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A B S T R A C T

Fog computing is an emerging service-oriented market in conjunction with Cloud computing
to fulfill the resource demand of mobile users as well as IoT users for real-time applications.
Auctioning in Fog computing is highly challenging due to mobility, dynamic pricing, real-time
demand in comparison to Cloud based auctioning models. Further, due to users’ mobility and
limited Fog resources, existing reverse auction techniques developed for Cloud computing model
cannot directly be applied for the resource procurement in Fog-Integrated Cloud Architecture
(FICA). Therefore, a reverse auction-based model which includes customer, auctioneer, Fog
provider, Cloud provider, and Fog & Cloud provider together as auction participants, is
proposed in this work. The proposed model, for resource provisioning using a multi-attribute
combinatorial reverse auction, is named as Fog-Integrated Cloud Auctioning Model (FICAM).
FICAM pricing scheme includes three types of resources depending on their requirement i.e.,
local Fog, remote Fog, and Cloud. A truthful, robust, and fair algorithm for resource allocation
is proposed considering response time, data source mobility requirements, and Fog resource
limitations. To encourage providers to bid truthfully, the Vickrey model is extended. FICAM also
introduces a new algorithm for resource procurement in which instead of giving all resources
of the bundle, only the required resources at a time are given to the customer with the bundle
discount. The discount is based on a certain threshold in the ratio of the availed amount
of resources to the offered amount of resources. Rigorous experimentation exhibits that the
proposed model offers a low resource procurement cost in polynomial time as compared to
other state of the art algorithms.

. Introduction

In recent, IoT has proliferated to create automated environments such as smart homes, healthcare, retail, transportation,
ecurity, surveillance, and other industrial necessities. Many of these applications have a rigid time-sensitive requirement for speedy
rocessing of streamed data in order to initiate action in real-time. For example, in a home security system, on sensing a certain
ishap a call is to be placed immediately to the police and the house owner. Nowadays, smart wearable, smart vehicles i.e., Internet

f Vehicles (IoVs), mobile IoTs are in prevalence, and to make real-time decisions which require the computing resources closer to
he data generation device.
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Fog computing is the best-fitted solution to handle such constraints of the requisite real-time computing [1]. Fog computing
rovides computing resources near to the IoT device with high network bandwidth and offers smooth Virtual Machine (VM)
igration [2] as soon as the data source goes out of coverage area of the local Fog server. This allows for efficient communication

etween mobile objects and Fog resources. According to a research study [3], if Fog acts as an intermediate layer between the Cloud
nd consumer then not only the load on the Cloud reduces but the operational cost of the Cloud data centers also get reduced [4].
isco [5] stated that today’s Cloud model is not suitable for the volume, variety, and velocity of data that IoT devices generate.
hus, there is a huge demand for nearby computing resources to handle such voluminous data for real-time computing generated
y IoT applications [6]. The necessity of Fog computing for real-time computation with a good number of Fog service providers
otivated us for proposing a model for resource procurement considering Fog-Integrated Cloud Architecture (FICA). FICA, being a

ommercial model, necessitates applying auction for the resource provisioning.
The reverse auction is an auction method in which the customer lists their requirements, and the service providers bid according

o the customer’s requirement. Thus, in the reverse auction, for the requirements of one customer, many service providers are
eady to offer their services via quotes. Out of many available auction schemes such as fixed price, dynamic price, etc., the reverse
uction is one that makes the market more competitive. It also helps in lowering the resource procurement cost [7], due to good
ompetition, the customers are able to acquire the resources at the best price. Additionally, the e-procurement cost is an important
arameter for the service provider in order to earn revenue as well as to survive in the competitive Cloud market [8]. For this work,
multi-attribute combinatorial reverse auction is chosen as it helps in comparing service providers not only on the price but many
ther attributes as well. According to a study, [9], some non-pricing attributes also play a significant role in a successful auction.

A reverse auction, for Cloud resource procurement, involves three participants: broker (also called the auctioneer), customer,
nd Cloud service provider. Customer submits its requirement in terms of a Call For Proposal (CFP) to a broker which invites
everal Cloud providers for the bidding. Broker declares winning Cloud provider based on some criteria and eventually allocates the
esources of the winning provider to the customer. The Cloud computing reverse auction model is limited to the Cloud provider,
ustomer, and broker as its vital components. However, in Fog computing, other members such as Fog provider exclusively and both
og & Cloud provider together can also participate with varied needs. In general, the nature of Fog provider and customer’s resource
equirements are quite different due to the IoT functioning (real-time streamed data processing), limited Fog resources, and dynamic
og pricing schemes. Thus, to successfully carry out a handshake between IoT and Fog computing technologies; a new architectural
odel with an efficient auction mechanism is warranted that can facilitate the customer, Fog provider, Cloud provider, and Fog &
loud provider jointly. Customers should be flexible to use local or remote Fog resources in the FICA, whereas, pricing mechanisms in
og and Cloud are different. Thus, an effective pricing scheme is needed for the FICA. Considering the above-mentioned necessities,
canonical reverse auction model designed for only Cloud computing scenario [10] cannot be applied directly to the three-layered
ICA [11]. Therefore, in this work, an efficient auctioning model for FICA is proposed considering the above mentioned limitations.
s per the author’s best of knowledge, no reverse auctioning model for FICA is available in the state of the art. A Cloud auctioning
odel [10] is considered as the baseline model for this work. Novelties of the proposed Fog-Integrated Cloud Auctioning Model

FICAM), as compared to the baseline model, are as follows:

1. FICAM reduces the resource procurement cost as the number of resources are acquired as per the needs of the customer
and not as per the offers by the provider. Thus, the proposed scheme overcomes the limitation of the baseline model where
customers had to acquire the complete resource bundle that often may be more than the customer’s requirement.

2. FICAM serves the time-sensitive requirements of the customer which is not considered in the baseline model developed for
the Cloud-centric applications [10]. The customer can specify the expected response time in the requirement, based on this,
services can be offered in the proposed FICAM.

3. FICAM supports collaboration between Fog and Cloud providers in order to enable IoT oriented services (in real-time) and
improves the quality of experience (QoE). On other hand, this feature is not supported by the base model.

4. FICAM allows billing by accounting dynamic pricing scheme that is not considered in the baseline model.
5. With FICAM, customers experience reduced latency as it avoids the network delay, and the resources are available at the

edge. Hence, it improves the quality of services (QoS).
6. FICAM accounts the data source mobility, to the best of the authors’ knowledge, it has not been considered by any available

Cloud resource auctioning model.

In order to offer the above mentioned features by the FICAM, authors significant contributions are itemized as follows.

1. A multi-attribute combinatorial reverse auction model is proposed for the resource procurement considering FICA with four
entities: broker, customer, Fog service provider, and Cloud service provider as the essential components. Broker acts as a
middleman between service provider and customer, and the customer is the user of the Cloud/Fog services. Cloud and Fog
service provider offer available Cloud and Fog resources respectively.

2. For the services, customer prepares a list of the requirements in the form of a CFP to the broker. On the other hand, Fog,
Cloud, Fog & Cloud service provider give their quotations in the form of a bid to the broker. Based on the quotations, the
broker determines the winner who provides their services to the customer.

3. The proposed pricing scheme (Fig. 2) is based on three types of pricing: local, remote, and Cloud pricing. The service provider
charges local and remote prices if allocated VM is on the Fog node. The local price of the VM is charged when the data source
is local but as soon as the data source migrates, the user is charged with the remote price for the respective VM. A user is
2

charged with the Cloud price of a VM if the allocated VM is on the Cloud.
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4. The Vickrey auction [12,13] algorithm is extended via an incentive approach, it offers incentives to the provider for truthful
bidding, and it also applies a penalty on untruthful bidding. Further, the proposed multi-attribute combinatorial reverse
auction algorithm is improved to run only in polynomial time as the worst-case time complexity.

5. The proposed algorithm also determines the multiple winners, and the respective quantity of VMs is availed from each winner
provider’s bundle. Considering this scenario, the final billing is done on the basis of threshold, bundle discount, and ratio of
the number of used resources to the offered resources.

6. The performance evaluation of the FICAM is done under eight different scenarios. The comparative results are evidence for
the effectiveness of the model for all the scenarios considering resource procurement cost, and by varying several performance
metrics. As an outcome, FICAM significantly reduces the overall resource procurement cost over the baseline model.

The rest of the paper is organized as follows. Section 2 briefs the recent related work on the reverse auction. Section 3 describes
arious modules of the proposed FICAM model along-with the algorithms. Section 4 details the experiments carried out for the
erformance analysis of the model. Finally, Section 5 concludes the work by pointing out some future research work.

. Related work and background

This section puts forth some related work besides the baseline work which is the motivation of this work.
Luan et al. [14] discussed the system architecture of Fog computing and compared it with Cloud computing on its design and

esearch issues. Sarkar et al. [15] explored the opportunities of Fog computing in IoT. Through experiments, they proved that if
og computing is used with Cloud computing, it is a better option for a good number of high latency applications. Yi et al. [2]
emonstrated the concept of VM migration in Fog computing. They also discussed three-layer architecture goals like latency,
fficiency, and generality; challenges such as choice of virtualization technology; resource provisioning; and applications like smart
ome, smart grid, the vehicle of Fog computing. Fan et al. [16] proposed a load balancing scheme in Fog computing to reduce
he latency. They Shaw that both communication and computation load should be balanced in order to minimize the response
ime. From these studies, it is inferred that Fog computing is enormously useful for the implementation of future IoT applications,
articularly, real-time applications.

Jiao et al. [17] proposed a fair, rational auction-based model for resource procurement in public blockchain networks. They
roposed constant and multi demand bidding schemes. Experimental results confirmed the maximization of social welfare in
lockchain networks through the use of bidding schemes. However, this model is suitable for an architecture where there are
ultiple miners (bidders) and one Fog/Cloud provider. Further, Mazin et al. [18] proposed a decentralized, transparent, secure

everse bidding scheme developed using the key feature of blockchain & smart-contracts. The bidding process is started by the
equest for service from the users or devices. Services are provided by nearby fog devices and these devices make bid offers in
eturn for service. This scheme imposes a penalty on those who do not participate fairly in auction and also integrates a reputation
ystem. However, this model does not consider a combinatorial auction. In combinatorial auction, as the buyer will purchase a
ombination of items rather than individual items which leads the buyer to have some profit.

Song et al. [19] introduced a combinatorial reverse auction scheme in which many providers tie-up to fulfill customer’s demand
or the best pricing. This enhances their chances of winning. Vries et al. [20] argue that if instead of a single item, bidding is
one on a group of items (bundle), resource procurement cost is reduced. Prasad et al. [21] addressed the issue, arising out
f procuring multiple resources from several Cloud vendors using an auction. Experimental results exhibit that a combinatorial
uction is superior to a single auction. Liwang et at. [22] proposed a novel computation offloading marketplace in vehicular
etworks where a VCG-based reverse auction mechanism utilizes integer linear programming (ILP) while satisfying the desirable
conomical properties of truthfulness and individual rationality. They developed an efficient unilateral-matching-based mechanism
ith polynomial computational complexity, truthfulness, and individual rationality properties as well as matching stability. The

acking of the model is that it does not consider combinatorial, multi-attribute auction i.e., the only price is considered as the
inning parameter.

Most of the discussed work consider the price as an attribute to win the auction. However, many QoS parameters, i.e., non-price
ttributes are equally important in order to determine the winners. Pla et al. [23] introduced a multi-attribute reverse auction
echanism, VMA2, and classified three types of attributes: verifiable attributes, auctioneer provided attributes and non-verifiable

ttributes. They stated that verifiable attributes and auctioneer provided attributes to ensure truthfulness and trust. This mechanism
ives incentive to the truthful bidders. VMA2 was compared with the unattributed auction method (auction that considers the
rice as the only attribute) and it was found that its resource procurement cost was less than that of unattributed auctions. VMA2
ncouraged bidders to bid their true value, but if only the providers who offer cheaper prices and high-quality services, they win,
nd other providers lose interest and leave the auction market. Due to this, a bunch of service providers start controlling the market.
his is known as bidder drop out problem [24]. An auction mechanism should be fair to all the service providers.

Gaurav et al. [10] introduced a fair reverse auction mechanism (TFMCRA) for resource procurement in Cloud computing. It is a
ulti-attribute, combinatorial, and truthful reverse auction mechanism. For encouraging providers to bid truthfully, TFMCRA uses
ickrey payment. It considers price as well as non-price attributes for the winner determination. It is a truthful, fair, multi-attribute,
ombinatorial reverse auction model for resource procurement in Cloud computing that executes in polynomial time. However,
his model only caters to Cloud computing. Nonetheless, this work forms a baseline for the proposed resource provisioning model
onsidering FICA. Fog architecture is a three-tier architecture and is different from Cloud architecture. Pricing schemes of Fog
omputing are also different as the types and demands of Fog resources are different. Further, data source mobility issue [25]
ppears in Fog and not in the Cloud, therefore it is not addressed in the baseline model [10]. Thus, a need arises for designing a
3

ew resource procurement mechanism for the three-tier Fog-integrated cloud architecture model.
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Fig. 1. Reverse auctioning in the proposed FICA.

3. The proposed model: FICAM

This section details about the proposed FICAM model including its architecture, pricing, and resource procurement algorithm
for three-tier computing architecture. FICAM differentiates between Fog and Cloud computing especially on data source mobility,
location awareness, and dynamic pricing schemes based on real-time workload.

3.1. The proposed reverse auction architecture

Fig. 1 shows three-tier architecture of the proposed FICAM model. FICAM ensures its customers about the services at the best
price considering multiple desired QoS parameters. The participants, in the proposed auction-based model, are Customer, Broker,
Fog Provider, Cloud Provider, and Fog & Cloud Provider.

Broker:- Broker is a middleman between the customer and service provider (Fog, Cloud, Fog & Cloud) [10]. A broker, on receiving
the requirements from a customer, invites service providers to submit their bids. Based on the quotes, some historical facts, and
customer requirements, the broker determines the winners. In the process, the broker may impose some penalty on those providers
who indulge in cheating. It compensates customers. The broker also offers some incentives to the winning providers for biding
truthfully.

Customer:- Customer can be an individual or an organization. A customer has two types of requirements: i. Real-time/time-
sensitive requirement ii. Normal requirement. Various IoT applications, gaming applications, smart vehicles, etc. exhibit time-
sensitive requirements. A customer submits the application and specifies the response time requirements to the broker.

Cloud Provider (CP):- CP provides Cloud computing resources on rent at the Cloud layer. The customer’s requirement is verified;
if it is normal and CP can offer the demanded resources, then it surely takes part in the bidding. If the customer’s requirement is
time-sensitive, then CP may or may not participate. CPs can participate only if they are able to satisfy the expected response time
specifications from the customer.

Fog Provider (FP):- FP provides Fog services/resources for rent at the Fog layer. If the customer’s requirement is time-sensitive,
and FP is able to meet so, it takes part. Fog devices are located in close proximity to users and usually responsible for intermediate
computation and storage [26]. On the contrary, if the customer’s requirement is normal then FPs may or may not participate because
Fog devices have relatively limited power and computation resources compared to Cloud computing [27]. It depends upon the
current workload on the Fog devices and the FP’s profit.

Fog & Cloud Provider (FCP):- FCP offers services for both Fog and Cloud resources. FCP owns both Fog and Cloud resources.
Sometimes, the customer may need big configuration machines for the processing which cannot be satisfied by the Fog services,
or the customer needs a quick response that cannot be met by the Cloud provider. To serve the customer with better QoS, FCP
conceived that he is equipped with both Fog and Cloud resources. Service provider either may own both Fog and Cloud resources
or may tie-up with other providers to offer both Fog and Cloud resources. As FCP provides both Fog and Cloud resources, he can
participate in bidding for any type of customer’s requirement.
4
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Fig. 2. Pricing schemes used by FICAM.

.2. Fog pricing schemes

Fig. 2 shows the possible pricing types based on the computing requirements. To deal with both Fog and Cloud resources,
ricing schemes are categorized into Fog price and Cloud price. Technically, Fog resources are meant for time-sensitive applications,
herefore, meeting time deadline is a necessity. Therefore, to meet the deadline, when the data source is mobile, VM migration [2]
akes place in Fog computing. As IoT devices move, their VMs are migrated to the nearest Fog center closer to their current location.
his involves some VM migration costs. At any point of the time, load varies on different Fog centers and therefore, due to dynamic
ricing, pricing of the same VM may vary with different Fog providers at different times and places. Keeping VM migration and
ynamic Fog pricing in view, usually, Fog pricing is divided into two types: local and remote. In FICAM, each provider indicates
hree types of prices for a VM in their quote. These are Local Price, Remote Price, and Cloud Price as deliberated in the subsequent
ection.

Local Price :- The allocated Fog resources are registered in a Fog center near to the data source. The area served by the Fog
enter is called base area. The customer is charged according to some local price rate of the Fog resources as long as the data source
emains in the base area.

Remote Price:- Remote prices are applicable only when the data source moves from the base area to some other area. This
ecessitates the VM migration from the Fog center/server of the base area to another Fog center in the migrated area. This onward,
he customer is charged according to the remote price rates of the Fog nodes. The remote price depends on the range of mobility of
he data source. Based on the range of data source mobility, the remote price is further classified into two types: state remote price
nd national remote price. This division is inspired by the types of roaming in telecommunication, however, it may be given some
ther names [28]. The objective of such division is to specify the rules that are applicable to the area in which the Fog centers are
egistered.
(a) State Remote Price:-In this scheme, the limit of mobility of the data source is in the state of the registered Fog center.

onsider a scenario in which a customer is using the smart vehicle which uses the Fog resources. Eventually, smart vehicle crosses
he district range but still within the state boundaries. Provider charges the customer as per the state remote price for the acquired
og resources.
(b) National Remote Price:- In this scheme, the data source’s mobility limit is the entire country. The data source may roam

nywhere in the country, and VM is migrated to the closest Fog center according to its availability.
Cloud Price:- If VMs are allocated on the Cloud resources, the pricing for the respective resources is done at the Cloud price

ate of VMs. Depending upon the resources, availed by the customers, pricing is done. If a provider offers only Cloud resources, or
nly Fog resources, or mixed Cloud & Fog resources, the customer is charged accordingly.

.3. The algorithm

An algorithm is developed for resource procurement considering FICA using reverse auction. For making algorithm incentive-
ompatible, an approach similar to [10] applying Vickrey auction [12] with some special properties i.e., data source mobility and
esource limitation in FICAM is proposed. The methodology, of the proposed algorithm, is summarized in the following steps.

1. The CFP in the form of requirement vector is submitted to the broker by the customer.
2. The broker invites the providers to submit their quotes (bids) that satisfies the customer’s requirements.
3. Bidding is processed, completed and closed.
4. Total bundle price (𝑡𝑙𝑝 + 𝑡𝑟𝑝 +𝑡𝑐𝑝), of each provider, is estimated by the broker.
5. Since, the history of provider matters a lot, history attributes of the provider are added in the quotation by the broker. It is

now referred to as the extended Quotation.
5
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Table 1
Notation.

Notation Description Notation Description

mcf Mach configuration qr Quantity required
qo Quantity offered qt Quantity taken
et Expected time resp_time Response time
pb𝑙 Local probability pb𝑟 Remote probability
lm Data source limit mobility quot_vec Quotation vector
lp Initial local price matrix rp Initial remote price matrix
cp Initial Cloud price matrix tlp Total local price
trp Total remote price tcp Total Cloud price
repu Reputation pri Priority
ctq Current taken quantity req Requirement
discob Discount on bundle ebp Estimated bundle price vector
flt Final local time matrix frt Final remote time matrix
fct Final cloud time matrix fqt Final quantity taken matrix
fb Final bill Vector extquot_vec Extended Quotation vector
P Provider vector sorted_provider Sorted provider list
rw Runner up winner w Winner
𝑤_𝑣𝑒𝑐 Weight vector 𝑄𝑜𝑆_𝑙𝑒𝑛 Length of QoS vector
𝑤_𝑟𝑒𝑝𝑢 Weight reputation 𝑤_𝑝𝑟𝑖 Weight priority
𝑀 Total no of resources with multiplication of

their attributes
𝑓𝑜𝑟_𝑖𝑛𝑐𝑒𝑛𝑡𝑖𝑣𝑒 If a module is called in order to give

incentive to winning providers.
point list List of evaluated value of all providers

based on non-price attributes.
score list List of scores of all providers based on value

of non-price attributes.

6. Winner and Final quantity of VMs taken (i.e., 𝑓𝑞𝑡 vector of each VM type from each winner provider) are determined by the
broker.

7. The incentive is offered to the winner, by the broker, for truthful bidding.
8. Resources are allocated to the customer.
9. The customer requests the broker to generate the final bill and consequently, the broker requests the customer for the feedback

on delivered QoS.
10. Broker request the provider to submit final local time matrix (𝑓𝑙𝑡), final remote time matrix (𝑓𝑟𝑡), and final Cloud time matrix

(𝑓𝑐𝑡).
11. Finally, the bill is generated by the broker for each winning provider, and the same is conveyed to the customer.

The rest of the algorithmic details are presented as follows.

3.3.1. Input
The algorithm takes the following input from the customer.
Machine Configuration Vector (𝑚𝑐𝑓 ):- It contains the configuration of machines that a customer needs. This vector is denoted

by (𝑚𝑐𝑓 1, 𝑚𝑐𝑓 2,… , 𝑚𝑐𝑓 𝑛).
Quantity Required Vector (𝑞𝑟):- It contains the quantity of each type of required machine. It is denoted by (𝑞𝑟1, 𝑞𝑟2, … , 𝑞𝑟𝑛),

where, 𝑞𝑟𝑖 corresponds to quantity of the instance of mach configuration i.e., 𝑚𝑐𝑓 𝑖 required by the 𝑖th customer.
Expected Time Vector (𝑒𝑡) :- It contains the estimated time usage of each machines. It is denoted by (𝑒𝑡1, 𝑒𝑡2,… , 𝑒𝑡𝑛), where

eti is the expected time usage of machine 𝑚𝑐𝑓 𝑖.
Response Time Vector (𝑟𝑒𝑠_𝑡𝑖𝑚𝑒):- The response time 𝑟𝑒𝑠_ 𝑡𝑖𝑚𝑒𝑖 is the expected response time from each machine 𝑚𝑐𝑓 𝑖 for

eal-time applications. It is denoted by (𝑟𝑒𝑠_𝑡𝑖𝑚𝑒1, 𝑟𝑒𝑠_𝑡𝑖𝑚𝑒2,… , 𝑟𝑒𝑠_𝑡𝑖𝑚𝑒𝑛).
Local and Remote Probability (𝑝𝑏𝑙 , 𝑝𝑏𝑟):- The response time is also dependent on the distance of the application from the

ata source, especially if the customer is utilizing resources for the time-sensitive applications. Consequently, the local and remote
robability of the data source location is required. The probability of locally used resources is 𝑝𝑏𝑙, and the probability of remotely

used resources is 𝑝𝑏𝑟.
Limit of Mobility (𝑙𝑚):- It denotes the extent, a data source can be expected to be mobile. The limit may be state or national.

If the limit is national it means a data source can move within the national boundaries denoted by 𝑙𝑚 =state/national. It is to
make sure that despite the mobility of the data source, the response time (deadline) for real-time applications need to be met. For
a non-real-time application, response time does not matter. Therefore, VM migration does not take place even if the resources are
allocated to Fog and data source moves. In this case, 𝑝𝑏𝑙 = 1, 𝑝𝑏𝑟 = 0 and 𝑙𝑚 = ‘local’.

QoS Vector and Weight Vector (𝑄𝑜𝑆_𝑣𝑒𝑐 and 𝑤_𝑣𝑒𝑐):- These vectors consist of the value of non-price attributes. The length of
his vector is denoted by 𝑄𝑜𝑆_𝑙𝑒𝑛. Weight, given by the customer to these QoS, is denoted as 𝑤𝑒𝑖𝑔ℎ𝑡 _𝑣𝑒𝑐. From a provider, say px,
uotation is taken as the input which consists of the following:
Initial Remote Price Vector (𝑟𝑝𝑥):- This vector contains remote price of each configured machine according to the data source

imit mobility i.e., 𝑙𝑚 specified in the customer’s requirement. It is denoted by (𝑟𝑝1𝑥, 𝑟𝑝
2
𝑥,…, 𝑟𝑝𝑛𝑥) where 𝑟𝑝𝑖𝑥 corresponds to the remote

rice of 𝑚𝑐𝑓 𝑖 provided by 𝑝 . Value of 𝑟𝑝𝑖 is zero, if 𝑝 provides 𝑚𝑐𝑓 𝑖 on Cloud layer or if the data source is local i.e., 𝑝𝑏 = 0.
6

𝑥 𝑥 𝑥 𝑟



Simulation Modelling Practice and Theory 109 (2021) 102307A. Aggarwal et al.
Initial Cloud Price Vector(𝑐𝑝𝑥):- This vector contains Cloud price of each configuration machine. It is denoted by (𝑐𝑝1𝑥, 𝑐𝑝2𝑥,… ,
𝑐𝑝𝑛𝑥), where 𝑐𝑝𝑖𝑥 corresponds to the Cloud price of 𝑚𝑐𝑓 𝑖 provided by 𝑝𝑥. The value of 𝑐𝑝𝑖𝑥 is zero if 𝑝𝑥 is providing 𝑚𝑐𝑓 𝑖 on the Fog
layer.

Quantity Offered Vector (𝑞𝑜𝑥):- This denotes the quantity of each machine configuration, a provider is able to offer. It is denoted
by (𝑞𝑜1𝑥, 𝑞𝑜

2
𝑥,… , 𝑞𝑜𝑛𝑥), where 𝑞𝑜𝑖𝑥 is the quantity of 𝑖𝑡ℎ machine configuration that provider 𝑝𝑥 is offering.

Discount on Bundle (𝑑𝑖𝑠𝑐𝑜𝑏𝑥):- As obvious, the customer is eligible to get the discount on a bundle. A discount i.e., 𝑑𝑖𝑠𝑐𝑜𝑏𝑥 is
the amount that provider i.e., 𝑝𝑥 offers to the customer on the final bill.

QoS Vector:- It contains the threshold value of the non-price attribute (delay time) that customer wants from Cloud and Fog
services. If an attribute is highly desirable then the threshold value is minimum, otherwise, it is maximum. The model asks for the
desired QoS from the customer as well as from the provider. The customer gives its QoS requirement as the quality expected. The
provider (through customer QoS) will display the values of those non-price attributes that it is able to supply. The provider may
offer better QoS than the demanded one. At the time of final price settlement, the broker compares the delivered QoS with the
promised QoS by the provider to ascertain if the provider cheated with the customer.

It is advantageous to consider the price of each VM rather than the price of the whole bundle. It is because the proposed method
first tries to avail the cheaper resources from the providers before giving the opportunity to some other providers. Therefore, the
quantity of the availed VMs from each provider may not be the same as the quantity of the offered VMs by a provider in the quote.
Though, the algorithm considers the probability of the data source being local and remote, the actual period of time for which the
data source will be local or remote can be determined only at the end, i.e., after the customer releases all the consumed resources.
If the algorithm takes the bundled price from the provider then only the provider will be able to calculate the final bill, and no
way a customer can verify the bill. From the bundle price, it is difficult to estimate the final bill according to the final quantity of
the resource matrix & actual time taken matrix in a combinatorial auction. Thus, in order to prevent a customer from cheating, it
is required to have the pricing rates and actual execution time of each VM type.

Broker, not only considers the provider’s quotation but also the attributes based on the past experience such as reputation and
priority. Calculation of these attributes is not dependent on whether resource procurement is for integrated Fog & Cloud architecture
or for Cloud alone. Therefore, the calculation of reputation and priority is done in the same way as in [10].

3.3.2. The algorithm

The algorithm for the FICAM model includes five modules (Algorithms 2–6). It is ‘‘Estimated Bundle Price Algorithm’’ to estimate
the bundle price of each provider, ‘‘Sort Providers Algorithm’’ to sort the providers on the basis of the attributes; ‘‘Winner & Quantity
Determination Algorithm’’ to find the winners and the quantity of each VM types to avail from each provider, ‘‘Incentivize Winner
Providers Algorithm’’ to make the model truthful; and ‘‘Price Settlement algorithm’’ to calculate final bills and impose a penalty on
the fraud providers if any. Notation, used in the algorithms, are listed in Table 1. The time complexity of the algorithm is given in
Appendix A.

Algorithm 1: FICAM

1: Customer submits its requirement to the broker
2: Broker starts auction

⊳ Each provider submits quotation to the broker
3: for each 𝑝𝑥 ∈ P do
4: quot_vecx=(lpx, rpx, cpx, qox, discobx)
5: end for

⊳ Broker extends Quotation and calculate each provider’s estimated bundle price
6: for all 𝑝𝑥 ∈ to P do
7: extquot_vecx = (quot_vecx, repu, pri)
8: end for
9: ebp = EstimatedBundlePriceCalculator (quot_vec, req)

⊳ Broker decides winners
10: (Winners, fqt, point list, score list) = Winner & Quantity Determination (extquot_vec, ebp, req, false)
11: (Incentive)=Incentivize Winning Providers (Winners, extquot_vec, req, point list, score list)
12: Customer use resources

⊳ Each winning provider 𝑝𝑥 submits final time taken matrices
13: for all 𝑝𝑥 ∈ Winners do
14: Submit fltx, frtx, fctx
15: end for

⊳ Broker calculates final bill and apply penalty to cheater providers
16: fb=PriceSettlement(Winners, Incentive, fqt, flt, frt, fct, extquot_vec)
17: Output: fb
7
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First, in the submitted quotation of the provider, attributes like reputation and priority are extended by the broker. Then, the
roker calculates the estimated bundle price for each provider using the Estimated Bundle Price Calculator (Algorithm 2).

Estimated Bundle Price Calculator: This module calculates the total price of the bundle for each provider. It takes care of local
nd remote probabilities and also the mobility limitations of the data source. Initially, for bidding purposes, the local and remote
robability is taken from the customer but during final settlement, the bill is calculated by the provider based on the actual local,
emote, Cloud time taken matrices. For calculating the estimated bundle price of the provider i.e., 𝑝𝑥, it calculates total local price

(𝑡𝑙𝑝), total remote price (𝑡𝑟𝑝), and total cloud price (𝑡𝑐𝑝). This estimated bundle price helps the broker in comparing the providers.
𝑡𝑙𝑝+𝑡𝑟𝑝 is the total per-minute price of the Fog resources, and 𝑡𝑐𝑝 is the total per-minute price of the Cloud resources. Total estimated
bundle price of a provider 𝑝𝑥 is given by Eq. (1) where 𝑑𝑖𝑠𝑐𝑜𝑏𝑥 is discount on the bundle which provider offers.

𝑒𝑏𝑝x = (𝑡𝑙𝑝 + 𝑡𝑟𝑝 + 𝑡𝑐𝑝) ×
(100 − 𝑑𝑖𝑠𝑐𝑜𝑏x)

100
(1)

Algorithm 2: Estimated Bundle Price Calculator

1: Input: quot_vec, req
2: for all 𝑝𝑥 ∈ P do
3: localPriceVec= quot_vecx.lpx
4: remotePriceVec = quot_vecx.rpx
5: CloudPriceVec= quot_vecx.cpx
6: tlp =∑𝑛

𝑖=1(𝑙𝑜𝑐𝑎𝑙𝑃 𝑟𝑖𝑐𝑒𝑉 𝑒𝑐(𝑖) × 𝑝𝑏𝑙 × 𝑞𝑜i
x × 𝑒𝑡i)

7: trp =∑𝑛
𝑖=1(𝑟𝑒𝑚𝑜𝑡𝑒𝑃 𝑟𝑖𝑐𝑒𝑉 𝑒𝑐(𝑖) × 𝑝𝑏𝑟 × 𝑞𝑜i

x × 𝑒𝑡i)
8: tcp = ∑𝑛

𝑖=1(𝐶𝑙𝑜𝑢𝑑𝑃 𝑟𝑖𝑐𝑒𝑉 𝑒𝑐(𝑖) × 𝑞𝑜i
x × 𝑒𝑡i

9: ebpx=(tlp + trp + tcp) × (100 - discobx)/100
10: end for
11: Output: ebp

The broker now determines the winners and also the quantity of each VM type to avail from each winner. It is not possible that
very provider can satisfy total requirements of the customer. However, several providers together can become winners to meet the
verall customer requirements. Once the customer’s requirement is satisfied, the winner determination algorithm stops.

Algorithm 3: Sort Providers

1: Input: extquot_vec, req, ebp, for_incentive
2: for all 𝑝𝑥 ∈ P do
3: M(x) = ∑𝑛

𝑖=1𝑚𝑐𝑓
i × 𝑞𝑜 i

x

4: BidDensity(x) = 𝑒𝑏𝑝x∕
√

𝑀(𝑥)
5:

𝑠𝑐𝑜𝑟𝑒(𝑥) =
𝑄𝑜𝑆_𝑙𝑒𝑛
∑

𝑖=1
𝑄𝑜𝑆(𝑖) ×𝑤_𝑣𝑒𝑐(𝑖) + 𝑟𝑒𝑝𝑢 ×𝑤_𝑟𝑒𝑝𝑢 + 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 ×𝑤_𝑝𝑟𝑖 (2)

6:
𝑝𝑜𝑖𝑛𝑡(𝑥) = 𝐵𝑖𝑑𝐷𝑒𝑛𝑠𝑖𝑡𝑦(𝑥) × 1∕𝑠𝑐𝑜𝑟𝑒(𝑥) (3)

7: end for
8: Sort providers on the basis of points (ascending order)
9: if for_incentive == false then

10: Output: point list, score list, sorted_provider
11: else
12: Output: sorted_provider
13: end if

Winner and Quantity Taken Matrix Determination: In order to determine the winners, sorting of the providers is done. For
his,

√

𝑀 approximation technique is used as done in the baseline model [10]. Lehmann et al. [29] suggested that using
√

𝑀
pproximation, we can change the time complexity from exponential to polynomial. In the baseline model, the quantity of the
esources of a VM type availed from the provider is the same as offered by the provider. FICAM considers the availed quantity of
esources of VMs according to the customer’s requirement.

The providers offering at least one unit of any VM type are declared as winners. The unit of resources of each VM type taken
rom the winning providers is stored in final quantity taken matrix (𝑓𝑞𝑡). To begin with, resources are taken from the first provider
n the sorted list of providers, if the provider is able to offer the desired quantity of all VM types demanded by the customer. In that
ase, the first provider is the sole winner. If not so, the remaining quantity of the resources is taken from the second provider in the
orted list of providers. The process stops if customer request is full-filled or providers are unable to satisfy the customer requests
if there is no VM type availed from a service provider 𝑝 , i.e., ∑𝑛 𝑞𝑡i = 0, where, i signifies the VM type).
8
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Algorithm 4: Winner & Quantity Determination

1: Input: extquot_vec, req, ebp, for_incentive
2: if for_incentive == false then
3: sorted_provider, point list, score list = Sort_Providers (extquot_vec, req, ebp, for_incentive)
4: else
5: sorted_provider = Sort_Providers(extquot_vec, req, ebp, for_incentive)
6: end if

⊳ calculate winners and how much quantity of each machine to take from them
7: for each 𝑝𝑥 ∈ to sorted_provider do
8: qox = quot_vecx.qox
9: for i=1 to n do

10: if ctqi < qri then
11: if qoi

x >= qri - ctqi then
12: qti

x=qri - ctqi

13: else
14: qti

x= qoi
x

15: end if
16: ctqi += qti

x
17: end if
18: end for

⊳ once all resources in desired quantity have been taken winner determination is complete
19: if ∑𝑛

𝑖=1 𝑞𝑡
i
x =0 then

20: break
21: else
22: if for_incentive==false then
23: fqtx=qtx
24: end if
25: Winners=Winners ∪ provider
26: end if
27: end for
28: if for_incentive == false then
29: Output: Winners, fqt, point list, score list
30: else
31: Output: Winners
32: end if

Algorithm 5: Incentive to Winning Providers

1: Input: Winners, extquot_vec, req, point list, score list
2: for all 𝑝𝑥 ∈ Winners do
3: M(x) = ∑𝑛

𝑖=1mcf i × qt i
x

4: 𝑟𝑤=-1
5: (Winners′) = WinnerDetermination(req, extquot_vec -x, ebp-x, true)

⊳ Here Winners′ vec is traversed from last to first
6: for all 𝑝𝑦 ∈ Winners′ do
7: if 𝑝𝑦 ∉ Winners then
8: 𝑟𝑤 ← 𝑝𝑦
9: break

10: end if
11: end for
12: if 𝑟𝑤 > 0 then
13: Incentive_point(x)= (point(𝑟𝑤) - point(x))
14: else
15: Incentive_point(x)=0
16: end if
17: Incentive(x) = Incentive_point(x)×

√

(M(x) × score(x)
18: end for
19: for 𝑝𝑥 ∉ Winners do
20: Incentive(x)=0
21: end for
22: Output: Incentive

Incentive to Winning Providers: This module extends Vickrey auction [12] scheme for the winning providers, in order to
motivate them to bid truth value. This scheme makes FICAM incentive compatible. In the Vickrey auction, a customer need not pay
the winner (𝑤) according to the bidding of the winner. Alternatively, the customer pays according to the runner-up provider (𝑟𝑤)
which is the winner if 𝑤 does not participate in the auction. When there are two or more candidates for 𝑟𝑤, the runner-up winner
s the one whose bidding is higher.

However, the winners cannot be paid directly the estimated bundle price of 𝑟𝑤 as it is based on the quantity of VMs offered by
he provider and not on the basis of the final quantity of the VMs availed from the provider. Additionally, the winner cannot be
irectly paid the final price of the runner-up winner because the final price of the runner-up winner is zero (as the final quantity
9
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taken from 𝑟𝑤 is zero). Therefore, instead of directly applying Vickrey pricing as in the base model TFMCRA, FICAM gives incentive
o the winner based on the quotation of the 𝑤 and 𝑟𝑤.

For the uni-attribute auction, the incentive of the winner is the price difference between runner-up winner and winner as shown
in Eq. (4).

𝐼𝑛𝑐𝑒𝑛𝑡𝑖𝑣𝑒(𝑤) = 𝑝𝑟𝑖𝑐𝑒(𝑟𝑤) − 𝑝𝑟𝑖𝑐𝑒(𝑤) (4)

The proposed incentive scheme uses multi-attribute auction, where the overall price is determined considering the overall attributes
and not just the price. Here, a winner is paid according to the evaluated value (i.e., point) of runner-up winner(𝑟𝑤) and winner(𝑤).
For obtaining that value, the incentive point is calculated which is the difference between the point of runner-up winner and winner
as shown in Eq. (5).

𝐼𝑛𝑐𝑒𝑛𝑡𝑖𝑣𝑒_𝑝𝑜𝑖𝑛𝑡(𝑤) = 𝑝𝑜𝑖𝑛𝑡(𝑟𝑤) − 𝑝𝑜𝑖𝑛𝑡(𝑤) (5)

After calculating the incentive point, incentive price needs to be extracted. Since, point is calculated using Eq. (3) Algorithm 3,
therefore, price can be extracted from the point using Eq. (6).

𝐼𝑛𝑐𝑒𝑛𝑡𝑖𝑣𝑒(𝑤) = 𝐼𝑛𝑐𝑒𝑛𝑡𝑖𝑣𝑒_𝑝𝑜𝑖𝑛𝑡(𝑤) ×
√

(𝑀(𝑤) × 𝑠𝑐𝑜𝑟𝑒(𝑤) (6)

Score is calculated using Eq. (2) and M(w) is calculated using Eq. (7)

𝑀(𝑤) =
𝑛
∑

𝑖=1
𝑚𝑐𝑓 𝑖 × 𝑓𝑞𝑡𝑖𝑤 (7)

Price Settlement Algorithm This algorithm generates the final bill vector for each winning provider. Customer reports to the
broker about the delivered quality of the resources. If the delivered QoS is higher than the proposed QoS, it works fine. In case, it is
less than the proposed QoS, it indicates a cheat on the provider’s part. Considering this, the score is recalculated. If the recalculated
score is equal to the initial score then an incentive is given to the provider. But if the recalculated score is less than the initial score,
i.e., if the provider cheats, then no incentive is given to the provider. If provider cheats, the final bill is produced in proportion to
𝑓𝑖𝑛𝑎𝑙_𝑠𝑐𝑜𝑟𝑒
𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑠𝑐𝑜𝑟𝑒 as a compensation to the customer and as a penalty to the provider. Thus, if provider cheats, then 𝑓𝑖𝑛𝑎𝑙_𝑠𝑐𝑜𝑟𝑒 is less than

𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑠𝑐𝑜𝑟𝑒. In this, 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑠𝑐𝑜𝑟𝑒 is calculated at the time of sorting the providers, and 𝑓𝑖𝑛𝑎𝑙_𝑠𝑐𝑜𝑟𝑒 is calculated after the customer
reporting on the delivered QoS.

Algorithm 6: Price Settlement

1: Input: Winners, Incentive, fqt, flt, frt, fct, extquot_vec
2: Customer tells broker delivered QoS of winning providers
3: Broker recalculates score (final_score) of winning providers
4: for each 𝑝𝑥 ∈ Winners do
5: for i=1 to n do
6: bill += ( lpi

x × flti
x + rpi

x × frti
x + cpi

x × fcti
x) × fqti

x
7: end for

⊳ if customer has availed at least 50% resources of what provider has offered then only customer gets discount on bundle and that too in proportion

8: ratio=
∑𝑛

𝑖=1 𝑓𝑞𝑡
i
x

∑𝑛
𝑖=1 𝑞𝑜i

x
9: if ratio >= 𝑟x then

10: bill = bill × (100 - (discobx × ratio))/100
11: end if
12: if final_score (x) is >= score(x) then
13: fbx = bill + Incentive(x)
14: else
15: fbx = bill × final_score / initial_score
16: end if
17: end for
18: Output: fb

Bill is calculated based on initial local, remote, Cloud price matrices; final quantity taken matrix; and final local, remote, Cloud
ime taken matrices. Before providing the discount, the ratio of quantity is calculated using Eq. (8) which is the ratio of quantity
vailed and quantity offered by the provider. If 𝑟𝑎𝑡𝑖𝑜 > 𝑟x, a discount is given where 𝑟x is decided by the provider. In this work, for

simplicity in the calculation, the value of 𝑟x is considered as 0.5.

ratio =
∑𝑛

𝑖=1 𝑓𝑞𝑡
𝑖
x

∑𝑛
𝑖=1 𝑞𝑜𝑖x

(8)

FICAM satisfies certain auction properties like incentive-compatible/truthful, budget balanced, individually rational, etc. Proof
f properties, i.e., truthfulness, monotone, non-dominant, robust, egalitarian social welfare (fairness), the budget balanced, and
ndividual rationale is given in Appendix B. We have compared FICAM with other models and a summary of comparison is given in
10
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Table 2
Comparative study of various state of arts.

Features Reverse auctioning model

FICAM TFMCRA Prasad C-DISC Modica BDRBFC Liwang

Combinatorial auction ✓ ✓ ✓ ✗ ✓ ✗ ✗

Multi-attribute auction ✓ ✓ ✓ ✓ ✗ ✓ ✗

Budget balanced ✓ ✓ ✓ ✓ – – ✗

Robust ✓ ✓ ✗ ✗ ✗ ✓ –
Bidder’s optimality ✗ ✗ ✓ ✗ ✓ – –
Non-dominant ✓ ✓ – ✗ ✓ – –
Incentive compatible ✓ ✓ ✗ ✓ ✗ ✓ ✓

Egalitarian social welfare ✓ ✓ ✗ ✗ ✗ ✓ ✗

Cloud architecture applicable ✓ ✓ ✓ ✓ ✓ ✓ ✗

FICA applicable ✓ ✗ ✗ ✗ ✗ ✓ ✗

Satisfy mobile data source/IOT need ✓ ✗ ✗ ✗ ✗ ✓ ✓

TFMCRA - [10] Prasad - [21] C-DISC - [35] Modica - [36] BDRBFC - [18] Liwang - [22].

Table 2. Comparison of FICAM with other reverse auctioning models is based on reverse auction properties such as whether model
supports; combinatorial auction — where buyers bids on combination of items rather than on individual items [30], multi-attribute
auction — where attributes other than price are also considered during auctioning [31], budget balanced - [32] when auctioneer
hosts and runs auction without deficit, individual rational — when a provider never gets a value less than the bid value (except
when the provider cheats) [32], robust — when a compensation is given to the customer if the provider fails to deliver the promised
QoS [33], optimal with respect to bidders, non-dominant — quotation proposed by a winner should be non-dominant with respect
to all the providers those who are not the winners [34], incentive compatible — if truthful bidding is dominant strategy [12],
Egalitarian socially welfare — which promotes those providers who lose in the auction to avoid the bidders drop problem and avoid
control by some powerful providers. Further, FICA satisfies mobile data source and IOT needs.

4. Simulation study

The behavior of the proposed FICAM is evaluated by its simulation in various scenarios. As obvious, developing a real environ-
ent is not only a costly affair but difficult also due to the presence of several external entities such as service provider, broker,

onsumer, etc. Thus, simulation is a better choice. Fog computing in itself introduces challenges such as FICA, dynamic pricing
odel, location-wise Fog services, etc., therefore, existing simulators for Cloud computing environment i.e., CloudAuction [37],
loudsim [38] cannot be used for the proposed work. Even the recently developed FogSim simulator does not include auctioning
elated simulation features. Therefore, simulation experiments have been designed in Matlab following the baseline model [10].
ccording to [10], none of the exiting simulators considers the requirements of the multi-attribute reverse auction for the emerging
ICA. Also, according to [10], TFMCRA is the only truthful resource allocation model in Cloud computing with a multi-attribute
ombinatorial reverse auction mechanism, therefore, it has been considered for comparison purposes. The FICAM Matlab simulation
rocedure is presented in Appendix F.

.1. Dataset

In order to simulate the proposed model and to analyze its behavior under the various scenario, the dataset is constructed
rom various publicly available sources [39]. However, to generate the dataset, standard pricing schemes of authenticated service
roviders are followed [39]. The dataset contains those providers who offer the services of both Fog and Cloud resources or those
og providers who have tied up with Cloud provider and vice-versa. However, only Fog and only Cloud providers can participate
s long as they can provide all types of VMs as required by the customer.

Thirty different types of VMs are considered [39], the configuration for which is briefed in Table 3. It is assumed that very high
onfiguration VMs (index 15 to 30 in Table 3) are provided only on Cloud whereas small configuration VMs can be provided on
loud or Fog by different providers. In the dataset, different types of VMs are indexed from 1 to 30 in increasing order of pricing
ased on their configuration. For example, 1 refers to VM with 512 MB RAM, 1 GB Storage, 1x CPU Power. We used $/minute price
odel of VMs as suggested in [40]. Dataset is constructed for 400 providers. The Cloud price of each provider’s VM Id 1 is randomly

aken between [0.00748–0.0150]. Cloud price of other 29 VMs say VM Id vx is randomly taken between [1.1125–1.2375] × (vx-1).
These VM Ids and their Cloud prices are generated corresponding to various service providers and their standard pricing rates from
publicly available sources [39]. Technically, because of the limited number of Fog resources and high resource demand [41], it
is observed that Fog prices are dynamic based on the customer requirement and load at the Fog provider’s site at any instance of
time. In experiments, the fluctuation in Fog and Cloud prices are considered from −15% to 15%. Limit of mobility is local, state,
and national just for the convention. 33% difference is taken between local Fog prices & state price, and 25% difference is taken
between state & national Fog prices.
11
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Table 3
VM types and configuration attributes.

VM ID RAM Disk CPU VM ID RAM Disk CPU

1 512 MB 1 GB 1 16 4 GB 100 GB 5
2 1 GB 5 GB 1 17 4 GB 200 GB 6
3 1.5 GB 10 GB 1 18 8 GB 50 GB 6
4 2 GB 20 GB 1 19 8 GB 1 TB 5
5 512 MB 5 GB 2 20 4 GB 500 GB 6
6 1 GB 10 GB 2 21 2 GB 500 GB 5
7 2 GB 50 GB 2 22 16 GB 200 GB 4
8 1 GB 20 GB 3 23 4 GB 1 TB 4
9 1.5 GB 50 GB 3 24 16 GB 200 GB 8
10 4 GB 50 GB 2 25 8 GB 500 GB 6
11 4 GB 10 GB 3 26 32 GB 500 GB 6
12 2 GB 100 GB 3 27 16 GB 1 TB 6
13 2 GB 200 GB 3 28 32 GB 1 TB 7
14 8 GB 200 GB 1 29 32 GB 500 GB 8
15 8 GB 100 GB 4 30 64 GB 1 TB 8

Table 4
Common simulation parameters.
Types of VM(VM Id’s) 1,3,4,6,7,9,12,15,17,19,22,23,25,28,30

Quantity of VM type 5,6,7,4,3,10,11,12,13,50,60,70,30,35,40
Time for VM type 12,14,16,17,18,19,20,40,60,120,90,50,100,70,80
QoS 1.0
Weight vector 0.25,0.25,0.25,0.25
Response time vector 0.3,0.35,0.4,0.5,0.6,0.7,0.9,1,1.5,2,2.5,3,3.5,4,5
Iterations 600
lm local,state,national
Local probability 0.5
Remote probability 0.5
Reputation factor 2
Decrease factor 10

4.2. TFMCRA as baseline model

The resource allocation in the baseline model TFMCRA [10] is as follows. TFMCRA sorts providers based on price and non-price
ttributes. Sorted provider list is traversed until the constraint (in Eq. (9)) is not satisfied. All traversed providers and the Winners(x)
Winners(x) is 𝑝𝑥 where constraint in Eq. (9) is satisfied) are declared as winners. Winner providers’ resources are allocated to the

customer.
|𝑊 𝑖𝑛𝑛𝑒𝑟𝑠|
∑

𝑥=1

𝑛
∑

𝑖=1
𝑞𝑖Winners(x) >= 𝑞𝑐 (9)

Pricing in TFMCRA is as follows. In TFMCRA, providers bid bundle price. Let, px is a winner in TFMCRA and has bid pricex.
TFMCRA uses the Vickrey auction pricing scheme. After applying Vickrey pricing scheme, pricex becomes the price of runner-up
provider i.e., 𝑝′𝑥. The Runner-up provider is the winner if 𝑝𝑥 does not participate in the auction. The final price vector is calculated
when the customer submits its QoS after using the resources. Broker imposes a penalty on the provider if the provider cheats a
customer.

4.3. Results and discussion

The proposed FICAM model is evaluated for eight different scenarios. The experiments run 600 times; 200 times with 𝑙𝑚 =
‘local’, 200 times with ‘state’ and 200 times with ‘national’. Results of these 600 iterations are averaged so that the effect of 𝑙𝑚 and
non-price attributes can be conspicuously observed. In order to compare the results with the baseline model, the same simulation
parameters i.e., quantity, type, prices, etc. as in the baseline model are used. These common simulation parameters (default) are
listed in Table 4. The configuration of used VM types is listed in Table 3. Scenario 1 to 5 are listed here, whereas scenario 6 to 8
which study the effect of imposition of penalty on cheat providers, effect of priority attribute on providers, and effect of inclusion
of reputation on provider is given in Appendices C, D, and E respectively.

4.3.1. Scenario1 : Resource procurement cost vs. discount
The customer receives some discount when it acquires a bundle of resources. The effect of variation of discount on resource

procurement cost of FICAM and TFMCRA is analyzed. In this, the discount is varied from 0% to 50% on 50 providers. Other
simulation parameters are as given in Table 4.
12
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Fig. 3. A comparative study on resource procurement cost of FICAM & TFMCRA on varied discount.

Fig. 4. Comparative cost of resource procurement cost of FICAM & TFMCRA on varied number of providers.

The following observations are derived from Fig. 3.
I. The resource procurement cost is less in FICAM than TFMCRA. It is because of the constraint, FICAM satisfies in Eq. (10),

hat considers availing only that much quantity of resources as required and not the whole bundle. TFMCRA satisfies constraint in
q. (9) which allocated the quantity of the resources equal to or more than required by the customer.

|𝑊 𝑖𝑛𝑛𝑒𝑟𝑠|
∑

𝑥=1

𝑛
∑

𝑖=1
𝑞𝑖Winners(x) = 𝑞𝑐 (10)

II. As discount increases, resource procurement cost in TFMCRA decreases at a rapid rate than FICAM. The reason being FICAM
llows customers to enjoy the discount only if one avails at least 50% of the resources offered in the provider’s quote. Additionally,
he discount is in the ratio of 𝑞𝑡

𝑞𝑜 due to which the discount ratio decreases. Hence the number of winning providers, offering a

iscount to the customer, also decreases.

.3.2. Scenario 2: Resource procurement cost vs. number of providers
In this experiment, resource procurement cost is observed on the varying number of providers. Similar to scenario 1, the algorithm

s executed 600 times, and the results are averaged. Simulation parameters, except VM IDs [2, 3, 5, 7, 9, 11, 13, 15, 18, 20, 21, 23, 26, 28,
29], are same so that each VM type in the dataset can be utilized. From the results, shown in Fig. 4, it is observed that if the number
of providers is increased, it will affect the resource procurement cost of both FICAM and TFMCRA models. However, the cost in
FICAM is better in comparison to TFMCRA. It is also observed that the resource procurement cost decreases on the increase in the
number of providers but it becomes constant after a certain number of providers. The reason for the same is that as the number of
providers increases, the competition among the providers also increases resulting in a decrease in the cost. Resource procurement
cost of FICAM is always less than TFMCRA because of the same reason as given in experiment 1.
13
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Fig. 5. Computation time of FICAM on varied number of providers.

Fig. 6. Resource procurement cost of FICAM on varied quantity of resources.

4.3.3. Scenario 3: Computation time vs. number of providers
In scenario 3, the effect of a varied number of providers on computation time is observed. The simulation parameters, for this

experiment, are same as in Table 4 except VM Ids [1, 2, 4, 6, 7, 9, 12, 14, 16, 19, 22, 25, 27, 28, 30]. Configuration of the machine to conduct
this set of experiments is Intel core i5 with quad-core execution units, 4 MB DDR Cache and 4 GB RAM disk. It can be inferred from
Fig. 5 that when the number of providers increases, computation time also increases which is obvious. It also shows that even when
the number of providers is 400, computation time is less than one second. It can be concluded from the time complexity of FICAM
(Appendix A), that the computation time of the FICAM is polynomial which fits very well for the computation time requirements.

4.3.4. Scenario 4: Resource procurement cost and number of winners vs. quantity
This experiment observes the behavior of the FICAM model in terms of resource procurement cost and the number of

winners on varying quantities of the resource offered by the provider. The quantity of the resources, offered by the provider,
is increased by an amount, and its effect is taken into account. Simulation parameters are same as in Table 4 expect VM Ids
as [2, 5, 8, 10, 11, 13, 14, 16, 18, 20, 21, 24, 26, 27, 29]. In this scenario, 50 providers are accounted for bidding. Since Fog resources are
limited in quantity [5], therefore, different quantity increment is considered for Fog and Cloud resources. In the first case, every
provider is providing every Fog resource in the range of 0 to 5, and every Cloud resource in the range 0 to 10. In the second case,
the quantity of every Fog resource is between 5 and 10, and every Cloud resource is between 10 and 20, i.e., an increment of 5
is considered for the Fog resources and 10 for the Cloud resources. Results are shown in Figs. 6 and 7. On the X-axis, 4 points are
shown as, A, B, C, D, where point A corresponds to the first case i.e., where Fog resource range is [0–5] and Cloud resource range
is [0–10], B corresponds to the second case and so on. From the results in Figs. 6 and 7, it can be observed that when the quantity
of each VM type by the provider is increased, FICAM’s resource procurement cost and the average number of providers decrease.
The reason for the same is that the lowered price providers are now offering more resources at the same rate as before. So, FICAM
acquires fewer resources from high-cost providers resulting in the decrease of cost and the number of winners.
14
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Fig. 7. Number of winners of FICAM on varied quantity of resources.

4.3.5. Scenario 5: Effect of limit_Mobility, probability, dynamic fog prices on resource procurement cost
(a) Resource procurement cost vs. Limit_Mobility: In this, FICAM behavior is observed on the limit of data source mobility. As

discussed, the mobility limits may be local, state, or national. When mobility limit changes, remote prices of VM changes affecting
the prices of Fog which also changes. To visualize this, when the mobility limit changes, the share of Fog price in the total amount
is considerable. The share of Fog price in total amount, according to common simulation parameters, is less. Therefore, testing
parameters are same as in Table 4 except quantity vector [25, 30, 24, 27, 21, 26, 23, 32, 35, 37, 41, 39, 42, 38, 33]. The expected time for
which each VM acquired is 10 days. To understand the dynamism in the cost, the experiments are run two times with the same
parameters, each with 600 rounds. As usual, out of 600, 200 rounds are for the local limit, 200 rounds for the state limit, and 200
rounds for the national limit. The resource procurement cost with local, state, and national mobility are shown in Fig. 8(a), where
the local cost is the average cost of 200 rounds with 𝑙𝑚 = ‘local’. State cost and National cost are similarly defined. From the results
of these two 600 rounds, it comes out that the working behavior of the model is dynamic and the cost is non-deterministic.

(b) Resource procurement cost vs. remote probability: This scenario estimates the effect of change of data source remote
probability on resource procurement cost. Simulation parameters are the same as in scenario 5(a), and each time algorithm runs for
600 rounds — 200 for local, 200 for the state, and 200 for national. The average cost of 600 rounds is taken into account. Remote
probability is varied from 0 to 1 to observe the behavior of FICAM. The results are shown in Fig. 8(b).

(c) Effect of dynamic fog price on resource procurement cost: As load changes on Fog resources, their prices are varied
(increase/decrease) due to dynamic pricing [41]. This experiment estimates the effect of dynamic Fog pricing on total resource
procurement cost. For this set of experiments, the percentage difference between local Fog price and Cloud price of each VMs of
each provider is varied from −30% to 50%. Other parameters are the same as in scenario 5(a). Each experiment is conducted 600
times as in scenario 5(b). The effect of the cost of dynamic Fog pricing is shown in Fig. 8(c).

From the results in Fig. 8(a), (b) and (c), it is inferred that the working behavior of the model is dynamic. Providers in FICAM are
sorted on the basis of total estimated bundle cost as given in Eq. (1). Whenever 𝑙𝑚(as per customer mobility) or remote probability
or Fog prices increase, 𝑡𝑙𝑝 and 𝑡𝑟𝑝 are multiplied by some factor but, 𝑡𝑐𝑝 remains constant. Total estimated bundle price increases
which changes the sorted list. From Theorem 1, it can be proved that the place of provider in the new sorted list may not be the same
as in previously sorted list i.e., list before 𝑙𝑚 or remote probability or Fog price changes. This changes the winner which affects the
resource procurement cost. Resource procurement cost can increase or decrease, i.e., no direct relation can be established between
resource procurement cost and the mobility limit or the remote probability or dynamic Fog prices. An example can demonstrate
this better. Suppose, there are six providers i.e., a, b, c, d, e, and f. The sorted list of providers before the increase is [a, b, c, d, e,
f] and winners are [a, b, c, d]. After the increase, the sorted list of providers is [a, b, c, e, f, d] and winners are [a, b, c, e]. Total
resource procurement cost before the increase is given by Eq. (11).

𝑓𝑏a + 𝑓𝑏b + 𝑓𝑏c + 𝑓𝑏d (11)

After increase, the resource procurement cost is as given in Eq. (12)

𝑓𝑏′a + 𝑓𝑏′b + 𝑓𝑏′c + 𝑓𝑏′e (12)

The final bill of provider a after the increase may be greater than or equal to before the increase (equal to in case when the
provider is offering Cloud resources only) i.e., 𝑓𝑏′a >= 𝑓𝑏a. This is valid for providers b and c as well. Thus, it is possible to say

𝑓𝑏a + 𝑓𝑏b + 𝑓𝑏c <= 𝑓𝑏′a + 𝑓𝑏′b + 𝑓𝑏′c (13)
15
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Fig. 8. Resource procurement cost of FICAM on varied Limit_Mobility, probability, dynamic fog price.

However, it is difficult to say 𝑓𝑏′e >= 𝑓𝑏d for providers d and e because providers are sorted not only on price but also on the
basis of non-price attributes. 𝑓𝑏′e can be less than 𝑓𝑏d. Hence, total resource procurement cost before the increase, can be less than
total resource procurement after the increase, i.e., Eq. (14) or Eq. (15).

𝑓𝑏a + 𝑓𝑏b + 𝑓𝑏c + 𝑓𝑏d >= 𝑓𝑏′a + 𝑓𝑏′b + 𝑓𝑏′c + 𝑓𝑏′e (14)

𝑓𝑏a + 𝑓𝑏b + 𝑓𝑏c + 𝑓𝑏d <= 𝑓𝑏′a + 𝑓𝑏′b + 𝑓𝑏′c + 𝑓𝑏′e (15)
16

Theorem 1. If 𝑡𝑙𝑝 is increased by the factor a, and 𝑡𝑟𝑝 is increased by factor b then place of providers in new sorted list changes.
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Proof. Let, 𝑝𝑥&𝑝𝑦 be two providers, and before price increases, place of 𝑝𝑥 appears before 𝑝𝑦 in the sorted list of providers. Therefore,

𝑡𝑙𝑝x + 𝑡𝑟𝑝x + 𝑡𝑐𝑝x < 𝑡𝑙𝑝y + 𝑡𝑟𝑝y + 𝑡𝑐𝑝y (16)

When 𝑡𝑙𝑝 increases by the factor d1, and 𝑡𝑟𝑝 increases by a factor d2 then sorted list changes. It is undetermined that place of
provider 𝑝𝑥 will remain before 𝑝𝑦 in the new sorted list of providers because Eq. (17) cannot be derived from Eq. (16).

𝑡𝑙𝑝x × 𝑑1 + 𝑡𝑟𝑝x × 𝑑2 + 𝑡𝑐𝑝x < 𝑡𝑙𝑝y × 𝑑1 + 𝑡𝑟𝑝y × 𝑑2 + 𝑡𝑐𝑝y (17)

Hence, the place of provider in the new sorted list changes.

5. Conclusion and future work

In this paper, a novel multi-attribute auctioning mechanism for resource procurement considering fog-integrated cloud architec-
ture is proposed. The combinatorial reverse auction is applied for resource procurement as it is more beneficial than its counterparts.
Considering Fog and Cloud service providers and their respective attributes, an architecture model is proposed along with pricing
design and resource procurement algorithm. Pricing design is based on local, remote Fog resources, and Cloud resources. The
proposed FICAM model takes care of data source mobility and issues of Fog resource limitations. It estimates the bundle price
of each provider on the basis of the customer’s local and remote probability, the limit of mobility, and determines the winners
according to the estimated bundle price and other attributes. Unlike the Cloud, Fog resources are limited and therefore, the algorithm
determines and takes into account the number of resources to be acquired from each winner provider. An incentive scheme for the
winner providers is also proposed. The final bill is generated based on local, remote, Cloud time matrices, and QoS delivered. For
simulation purposes, a dataset is prepared because of the unavailability of the required dataset that consists of Fog and Cloud reverse
auction prices considering the data source mobility in Fog computing. Eight different scenarios are explored to observe the behavior
of FICAM considering various consequences. Results are compared with the baseline Cloud auction model. The experimental results
infer that FICAM works effectively in real-time and in a highly dynamic scenario. Thus, it fulfills all the features to be a good
candidate as the future auctioning model that meets the requirements of customers and service providers.

In the future, we plan to apply machine learning techniques to make the FICAM a more truthful, realistic, memorable auctioning
mechanism that can predict the behavior of the service provider based on the experiences.
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Appendix A. Time complexity analysis

Let, 𝑚 is the total number of providers participating in the auction, and 𝑛 is the number of different VM configurations that
a customer requires. FICAM collects the requirement from the customer (line 1) with the time complexity of 𝑂(𝑛). Next, it seeks
the quotation from the providers with the complexity of 𝑂(𝑚 × 𝑛) (lines 3–5) that is extended by including the time-complexity of
𝑂(𝑚). Further, the ‘Estimated Bundle Price Calculator’ module (line 9) has 𝑂(𝑚× 𝑛) complexity. The ‘Winner & Quantity Determination’
module is called (line 10) to accomplish two jobs: sorting of providers and winner estimations are done in 𝑂(𝑚 × 𝑛) and 𝑂(𝑚2)
ime-complexity respectively. The incentive is given to truthful winners through ‘Incentivize Winning Providers’ module (line 11)

which calculates runner-up winner and also calls ‘Winner & Quantity Determination’ module (line 5) for each winning provider.
Therefore, total complexity becomes 𝑂(𝑚2 + 𝑚2 × 𝑛 + 𝑚3). FICAM asks provider to submit time taken matrices (lines 13–15) which
ave the 𝑂(𝑚×𝑛) time-complexity. Finally, the bill is generated through ‘Price Settlement’ module (line 16) with the time-complexity
f 𝑂(𝑚× 𝑛). Hence, FICAM is running in polynomial time with estimated time complexity: O(m2n + m3). Normally, m is very large

compared to n, therefore, total-time complexity becomes 𝑂(𝑚3).

Appendix B. Proof of theorems

Theorem 2 (FICAM is Truthful or Incentive Compatible). A model is said to be incentive-compatible if truthful bidding is the dominant
trategy [12]. The payoff of provider/bidder is given by Eq. (B.1) [12] if provider i is a winner otherwise his/her payoff is zero.

𝑝𝑎𝑦𝑜𝑓𝑓i = 𝑓𝑝i − 𝑣i (B.1)

ere, 𝑓𝑝 is the final price, and 𝑣 is the valuation price. In order to establish the truthfulness of FICAM, it is required that if the provider
verbids or underbids than his valuation value (truthful value), the provider should be in loss or zero profit than if the provider had bid
17

ruthfully. Let us assume, bi be the bid value of provider i and vi be the valuation value of provideri.
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Table B.5
Common simulation parameters.
Types of VM(VM Id’s) 1,3,4,6,7,9,12,15,17,19,22,23,25,28,30
Quantity of VM type 5,6,7,4,3,10,11,12,13,50,60,70,30,35,40
Time for VM type 12,14,16,17,18,19,20,40,60,120,90,50,100,70,80
QoS 1.0
Weight vector 0.25,0.25,0.25,0.25
Response time vector 0.3,0.35,0.4,0.5,0.6,0.7,0.9,1,1.5,2,2.5,3,3.5,4,5
Iterations 600
lm local,state,national
Local probability 0.5
Remote probability 0.5
Reputation factor 2
Decrease factor 10

Case 1: If provideri can truthfully win the auction with bi = vi, runner-up as ri and payoff as 𝑝𝑎𝑦𝑜𝑓𝑓i.
(a) If provideri overbids, i.e., bi > vi then he may lose or win; if the provider loses, i.e., 𝑝𝑎𝑦𝑜𝑓𝑓i = 0 so, there is no profit of

overbidding. Else, if provider wins then, runner-up of provideri will still be ri as technically runner-up winner of provideri is the
winner if provideri did not participate. Hence, provideri payoff will be 𝑝𝑎𝑦𝑜𝑓𝑓i.

(b) If the provider underbids, i.e., 𝑏i < 𝑣i then, he/she will win. But runner-up winner and payoff will even now be ri and 𝑝𝑎𝑦𝑜𝑓𝑓i
respectively. Hence, no profit of underbidding.

Case 2: If provideri with bi = vi cannot win the auction with Winner Providers (WPs).
(a) If provideri underbids, i.e., bi < vi then, he can lose or win; if the provider loses, i.e., 𝑝𝑎𝑦𝑜𝑓𝑓i = 0 so, no profit of underbidding.

Else if provider wins then, the runner-up winner of provideri will be among WP. Since, provider 𝑖 is non-winner with 𝑏i = 𝑣i,
therefore, 𝑣i > 𝑚𝑎𝑥(𝑏𝑖𝑑(𝑊𝑃 )). Following this, 𝑝𝑎𝑦𝑜𝑓𝑓i is < 0. Hence, loss is there if provider underbids.

(b) If the provider overbids, i.e., 𝑏i > 𝑣i, he will lose with 𝑝𝑎𝑦𝑜𝑓𝑓i = 0. Hence, there is no profit of overbidding.
With this, we can infer, truthfulness dominates underbidding and overbidding, therefore, FICAM is truthful.

heorem 3 (FICAM is Monotone). A model is a monotone if a provider wins even if the provider improves its quotation. The provider’s
uotation consists of initial price vectors, quantity offered vector, discount on the bundle, and QoS. The proof is given for all possible cases,
f the provider improves any part of the quotation (improvement is done with respect to the customer) then the provider wins.
a) 𝑙𝑝, 𝑟𝑝 and 𝑐𝑝 consist of initial local, remote and Cloud price vector. Improvement in any of these vectors leads to decrement in the
stimated cost of the bundle; in turn, it decreases the Bid Density (Eq. (11)) and point (Eq. (13)). Since, provider’s list is sorted on the basis
of the point, the decrement of the point ensures that the provider still wins.
(b) If 𝑞𝑜 is improved (the provider offers more quantity) then M(x) (Eq. (10)) decreases. This results in a decrease in Bid Density (Eq. (11))
that leads to a decrement in point Eq. (13) which ensures the victory of the provider.
(c) If 𝑑𝑖𝑠𝑐𝑜𝑏 is improved (discount is increased) then the estimated bundle price decreases leading to a decrease in point of the provider.
Hence, the provider still wins.
(d) QoS is improved. It improves score (Eq. (12)) which leads to an improvement in point as in Eq. (13).

Theorem 4 (FICAM is Non-dominant). It means that the quotation proposed by a winner should be non-dominant with respect to all
non-winner providers. Nevertheless, quotation needs not to be non-dominant with respect to winner providers [34]. Non-dominant quotation
means quotation should be best according to sorting/comparison criteria of the provider. Since the winner determination algorithm starts
from the first provider in the sorted list (the best provider according to sorting criteria) to declare winners and continues till it achieves the
desired quantity of resources. All providers declared as winners, have the best quotation compared to non-winner providers. This indicates
FICAM is non-dominant.

Theorem 5 (FICAM is Robust). A combinatorial auction is robust if it compensates the customer for non-meeting the promised QoS as
mentioned in the quotation [33]. To accomplish this, the score is recalculated to determine whether the provider has offered the stated QoS.
If the provider fails then a penalty is imposed and the customer pays according to the delivered QoS.

Theorem 6 (FICAM Ensures Egalitarian Social Welfare). It ensures that the model should promote losing providers, i.e., should increase
chances of winning of non-winner providers in the next auction round to avoid control by some powerful providers in the market. In FICAM,
the priority attribute takes care of this, therefore, FICAM ensures egalitarian social welfare.

Theorem 7 (FICAM is Budget Balanced [32]). When auctioneer hosts and runs auction without deficit, the auction is said to be budget
balanced. In the ‘Price Settlement’ module of FICAM, the final amount received from the customer is paid to the provider. Therefore, FICAM
is budget balanced.

Theorem 8 (FICAM is Individually Rational). A model is individually rational [32] when a provider never gets a value less than the bid
value (except when the provider cheats). FICAM provides either incentive > 0 or equal to 0 if the provider’s runner-up winner does not exist.
This way, the final price after the incentive can never be less than the initial bid price. Hence, FICAM is individually rational.
18
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Fig. C.9. Utility of providers on the imposition and not the imposition of penalty on fraud providers.

Table D.6
Effect of reputation on providers.
Round Winners

1 [5, 4, 3, 10]
2 [5, 4, 3, 7]
3 [5, 4, 3, 7]
4 [5, 4, 3, 7]
5 [5, 4, 3, 10]

Appendix C. Effect of imposition of penalty on cheating providers

Fig. C.9 shows the effect of the penalty on providers. The simulation parameters are same as in Table B.5. From Fig. C.9, it
an be observed that the provider number 40 and 5 have negative utility and 26 and 41 have positive utility when the penalty is
pplied. The utility of provider is given by Eq. (C.1) where 𝑓𝑎𝑝 is the final auction price, and 𝑏𝑝 is the bid price.

Utility(x) = 𝑓𝑎𝑝(𝑥) − 𝑏𝑝(𝑥) (C.1)

Let us assume, providers 40 and 5 cheat; therefore, no incentive is given. In the price settlement module, the final score of
heating provider is not equal to the initial score. As a penalty, their final auction price will be according to their bid prices, and
t is multiplied by ratio 𝑓𝑖𝑛𝑎𝑙_𝑠𝑐𝑜𝑟𝑒

𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑠𝑐𝑜𝑟𝑒 which is less than 1. This way, the final auction price becomes less than the price according to
bid prices which indicates negative utility. From the results in Fig. C.9, it can also be observed that if the penalty is not imposed
on cheating (fraud) providers (40 and 5), their utility seems to be positive. In addition, if the penalty is not imposed on cheating,
then provider again commits fraud in the next auction rounds. Providers 26 and 41 have positive utility because their final scores
are equal to the initial score. Consequently, they receive the incentive, and hence, the final price is higher than the bid price. As an
inference, penalty imposition discourages provider from perpetrating fraud.

Appendix D. Effect of priority attribute on provider

In this scenario, the effect of the priority attribute on provider is analyzed. Simulation parameters are the same as in Table B.5
except that the effect of reputation is not taken into account to consider the effect of priority attribute. A total of 10 providers is
considered here. The experiment is run 200 times. The number of times a provider wins in these 200 rounds is recorded and is
shown in Fig. D.10. The sorted list of providers based on their quotation is [5, 4, 3, 10, 7, 9, 1, 8, 2, 6]. The first-round winner providers
are [5, 4, 3, 10]. However, it can be inferred from Fig. D.10 that providers 7 and 9 are also able to win a substantial number of the
auction even though they are not offering the best bids. Even, providers 1 and 8 are able to win in some auction rounds. This
happened because of the inclusion of priority. Therefore, not only most competent providers always win, but a fair chance is also
given to other providers in FICAM. Hence, the priority attribute helps to establish a balance in the market.

Appendix E. Effect of inclusion of reputation on providers

The effect of reputation attributes on providers is also analyzed. Simulation parameters are the same as in Table B.5 except
that effect of priority is disabled to analyze the effect of reputation attribute. The experiment is performed with 10 providers,
19

and the 𝑑𝑓 (decreasing factor) is 50. Results from Table D.6 shows that in round 1, providers [5, 4, 3, 10] win. Let us consider,
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Fig. D.10. Effect of priority attribute on providers.

roviders 4 and 10 gave false QoS; therefore, their reputation decrease. Providers 4 and 10 promised a QoS value of 1 and assumed,
hey delivered 0.9613 and 0.9363 QoS respectively. In the next round, results showed that providers [5, 3, 7, 9] win because of the

decreased reputation of providers 4 and 10. Logically, if providers 4 and 10 decrease their quotation price or increase their QoS
truthfully then, they can win in the next auction rounds. The same reputation effect, using FICAM, is also observed. To analyze this
behavior of FICAM, the quotation price of providers 4 and 10 are decreased by 2%, and the QoS is increased by 10%. This rate of
improvement is continued until a provider is again able to win in the auction. The set of experiments is performed until the winner’s
list becomes the same as the first round’s winner list. The obtained experimental results are shown in Table D.6. From the results,
it can be inferred that the provider improved its quotation and price in the second round; therefore, provider number 4 was able
to win in the second round. Provider number 4 was truthful, therefore, provider 4 was able to win in the next auction round too.
Provider 10 was more untruthful (with respect to delivered QoS), despite reducing quotation price and increasing quality in every
round, provider number 10 was able to win again (5th round). With this study, it can be inferred that the decrease in reputation
attributes can influence the providers a lot.

Appendix F. Matlab simulation procedure

To simulate FICAM in Matlab, the dataset for 400 providers is generated. For each provider 𝑝𝑥, a random number between 0
and 15 is generated. 𝑝𝑥 will provide VM Ids up to this random number on Fog and after this number, on the Cloud. This random
number is generated so that different providers offer a different number of VM Ids on Fog and Cloud. For generating final local,
remote, Cloud time matrices, the following pseudo-code is used.

if 𝑙𝑚 = 𝑙𝑜𝑐𝑎𝑙 then
for each VM Id 𝑖

if 𝑖 is on Fog then
// final remote time and Cloud time will be zero
𝑓𝑙𝑡ix = 𝑒𝑡i

else
// final local time and remote time will be zero
𝑓𝑐𝑡ix = 𝑒𝑡i

end
end

else
for each VM Id 𝑖

if i is on Fog then
// final Cloud time will be zero
𝑓𝑙𝑡ix = 𝑒𝑡𝑖 ∗ 𝑝𝑙
𝑓𝑟𝑡ix = 𝑒𝑡𝑖 ∗ 𝑝𝑟

else
// final local time and remote time will be zero
𝑓𝑐𝑡ix = 𝑒𝑡𝑖

end
end

end
20

where 𝑝𝑥 is any random winner provider.
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Appendix G. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.simpat.2021.102307.
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