 workloads to measure the performance of QoS parameters with fault percentage for both self-configuring and

self-healing. Fault percentage is defined as the percentage of faults existing in the system during execution of workloads, and it is determined based

on the SLA violation rate. To test the capability of RADAR for detection of the failures, FIM-SIM36 is used to inject different percentages of faults

(0% to 5%). We provided standard error bars for every graph to show the variation in the experimental results.

4.3.1 Self-configuring verification

We have selected two existing autonomic resource management techniques, ie, EASC20 and CoTuner,25 to test the performance of RADAR in terms

of resource contention, resource utilization, execution cost, and SLA violation rate. Both EASC20 and CoTuner25 have been discussed and compared

with RADAR in Section 2.

Test Case 1: Resource Contention – Figure 7 shows the variation of resource contention for RADAR, EASC, and CoTuner with the increase in the

number of workloads. As the number of workloads increases from 500 to 3000 workloads, the value of resource contention increases. The average

value of resource contention in RADAR is 4.3% and 6.64% less than CoTuner and EASC, respectively. We have considered the six different values of

fault percentage to test the performance of RADAR. Figure 8 shows the variation of resource contention for RADAR, EASC, and CoTuner with the

different value of fault percentage (0% to 5%). The average value of resource contention in RADAR is 7.79% and 9.11% less than EASC and CoTuner,

respectively. This is expected as the workload execution is done using RADAR, which is based on Q-aware.27 Based on the deadline and priority of

workload, clustering of workloads is performed, and resources are provisioned for effective scheduling. This is also because of the low variation in

execution time across various resources as the resource list that is obtained from the resource provisioning unit is already filtered using Q-aware.27

Test Case 2: Resource Utilization – The value of Resource Utilization (RU) increases with the increase in the number of cloud workloads, as shown

in Figure 9. The average value of RU in RADAR is 5.25% and 8.79% more than CoTuner and EASC, respectively. Figure 10 shows the variation of RU

with respect the fault percentage. For fault percentage, the average value of RU in RADAR is 4.16% and 6.93% more than CoTuner and EASC, respec-

tively. Based on the QoS requirements of a specific workload, resource provisioning consumes little more time to find out the best resources,29 but

later, it increases the overall performance of RADAR. Therefore, underutilization and overutilization of resources will be assuaged or avoided, which

reduces the further queuing time.

http://www.thapar.edu
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Test Case 3: Execution Cost – The execution cost rises with the increase in the number of workloads, as shown in Figure 11. The average value

of execution cost in RADAR is 3.33% and 5.83% less than CoTuner and EASC, respectively. Figure 12 shows the variation of execution cost with the

different values of fault percentage and the average value of execution cost in RADAR is 4.98% and 6.80% less than CoTuner and EASC, respectively.

The reason is that CoTuner and EASC do not consider the effect of other workloads in the resource scheduler at the time of workload submission,

but in RADAR, the resource manager considers the effect of workloads in the resource scheduler before execution of workload according to both

user and resource provider's perspectives.27 The other reason is that, with the provisioned approach (Q-aware), due to a large number of workloads,

these and later workloads had to be executed on left out resources, which may not be very cost effective.

Test Case 4: SLA Violation Rate – The impact of variation in the number of workloads on SLA Violation Rate (SVR) is analyzed. As shown in

Figure 13, SVR increases with the increase in the number of workloads and it shows that the average value of SVR in RADAR is 8.16% and 14.98%

less than CoTuner and EASC, respectively. Figure 14 shows the variation of SVR with different values of fault percentage, and RADAR has 5.56%

and 6.16% less SVR than CoTuner and EASC, respectively. This is because, RADAR uses admission control and reserve resources for execution of

workloads in advance based on their QoS requirements specified in the SLA document. Further, RADAR outperforms as it regulates the resources

at runtime based on the user's new QoS requirements during its execution to avoid SLA violation.
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4.3.2 Self-healing verification

We have selected two existing autonomic resource management techniques, ie, SH-SLA5 and MASA,14 to test RADAR's performance in terms of

reliability, fault detection rate, throughput, waiting time, execution time, energy consumption, availability, and turnaround time. Both SH-SLA5 and

MASA14 have been discussed and compared with RADAR in Section 2.

Test Case 1: Fault Detection Rate – Figure 15 shows the variation of Fault Detection Rate (FDR) with the different number of workloads. With

an increase in the number of workloads, the value of FDR decreases. From 500 to 1500 cloud workloads, the value of FDR reduces, but RADAR

performs better than SH-SLA and MASA. The average value of FDR in RADAR is 13.72% and 16.88% more than SH-SLA and MASA, respectively.

RADAR uses the hardware hardening process to decrease the frequency of fault occurrence and it hardens the device drivers by using the concept

of Carburizer,34 which keeps system's working without degradation of performance even though faults occur.33 Once the hardening process is over,

the status of nodes is forwarded to the monitor component (autonomic service manager) to prevent future faults. To avoid the same kind of future

faults, RADAR replaces the hardened driver with an original driver if an alert is generated because of the driver's misbehavior.

Test Case 2: Throughput – Figure 16 shows the variation of throughput with the different number of workloads. The average value of through-

put in RADAR is 11.1% and 14.50% more than SH-SLA and MASA, respectively. We have injected a number of faults (fault percentage) to verify the

throughput of RADAR with 1500 workloads. Figure 17 shows the comparison of throughput of RADAR with SH-SLA and MASA. From the experi-

mental result, it has been found that the maximum throughput is at 0% fault percentage and the minimum is at 5%. The average value of throughput in
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RADAR is 8.33% and 10.51% more throughput than SH-SLA and MASA, respectively. RADAR identifies the software, hardware, and network faults

automatically and it also prevents the system from future faults, which improves the throughput of RADAR, as compared with SH-SLA and MASA.

Test Case 3: Reliability – The value of reliability decreases with variation in the number of workloads, but RADAR performs better than SH-SLA

and MASA, as shown in Figure 18. The maximum reliability at 500 workloads is 91.45%. The value of reliability in RADAR is 8.32% and 11.23% more

than SH-SLA and MASA, respectively. Figure 19 shows the variation of reliability with a different value of fault percentage, and the value of reliability

in RADAR is 13.26% and 14.31% more than SH-SLA and MASA, respectively. The main difference between these works (SH-SLA and MASA) and ours

(RADAR) is that none of them considers an autonomic fault prevention mechanism for self-healing with dynamic checkpoint intervals, which uses

RADAR. The SH-SLA and MASA techniques focus on monitoring faults to maximize fault detection rate, whereas RADAR focuses on fault detection,

as well as prevention mechanisms. The efficient management of faults in RADAR improves the reliability of cloud services.

Test Case 4: Availability – The value of availability for RADAR, SH-SLA and MASA is calculated and the value of availability decreases with increase

in the number of workloads, as shown in Figure 20. The average value of availability in RADAR is 5.23% and 5.96% more than SH-SLA and MASA

respectively. Figure 21 shows the variation of availability with the different value of fault percentage and the value of availability in RADAR is 3.45%

and 4.46% more than SH-SLA and MASA respectively. This is expected as the recovering faulty task manages the faults efficiently in RADAR, which

further improves the availability of cloud services.

Test Case 5: Execution Time – As shown in Figure 22, the execution time increases with the increase in the number of workloads. The value

of execution time in RADAR is 6.15% and 6.95% less than SH-SLA and MASA, respectively. After 1500 workloads, execution time increases sud-

denly but RADAR produces better outcomes than SH-SLA and MASA. At 3000 workloads, the execution time in RADAR is 11.11% and 21.23% less

than SH-SLA and MASA, respectively. Figure 23 shows the variation of execution time with the different value of fault percentage, and the value

of execution time in RADAR is 10.23% and 19.98% less than SH-SLA and MASA, respectively. This is expected as RADAR is keeping track of the
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state of all resources at each point of the time automatically, which enables it to take an optimal decision (minimum execution time) than SH-SLA

and MASA.

Test Case 6: Energy Consumption – With the different number of cloud workloads, energy consumption is calculated in kilo Watt hour (kWh)

for RADAR, SH-SLA, and MASA, as shown in Figure 24. Energy consumption also increases, with the increasing number of cloud workloads. The

minimum value of energy consumption is 46.12 kWh at 500 workloads. The average value of energy consumption in RADAR is 8.11% and 9.73%

less than SH-SLA and MASA, respectively. Figure 25 shows the variation of energy consumption with the different value of fault percentage. Energy

consumption in RADAR is 5.89% and 11.25% less than SH-SLA and MASA, respectively. With the capability of automatically turning on and off

nodes according to demands, RADAR provisions and schedules resources efficiently and intelligently for execution of clustered workloads instead

of individual workloads. Further, workload clustering reduces the significant amount of network traffic, which leads to reducing the number of active

switches that also reduces the wastage of energy.

Test Case 7: Waiting Time – The performance of RADAR in terms of waiting time with the different number of workloads is verified. Figure 26

shows the variation of waiting time with the different number of workloads and the value of waiting time in RADAR is 15.22% and 19.75% less than

SH-SLA and MASA, respectively. The variation of waiting time with the different value of fault percentage is shown in Figure 27 and the value of

waiting time in RADAR is 8.33% and 9.96% less than SH-SLA and MASA, respectively. The cause is that RADAR adjusts the provisioned resources

dynamically according to the QoS requirements of workload to fulfill their required deadline, which also reduces the waiting time of workload

in a queue.
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Test Case 8: Turnaround Time – The value of turnaround time in RADAR with the different number of workloads is shown in Figure 28. The average

value of turnaround time in RADAR is 13.33% and 17.45% less than SH-SLA and MASA, respectively. Figure 29 shows the variation of turnaround

time with the different value of fault percentage and the average value of turnaround time in RADAR is 7.14% and 12.75% less than SH-SLA and

MASA, respectively. SH-SLA and MASA consider scheduling of single queued workload, whereas RADAR considers clustering of workloads based

on their QoS requirements. This is also because RADAR is keeping track of the state of all resources at each point of the time automatically, which

enables it to take an optimal decision (minimum execution time) than SH-SLA and MASA.

4.4 Statistical analysis

Statistical significance of the results has been analyzed by Coefficient of Variation (CoV), which compares the different means and furthermore

offers an overall analysis of the performance of RADAR used for creating the statistics. It states the deviation of the data as a proportion of its

average value26 and is calculated as follows [Equation (33)]:

CoV = SD
M

× 100, (33)
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where SD is the Standard Deviation and M is the Mean. CoV of fault detection rate of RADAR, SH-SLA, and MASA is shown in Figure 30. The range

of CoV (0.48% - 1.02%) for fault detection rate approves the stability of RADAR.
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The value of CoV increases as the number of workloads increases. The small value of CoV signifies that RADAR is more efficient and stable in the

management of cloud resources in those circumstances, where the quantity of workloads is varying. RADAR attained better results in the cloud for

fault detection rate and has been exhibited with respect to the number of workloads.

Table 10 describes the comparison of different QoS parameters, which are measured while the different number of resources/VMs are used to

process various heterogeneous workloads (1500 and 3000). It shows that RADAR optimizes the QoS parameters with increase in the number of

VMs gradually. RADAR executes 1500 workloads with one virtual node running on Server R1, and its execution completed in 422.2 seconds whereas

the same number of workloads finished in 342.6 seconds using 12 virtual nodes (2 virtual nodes running on R3, 4 virtual nodes running on R2, and

6 virtual nodes running on R1). Table 10 clearly shows that execution time decreases by adding additional virtual nodes. Similarly, by increasing the

number of virtual nodes, other QoS parameters are also performing better.

5 CONCLUSIONS AND FUTURE WORK

We have proposed an autonomic technique for cloud-based resources called RADAR to efficiently manage the provisioned cloud resources. RADAR

improves user satisfaction by maintaining SLA based on QoS requirements of a cloud user and has an ability to manage resources automati-

cally through properties of self-management, which are self-healing (find and react to sudden faults) and self-configuring (capability to readjust

resources) with minimum human intervention. The performance of RADAR has been evaluated using the CloudSim toolkit and the experimental

results show that RADAR performs better in terms of different QoS parameters and deals with software, network, and hardware faults, as compared

with existing resource management techniques, as shown in test cases. Experimental results demonstrate that RADAR improves the fault detection

rate by 16.88%, resource utilization by 8.79%, throughput by 14.50%, availability by 5.96%, and reliability by 11.23% and it reduces the resource con-

tention by 6.64%, SLA violation rate by 14.98%, execution time by 6.95%, energy consumption by 9.73%, waiting time by 19.75%, turnaround time by

17.45%, and execution cost by 5.83%, as compared with resource management techniques. The small value of Coefficient of Variation (CoV) signifies

that RADAR is more efficient and stable in the management of cloud resources in those circumstances, where the quantity of workloads is vary-

ing. RADAR improves user satisfaction by fulfilling their QoS requirements and increases reliability and availability of cloud-based services. Further,

RADAR can be extended to exhibit the other property of self-management such as self-protecting (detection and protection of cyber-attacks).
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