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Reliability-aware Proactive Placement of
Microservices-based IoT Applications in Fog

Computing Environments
Samodha Pallewatta, Vassilis Kostakos, and Rajkumar Buyya

Abstract—The fog computing paradigm is rapidly gaining popularity for latency-critical and bandwidth-hungry IoT application
deployment. Meanwhile, MicroService Architecture (MSA) is increasingly adopted for developing IoT applications due to its high
scalability and extensibility. For mission-critical IoT services in fog, reliability remains one of the most critical QoS requirements due to
less dependability of fog resources. Granular microservices with independent deployment and scaling exhibit great potential in utilising
resource-constrained fog resources to improve reliability through redundant placement. However, current research on service
placement lacks reliability-aware holistic approaches that combine the MSA features and failure characteristics of fog resources under
independent and correlated failures. Hence, we analyse MSA and formulate the reliability-aware placement problem by modelling
composite services as k-out-of-n serial-parallel systems in a throughput-aware manner for placement under fog resource failures. Our
proposed Reliability-aware Placement Method (RPM) is a hierarchical policy combining improved PSO and NSGA-II algorithms. We
integrate it with Monte Carlo reliability calculations to produce redundant placements reaching a trade-off between reliability and cost.
The performance results reveal that compared to the benchmarks, our algorithm shows significant improvements in reliability
satisfaction (up to 25%) and time to first failure (up to 40%), thus providing a robust placement method.

Index Terms—Edge/Fog Computing, Internet of Things, Microservice Architecture, Reliability, Redundancy, Fog Service Placement.
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1 INTRODUCTION

FOg computing paradigm provides cloud-like services at
the edge of the network by utilising distributed, hetero-

geneous and resource-constrained computing resources that
reside between the edge of the network and the cloud while
maintaining seamless connectivity between them [1]. Hence,
Fog computing has emerged as a feasible solution for de-
ploying latency-critical and bandwidth-hungry IoT applica-
tions. As IoT applications include highly safety-critical and
mission-critical services (i.e., smart healthcare, intelligent
transportation, Industrial Internet of Things (IIoT) etc.), high
reliability is a crucial requirement [2]. Moreover, the hetero-
geneity of fog resources and their resource-constrained and
geo-distributed nature results in lower dependability com-
pared to the powerful, robust and centralised cloud servers
[3], [4]. Thus, application deployment within fog comput-
ing environments should incorporate reliability awareness
to minimise the application unavailability caused by fog
device failures (i.e., hardware, software, power, network,
etc.) while satisfying multiple other Quality of Service (QoS)
requirements such as deadline, budget and throughput.

Over the years, two main approaches have been intro-
duced to maintain application reliability: proactive failure
avoidance and reactive failure recovery techniques. For
IoT services with stringent latency requirements, reactive
algorithms that focus on healing after faulty events are
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insufficient to ensure the higher level of availability required
to meet low and ultra-low latency expectations, which fall
within millisecond deadline limits [5], [6]. Hence, proactive
methods driven by redundant placement are identified as
viable solutions. In cloud environments, redundant place-
ment is limited by the high costs incurred by deploying
multiple copies of the application. In fog environments, this
is further restrained by the limited availability of computing
resources.

Under such challenges, the shift in IoT application devel-
opment from monoliths to microservices has the potential
to improve the proactive redundant placement within fog
environments due to their fine-grained design. According
to MicroService Architecture (MSA), complex applications
are designed and developed as a collection of small and
modular components known as ‘microservices’ that com-
municate with each other using lightweight communica-
tion protocols to provide end-user services [7]. Microser-
vices are independently deployable and scalable units that
are packaged using lightweight container technologies like
Docker [8]. Such characteristics of microservices have made
them the most suitable application model for deployment
within distributed, heterogeneous and resource-constrained
fog devices [9], [10]. Their ability to support independent
scalability, including both vertical and horizontal scalability,
enhances the chances of throughput and reliability-aware re-
dundant placement within resource-limited fog devices (i.e.,
Raspberry Pis, small-cell base stations, nano data centres,
edge servers etc.) with heterogeneous failure characteristics.

While MSA presents potential improvements to the
reliability-aware proactive placement of IoT applications,
they also introduce critical challenges that must be ad-
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Fig. 1. A scenario of usecase in the context of smart heath monitoring

dressed when designing placement policies. The granular-
ity of microservices with well-defined business boundaries
results in complex interactions among microservices to cre-
ate ’services’. Here we use the term ’services’ to denote
business functionalities accessed by the end-users, which
consist of one or more interconnected microservices giving
rise to composite services. Furthermore, this results in each
microservice-based application being a composition of mul-
tiple services with heterogeneous QoS requirements (i.e.,
latency-critical, latency tolerant, high bandwidth consuming
etc.) where some microservices are shared among various
services. This enables per-service QoS definitions which can
be used with batch placement to utilise edge and cloud
resources in a balanced manner [11].

Microservices-based application placement falls under
Fog Service Placement Problem (FSPP) [12], [11], where each
application service is deployed to provide shared access to a
large number of users. Thus, concepts such as throughput-
aware service scalability and load sharing are important
aspects of FSPP, which sets it apart from DAG-based work-
flow scheduling and task offloading problems studied in the
existing literature [12]. Existing research on FSPP mainly fo-
cuses on QoS parameters such as latency, cost and through-
put. Thus, reliability-aware placement has a lot of room
for improvement, especially for IoT applications developed
using MSA. Existing works lack proper analysis of the
potential of microservices-based IoT application architecture
to introduce novel placement algorithms that enable the
proactive redundant placement to improve the reliability of
the services under both independent and correlated failures
of the fog resources. Thus, there’s scope for research to
focus on these characteristics and utilise them to get the
best out of the federated edge and cloud environments to
improve reliability while satisfying other QoS parameters
such as latency, cost and throughput. To further highlight
this idea, we present an IoT use case modelled using MSA
and examine its reliability-aware placement.

1.1 Motivational Scenario

We consider a use case of a smart health monitoring appli-
cation (see Fig. 1) to demonstrate how MSA features can be
utilised in achieving high reliability in fog applications.

Due to the granularity of microservices, QoS require-
ments can be defined at the composite service level. Thus,
A1 can be represented as a composition of two composite
services: a latency-critical emergency event detection service
(service S1 consisting of microservices, m1 and m2) and a
latency tolerant, computationally intensive analysis service
(service S2 consisting of microservices, m1 and m3) [11].
The loosely coupled nature of the microservices enables
dynamic deployment of microservices across fog layer re-

sources and cloud resources in a QoS-aware manner. In our
example scenario, m1 and m2 are deployed in the fog layer
to accommodate the low latency requirement of S1, whereas
m3, which only contributes to the latency tolerant service
S2, is placed within cloud data centres. It improves fog
resource utilisation, thus allowing more fog resources to be
allocated for services with stringent latency requirements.

Being a latency-critical service, S1 has high-reliability
expectations so that in case of an emergency, the application
can react within the stringent latency expectations of the
service. As services like S1 have latency requirements in
the millisecond range, in case of fog resource failures, the
effect on the service would be adverse if only reactive fault-
tolerance methods were employed. Thus, such application
services can benefit from proactive reliability ensured by
redundant placements [5]. However, this is limited by the
heterogeneity and resource-constrained nature of the fog de-
vices. The independently deployable and scalable nature of
the microservices can be utilised to overcome this challenge.
To this end, microservice instances packaged as lightweight
Docker containers can be scaled horizontally or/and verti-
cally in throughput and reliability-aware manner. Example
use case indicates that to support user requests, at least one
instance of m1 and two instances of m2 are required. Failure
characteristics of the fog devices can be used to improve this
placement further so that redundant microservice instances
are deployed to improve the service reliability. For example,
the number of redundant placements can be increased if
their deployed devices have low reliability (four instances
of m2 and two instances of m1 depending on the failure
characteristics of the fog devices they are deployed on).
Hence, with MSA, each composite service is represented as a
serial-parallel hybrid system, with each horizontally scaled
microservice being a k out of n load-balanced sub-system
of the end-user service. Here, k is the minimum number of
microservice instances that can cater for the incoming user
request volume, determined in a throughput-aware man-
ner, whereas n is dynamically determined by integrating
knowledge of the failure characteristics (i.e., independent
and correlated failures) of fog devices to ensure availability
of at least k instances during application run time.

Thus, it is evident that MSA can provide the flexibil-
ity required to utilise resource-constrained fog resources
to improve the reliability of the deployed applications by
introducing robust placement policies that combine MSA
features with the failure characteristics of fog resources.

1.2 Proposed Approach and Contributions

The above use case demonstrates that proper utilisation of
MSA characteristics can potentially improve the reliability
of mission-critical IoT services through proactive and dy-
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namic redundant placement of microservices in a ”reliability
and throughput aware” manner. Research that emphasises
the said characteristics is still in its early stages and has
much room for improvement. Existing research lacks in
multiple areas, such as utilising microservice features (i.e.,
granular design, independent deployment and scalability,
balanced deployment between fog and cloud, per-service
QoS-awareness), overcoming challenges of the MSA (i.e.,
complex interaction patterns among microservices), appli-
cation batch placement to prioritise mission-critical services,
consideration of multiple failure types (i.e., independent
failures, correlated failures) and dynamic redundant place-
ment of microservice. In this work, we aim to address these
shortcomings by proposing a holistic placement approach
that improves the reliability of the services under multiple
reliability-related metrics, such as availability and time to
first failure. The key contributions of our work are:
1) In order to capture MSA characteristics, we model

the microservices-based application services as k out of
n serial-parallel systems and formulate the placement
problem to capture reliability, throughput awareness,
and cost at the composite service level. The problem
formulation captures both independent and correlated
failures within repairable fog environments and, dy-
namically calculates and places redundant microservice
instances proactively.

2) Based on the problem formulation, we propose a hier-
archical placement algorithm to place microservice repli-
cas within fog environments proactively. Our proposed
algorithm operates at two levels; Particle Swarm Op-
timisation based Throughput-aware Scalable Placement
(TSP), Genetic Algorithm based Reliability-aware Redun-
dant Placement (RRP), which together provide a robust
placement method under failures in fog resources. Fur-
thermore, a Monte Carlo-based approach is incorporated
to calculate reliability-related parameters.

3) We improve the performance of the algorithm by intro-
ducing multiple novel processes: an availability-aware
fitness function for TSP, an availability-aware heuristic
redundancy placement for the initialisation of RRP and a
reliability-aware dominant selection method for RRP.

4) We implement our policy using iFogSim2 [13] simulated
fog environment and evaluate against multiple bench-
marks based on reliability satisfaction, time to first failure
and deployment cost.

2 RELATED WORK

In this section, we summarise current works in cloud and
fog environments (see Table 1) related to reliability-aware
placement and proactive redundant placement, considering
multiple placement problems such as FSPP, DAG workflow
scheduling and task offloading. We also make a qualitative
comparison between existing approaches and our work.

Multiple works consider reliability in cloud environ-
ments for the deployment of workflows, where the majority
focus on scientific workflows. Rehani et al. [14] propose
a DAG workflow scheduling algorithm that considers the
reliability of repairable cloud resources for assigning tasks
to VMs. They model the cloud failures and repairs using
Weibull distribution and use Monte Carlo Failure Estimation
to accurately calculate the time to failure and time to repair

for each cloud resource. Tang et al. [15] consider a multi-
cloud scenario to improve the reliability of the DAG-based
scientific workflows to reach a trade-off between cost and
reliability using the hazard rates of VMs and their connected
links. Zhu et al. [16] also present a fault-tolerant DAG
placement by proposing primary-backup copy placement
(PB) with one replica per task deployed as a backup. Their
work assumes no simultaneous failures among devices and
considers only one host fails at a time. [17] extends this to
consider network failures that can result in simultaneous
failures of the hosts and propose a placement algorithm to
place the primary and its backup copy in different subnets
to overcome such failures.

Works such as Yao et al. [18], Liu et al. [19] and Aral
et al. [20] focus on reliability-aware scheduling within edge
computing environments. [18], [19] consider task-offloading
problem considering failures of the edge VMs. [18] consid-
ers independent tasks whereas [19] models the application
dataflows as DAGs. Both of these works assume the VM
failures to be repairable and independent of each other.
[18] tries to achieve a trade-off between cost and reliability,
whereas [19] aims to balance reliability and network usage.
Aral et al. [20] introduce a Bayesian Network-based ap-
proach to model and detect correlated failures among edge
nodes and combine it with link failure probabilities to cal-
culate the joint failure probability of edge devices. When the
minimum required replica count for each single-component
service is provided as input, [20] outputs a redundant place-
ment to minimise the joint failure probability of the replicas.
[11], [12], [21], [22], and [5] explore the effect of replica place-
ment to improve the performance of the fog application
services. [21], [22] consider monolith applications, whereas
[5], [11], [12] model the applications following MSA. [21],
[22] and [11] place the minimum number of required mi-
croservice replicas to satisfy the throughput requirements
of the services but do not consider redundant placements
to handle uncertainty. [5] tries to overcome the throughput
uncertainty of the services where some of the microservices
have multiple candidates, whereas [12] proposes a method
to evenly distribute microservices across the fog resources
to improve service availability.

Qualitative Comparison: DAG workflow scheduling in
the cloud [14], [15], [16], [17] and IoT application offload-
ing in the edge [18], [19], both consider workloads with
ephemeral life cycles where the problem is addressed from
the user perspective such that the DAGs/tasks are deployed
to be used by a particular user, and after the execution,
each task is removed from the environment giving way to
the following tasks in the queue. In contrast to this, our
work considers the Fog Service Placement Problem (FSPP)
described in many previous works such as [5], [11], [12],
where the placement is addressed from the application
provider’s perspective where applications are used by a
large number of users and process continuous requests,
making their life cycle perpetual. This makes it infeasible
to adapt former approaches to reliability-aware FSSP. Fur-
thermore, throughput-awareness, horizontal/vertical scal-
ing, and load balancing become essential aspects of the
FSPP, which are not considered in [14], [18], [19], etc.
Moreover, MSA creates composite services with complex
interaction patterns among microservices. Existing works
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TABLE 1
Comparison of existing research

Work Research Environment Application QoS Failure Characteristics Scalability Batch
Problem Model Reliability Throughput Other Type Repairable Redundancy Replica Load Placement

Calc. Balance
[14] ✓ - Latency Independent ✓ - - - -
[15] Workflow Cloud DAG ✓ - Latency, Cost Ind., Corr.(Network) - ✓ Static - (PB) - -
[16] Scheduling Workflows ✓ - Latency Independent ✓ ✓ Static - (PB) - -
[17] ✓ - Latency Ind., Corr. (Network) - ✓ Static - (PB) - -
[19] Task ✓ - Latency, Bandwidth Independent ✓ - - - ✓
[18] Offloading Edge-Only Independent ✓ - Latency, Cost Independent ✓ - - - ✓
[20] Tasks ✓ - Latency, Cost Correlated - ✓ Dynamic ✓ -
[12] - - Latency - - ✓ Dynamic ✓ ✓
[5] FSPP Fog MSA - ✓ Latency - - ✓ Dynamic ✓ -

[11] - ✓ Latency, Cost - - - Dynamic ✓ ✓
[21] (Edge-Cloud) Monolith - ✓ Latency - - - Dynamic ✓ ✓
[22] - ✓ Latency - - - Dynamic ✓ ✓
Our FSPP Fog MSA ✓ ✓ Latency, Cost Ind., Corr. ✓ ✓ Dynamic ✓ ✓

TABLE 2
Notations

Symbol Definition
D Devices available for microservice placement
A Set of all requested applications for placement.
Ma Set of all microservices of application a ∈ A.
Sa Set of all services defined for application a ∈ A.
As Set of services within A applications.
Ms Set of microservices of service s.
M

s Set of critical microservices of service s.
nm Number of deployed instances of microservice m.
km Number of instances required to satisfy the through-

put demand for microservice m.
P s Set of data paths in service s ∈ AS .
dfs

p Set of all data flows in path p ∈ P s.
Rmm′ Access rate among microservices m & m′.
ls makespan requirement of service s ∈ Sa.
rs Throughput requirement of service s ∈ Sa.
γd Resource availability of device d ∈ D
Γm Resources required by microservice m ∈ a to sup-

port an access rate of rm.
vls makespan violation of service s ∈ Sa.
xd
mi
∈ {0,1} Equals to 1 if ith instance of microservice m is

mapped to d ∈ D, 0 otherwise.

like [18], [20], [21], [22] consider independent tasks or single
component services, thus failing to capture the effect of such
dependencies in modelling system reliability. [5], [12] con-
sider complex interactions among microservices along with
redundant placement of microservices but do not consider
failure characteristics of the edge/fog nodes to improve the
reliability of the placement. Among the works that consider
failures within fog environments, some consider indepen-
dent failures [14], [16], whereas works like [20] consider
correlated failures. [17] considers both independent and
correlated failures but limits it to network failures that can
be isolated at the subnet level.

Based on the above analysis, existing works lack holistic
approaches that capture all the above characteristics. To
this end, in our work, we consider MSA characteristics
(i.e., composite services, microservice interaction patterns,
independent scalability, load balancing, etc.) and propose
a reliability-aware redundant placement approach for ap-
plication batch placement under fog resource failures (both
independent and correlated failures). We further improve
the robustness of the algorithm by dynamically calculat-
ing the number of microservice replicas in a ”throughput
and reliability-aware” manner while reaching a trade-off
between reliability and cost.

Fig. 2. Microservices-based Application Model

3 SYSTEM MODEL AND PROBLEM FORMULATION

3.1 Microservices-based Application Model

Microservices-based applications can be modelled using a
Directed Acyclic Graph (DAG) [11] where vertices denote
microservices and edges represent the interactions among
microservices with direction from client microservice to-
wards the invoked microservice (Fig. 2). Each application,
a ∈ A, is depicted as a collection of microservices, data flows
among them, and a set of composite services providing end-
user requested functionalities denoted as < Ma, df

a, Sa >.
Each microservice is defined based on its resource require-
ments; < Γm, rm > where Γm can be a combination of mul-
tiple resources such as CPU, RAM and storage requirements
of microservice m ∈ Ma to support the request rate of rm.
This acts as the basic deployment unit of each microservice,
which can be independently scaled (horizontally and verti-
cally).

The granularity of MSA supports complex interac-
tions, thus creating various composite service patterns (i.e.,
Chained, Aggregator and Hybrid) with diverse data flow
representations (i.e., chained pattern as a single chain, ag-
gregator pattern where multiple data paths are invoked
and results are aggregated to return a single response, etc.).
These data flow characteristics affect the end-to-end latency
of the composite services. Thus, we represent each service
s ∈ Sa by a tuple containing the set of all microservices of
the service and all possible data paths within the service:
< Ms, P s >.

3.2 Fog Computing Environment Model

The fog environment is represented by a hierarchical archi-
tecture consisting of three main layers: IoT/client devices,
fog layer and cloud layer (Fig. 3). The fog layer, which
resides between end devices and the cloud, contains het-
erogeneous, resource-constrained, distributed devices that
provide computational, networking and storage closer to
the edge of the network. We model the fog layer as clusters
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Fig. 3. An overview of the fog architecture

of such fog nodes managed by multiple service providers.
Client devices access fog resources through gateway devices
such as wireless access points and base transmission sys-
tems using Wireless Local Area Network (WLAN) technolo-
gies. These fog clusters maintain seamless connectivity with
the cloud with Wide Area Network (WAN) links through
fog-cloud gateways. Intra-cluster communication is estab-
lished using high bandwidth Local Area Network (LAN)
to achieve high throughput and low latency within the
fog clusters. As fog devices are heterogeneous in resource
availability, we characterise each device (d ∈ D) based on its
resources (γd). γd can be a combination of resources includ-
ing, but not limited to, CPU, RAM and storage. Moreover,
in this work, we also consider the failure characteristics of
the fog devices, detailed in the following sections.

3.3 System and Failure Characteristics

In this section, we analyse microservices-based application
architecture and fog environments to create a reliability
model.
3.3.1 Reliability Analysis of Microservices Applications
A failure is an event that causes a system to become unable
to perform its intended task reliably [23]. A system can
consist of one or more components, where system reliability
depends on the failure and repair characteristics of these
components. Thus, for the microservices-based application
placement, we identify the system boundaries, decompose
the system to identify its components and their failure
characteristics, and afterwards model their effect on system
performance. Fig.4(a) depicts the multi-level representation
of the system.

For the reliability modelling of a microservices-based
fog applications, we consider each end-user service as a
separate system with reliability requirements realised at
the service level. Each service consists of one or more
independently deployable and scalable microservices with
data dependencies among them. Accordingly, we formulate
the block representation of the system (Fig.4(b)) to analyse
the effect of component failures on the system performance.
For a service S with M

s
critical microservices (M

s ⊂ Ms),
each microservice m ∈ M

s
can be horizontally and verti-

cally scaled to meet the user demand by utilising resource-
constrained fog resources. Service failure occurs when the

service is unable to maintain the expected level of QoS (i.e.,
deadline and throughput) due to the failure of one or more
microservice instances belonging to the service.

If microservice m requires a minimum of k instances to
support the expected throughput demand, m is considered
to be operating as expected if a minimum of k instances
out of the deployed n are running without failures. Further-
more, to maintain service availability, all critical microser-
vices of the service should be running without failures.
For the chained, aggregator and hybrid interaction patterns
discussed in section 3.1, this results in a serial relationship
among critical microservices of the service, where the failure
of one or more critical microservices results in degrading the
service performance or making the service unavailable until
the system is restored.

Hence, for a microservices-based IoT application, re-
liability can be analysed per each composite service by
modelling the service as a serial-parallel hybrid system of
its critical microservices and their replicas. Following this
model, we analyse the effect of underlying fog resource
reliability on the availability of the service under two main
resource failure types: independent and correlated.

(a) Multi-level representation

(b) Block diagram representation

Fig. 4. Multi-component System Reliability Model

3.3.2 Independent Failures
Independent failures in distributed computing environ-
ments include failures of servers/nodes due to factors such
as hardware failures (i.e., disk failures) and software/OS
failures (i.e., kernel failures, firmware failures etc.) that
occur individually and independently among nodes. In lit-
erature, such failures are analysed using failure probability
density functions (i.e., Weibull, Lognormal, Poisson etc.)
of each node defined independently [14], [19]. Using this
information, the reliability of multi-component systems can
be analysed based on metrics such as Time To Failure (TTF)
and availability [20].

Within fog and cloud environments, computation nodes
can be repaired after failures or deployed containers can
be redeployed or migrated to working nodes upon the
failure of the current nodes. As a result, in analysing the
reliability of such systems, TTF can be identified as an
essential metric. By maximising the TTF of services, we can
minimise the number of times the microservice instances
have to be redeployed or migrated to maintain service QoS,
thus improving service reliability in mission-critical scenar-
ios. At the same time, Service Level Agreements (SLAs) of
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the services include the reliability of the service in terms
of expected average uptime availability. For microservices-
based IoT applications, this can be defined at the composite
service level. Hence, in this work, we create the reliability
model considering both TTF and availability.

1. TTF Calculation
Based on the proposed serial-parallel hybrid reliability

model of a service, the TTF of service S can be defined as,

TTF (S) = min[TTF (m);∀m ∈ M
s
] (1a)

For each microservice, the TTF is determined by consid-
ering the k-out-of-n load balancing system represented by
its instances. For microservice m ∈ M

s
, if Im is the set of

|Im| = nm instances, the TTF of m is defined as,

TTF (m) = min[TTF (I ′m);∀I ′m ⊂ Im] (1b)

where |I ′m| ≥ (nm − km + 1).
As we consider failure of each microservice instance due

to the underlying host failures, failure of m occurs when the
fog devices that host nm − km + 1 instances or more of the
microservice fail.

If f [dmi
] indicates failure event of the device d ∈ D

hosting instance mi of microservice m, T (
⋂

mi∈I′
m
f [dmi

])
would depict the time when joint failure of all microservice
instances (mi) of I ′m occurs. Accordingly, TTF (m) can be
reduced to the minimum time to joint failure of the devices
as follows,

TTF (I ′m) = min[T (
⋂

mi∈I′m

f [dmi ])] (1c)

2. Availability Calculation
Based on the proposed reliability model, the availability

of service S can be defined as,

AV(S)t1,t2 =
1

(t2− t1)

∫ t2

t1

AvS(t)dt (2a)

AvS(t) =

{
1 Up(Im,t) ≥ km;∀m ∈ M

s

0 otherwise
(2b)

Eq. 2a defines mean availability of the service S within
[t1,t2] time period in terms of service uptime. Function
AvS(t) denotes if the service is in up or failed status at time
t. In Eq. 2b, function Up(Im, t) calculates the number of
running instances of microservice m at time t. Above two
equations together calculate the average uptime availability
of the service S following k out of n load balancing model.

3.3.3 Correlated Failures
Correlated or dependent failures, also known as Common
Cause Failures (CCF), indicate one or more components of
the system failing simultaneously due to a common cause.
Within distributed computing environments, this can be
due to failures of shared power supplies, virtual networks,
network component failures, software updates, etc. [17],
[20]. Such failures affect the redundant placement decisions
as deploying redundant instances within a group of servers
that belong to the same Common Cause Failure Group
(CCFG) reduces its effectiveness. Considering this, we pro-
pose a Discorrelation Index (DI) for each microservice as
follows:

DI(m) =

∑
∀g∈G min[ |Im\FG(g,Im)|

km
, 1]

|G| (3a)

Eq. 3a considers each sub system (microservice) having
a parallel relationship among its components (microservice
instances). Here, FG(g, Im) returns the instances that belong
to the same CCFG (g ∈ G) and calculates the k out of n
instance satisfaction under CCF. Based on this, calculations
for each service S can be represented as follows:

DI(S) =

∑
∀m∈M

s DI(m)

|Ms|
(3b)

3.4 Throughput-aware Minimum Instance Calculation

In the k out of n parallel model derived for each microser-
vice, k can be determined in a throughput-aware manner
where the throughput requirement is defined per service (rs
for service S). We take the microservice definition proposed
in our application model (section 3.1), where the resource
requirement for the microservice is defined to support a
certain request rate. We consider this as the base microser-
vice instance to be deployed as a Docker container and
calculate the number of instances required to support the
incoming request volume. For each microservice in the DAG
representation, its expected incoming request rate (r′m) is
calculated using the following equations:

r′m =
∑

∀m′∈CM(m)

Rm′m (4a)

Rm′m =

{
rs m′ is Client Module
α.r′m′ otherwise

(4b)

The access rate of the microservice m is calculated by
identifying all incoming edges of m and adding their re-
quest rates (Eq. 4a). To achieve this, the function CM(m)
outputs the client microservices of m based on the DAG
representation of the application. α ∈ [0, 1] indicates the
difference in rates between incoming and outgoing requests
of m′. Afterwards, the minimum instance count for the
microservice m is calculated as,

km =
r′m
rm

(4c)

3.5 Service Latency Model

Due to the granularity of the MSA, deadlines can be de-
fined at the composite service level, where the latency
of each service depends on the data flow pattern of the
service. Considering multiple service composition patterns,
the deadline violation of service S with a deadline of lS can
be calculated based on the latency of the longest data path
of the service. Considering each data path within the service
(p ∈ PS), function L(dfS

p ) calculates the total latency of the
datapath p of service S for the proposed placement. Due to
distributed nature of the fog resources, the total latency con-
sists of network latency (Lnw(df

S
p )) and processing latency

(Lproc(df
S
p )), where network latency is a combination of

transmission latency and propagation latency among differ-
ent fog/cloud nodes where the microservices are deployed.

vlS = max{L(dfS
p );∀p ∈ PS} − lS (5a)

L(dfS
p ) = Lnw(df

S
p ) + Lproc(df

S
p ) (5b)
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3.6 Pricing Model

Cloud service providers support container deployment
through serverless compute engines (i.e., AWS Fargate,
Azure Container Instances etc.) where pricing is calculated
based on the requested virtual CPU (vCPUs), memory and
storage and flexibility is provided to configure each sepa-
rately. In our work, we use the above on-demand pricing
model to determine the price of deploying microservices
within fog and cloud servers using container technology.
For a service S having a set of Ms microservices,

C(S) =
∑

∀m∈Ms

∀d∈D

nm∑
i=1

xd
mi

Cd
m (6)

where, Cd
m indicates the total cost of deploying microser-

vice m on device d. xd
mi

∈ {0, 1} is a binary variable which is
set to 1, if the ith instance of the microservice m is deployed
on device d. According to the above equation total cost for
service S is calculated as the total cost for deployment of all
microservices instances.

3.7 Problem Formulation

Based on the system model, we formulate the reliability-
aware placement problem as a multi-objective optimisa-
tion. As proactive redundant placement of microservices
is limited by the cost of resource allocation and resource
availability in fog environments, the placement problem
aims to reach a trade-off between maximising reliability (Eq.
7) and minimising the cost (Eq. 8). Based on the proposed
reliability model, the reliability of the services is represented
as a composite of three metrics: TTF, availability and DI.
Furthermore, the placement aims to satisfy three constraints:
resource constraints (Eq. 9a), service deadline (Eq. 9b) and
throughput requirements of the services (Eq. 9c).

max P(As) =
∑

∀S∈As

[
TTF (S), AV (S), DI(S)

]
(7)

min C =
∑

∀S∈As

C(S) (8)

Subject to, ∑
∀a∈A

∀m∈Ma

∑
∀mi∈Im

xd
mi

Γm ≤ γd; ∀d ∈ D (9a)

V l
S = 0;∀S ∈ As (9b)

nm ≥ km; ∀m ∈ Ma; ∀a ∈ A (9c)

As application placement within fog environments has
to utilise the limited fog resources and achieve a proper
balance between fog layer resource usage and cloud usage,
the batch placement of applications contributes to priori-
tising services based on heterogeneous QoS requirements.
Thus, we formulate our placement problem to support the
placement of a set of applications A, where all the available
services are depicted by As.

4 RELIABILITY-AWARE PLACEMENT METHOD

4.1 Overview
Based on the problem formulation, we propose a
Reliability-aware Placement Method (RPM) for the proac-
tive redundant placement of microservices-based IoT ap-
plications. Fig.5 presents a high-level representation of the
method. Our approach consists of four main processes:

• Monte Carlo Simulation-based Service Reliability cal-
culation process: It uses empirical data derived from
past failures of the devices to calculate time to failure
(TTF (S)) and availability (AV (S)) metrics based on
independent failures.

• DI calculation process: It calculates DI using data on
CCFGs derived from common course failure data.

• Throughput-aware Scalable Placement (TSP) - It gen-
erates initial microservice placement with the mini-
mum number of microservice instances to satisfy the
throughput demand.

• Reliability-aware Redundant Placement (RRP) - It ex-
tends TSP to accommodate the redundant deployment
of microservices to improve reliability in a cost-aware
manner

Monte Carlo reliability calculation and DI calculation
provide service reliability-related metrics considering in-
dependent and correlated failures of the fog devices (i.e.
TTF, Availability, DI). These metrics are used by TSP and
RRP, which create a hierarchical approach for throughput,
reliability and cost-aware redundant placement of a batch
of IoT applications.

Our proposed approach assumes the availability of pre-
vious failure data of the fog resources and meta-data de-
rived from them. This includes data related to both indepen-
dent failures and correlated failures. Previous works such
as [24], [25] use publicly available failure and repair data
of cloud data centres to derive statistical parameters for
failure and repair distributions using empirical analysis. In
our approach, such parameters derived for each fog node
are provided as metadata to Monte Carlo-based reliability
calculation process to derive reliability metrics based on in-
dependent failures of fog devices. To identify the possibility
of correlated failures among devices, the CCF analysis also
can be conducted using past failure data to identify spatial
and temporal dependencies among fog nodes. [20] proposes
a method based on a Dynamic Bayesian Network to identify
fog nodes that can fail together. Using such approaches, fog
devices that belong to the same CCFG can be determined
to be used as input for calculating DI by the DI calculator
process.

Our placement method (RPM denoted in Fig. 5) uses
these data to propose a redundant placement method
following the reliability model proposed specifically for
microservices-based IoT applications. Thus, the process of
deriving statistical parameters and dependency information
from past failure data is out of the scope of this work. We
base our policy on the derived metadata with the flexibility
of updating the methods used to extract the metadata.

4.2 Monte Carlo Simulation-based Service Reliability
Due to non-constant failure/repair rates of the compo-
nents, the use of Markov chains and Bayesian Networks
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Fig. 5. Reliability-aware placement process

for reliability analysis becomes impractical [26]. For such
repairable systems, Monte Carlo Simulation is better suited.
Monte Carlo Simulation performs a virtual experiment that
simulates random walks within the stochastic environment
using random number generation from known probability
distributions [26]. When the parameters for the failure and
repair distributions of each fog node are estimated from past
failure data, the Monte Carlo method uses values drawn
from a uniform random variable U(0, 1) together with the
Inverse Cumulative Distribution Function (ICDF) of the
distribution to generate failure and repair times repeatedly
to create histories of the system that are used to derive
failure and repair times within a considered time duration.

Data centre failure and repair data analysis presented
in [24], [25] shows that server failures best fit the Weibull
distribution while repair times can be best modelled using
Lognormal distributions. Thus, in our work, we consider
these distributions to model failure and repair times of the
fog nodes. However, the use of Monte Carlo Simulations
to determine reliability metrics makes the approach easily
adaptable to any distribution due to its use of the inverse
transform method.

As most of the failures in fog resources are repairable, the
effect of the repair/maintenance actions on the status of the
fog nodes needs to be considered. Kijima [27] analyses such
systems and proposes a model based on the system repair
condition known as general renewal process which models
general or imperfect repair of the components where the
failed system is returned to a state between new and prior
to the most recent failure by introducing a virtual age to the
component. For a component having virtual age Vi−1 = v
after the (i − 1)th repair, the CDF for the time to ith failure
T becomes,

F (T |Vi−1 = v) =
F (T + v)− F (v)

1− F (v)
(10)

For failures following the weibull distribution this results in
the ICDF,

t1 = η β
√

−ln(1− U)− t′ (11)

where t′ is the time elapsed since last failure of the compo-
nent from the historical data. For i ≥ 2, ICDF is calculated
as,

ti =

[
η β

√
(
vi−1

η
)β − ln(1− U)

]
− vi−1; i ≥ 2 (12)

Fig. 6. Monte Carlo based TTF calculation

where virtual age is calculated using repair degree q [28],
[29] as follows:

vi−1 = q(t1 + t′ + t2 + ...+ ti−1); 0 ≤ q ≤ 1 (13)

Parameter q enables the system reliability measurements
to be adjusted based on repair characteristics. q indicates
the remaining damage after the repair, where q = 0 and
q = 1 represent the two extreme cases of perfect repair and
minimal repair, respectively [30].

Accordingly, we propose Algorithm 1 to calculate the
expected TTF (S) and AV (S) of each service using Monte
Carlo simulations. Fig. 6 shows a visual representation of
how the algorithm calculates TTF for a service. For clarity,
Algorithm 1 is presented as a combination of conducting
Monte Carlo simulations (lines 3-20) and calculating rele-
vant metrics using resultant events (lines 21-26). However,
it’s important to note that Monte Carlo simulation is a less
frequently process that needs to be done as new empirical
data become available or periodically. Calculated events
are stored and used by placement policy which is a more
frequent process. Due to this approach, Monte Carlo simu-
lations can be carried out in cloud servers, thus overcoming
the computation complexity of the process and mitigating
its effect on the placement algorithm.

Results of the Monte Carlo simulation is used by TSP
and RRP algorithms to generate reliability-aware placement
of microservices.

4.3 Stage 1 - Throughput-aware Scalable Placement

Throughput-aware Scalable Placement (TSP) is the first
stage of our hierarchical placement policy (see Algorithm
2). TSP outputs a reliability-aware, scalable placement based
on the throughput requirements of the services, but does
not focus on the deployment of redundant microservice
instances. TSP aims to achieve following objectives :

• O1: Place the minimum number of microservices re-
quired to satisfy the throughput requirement of each
service.

• O2: Dynamically identify microservices to be placed
within fog layer based on the latency requirements of
their services.

• O3: Generate a reliability-aware placement. The gen-
erated placement has two characteristics : high reli-
ability considering possible fog environment failures,
and higher potential to further improve the reliability
through redundant placements in Stage 2.

At this stage, since the number of exact instances per
each microservice is calculated using Eqs. 4a-4c, we use
a Particle Swarm Optimisation (PSO) based meta-heuristic
to achieve throughput-reliability aware placement under
resource and deadline constraints. In our previous work
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Algorithm 1 Monte Carlo based Service Reliability

Input: Placement P for service S, Estimated failure and Repair distri-
butions for each fog device

Output: TTF (S), AV (S), Events
1: M

s ← S.getMicroservices(); D ← P.getAllMappedDevices()
2: Events← {}
3: for d in D do
4: i← 0 ;
5: for i ≤ simTimes do
6: set t← 0.0 ; status← UP ; currentEvent← first event
7: while t ≤ Tmax do
8: u← sample(U(0, 1))
9: if status = UP then

10: ∆t ←timeToNextFailure(d,u,Events.get(d)) ▷This is
calculated using Eqs. 11, 12

11: else
12: ∆t ←timeToRepair(d,u); ▷This is calculated using the

ICDF of Lognormal distribution
13: end if
14: Events.updateAverage(d, currentEvent,∆t)
15: t← t+∆t; currentEvent← next event
16: status← (status = UP )?DOWN : UP
17: end while
18: i← i+ 1
19: end for
20: end for
21: for m in M

s do
22: Dm ← P.getMappedDevices(m); nm ← no of min instances
23: ttfm ← calculate time to (nm − km + 1) or more simultaneous

failures based on Events related to Dm

24: end for
25: TTF (S)← minimum(ttfm; ∀m ∈M

s
)

26: AV (S)0,t ← calculateAvailability(Events) ▷AV(S) is calulated
applying Eqs. 2 to the calculated Events

27: return TTF (S), AV (S), Events

[11], we examined the adaptability of Set-based Compre-
hensive Learning Particle Swarm Optimisation (S-CLPSO)
for microservices-based application placement to satisfy
throughput, latency and cost requirements and introduced
multiple approaches to improve its ability to achieve quicker
convergence and reach the global optimum. Thus, in this
stage, we adapt the improved S-CLSPO algorithm but ex-
tend and further improve it to solve the reliability-aware
placement problem as follows:

1. Availability-aware fitness function (AFF): This func-
tion is introduced to satisfy O3 described above. Being the
first stage of the policy, the aim of TSP is to provide an
output that has the potential to be further improved with
redundant placements in the next stage. To this end, we
introduce a novel fitness function (Eq. 14a) with 3 metrics:
1) TTF of each service, 2) a novel Availability Score for
each microservice (Eqs. 14b, 14c) which is introduced by
modifying Eqs. 2 to calculate the mean number of active
instances during service failure, thus aiming to minimise the
simultaneous failures among its instances and improve the
possibility of finding redundant placements during Stage 2
of the algorithm, and 3) DI of the placement which is also
used to minimise simultaneous failures. For each particle,
fitness is calculated as the summation of reliability, ρ(S) of
all the services considered for placement.

max ρ(S)t1,t2 =
[TTF (S)

t2− t1
+

∑
∀m∈M

s

AS(m).DI(m)
]

(14a)

AS(m)t1,t2 =
1

(tfail)

∫ t2

t1

Asm(t)dt (14b)

Algorithm 2 TSP Algorithm

Input: Placement Requests and Meta-data
Output: Microservices to devices mapping
1: Calculate the number of instances per microservice (Eqs.4)
2: Set iteration count i← 1

▷Prioritize microservices based on deadline of the composite
services they belong to

3: Place all in cloud and calculate deadline violation (Eq. 5a)
4: ToFogM ← deadline violated; ToCloudM ← deadline satisfied

▷Construct a random swarm of N particles under deadline and
resource constraints

5: Particles← initialise(N,ToFogM, ToCloudM )
6: while i ≤ Iterations do
7: Calculate fitness of each particle using AFF;
8: Update pBest and gBest
9: Select exemplar dimensions for each particle

10: Update velocity of each particle
▷Update position using deadline-resource constrained priori-
tised construction

11: for p ∈ Particles do
12: for m ∈ ToFogM do
13: D′ ← eligibleFogDevices(m,p.velocityMatrix)
14: Try to place m in a d ∈ D′ s.t resource constraints satisfied
15: if not placed then notP laced.add(m)
16: end for
17: for m ∈ notP laced do
18: Try to place m in a f ∈ fogDevices s.t resource constraints

satisfied
19: if not still placed then Place in cloud
20: end for
21: Place ToCloudM in cloud
22: end for
23: Set i← i+ 1
24: end while
25: return gBest of the swarm

Asm(t) =

{
Up(Im,t)

km
Up(Im,t) < km

0 otherwise
(14c)

2. Multiple constraint handling: Each particle has to
satisfy three main constraints to be considered a valid place-
ment: throughput requirement of the service (O1), resource
constraints of fog devices and deadline of the services (O2).
The throughput requirement is handled at the start of the
algorithm (line 1) by calculating the minimum number of
instances (km) required. Other constraints are handled at
the particle construction during the initial swarm creation
(line 5) and the position updates conducted in each iteration
(lines 11-22). To achieve deadline satisfaction, first, the dead-
line stringent microservices are identified (lines 3-4) and
prioritised for placement within fog under resource con-
straints. For initialisation (line 5), the algorithm constructs
particles through random assignment of microservice to
devices such that the constraints are satisfied. To further
improve the convergence, we seed the initial swarm with
a reliability-aware heuristic placement that sorts fog devices
based on their time to first failure and map the ToFogM
to devices with the highest time to failures. For the particle
position update process, a velocity-aware position update
method is implemented with deadline-resource constrained
construction of particles to ensure the satisfaction of the
constraints. Position update is conducted in a prioritised
manner, starting with latency-sensitive microservices (lines
12-20). eligibileFogDevices() (line 13) method finds eligible
devices in a velocity-aware manner where devices with
equal or higher velocity compared to the current placed
device are selected as eligible devices for the subsequent
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placement. This prioritises latency-critical microservices for
placement within the fog, thus maximising the deadline
satisfaction of the placement.

3. Updating pBest and gBest: Due to resource con-
straints, fog may not be able to accommodate all latency-
critical services in some particles. Hence, constructed parti-
cles, while satisfying resource constraints, may not be able
to satisfy the deadline requirements after position updates.
To mitigate the effect of such scenarios, pBest and gBest
selection consider deadline satisfaction of the placement
before comparing the fitness values.

The final placement generated from TSP is fed as the
input to the Stage 2 of the proposed method discussed in
the next section.

4.4 Stage 2 - Reliability-aware Redundant Placement

Algorithm 3 RRP Algorithm
Input: TSP , ToFog, ToCloud and Meta-data
Output: Microservices to devices mapping
1: Initialise population of N chromosomes using AHI
2: Calculate fitness using Eqs 16
3: calculateDominants(population) using RDS
4: fronts← calculateFronts(population)
5: crowdingDist← calculateCrowdingDistance(population, fronts)
6: while i ≤ Iterations do
7: childChromosomes← {} ▷2N chromosomes
8: while childChromosomes ≤ N do
9: orderedParents← order(populations, fronts, crowdingDist)

10: parents← tournamentSelect(orderedParents)
11: children←crossover(parents)
12: childChromosomes.add(children)
13: end while
14: mutate(childChromosomes)
15: Calculate fitness using Eqs 16
16: population← population ∪ childChromosomes
17: calculateDominants(population) using RDS
18: fronts← calculateFronts(population)
19: crowdingDist← calculateCrowdingDistance(population, fronts)
20: ordered← order(populations, fronts, crowdingDist)
21: population← get 1st N chromosomes
22: calculateDominants(population) using RDS
23: fronts← calculateFronts(population)
24: crowdingDist← calculateCrowdingDistance(population, fronts)
25: end while
26: return population.best + TSP

During this stage, the placement generated from TSP is
used as the input to the Reliability-aware Redundant Place-
ment (RRP) algorithm (see Algorithm 3) to create redundant
microservice deployments to improve the reliability further.
RRP aims to achieve following objectives:

• O1: Dynamically place redundant microservice instance
to satisfy the reliability requirements of the services.

• O2: Achieve lower deployment costs while ensuring the
reliability demands.

As the number of redundant instances is not known
prior to algorithm execution but decided based on the opti-
misation objectives, we propose an algorithm by improving
NSGA-II proposed in [31]. NSGA-II is a genetic algorithm
for multi-objective optimisation where each placement can
be depicted as a 2D chromosome . This representation
enables the count of instances to be adjusted flexibly to
reach a trade-off between reliability and cost, thus satisfying
O1. We make multiple improvements to adapt the NSGA-II
algorithm to our specific placement problem as follows:

1. Availability-aware Heuristic Initialisation (AHI): This
heuristic is used to populate the initial population in a
reliability-aware manner (Algorithm 4) to achieve faster
convergence by having a strong population as the start-
ing point of the algorithm. To achieve this, AHI first cal-
culates alternative fog devices for each device based on
how they complement each other from a reliability per-
spective (lines 3-9). We introduce a alternative device score
(Alt Scored1,d2 ) based on TTF improvement (ttfd1,d2

ext ) and
availability improvement (avd1,d2

ext ) as follows:

Alt Scored1,d2 = ttfd1,d2
ext + avd1,d2ext (15a)

ttfd1,d2
ext =

{
ttfd1∪d2

−ttfd1
t2−t1

{d1, d2} ̸⊂ g;∀g ∈ G

0 otherwise
(15b)

avd1,d2ext =


[
∫ t2
t1 Avd1∪d2

(t)dt−
∫ t2
t1 Avd1 (t)dt]

tf,d1
{d1, d2} ̸⊂ g; ∀g ∈ G

0 otherwise
(15c)

Eqs. 15 calculate the reliability improvement of deploy-
ing microservice instances on both d1 and d2 compared to
deploying only on d1, where tf,d1 indicates the total failure
duration of d1 alone. To maintain the diversity among the
generated chromosomes, results of the heuristic are made
random by changing the order of considered mappings
from TSP (line 13) and changing the order of the alternative
devices (lines 19-20) to select the best alternative device out
of a portion of the devices selected from D′.

Algorithm 4 AHI Algorithm
Input: Number of chromosomes (N ) and Meta-data
Output: Initial population
1: initPopulation← {}

▷Calculate Per Device Alternatives
2: altDevices← {} ▷Alternative devices and scores per device
3: for d ∈ fogDevices do
4: for d′ ∈ [fogDevices− {d}] do
5: altScore← calculateAtlScore(d, d′) ▷Use Eqs. 15
6: if altScore ̸= 0 then altDevices.add(d, d′, altScore)
7: end for
8: Order altDevices.get(d) in descending fitness score
9: end for

10: for n ∈ N do
11: ordered← (n ≤ N/2)?TRUE:FALSE
12: P ← fog layer placement from TSP (list of {m, d})
13: shuffle(P )
14: for (m, d) ∈ P do
15: D′ ← altDevices.get(d)
16: if ordered is TRUE then
17: d′ ← choose device with highest altScore from first device

of D′ s.t resource constraints are met
18: else
19: shuffle(D′)
20: d′ ← choose device with highest altScore from first x

devices of D′ s.t resource constraints are met
21: end if
22: if d′ is null then
23: d′ ← select random device from fogDevices s.t resource

constraints are met
24: end if
25: initPopulation.getChromosome(n).place (m, d′)
26: end for
27: end for
28: return initPopulation

2. Chromosome fitness and Reliability-aware Dominant
Selection (RDS): We define the fitness of the chromosomes
using 3 parameters including availability (Eq. 16a), TTF (Eq.
16b) and cost (Eq. 8) of the placement. Based on the problem
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formulation in section 3.7, the final fitness values are created
as follows:

f1 =

[
1−

∑
∀S∈As

(Max[ρs −AV (S), 0])/ρs

Sv
num

]
DI(As) (16a)

f2 =

∑
∀S∈As

TTF (S)

Snum.T
DI(As) (16b)

where ρs indicates the reliability expectation of the ser-
vice in terms of average uptime availability and Sv

num de-
notes the number of reliability expectation violated services.
To maximise the reliability satisfaction while reducing the
cost, we propose RDS (Algorithm 5) for dominant selection
where higher priority is given to satisfying ρs using f1 (lines
1-4) and non-dominated sorting is used for f2 and cost (lines
5-10). O2 is satisfied through this process.

Algorithm 5 RDS Algorithm
Input: Chromosomes Ci and Cj

Output: TRUE if Ci dominates Cj , FALSE otherwise
1: if Ci.f1 > Cj .f1 then
2: dominates← TRUE
3: else if Ci.f1 < Cj .f1 then
4: dominates← FALSE
5: else
6: if (Ci.f2 ≥ Cj .f2 AND Ci.cost ≤ Cj .cost) AND

(Ci.f2 > Cj .f2 OR Ci.cost < Cj .cost) then
7: dominates← TRUE
8: else
9: dominates← FALSE

10: end if
11: end if
12: return dominates

3. Generation of new population: RRP uses tournament
selection, single-point crossover with random point selec-
tion and a custom mutation process to evolve the current
population into the next. The mutation operator randomly
selects between replica growth and replica removal. The de-
vice for replica growth is chosen by selecting a microservice
placement and making a tournament selection on Alt Score
values of its alternative fog devices. Resource constraints are
validated afterwards, and chromosomes undergo a mend-
ing process in case of violation by moving microservice
instances from resource-violated fog devices.

Finally, RRP acquires the best chromosome of the final
population by selecting the one with the highest weighted
sum of the three objectives. To adjust the weighted sum
as a maximisation objective, the cost is normalised using
(MaxCost−Cost)/(MaxCost−MinCost) for each chro-
mosome. RRP combines the selected chromosome with TSP
output and returns the final placement.

Thus, TSP and RRP collectively produce a reliability,
throughput and cost aware placement of microservices by
incorporating knowledge on failure characteristics of the fog
environment through Monte Carlo based reliability calcula-
tion and DI calculation.

5 PERFORMANCE EVALUATION

5.1 Experimental Configurations
For the evaluations, we use iFogSim2 [13] simulated fog en-
vironment. iFogSim2 provides support for modelling hier-
archical fog-cloud architecture and microservice application
architecture along with microservices-related functions such

TABLE 3
Simulation Parameters

Parameter Value
Communication links LAN 0.5ms, 1 Gbps
(latency, bandwidth) WAN 30ms, 100 Mbps

WLAN 2ms, 150 Mbps
Fog device resources CPU (MIPS) 1500-3000

RAM (GB) 2-8
Storage (GB) 32-256

Cost Model CPU (Cloud) $0.040480 per 150 MIPS per hour
parameters RAM (Cloud) $0.004445 per GB per hour

Storage (Cloud) $0.000111 per GB per hour
Increase factor for fog 1.2-1.5

QoS parameters Reliability above 99.95%
Throughput 200-800 requests/s

TABLE 4
Parameters for Placement Algorithms

Parameter TSP RRP
No. of particles/ chromosomes in swarm 100 100
No. of iterations 300 300
ωmin - ωmax 0.4 - 0.9
c 1.49445 -
m (refresh gap) 0 -

as horizontal scalability, load balancing and dynamic service
discovery, which are essential in modelling and simulating
our reliability-aware deployment scenario. Furthermore, the
simulator is easily extendable to simulate failure scenarios
of the fog nodes.

We model the fog environment according to the archi-
tecture presented in section 3.2. Network parameters of the
fog environment include bandwidth and latency among
different devices of the fog architecture. We extract these
values from previous studies on network performance of
edge networks following novel communication technologies
as follows: WLAN communication (150Mbps, 2ms) based on
WiFi-6 [32] and 5G [33], LAN connections (1Gbps, 0.5ms)
based on gigabit Ethernet technology [34], and fog-cloud
connections with WAN (30ms, 100Mbps) [11]. Fog device
resources are defined using three parameters: CPU (1500-
3000 MIPS), RAM (2-8 GB) and storage (32-256 GB) [35],
[36]. These values represent resource availability of hetero-
geneous fog devices such as RaspberryPi, Dell PowerEdge,
Jetson Nano, etc. The cost of the resources is modelled
following the price model of AWS Fargate and extended to
the fog layer with an increase factor of 1.2-1.5 as proposed
in [37].

Due to the novelty of the fog computing paradigm,
there’s a lack of availability in fog computing reliability
data. Hence, following previous reliability studies in the
area [20], we create synthetic failure traces based on real-
world failure data available for distributed systems. In our
work, we use the failure characteristics presented in [25],
which analyses Google cloud trace logs consisting of around
12,5000 servers monitored over 29 days. Failure characteris-
tics of the fog devices in our simulated environment are
modelled based on the results of the empirical analysis done
on the said data set and fed to our placement algorithms.
Failure and repair events during the simulation time are
also synthesized accordingly.

Workloads used in the performance evaluation are syn-
thetically generated following the microservices-based ap-
plications used in the literature [12], [38]. Workloads model
multiple IoT applications such as smart health monitor-
ing [39], smart parking [40], etc. and also follow general
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microservice composition patterns such as chained, aggre-
gator, and hybrid patterns. Diversity among applications
is ensured by varying microservice resource requirements
in terms of CPU (300-900 MIPS), bandwidth (200-1500
bytes/packet), base request rate (100-200 requests/s) follow-
ing previous IoT simulation benchmarks [11], [13].

5.2 Evaluation Overview

We conduct the evaluation of the proposed placement policy
under two main criteria as follows:

1. RPM Algorithm Performance Evaluation (results
presented in Section 5.3) - As explained in sections 4.3
and 4.4, we improved the convergence of the two meta-
heuristic algorithms used in our placement policy through
multiple novel approaches, namely AFF, AHI, RDS. To val-
idate the effect of proposed improvements, we analyse the
capability of the RPM algorithm to converge towards better
placements by comparing it with multiple variants of the
algorithm designed to capture the effects of the proposed
improvements. To this end, we use multiple metrics that
determine the fitness of the placement including Reliability
(R.S: Reliability satisfaction, FTTF: First Time To Failure),
Cost, and we also introduce a parameter representing Trade-
off between reliability and cost (Trade Ratio). We use the
results obtained in this stage to validate various improve-
ments we introduced to S-CLPSO and NSGA-II algorithms.

2. RPM Algorithm Placement Evaluation (results pre-
sented in Section 5.4) - Here, we evaluate our proposed
approach with baseline placement approaches (including
previous representation works) to demonstrate the perfor-
mance improvements due to different aspects considered
in our proposed placement approach. To this end, we
consider 3 main aspects: the use of proactive redundant
placements to improve reliability, the effect of incorporating
throughput-aware dynamic scalability of microservices and
finally the impact of considering both independent and
correlated failures.

Evaluation metrics used in this work are described be-
low.

1. Reliability Satisfaction (R.S): Reliability Satisfaction
calculates the uptime availability (AV (S)) of each deployed
service S for the observed duration of time under Fog
failures and compares it with the reliability expectation (ρs)
of each service as follows:

R.S =

∑
∀S∈As

100− (Max[ρs −AV (S), 0]) ∗ 100

Sv
num

(17)

2. First Time To Failure (FTTF): Indicates the average
time to first failure of deployed services as a percentage
of the total considered time duration. This follows the
definition presented in equation 1a.

3. Cost of Deployment: Normalised total cost of deploy-
ment for all deployed microservices during the observed
time period. This follows the definition presented in equa-
tion 6.

4. Trade Ratio: Reliability degradation per unit cost re-
duction. This metric is used to evaluate the algorithm based
on its ability to converge to a result which can improve
reliability in a cost-aware manner.

The above parameters are selected to cover the main
objectives (reliability as the primary objective and cost of
deployment as the secondary objective) of the proposed
placement policy.

5.3 RPM Algorithm Performance Evaluation
5.3.1 Experiment Overview
In this section, we evaluate RPM’s ability to converge to a
solution that can reach a trade-off between cost and reliabil-
ity. To this end, we consider multiple design decisions made
in our proposed algorithm (RPM) and evaluate their effect
on the performance of the placement. For the comparison,
the following variants of the algorithm are used,

1) No AFF: In this approach, the fitness function of the
TSP uses Eqs. 2a, 2b to calculate the availability, instead of
the Availability Score proposed in AFF.

2) No AHI: Creates random chromosomes for the initial
population of RRP algorithm, without using Algorithm 4.

3) No RDS: In this approach, reliability and cost have
equal priority during dominant chromosome selection.
Hence, generic non-dominated sorting is used instead of our
proposed RDS approach.

4) No Cost-awareness (No CA): Maximises reliability
without having cost as a limiting factor for the redundant
placement.

We carry out the experiments for 6 workloads covering
both independent and correlated failures. The algorithm’s
search space depends on three main parameters: the number
of composite services in the batch placement, the number
of fog devices eligible for placement and the time duration
considered. We create the workloads to capture performance
with variations in all three parameters. All variants use the
same parameters for the algorithms: TSP with 100 parti-
cles, 300 iterations and RRP with 100 chromosomes, 300
iterations. Based on the results, we compare each approach
with RPM to evaluate its ability to reach a better trade-off
between reliability and cost.

5.3.2 Results Analysis
We calculate the Trade-off Ratio of each approach with
respect to the No CA. The results are depicted in Tables
5 and 6 where average R.S, FTTF and Cost are calculated
with 95% confidence interval. The following analysis is
conducted comparing different variants of the algorithm.

The aim of AFF is for the TSP (Stage 1) to produce a
placement such that it is easier for the RRP (Stage 2) to
find redundant placements that can improve the overall
reliability of the final output. We can validate this by com-
paring No AFF and RPM. Based on the results, it is evident
that R.S and FTTF of No AFF are lower than RPM for all
considered workloads. Moreover, No AFF does not provide
sufficient cost advantage compared to RPM, which is further
proven by the high trade-off ratio of the resultant placement.
This shows that having AFF improves RRP’s ability to find
redundant placements that can easily enhance the reliability
of the final placement while reducing the cost.

In RPM, we have introduced a heuristic to populate
the initial population of RRP such that nodes selected for
redundant placement try to complement the output from
the TSP. The aim of introducing this method is to improve
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TABLE 5
Evaluation of different varients (under independent failures)

Scenario1 Scenario2 Scenario3
Approach R.S FTTF Cost Trade R.S FTTF Cost Trade R.S FTTF Cost Trade

(%) (%) (0-1) Ratio (%) (%) (0-1) Ratio (%) (%) (0-1) Ratio
RPM 98.813 93.533 0.531 0.036 98.577 94.51 0.609 0.049 98.239 91.784 0.713 0.069

±0.201 ±0.652 ±0.005 ±0.205 ±0.503 ±0.005 ±0.307 ±0.823 ±0.007
No AFF 95.249 83.019 0.472 0.139 93.073 81.654 0.524 0.218 91.314 73.317 0.624 0.324

±0.435 ±0.906 ±0.007 ±0.494 ±0.899 ±0.007 ±0.799 ±1.634 ±0.01
No AHI 97.54 91.005 0.539 0.086 97.664 92.641 0.592 0.085 97.55 90.62 0.731 0.127

±0.344 ±0.773 ±0.007 ±0.263 ±0.577 ±0.006 ±0.404 ±0.917 ±0.01
No RDS 90.498 76.085 0.314 0.192 88.161 76.321 0.373 0.254 80.992 64.307 0.367 0.364

±0.594 ±0.882 ±0.002 ±0.405 ±0.603 ±0.001 ±0.565 ±0.957 ±0.002
No CA 99.753 98.808 0.795 N/A 99.637 98.624 0.825 N/A 99.328 96.16 0.871 N/A

±0.134 ±0.314 ±0.009 ±0.114 ±0.29 ±0.008 ±0.161 ±0.568 ±0.008

TABLE 6
Evaluation of different varients (independent and correlated failures)

Scenario4 Scenario5 Scenario6
Approach R.S FTTF Cost Trade R.S FTTF Cost Trade R.S FTTF Cost Trade

(%) (%) (0-1) Ratio (%) (%) (0-1) Ratio (%) (%) (0-1) Ratio
RPM 98.305 92.474 0.633 0.064 98.894 96.237 0.762 0.103 99.417 95.968 0.592 0.025

±0.29 ±0.812 ±0.015 ±0.196 ±0.443 ±0.01 ±0.14 ±0.563 ±0.011
No AFF 97.032 89.297 0.643 0.148 96.606 92.438 0.728 0.397 98.832 93.734 0.566 0.083

±0.427 ±0.92 ±0.013 ±0.379 ±0.576 ±0.009 ±0.222 ±0.743 ±0.012
No AHI 96.395 88.094 0.619 0.164 97.449 93.001 0.694 0.178 99.124 95.914 0.632 0.188

±0.474 ±0.943 ±0.015 ±0.333 ±0.622 ±0.013 ±0.201 ±0.586 ±0.014
No RDS 87.252 69.859 0.291 0.238 88.161 76.321 0.323 0.235 87.798 72.487 0.233 0.278

±0.724 ±0.925 ±0.002 ±0.405 ±0.602 ±0.001 ±0.525 ±0.809 ±0.001
No CA 99.376 96.753 0.801 N/A 99.225 97.268 0.794 N/A 99.576 97.337 0.656 N/A

±0.178 ±0.584 ±0.01 ±0.158 ±0.39 ±0.008 ±0.122 ±0.464 ±0.011

the convergence of the RRP by creating an initial population
of better solutions. We verify this by comparing RPM with
No AHI, which randomly initialises the population. Results
show that RPM can achieve higher reliability satisfaction
and FTTF. The costs incurred by No AHI vary depending
on the scenarios showing slightly higher or lower cost
values than RPM. However, No AHI records a lower trade-
off ratio demonstrating RPM’s ability to reach a better trade-
off between objectives.

In No RDS, traditional non-dominated sorting gives
equal priority to cost and reliability, which results in a lower
cost at the expense of lower reliability (over 9% reliability
violation for considered scenarios). Thus, for mission-critical
services that usually expect higher availability (around
99.99%), this approach fails to achieve a proper balance.
With our proposed RDS approach, the placement algorithm
handles multi-objective optimisation while giving the reli-
ability aspect higher priority than cost. Considering these
factors, RPM can reach a better trade-off between reliability
and cost for services with high-reliability requirements.

Based on the above analysis, the introduced improve-
ments (AFF, AHI and RDS) ensure RPM’s ability to con-
verge towards a placement with higher reliability while
minimizing the deployment cost as a secondary objective.
Thus, we use RPM in the following section to provide
reliability-aware placements under different scenarios for
further evaluation. However, the algorithms are designed
flexibly to switch between these variations easily depending
on the kind of trade-off required.

5.4 RPM Algorithm Placement Evaluation
5.4.1 Experiment Overview
In this section, we evaluate the efficiency of the placement
generated by RPM under multiple aspects addressed by the
algorithm: the effect of reliability-aware redundant place-
ment, the impact of throughput-awareness, and finally, CCF
consideration. To indicate the behaviour of the algorithms
under different failure types, we start with independent
failures in the first two experiments and add CCF to the final
experiment to analyse the overall effect. We compare our
approach with multiple alternative placement approaches
as follows:

1) No Red: Does not consider the redundant placement
of the microservices but tries to place the minimum required
microservice instances to maximise the reliability of the
placement using TSP.

2) Even Dist: The placement method proposed in [12],
where microservice instances are evenly replicated across
the fog resources while maximising fog resource usage.

3) Reliability-aware Heuristic (R Heu): Uses the two
heuristic approaches used in our placement policy to pop-
ulate the initial populations of TSP and RRP algorithms.
R Heu represents an improved adaptation of primary-
backup copy placement concept in [17] to our FSPP problem
with load sharing.

5.4.2 Results Analysis
Effect of Redundant Placement - This section evaluates
”proactive redundant placement” handled in stage 2 (RRP)
of the hierarchical placement process. For this evaluation,
we use two workloads (WL1 with six composite services
and 30 devices, WL2 with 12 composite services and 60
devices) and consider two time periods (20 days, 30 days).
Such a selection of workloads covers all three parameters
that affect the solution space. Fig. 7 depicts the results of the
different approaches.

Out of the approaches used in this comparison, all the
approaches except No Red utilise independent scalability of
the microservices to replicate them across fog environments.
Thus, in this scenario No Red records the lowest reliability
at a lower cost ( see Fig. 7). Due to redundant placements,
R Heu records improved reliability compared to No Red.
However, being a heuristic approach, R Heu lacks control
over the number of redundant placements, which hinders
it from achieving higher satisfaction compared to RPM.
The reliability satisfactions of both of these approaches
unacceptable for mission-critical services with stringent re-
liability expectations. Even Dist approach shows reliability
metrics closer to RPM, especially in WL2 where the number
of fog devices is higher, allowing Even Dist to deploy more
replicas to ensure even distribution of instances. However,
this approach incurs higher costs due to reliability-unaware
replication and shows a higher reduction in reliability met-
rics as the considered time period increases.

Overall the results presented in Fig. 7 show that our
policy is able to outperform other approaches in terms of
reliability satisfaction while improving FTTF (up to 25%
and 40% improvement in reliability satisfaction and FTTF,
respectively). Although RPM incurs higher costs compared
to No Red and R Heu due to higher flexibility in its replica
placements, reliability and cost awareness of the algorithms
allow it to reach higher reliability satisfaction (over 98%)
while reducing the cost by more than 8% compared to
Even Dist which also use independent scalability of mi-
croservices for redundant placements. Thus, RMP limits
the deployment cost of redundant placements as secondary
objective. Above results demonstrates that RMP is able
to utilise independently deployable and scalable nature of
microservices to utilise limited Fog resources to improve
reliability of mission-critical IoT services through proactive
redundant placement of microservices.

Throughput-aware Scalability of the Placement - In
this section, we evaluate how throughput awareness, to-
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Fig. 7. Evaluation of proactive redundant placement

Fig. 8. Evaluation of throughput-aware scalability

gether with MSA, contributes to higher performance (see
Fig. 8). To this end, we use two workloads: a Uniform
workload where all services have similar throughput re-
quirements and a Varied workload having heterogeneous
throughput requirements among services.

All considered approaches except Even Dist incorporate
throughput awareness into the placement. No Red places
the minimum required instances (k) to satisfy throughput
requirements, whereas R Heu deploys redundant microser-
vice instances on top of that using the AHI algorithm.
RPM formulates the problem as a k out n load balancing
problem where n is determined robustly based on the failure
characteristics of the environment. As a result, RPM reaches
the highest reliability satisfaction in both scenarios (around
98.5% in both as shown in Fig. 8), adapting well to the het-
erogeneous throughput needs. Although No Redundancy
and R Heu have lower performance due to limitations in
proactive redundant placement, they show an increase in re-
liability metrics in the Varied scenario compared to Uniform.
This is also a result of combining throughput and reliability
awareness, where it’s easier for these two approaches to
ensure high reliability for low throughput services with less
number of instances, which ultimately improves the aver-
age reliability compared to a uniform throughput scenario.
Compared to the above three approaches, Even Dist shows
a considerable decline (98.4% in Uniform to 95.1% in Varied)
in reliability metrics in the Varied scenario as this approach
tries to replicate instances for all services evenly without
prioritising the ones with higher throughput requirements.

Above results demonstrate that our proposed RPM ap-
proach achieves higher reliability due to incorporation of
throughput aware dynamic calculation of redundant mi-
croservice instances. It improves the robustness of the algo-
rithm to adjust to heterogeneous throughput requirements
of the IoT services, thus allowing proper utilisation of
limited fog resources to generate a scalable microservice
placement using both horizontal and vertical scalability.

Effect of CCF - In this section, we evaluate the effect of
considering common cause failures along with independent
device failures. To assess the robustness of the proposed

Fig. 9. Evaluation of CCF effect

fitness functions, two main categories of CCFGs are consid-
ered: a non-overlapping scenario where device groups can
be isolated and overlapping scenarios where devices can
belong to multiple CCFGs in an overlapping manner (see
Fig. 9).

For these two scenarios, RPM is compared with
CCF Unaware variation of the RPM algorithm and
Even dist approach. In both scenarios, RPM is able to take
the effect of CCFGs into consideration for the placement de-
cisions and hence, records the highest reliability satisfaction
(up to 2.5% improvement). Because of CCFGs, RPM spreads
redundant microservice instances across CCFGs such that
failures of such groups would be isolated. This results in
a slight increase in cost compared to CCF Unaware (up to
3.5%), but still able to achieve around 20% cost reduction
compared to Even dist. This behavior demonstrates that by
considering CCFs, RPM is able to place redundant microser-
vice instances more efficiently by mitigating the effect of
simultaneous failures of redundant instance.

Based on the experiments, it is evident that RPM pro-
vides a robust approach capable of delivering throughput-
aware redundant placements under both independent and
correlated failures of fog environments, while achieving a
balance between reliability and cost. Moreover, the pro-
posed algorithm is capable of navigating solution spaces of
different sizes successfully and achieves higher reliability
satisfaction compared to other baseline approaches. RPM
also improves the cost of deployment as a secondary objec-
tive, thus providing an intelligent mechanism for utilising
limited Fog resources.

6 CONCLUSIONS AND FUTURE WORK

We proposed a reliability model for microservices-based IoT
applications, considering their placement within resource-
constrained and heterogeneous fog devices where indepen-
dent and correlated failures exist within the fog environ-
ments. Accordingly, we proposed a proactive redundant
placement policy that utilises the independently deployable
and scalable nature of the microservices to support the high-
reliability requirements of the mission-critical IoT services
in a throughput and cost aware manner. We implemented
a hierarchical algorithm consisting of PSO and NSGA2-II
algorithms and improved them with multiple approaches to
improve the algorithm’s performance. Moreover, we eval-
uated our approach through extensive experiments under
two main aspects: performance improvements of the algo-
rithm compared with multiple alternative approaches and
efficiency of the resultant placement compared to multiple
benchmark placement policies. The obtained results show
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that our policy can successfully navigate different solution
spaces and provide robust placements that can achieve high
reliability (up to 25% improvement in reliability) consid-
ering independent/correlated failures, throughput require-
ments of the services and cost of deployment.

Being novel distributed computing paradigm, fog com-
puting lacks real-world commercial implementations or
large scale test beds to extract large failure datasets to
implement and evaluate the performance of the fog appli-
cation scheduling algorithms at scale. Thus, in this work,
following the evaluation approaches used by state-of-the-
art fog computing research, we implemented our approach
in a prominent simulator for simulating the application
placement in fog environments. In order to reduce the
implementation complexities when translating this work
in to an real world fog computing control planes, we’ve
proposed a modular framework which make failure data
related calculations separate from the placement algorithms,
so that they can be further optimised and run separately, to
provide the output periodically to the placement algorithm.
Moreover, this makes Monte Carlo simulation of failure
data, a less frequent process that can be carried out in the
Cloud to resolve the computation complexities of processing
large data volumes.

Thus, in future work, we plan to implement our ap-
proach within a real-world Fog computing test-beds. More-
over, we plan to extend our approach to incorporate ma-
chine learning-based approaches to process past failure data
of the fog environment to derive parameters related to the
independent and correlated failures. We also plan to explore
methods to obtain a trade-off between proactive and reac-
tive placement methods to further reduce the deployment
cost without compromising reliability.
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