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Abstract—Resource usage prediction in cloud data centers is
critically important. It can improve providers’ service quality
and avoid resource wastage and insufficiency. However, the time
series of resource usage in cloud environments is characterized by
multidimensional, nonlinear, and high-volatility characteristics.
Achieving high-accuracy prediction for time series with such
characteristics is necessary but difficult. Traditional prediction
methods based on regression algorithms and recurrent neural
networks cannot effectively extract nonlinear features from
data sets. Besides, many deep learning models suffer from
gradient explosion or gradient vanishing during the training
stage. Current commonly used prediction methods fail to uncover
some vital information about the frequency domain features
in the time series. To resolve these challenges, we design a
Forecasting method based on the Integration of a Savitzky—
Golay (SG) filter, a frequency enhanced decomposed transformer
(FEDformer) model, and a frequency-enhanced channel attention
mechanism (FECAM), named FISFA. It adopts the SG filter
to reduce noise and smooth sequences in the raw sequences of
resources. Then, we develop a hybrid transformer-based model
integrating FEDformer and the FECAM, effectively captur-
ing the frequency domain patterns. Besides, a meta-heuristic
optimization algorithm, i.e., genetic simulated annealing-based
particle swarm optimizer, is proposed to optimize key hyperpa-
rameters of FISFA. Then, FISFA predicts the future needs for
multidimensional resources in highly fluctuating traces in real-
life cloud environments. Experimental results demonstrate that
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FISFA achieves higher accuracy and performs more efficient
prediction than several benchmark forecasting methods with
realistic data sets collected from Alibaba and Google cluster
traces. FISFA improves the prediction accuracy on average
by 32.14%, 25.49%, and 27.71% over vanilla long short-term
memory, transformer, and Informer methods, respectively.

Index Terms—Cloud computing, deep learning, frequency
enhancement, Savitzky—Golay (SG) filter, time series prediction.

I. INTRODUCTION

S COMPANIES and organizations increasingly rely

on cloud computing infrastructure, cloud data centers
(CDCs) are growing popular due to their high availability
and flexibility [1], [2]. These CDCs provide a variety of
software and hardware, including computing, storage, and
network resources in a pay-as-you-go way [3]. Individuals or
organizations can rent computing resources as cloud services
according to their needs. Cloud service providers [4] can
avoid wasting resources and save the cost of managing
infrastructure. Current famous Internet companies like Google,
Microsoft, and Amazon have almost countless computing
devices. To maximize the utilization of these computing
resources, they have established their CDCs. Their computing
tasks generate resource usage time series, including CPU,
memory, disk, network, and I/O [5]. However, the high
volatility and nonlinearity of the time series may result in
over or under provisioning of resources [2], [6], [7]. For
example, simultaneously, a large influx of tasks can easily
cause resource shortages [8]. During periods with a few tasks,
such as midnight, idle server clusters can result in resource
wastage. According to [9], the mean CPU utilization of the
whole servers in Alibaba CDCs varies between 5% and 85%,
showing considerable fluctuations. Thus, designing an accurate
prediction method that can effectively extract relationships and
features among multidimensional resource usage time series
is critically important.

Time series prediction has attracted a considerable number
of studies [10]. Traditional prediction approaches include
linear regression [11] and autoregressive integrated moving
average (ARIMA) [12], [13], [14]. Nevertheless, when the
regularity of the time series is not obvious, most of them
cannot achieve the accurate prediction. In addition, these
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approaches fail to extract complicated characteristics and
patterns of time series data sets efficiently. Unlike the above-
mentioned methods, recurrent neural network (RNN) models
have stronger sequence processing capabilities. Their vari-
ants [15], [16], [17], [18], [19] have been thoroughly employed
for the time series prediction in the past few years. For
example, long short-term memory (LSTM) is adopted to
predict future short-term wind power [15]. Gupta et al. propose
a sparse bidirectional LSTM (BiLSTM) network for future
resource usage prediction. Saha et al. choose the LSTM-
based encoder and decoder for the multistep Internet traffic
prediction.

However, they cannot efficiently capture long-term
dependencies and association information among different
dimensions in the time series. Currently, some studies [20],
[24], [25], [26], [27] have used transformer-based models to
achieve the prediction. For example, a variant named multisize
patched spatial-temporal transformer is presented to achieve
the urban crowd prediction in [20]. A nonautoregressive
transformer-based model is designed for vehicle trajectory
prediction. A variant that combines the transformer and the
Markov-chain Monte Carlo algorithm is designed to predict
electrical energy consumption. However, these studies cannot
effectively extract the frequency domain information in the
series. To solve the abovementioned challenges, we design a
Forecasting method based on the Integration of a Savitzky—
Golay (SG) filter [21], a frequency enhanced decomposed
transformer (FEDformer) model [22], and a frequency-
enhanced channel attention mechanism (FECAM) [23], named
FISFA for short. FISFA first adopts the SG filter to reduce
noise and smooth the raw time series of resources. Then,
FISFA adopts the FEDformer model to accurately predict
resource usage time series by capturing their global features.
In addition, FISFA adopts the FECAM module to improve
the capability for extracting frequency features. Our key
contributions are summarized as follows.

1) This work innovatively applies a noise reduction method
of the filter of SG. It can smooth extreme points in
the time series, highlight critical features of the data,
and facilitate subsequent learning and extraction of
features.

2) This work designs an improved transformer-based
model integrating FEDformer and FECAM to
achieve higher forecasting accuracy of resource usage
series. The proposed method can learn frequency
domain information and relationships among the
multidimensional time series of resources.

3) This work designs a new hybrid metaheuristic algo-
rithm, i.e., genetic simulated annealing-based particle
swarm optimization (GSPSO) to optimize the setting of
hyperparameters. GSPSO integrates quick convergence
of PSO, global search ability of simulated annealing
(SA), and diversity of genetic algorithm (GA).

The remainder of this article is structured as follows.
Section II discusses the related work. Section III describes
the framework of FISFA. Experimental results are presented
in Section IV. Section V concludes this article along with a
discussion on future work..
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II. RELATED WORK

Recent studies have proposed predicting computing
resources. These prediction methods mainly include two
kinds: 1) classical and 2) deep learning-based prediction
methods.

A. Classical Time Series Prediction Methods

Traditional statistical analysis and regression methods are
employed in resource usage forecasting in cloud computing.
Gyeera et al. [28] adopted a boosted decision tree (BDT)
regression method in a realistic testbed in the Azure cloud.
BDT performs better than other machine learning algorithms,
such as stochastic gradient descent and ordinary least square
linear regression. However, as an iterative algorithm, BDT
requires a long training time. Zhang et al. [29] proposed
an XGBoost-based lane change prediction method with the
realistic series data collected from autopilot vehicles. It has
higher forecasting accuracy than adaptive boosting, gradient
boosting trees, and random forest. However, the data set used
in this work is less volatile than the sequence of resources
in CDCs. An integrated prediction method that combines
seasonal ARIMA (SARIMA) and gradient BDT is designed
in [30]. However, SARIMA suffers from significant errors in
long-term prediction. Besides, it performs poorly in capturing
nonlinear characteristics of the sequence data. Shen and
Yan [31] presented a support vector machine (SVM)-based
transfer method for predicting rolling bearing remaining useful
life. Yet, its data set shows lower fluctuation than the resource
usage series in real-life large-scale CDCs. Wang and Li [32]
introduced an enhanced linear regression algorithm for the
prediction of real-time CPU temperature of servers. However,
it fails to capture certain potential features in the data,
mainly when dealing with highly nonlinear and nonstationary
series. To achieve an online workload prediction framework,
Kim et al. [33] proposed an ensemble model using several
traditional prediction methods, including linear regression,
linear SVM, ARIMA, etc. It achieves higher accuracy than a
single traditional forecasting method.

Above all, most classic time series forecasting models are
based on statistical or regression models. These methods
require apparent trends in the time series and perform poorly
in long-term prediction. Unlike these methods, this work
employs an improved transformer-based model, which can
extract features from cloud environments’ highly nonlinear and
variable computing resource usage data.

B. Deep Learning-Based Prediction Methods

With the improvement of the computing power of servers,
many studies utilize deep learning models for addressing
time series prediction problems. Kumar et al. [34] proposed
a workload forecasting approach for requests for the indus-
trial Internet of Things (IoT). This approach adopts deep
autoencoders (DAEs) to predict the CPU cycles of cloud
servers. However, DAEs train each layer individually in a
layerwise manner. It suffers from long training time and
high-computational complexity. Li et al. [35] introduced
a temporal convolutional network (TCN)-based prediction
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model for utility-scale photovoltaic forecasting. It captures
spatial-temporal correlations to improve prediction accuracy
for enormous intrahour photovoltaic power. Wang et al. [36]
designed a prediction model that consists of a TCN layer
and a graph convolution network (GCN) layer for traffic data
sets of geo-distributed data centers. Nevertheless, it mainly
focuses on the temporal dependencies of the extracted series.
A deep concatenated multilayer perceptron [37] is proposed in
an IoT network for fog sensor data prediction. However, the
multilayer perceptron network often yields inferior prediction
outputs than standard LSTM models. Ruan et al. [38]
presented a feature-enhanced LSTM approach to extract the
crucial sequence patterns in the cloud environment. However,
LSTM [39] is an RNN-based model that fails to handle the
gradient vanishing issue during the training process effectively.
Its performance is unsatisfying for long-term prediction. The
emergence of the transformer model has revolutionized the
conventional use of RNN structures for processing sequence
data. The model employs an encoder—decoder architecture
and depends on an attention mechanism. Gao et al. [40]
introduced a dual transformer model to predict both lane
change intentions and trajectory projections of target vehicles.
However, the trajectory data set exhibits lower volatility than
the workload data from CDCs. Furthermore, many variants of
transformer-based models have been introduced and utilized
in time series forecasting. Zhang et al. [41] proposed an
improved Informer by a data augmentation approach for
forecasting the deterioration of aircraft engines. However, the
transformers perform better than RNNs in capturing long-
term dependency in the time domain. These methods cannot
effectively investigate the patterns in the frequency domain.
Yet, the frequency domain information is crucial in forecasting
data points in time series.

In summary, current deep learning methods mainly adopt
RNNs and transformers for forecasting the time series.
RNN-based methods fail to solve the problems of gradient
vanishing and long-term prediction. Most transformer-based
methods primarily focus on the temporal information within
the time series while disregarding the crucial frequency
domain information. Unlike previous studies, our work pro-
poses a new method named FISFA that integrates the SG
filter, FEDformer, and FECAM module for multidimensional
prediction of the resource usage time series in CDCs.
During the data preprocessing stage, the SG filter eliminates
noises and outliers in the raw data. Then, the FEDformer
with FECAM effectively captures the frequency domain
information in the time series data, leading to a more accurate
prediction.

III. MODEL FRAMEWORK

The section describes the details of FISFA. First, our
problem definition is shown in Section III-A. Furthermore, we
present the filter of SG in Section III-B. Then, we describe
FISFA in detail in Section III-C. Finally, we present the details
of the GSPSO used to optimize FISFA’s hyperparameter
setting. For clarity, Table I summarizes the main abbreviations
in this work.
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TABLE I
ABBREVIATION LIST

Abbreviation Definition

CDCs Cloud Data Centers

ARIMA AutoRegressive Integrated Moving Average
SVM Support Vector Machine
BDT Boosted Decision Tree
RNN Recurrent Neural Network

LSTM Long Short-Term Memory
DAE Deep AutoEncoder
GCN Graph Convolution Network
TCN Temporal Convolutional Network

SG Savitzky-Golay filter

FEB Frequency-Enhanced Block
FEA Frequency-Enhanced Attention
DFT Discrete Fouier Transform
DCT Discrete Cosine Transform
FECAM Frequency-Enhanced Channel Attention Mechanism
PSO Particle Swarm Optimization
GSPSO Genetic Simulated annealing-based PSO

A. Problem Definition

This work chooses I to represent a multidimensional
computing resource usage series in a CDC and
I=(1, D, ..., 1I;—1, ;). Previous ¢ time slots are used to predict
the values of computing resource usage at 7+1. y,41 denotes
the final prediction value, which is obtained as

j\)l‘+1 =f(117]2""71l717]l‘)‘ (1)

The proposed method aims to reduce errors between the

ground truth values and the predicted ones.

B. Savitzky—Golay Filter

The SG filter [21] can decrease the noise of the time
series through the least square polynomial smoothing method.
Thus, we adopt it to extract the primary information in the
preprocessing phase. It is processed by fitting successive
subsets of each single-dimensional resource usage series with
a low-degree polynomial.

I; is the value (CPU or memory usage) in time slot .
Pie=Pk—by -+ Pk> - -+ » Qk+b)> kE[b+1, t—b], which is a sub-
sequence of I. Its width is 2b + 1. The SG filter adopts the
following polynomial to fit it:

R
O(n)= Z an” ne[ — b, b] )

r=0

where a, denotes coefficient r of the polynomial and R denotes
a polynomial order. The fitting is achieved by minimizing the
mean-squared error € for each subsequence centered at 0. € is
defined as

2

R
Zarnr—pkw )

r=0

b b

e= Y (O —pip)’= )

n=—>b n=—>b

The smoothed value is yielded by O(n) at the central point
n=0 and O(0)=ap. The process above is iterated for each time
slot.
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C. FISFA Model

In addition to using the SG filter in the data preprocessing
stage, FISFA combines the FEDformer model and the FECAM
block. The details of the two modules are given below.

1) FEDformer: FEDformer [22] follows the encoder—
decoder structure, which includes four modules: 1)
frequency-enhanced block (FEB); 2) frequency-enhanced
attention (FEA); 3) mixture of experts decomposition block
(MOEDecomp); and 4) a feed-forward layer. The encoder
is defined as x.,=Encoder(x%.!). x/, is the output in the
encoder layer [, le{l,...,N}. N denotes the number of
layers in encoder. x €R/*P denotes the embedded result
of the historical time series. D denotes the dimension of the
embedding layer. Encoder(-) is defined as

Sl,l

en> —

= MOEDecomp (FEB (xi; H+x l_l)

en

Sl,2

en’ —
o =533 @
where Sle’,‘;, ie{1, 2} is the seasonal component after decomposi-
tion block i in layer /. The symbol _ means the eliminated trend
part. FEB is implemented based on discrete fourier transform
(DFT). It can effectively replace the self-attention block in
traditional transformer models. Given a series of numbers,
X, in the time domain, FEB processes it with the Fourier
transform and the inverse Fourier transform. In this way, the
conversion between the time domain and the frequency domain
is realized. X, is a complex series in the frequency domain,
and 1<¢<¢ where ¢ denotes the sequence length of complex
numbers in the frequency domain. X, is the value of time point
n (n=0,1,...,t—1) in the time series of real numbers in the
time domain. X, and X, are defined as

= MOEDecomp (FeedForward(Sf;,f )+Sh1 )

-1
Xe =) Xy 5" 5)
n=0
-1
Xn — ngels‘wn (6)
=0

where i denotes the imaginary unit and w denotes the angular
frequency.

The output of decoder layer / includes Fée and xée, which
are the results of Decoder(xé;l, FZI). The Decoder(:) is
defined as

skt T4} = MOEDecomp(FEB(x; )+x'; ")
Sl Tl = MOEDecomp(FEA(S},, x})+S, )
Si}j, Fi}j = MOEDecomp(FeedForward(SZez)—i—SZf)
Koo = Sie
rh, = Tt w b 4w rh 2wy rh3 9

where Sfj’é and l"il’é, ie{1,2,3}, denote the seasonal and
trend components after the decomposition block i in layer
[, respectively. W;; is the projector. FEA is also imple-
mented based on DFT with an attention mechanism. It can
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replace the cross-attention block. MOEDecomp is a pro-
gressive decomposition architecture. Traditional fixed-window
averaging pooling struggles to extract trends effectively. Thus,
it comprises a set of average filters with varying sizes designed
to extract multiple trend components in the input signal.
Additionally, it utilizes many data-dependent weights to merge
these components as the ultimate trend, Xirend, Which is a time
series decomposed by the MOEDecomp operation and Xirend
includes Fsel, Fil’ez, and 1";’3. erend is defined as

Xtrend=Softmax(Linear(1p)G(1p)) ()

where Y denotes the input of the MOEDecomp opera-
tion in (7), Linear(y) denotes the linear operation on
G(¥) denotes the average pooling filtering operation on ¥,
and Softmax(Linear(y)) is the weighted result for mixing
extracted trends, which is the final Xtrend.

Finally, the prediction results are obtained by the sum of
two decomposed components, i.e., WXdMe-i-F%,. M denotes the
number of layers in the decoder. W is used to convert the
seasonal component X,% to the target dimension.

2) FECAM Block: Current methods mainly adopt the
Fourier transform to extract frequency information from the
time series. If the values of the two ends of the sequence differ
greatly, the Fourier transform introduces high-frequency noise.
It causes an error for boundary information called the Gibbs
phenomenon. To address this problem, FECAM [23] based on
discrete cosine transform (DCT) is proposed. FECAM adopts
DCT to extract the frequency information. This method avoids
the Gibbs issue and the operation of inverse transformation.
The features are divided by FECAM into d subgroups, i.e.,
[k1, k2, ..., kq] according to the dimension of the input. Each
subgroup is processed by the component of DCT from low
frequency to high one. F? denotes the zth frequency channel
vector, which is obtained as

F*=DCT;(k%), z€{0, 1, ..., d} 9)

where DCT; denotes the frequency component corresponding
to k*. The stack operation obtains the complete frequency
channel vector F

F:stack(FO, Fl, ...,Fd_l).

Finally, critical temporal information from the frequency
domain of each channel feature is obtained. Therefore, as
illustrated in Fig. 1, the filter of SG is adopted to denoise
the raw data. Then, we use the FEDformer model to analyze
the context information in the time series. Besides, we add
a FEACM module between the encoder and the decoder.
It additionally boosts the capacity to extract the frequency
information in the time series.

(10)

D. GSPSO

Deep learning-based models typically have many hyperpa-
rameters that highly affect the performance of the FISFA. For
example, they involve the number of train epochs, batch size,
the layer numbers in the encoder and decoder, learning rate,
and dropout rate. Tuning these hyperparameters is a time-
consuming task. PSO [42], [43] can be used to determine
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Fig. 1. Structure of FISFA.

the optimal hyperparameters effectively. Our work designs
an improved version of PSO [44] to accomplish the optimal
hyperparameters.

Similar to social behaviors of bird or fish swarm [45], [46],
PSO involves a population of particles moving through a
search space. These particles adjust positions based on their
individual experiences and those of neighboring particles to
find the optimal solution, and therefore, they can converge
quickly. However, it often converges toward local optima when
applied to address constrained problems with sophisticated
solution spaces. Besides, SA employs the rule of Metropolis
acceptance, thus enabling moves that might deteriorate the
search. This capability allows SA to converge toward the
global optima using the optimal cooling rate. Nevertheless,
it is worth noting that SA converges slowly. Besides, in
GA, genetic operations yield diverse individuals, enhancing
the global search capability. Therefore, GSPSO combines
the strengths of three algorithms by integrating the rule of
Metropolis acceptance, genetic operations, and PSO.

Algorithm 1 exhibits GSPSO’s pseudocodes. Line 1 ran-
domly sets the position and velocity of each particle. Line 2
calculates each particle’s fitness value ¢V> Line 3 updates X; and
X. X; means particle i’s locally optimal position. X means the
globally optimal position in the population. Line 4 sets GA’s
mutation possibility 65, SA’s initial temperature 941 and its
cooling rate 67, and PSO’s parameters, including 52, éz, 03, él,
él, é6, g, and |x|. éz means an individual coefficient. éz means
a social acceleration coefficient. 83 means the coefficient of
acceleration for a superior particle. 6; denotes the inertia
weight. g denotes the total iteration number. ¢ means the
percentage of particles with identical $. |x| is the size of
population. Line 6 means the while loop stops if g>g or
06>0¢. Line 7 executes GA’s crossover on %; and & with the
single-point crossover to yield an offspring x;. Line 8 executes
GA’s mutation on each bit of offspring X; with a probability 0s.
Line 9 executes GA’s selection to specify X; or &; is chosen. %;
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Algorithm 1 GSPSO
1: Initialize particle information randomly
2: Update é of particles
3: Select X; and X
4: Set GA’s 05, SA’s 04{ and 67, and PSO’s parameters,
including 65, 6, 63, 01, 61, 06, 2, and |x|
g<«1
6: while 65 < 05 and g < & do
Execute crossover of GA on X; and % to yield an
offspring X;
8:  Execute mutation of GA on each bit of X; with a
probability 65
9:  Execute selection of GA for particle i
10:  Calculate velocities of particles with (11)
11:  Calculate positions of particles with (12) and (13)
12:  Calculate ¢ of particles
13:  Change X; of particle i, and X
14 05 <650, )
15 0] < (él—é1> . %-ﬁ-él
16:  Update ¢ of particles with the same ¢V>
17: g <« g+1
18: end while
19: return X

W

denotes the position of a superior particle for particle i. Line
10 updates the velocity of each particle with
vi=01vi+03w3 (xi—x] )

1

(1)

where v; is the velocity of each particle i. x‘lg means particle
i’s position in iteration g. Line 11 changes the position
of each particle with (12) and (13). More specifically, if
v gl 7 +1 . L ...

¢(xf )§¢(xf ), xf’ is selected; otherwise, it is conditionally
selected if (13) is met

L
#fh-ded)
e >Wwy

where ws is a constant randomly selected in (0, 1). Bf is
current temperature in iteration g.

Line 12 calculates each particle’s fitness value $. Line
13 changes particle i’s locally optimal position X; and the
population’s globally optimal position . Besides, 941 is the
initial temperature, and 67 is its cooling rate. Line 14 reduces
temperature by 6. 6; and 6, are upper and lower bounds
of inertia weight 6;. Line 15 linearly decreases #; from él
to 6;. Line 16 calculates percentage 6¢ of particles with
identical qvb Line 19 returns %, including the final setting of
hyperparameters. Fig. 2 shows the flowchart of GSPSO to
optimize the setting of several hyperparameters of FISFA,
yielding the optimal hyperparameter setting that minimizes the
training loss.

Moreover, GSPSO revises the optimal local position for
each particle and updates the globally optimal position within
the whole population. Additionally, the inertia weight and
current temperature decrease linearly. Eventually, it adjusts

12)

13)
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andomly set the positions and velocities
of particles during initialization
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| Linearly reduce inertia weight |
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No

Termination criterion

Generate the globally optimal
position

Fig. 2. Flowchart of GSPSO.

the proportion of particles sharing identical fitness values and
determines whether the termination criterion is satisfied. If it
is met, the globally optimal solution is attained; otherwise,
the single-point crossover of GA and the following procedures
continue to iterate until the termination criterion is satisfied.

E. Complexity Analysis

The most time-consuming operation of FISFA lies in
the training stage. ¢ is also the length of the input series.
The time complexity O(f?) of transformer mainly comes
from the self-attention mechanism. FISFA replaces the self-
attention mechanism with the DFT with a time complexity
O(t(logt)) [22] for the frequency domain feature extraction.
Meanwhile, GSPSO performs g iterations. Therefore, the time
complexity of FISFA is O(gr(logt)).

IV. PERFORMANCE EVALUATION

We assess FISFA with realistic data sets and compare its
performance with transformer-based prediction models and
other traditional methods.
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Fig. 4. Resource usage time series of machine ID 1932 in the Alibaba cluster
data set.

A. Data Set and Experimental Setup

To confirm the efficacy of FISFA, we adopt two heteroge-
neous real-world data sets collected from Alibaba and Google
clusters, respectively. The former data set includes runtime
information on machine resource usage from 4,000 machines
in eight days. The log of Cluster-trace-v2018 of Alibaba
provides seven cluster data tables. The machine usage table
includes CPU utilization, memory utilization, memory band-
width, cache miss per thousand instructions, incoming and
outgoing network traffic, and disk I/O. We select five key
resource metrics for the prediction. The time interval is 1 min.
Tasks are categorized based on the machines with IDs 649
and 1932. Finally, the resource usage time series is obtained
and shown in Figs. 3 and 4. Google cluster traces provide
information about CDCs in eight regions in May 2019. We
choose one data set with a timezone located in New York,
USA. It includes information about CPU usage and alloc sets
(shared resource reservations used by jobs). We split 31 days
into 14 880 3-min time slots. Finally, the time series of CPU
and memory resources requested for the instance are shown
in Fig. 5.
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TABLE II
COMPARISON OF DIFFERENT COMBINATIONS OF HYPERPARAMETERS

Combinations Layer # in encoder (o)  Layer # in decoder (8)  Batch size (y) RSME MAE MAPE
Combination 1 1 1 32 235794  1.38672  0.07374
Combination 2 2 1 32 2.34254  1.37809  0.07331
Combination 3 2 1 16 235916  1.39187  0.07390
Combination by GSPSO 1 2 16 233819  1.37100  0.07325
% TABLE I
£ 10000 SETTING OF FISFA PARAMETERS
‘Eg 5000
: Parameters Values
0 5000 Time slof count 10000 15000 Dimension of model 256
L0000 Learning rate 0.001
& Activation gelu
5 5000 ] Layer number in encoder 1
& Layer number in decoder 2
% 5000 10000 15000 Batch size 16
Time slot count Early stopping patience 9
Loss function MSE
Fig. 5. Resource usage time series of the Google cluster data set.

B. Evaluation Metrics

We utilize three metrics, including i.e., root mean
square error (RMSE) [47], mean absolute percentage error
(MAPE) [48], and mean absolute error (MAE) [49]. They are
calculated as follows:

RMSE =

m

100%
2

=1

V=t

Vi

MAPE =

1 m
MAE = — -y
—> |y (14)
=1
where n is the sample number, y; is the average of the ground
truth values, and y; is the predicted result in time slot 7.

C. Hyperparameter Setting

To determine the optimal hyperparameter setting, com-
prehensive experiments are conducted systemically. Table III
displays the final hyperparameter tuning results. The rate of
learning is 0.001. The model dimension is 256. The function of
loss is MSE, and the early stopping patience is 9. Besides, we
utilize GSPSO to optimize several key hyperparameters in our
model. Three crucial hyperparameters are chosen, including
the layer number of encoder («), the layer number of decoder
(B), and the batch size (y). Finally, ¢, 8, and y are set to 1,
2, and 16, respectively. Table II illustrates experimental results
after selecting four different combinations of hyperparameters.
The results show that the hyperparameter configuration yielded
by GSPSO produces the highest prediction accuracy. The
parameter configurations for FISFA are outlined in Table III.

D. Analysis of Prediction Results

We allocate 70% of the time series for the training, 10%
for the validation, and the remaining 20% for the testing. To

TABLE IV
COMPARISON OF FEDFORMER AND FEDFORMER WITH FECAM

Dimension of model RMSE MAE MAPE
] 3.11518  1.79656  0.09408
3.11257  1.79477  0.09400

16 3.07927  1.78386  0.08947
3.07812 1.78276  0.08943

32 3.03130  1.72264  0.09138
3.03113  1.72250  0.09138

64 2.99807 1.69626  0.09013
2.99768 1.69571  0.09008

128 2.99799  1.69064  0.08947
2.99805 1.69059  0.08947

256 2.99309 1.68770  0.08900
2.98965 1.68498 0.08886

evaluate FECAM in the prediction, comparison experiments
of FEDformers with and without the FECAM block are
conducted. Table IV shows the results of three evaluation
metrics. The odd and even rows represent metric values for
FEDformer and FEDformer with FECAM, respectively. The
results prove that the FEDformer with FECAM outperforms
its vanilla version.

We choose several benchmark methods to compare our
FISFA with its other state-of-the-art peers comprehensively.
For example, LSTM is based on the gated cell and is com-
monly used for time series prediction. However, it suffers from
the gradient explosion problem during training and cannot
effectively extract the correlation among multidimensional
data. Informer is an improved transformer model with low-
time complexity and memory utilization. However, it cannot
effectively extract frequency domain features.

Furthermore, Tables V-VII show the performance compari-
son between FISFA and various prediction methods, including
LSTM and transformer-based models, e.g., transformer and
Informer. The abbreviation FEC signifies that forecasting mod-
els employ FECAM. SG- means that the SG filter is adopted.
Table V shows the transformer-based models achieve higher
performance than LSTM in the multidimensional prediction.
FECAM and the SG filter improve the evaluation metric
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TABLE V
PERFORMANCE COMPARISON OF ALL METHODS WITH THE DATA SET OF
MACHINE ID 649 FROM ALIBABA

Methods RMSE MAE MAPE
LSTM 3.46993 | 2.26280 | 0.10308
Transformer 3.09399 | 1.89245 | 0.10084
Informer 3.19903 | 2.02076 | 0.10897
FEDformer 2.99309 | 1.68770 | 0.08900
Transformer+FEC | 3.08164 1.89849 | 0.10042
Informer+FEC 3.19222 | 2.00831 0.10858
FEDformer+FEC 2.98965 | 1.68498 | 0.08886
SG-LSTM 3.43238 | 2.22098 | 0.10182
SG-Transformer 2.40196 | 1.45422 | 0.07335
SG-Informer 247797 | 1.54587 | 0.07423
FISFA 2.32237 | 1.34573 | 0.07271
TABLE VI

PERFORMANCE COMPARISON OF ALL METHODS WITH THE
DATA SET OF MACHINE ID 1932 FROM ALIBABA

Methods RMSE MAE MAPE
LSTM 3.97746 | 2.23827 | 0.27784
Transformer 3.37595 1.77665 | 0.10875
Informer 3.53577 | 1.85022 | 0.11172
FEDformer 3.33543 | 1.39523 | 0.11575
Transformer+FEC | 3.41701 1.79651 | 0.11500
Informer+FEC 3.33480 | 1.78247 | 0.10704
FEDformer+FEC 331267 | 1.39752 | 0.11484
SG-LSTM 3.95284 | 2.21583 | 0.27527
SG-Transformer 2.46992 | 1.28261 | 0.09220
SG-Informer 2.51991 1.33650 | 0.08498
FISFA 2.29162 | 1.01012 | 0.08320
TABLE VII

PERFORMANCE COMPARISON OF ALL METHODS WITH
THE GOOGLE DATA SET

Methods RMSE MAE MAPE
LSTM 491.185 | 297.653 | 0.27746
Transformer 481.125 | 299.474 | 0.27375
Informer 488.582 | 306.436 | 0.27840
FEDformer 476.954 | 296.782 | 0.26898
Transformer+FEC | 482.027 | 300.138 | 0.27428
Informer+FEC 484.144 | 301.987 | 0.27642
FEDformer+FEC 476.818 | 295.825 | 0.26754
SG-LSTM 396.026 | 242.718 | 0.23827
SG-Transformer 400.740 | 249.598 | 0.22345
SG-Informer 398.055 | 250.062 | 0.22784
FISFA 387.199 | 239.265 | 0.21533
TABLE VIII

ABLATION STUDIES OF FISFA WITH THREE METHODS

Methods RMSE MAE MAPE

w/o SG filter  2.98965  1.68498  0.08886
w/o FECAM 232727  1.34451 0.07337
w/o GSPSO 235916  1.39187  0.07390
FISFA 2.32237 1.34573  0.07271

values, and FISFA achieves the highest accuracy among all
these methods.

Table VIII shows the ablation studies of FISFA with three
methods. It is evident that the addition of each method can
bring improvement to the prediction. Fig. 6 shows ground truth
values and the predicted ones of RAM usage, CPU usage,
Network in, Network out, and Desk I/O, respectively. Fig. 7
compares loss values of transformer, Informer, Autoformer,
FEDformer, and FEDformer with FECAM for the resource

IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 15, 1 AUGUST 2024

100
9
o0
<
Z 90 1
>
1
e
E 80 Ground truth | 7
= Prediction
70 L L L L L L L L
0 200 400 600 800 1000 1200 1400 1600 1800
Time slot count
100 T T T T T T T T
© Ground truth
%‘3 Prediction
w
= 50 4
=
-5
Q
0 L L L L L L L L
0 200 400 600 800 1000 1200 1400 1600 1800
Time slot count
60 T T T T T T T T
= Ground truth
E Prediction
S50t 4
g v
D
; |
40 L L L L L L L L
0 200 400 600 800 1000 1200 1400 1600 1800
Time slot count
s 40f Ground truth N
< Prediction
2z
5
220 1
)
V4
0 ettt gt NI T
0 200 400 600 800 1000 1200 1400 1600 1800
Time slot count
30 Ground truth 7
) Prediction
o . -
= 20
wn
D
a10r 1
0

0 200 400 600 800 1000 1200 1400 1600
Time slot count

1800

Fig. 6. Prediction curves of resource usage time series of machine ID 1932.
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Fig. 7. Loss values of different methods for resource usage time series of
machine ID 1932.

usage time series of machine ID 1932, respectively. Fig. 8
shows the loss values of different methods after adding the SG
filter. After iteration 10, it is evident that FISFA’s loss values
are comparatively smaller than those of other models. This
demonstrates that FISFA possesses superior modeling capabil-
ities compared with other transformer variants. Consequently,
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Fig. 8. Loss values of different methods after adding the SG filter.

FISFA outperforms other benchmark methods given the same
setting.

V. CONCLUSION AND FUTURE WORK

Current cloud providers face a critical but challenging
problem of accurately predicting computing resource usage
in CDCs. Resource usage series is often multidimensional
and volatile. Each series is characterized by different trends,
increasing the difficulty of forecasting. Most current fore-
casting methods cannot effectively extract correlations among
multiple series and frequency domain information. This work
proposes a Forecasting method based on the Integration of
a SG filter, a FEDformer model, and a FECAM, named
FISFA for short, for forecasting the multidimensional com-
puting resource usage series. FISFA initially adopts the SG
filter to accomplish better noise reduction. It designs a
FEDformer model with a FECAM to investigate key patterns
from resource usage time series in the frequency domain. In
addition, a hybrid meta-heuristic optimization algorithm called
genetic SA-based particle swarm optimizer is proposed to
optimize key hyperparameters of FISFA. At last, experiments
with two heterogeneous real-world data sets from Alibaba and
Google demonstrate that FISFA achieves superior forecasting
accuracy than its baseline peers. Against LSTM, transformer,
and Informer, our prediction accuracy is improved by 32.14%,
25.49%, and 27.71%, respectively.

As part of future work, we will apply FISFA to more diverse
real-world workload data sets. We also plan to incorporate
novel spatial-temporal GCNs to enhance performance. In addi-
tion, we plan to employ meta-learning to provide beneficial
guidance on learning a more generalized and adaptive model
for predicting resource usage in CDCs.
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