
A SLA-Oriented Management of Containers for Hosting Stateful Web Services

Christoph Reich1, Kris Bubendorfer2, Matthias Banholzer1, Rajkumar Buyya3
1Department of Computer Science

Hochschule Furtwangen University, Germany
reich@hs-furtwangen.de

2School of Mathematics, Statistics and Computer Science
Victoria University of Wellington, New Zealand

kris@mcs.vuw.ac.nz
3Grid Computing and Distributed Systems (GRIDS) Laboratory

Department of Computer Science and Software Engineering
The University of Melbourne, Australia

raj@csse.unimelb.edu.au

Abstract
Service-Oriented Architectures provide integration of in-

teroperability for independent and loosely coupled services.
Web services and the associated new standards such as
WSRF are frequently used to realise such Service-Oriented
Architectures. In such systems, autonomic principles of
self-configuration, self-optimisation, self-healing andself-
adapting are desirable to ease management and improve
robustness. In this paper we focus on the extension of the
self management and autonomic behaviour of a WSRF con-
tainer connected by a structured P2P overlay network to
monitor and rectify its QoS to satisfy its SLAs. The SLA
plays an important role during two distinct phases in the
life-cycle of a WSRF container. Firstly during service de-
ployment when services are assigned to containers in such
a way as to minimise the threat of SLA violations, and sec-
ondly during maintenance when violations are detected and
services are migrated to other containers to preserve QoS.
In addition, as the architecture has been designed and built
using standardised modern technologies and with high lev-
els of transparency, conventional web services can be de-
ployed with the addition of a SLA specification.

1. Introduction

Web services and the associated Web Services Resource
Framework (WSRF) [23] standards are the predominant
choice for implementing Service Oriented Architectures
(SOA) based systems such as Grids [12]. Management
of large SOAs is difficult, and autonomic principles of
self-configuration, self-optimisation, self-healing andself-

adapting [24][25][20] can be usefully applied to ease man-
agement and improve resilience and overall system perfor-
mance. In addition, quality of service (QoS) needs to be ex-
pressed in such SOAs and can only be met if specific service
level agreements (SLAs) are defined and adhered to. To this
end we have developed an autonomic WSRF container that
utilises MAPE (Monitor, Analyse, Plan and Execute) [16]
to manage its internal functionality, detect SLA violations
and trigger corrective actions. The containers themselves
are connected in via a P2P (peer to peer) overlay to achieve
a wide distribution of workload, decentralised management,
and failure tolerance.

The contributions that we make in this paper are: we
have (1) developed an overallhealthmetric for the WSRF
container that is a single easily comparable value and is
normalised to provide for heterogeneous resources, (2) pro-
vided differentiated service level domains (green, red and
gold) in our SLAs, and (3) developed a decentralised mi-
gration algorithm that redistributes services between con-
tainers to meet agreed QoS using the health metric and ser-
vice level domains. In addition the P2P overlay architecture
is decentralised, highly distributed and scalable. We have
implemented the architecture using standard modern tech-
nologies and with high levels of transparency, indeed, con-
ventional web services can be deployed with the addition of
a SLA description.

The rest of the paper is organised as follows. In sec-
tion 2 we outline the basics of the autonomic WSRF con-
tainer and we describe the general architecture of the sys-
tem. Section 3 lays the foundation for the determination
of the health of a WSRF container, section 4 presents the

1



migration algorithms, section 5 details our experimental re-
sults that validate our approach, section 6 explores related
work, and finally section 7 concludes this paper.

2. WSRF Container Architecture

In this paper we focus on the role of SLAs in the as-
signment and migration of services between WSRF con-
tainers and therefore we will only provide a brief outline
of the WSRF service container itself, see Figure 1. For de-
tails on architecture and implementation see our Technical
Report [26]. The WSRF container, a Java implementation
by the Apache Muse [5] project, is embedded within the
highly customizable application server Geronimo [3] and
the WSRF services are deployed in Axis2 [2] running in
Tomcat [6]. JSR-77 [28]provided by JMX [29] is used
to monitor the WSRF services inside the service container
(e.g. request counter, processing time, etc.). MAPE [16] is
implemented using Geronimo’s GBeans [14], provides au-
tonomic management and utilises SLAs and performance
metrics to trigger self managing operations such as service
migration. Using GBeans provides access to Geronimo’s
advanced features, such as, Inversion-of-Control [13].
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Figure 1. Internal structure of the WSRF con-
tainer

Individual WSRF containers are interconnected via a
modified version of the Pastry [27] structured P2P over-
lay network. Each WSRF container contributes to the au-
tonomic management of the overlay network and there are
no specialised or static management roles. This architec-
ture provides robustness and permits a wide distribution of
workload. A container’s pastry node stores an index for the
service, and resolves this to the actual container on which
the service is hosted.

2.1. WSRF Container Operation

The SLA plays an important role during two distinct
phases in the life-cycle of a WSRF container. The used
SLA description is only a subset of the WS-Agreement
specification[1]. Firstly during service deployment when
services are assigned to containers in such a way as to min-
imise the threat of SLA violations, and secondly during
maintenance when violations are detected and services are
migrated to other containers to preserve QoS. Each con-
tainer monitors its performance requirements, and if it is
unable to resolve the SLA violation internally, it will gener-
ate ahelpmessage indicating which resource is causing the
problem. Each recipient of this help message will generate
a response health status metric (H-metric). A H-metric is
a simple approximation indicating the overallhealthstatus
of the WSRF container, and is weighted to highlight the re-
source responsible for the SLA violation. Essentially, each
monitored resource is normalised, then all of the resources
are summed and renormalised. This allows the state of the
responding machine to be summarised in a single compa-
rable number, but permits the resource of interest to carry
more weight when selecting a destination for migration.
The H-metric is specific to each help request. Two simulta-
neous requests with different violating resources, will ide-
ally result in two different H-metrics from the same con-
tainer. Section 3 presents the H-metric in detail.

2.2. Example: Service Deployment

We distinguish two types of services:constrainedser-
vices have specific location dependencies (e.g. connected
to a specific data base), whileunconstrainedservices have
no special location requirements. During the deployment
of services, constrained services are prioritised over uncon-
strained services. For the initial deployment of services
during container initialisation, this means placing all ofthe
constrained services before the unconstrained services. For
deployment of a new service into an existing container net-
work, if the new service is constrained, then we have no
choice but to attempt to deploy it to the desired container.
If that deployment results in an SLA violation, we then at-
tempt to migrate unconstrained services from that container
(Figure 2). If the new service is unconstrained then it is sim-
ply deployed to the best container using a bounded depth
H-metric query in the container overlay, as explained:

The service deployer (Figure 2) asks its local WSRF con-
tainer to deploy a service. The WSRF container picks a ran-
dom ID, resolves this to the nearest container, and initiates
a two level H-metric query from this root. The H-metric
query in this case results inH = 0.7 from containerP10
andH = 0.6 andH = 0.2 from its computed childrenP3
andP12 respectively. If this search fails to return a suitable
destination for the deployment, we increase the depth by
one and reissue the query. It is worth pointing out that if the
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Figure 2. Service deployment in a WSRF con-
tainer

container being queried has an unresolved SLA violation of
its own, it will return an H-metric ofH = infinity sig-
nalling that it is unavailable for inward service migrations.

3. Health Status Metric (H-metric) of a WSRF
Container

As stated earlier, the H-metric gives an overview of a
container’s health. The SLA specifies a set of resource con-
ditions that must be satisfied. All containers within the over-
lay network need to have their resources scaled to deal with
heterogeneous hosts, otherwise the H-metrics of the various
containers cannot be compared. This scaling information is
exchanged when each container joins the container overlay
network. If a new container advises that it has more mem-
ory or a higher MIPS performance than the current maxi-
mums, then its values are selected as the new maximums
for normalisation and are propagated to all containers in the
network. Each SLA resource condition is therefore scaled
proportionally to the minimum and maximum values for the
container overlay network and will not need to be changed if
a service is subsequently migrated to another container. Af-
ter scaling, the parameter is normalized (value∈ [0.0, 1.0])
using a piecewise linear function (see Equations 1,2,3,4,5).
The primary reasons for using this normalisation function
is it allows us to adjust individual resources which behave
in a non-linear way, e.g. memory usage, and because, prag-
matically speaking, a server is fully loaded at about 80% to
90%.

Hmetric() = fmetric(x, x10, h10, x90, h90) (1)
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0.0, if x <= SLAmin

f10(), if SLAmin < x <=

SLAmin + x10 ∗ SLAmax

f10−90(), if SLAmin + x10 ∗ SLAmax < x <=

SLAmin + x90 ∗ SLAmax

f90(), x < SLAmin + x90 ∗ SLAmax

1.0, otherwise
(2)

x := measured metric value;x =∈ [SLAmin, SLAmax];
x10 ∈ [0.1, x90]; x10 := 10% metric default value;h10 :=
10% H default value;x90 ∈ [x10, 0.9] x90 := 90% metric
default value;h90 := 90% H default value;

f10() =
h10x

x10SLAmax

−
h10SLAmin

x10SLAmax

(3)

f10−90() =
(h90 − h10)x

SLAmax(x90 − x10)
+ h10 −

(h90 − h10)(SLAmin + x10SLAmax)

SLAmax(x90 − x10)
(4)

f90() = −
(1.0− h90)x

SLAmax − SLAmin − x90SLAmax

+ 1.0 +

(1.0− h90)SLAmax

SLAmax − SLAmin − x90SLAmax

(5)

Figure 3 illustrates the normalisation function for a
memory metric:SLAmin = 0MB; SLAmax = 300MB;
h10 = 0.1; h90 = 0.9 and by sweepingx = [0, 300]MB

andx10 = [0.1, 0.5] with the constraint:x90 = 1.0− x10.
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Figure 3. Normalisation function for memory.

To calculate the overall health status of a container the
normalised parameter values are combined and normalized
again (see Equation 6).

H =
1

2
∗

∑b=n

b=1
wb ∗Hmetric()b
∑b=n

b=1
wb

+
1

2
∗ hmachine (6)
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With b := machine hosting the WSRF container andw :=
weights to emphasise particular differentiated SLAs. The
wb := weights represent SLA service level domains: gold
w = 4, redw = 2, greenw = 1. Gold servicesare the
most important and are least likely to be migrated,green
servicescan be thought of asbest-effortservices, whilered
servicesfall between gold and green services in priority and
importance.

The machine specific health status (hmachine) is set rel-
ative to other containers. This permits the H-metric of two
different machines (e.g. different MIPS) to be compared by
considering the max values of all machines (see Equation
7).

hmachine =
wmem ∗Hmem() ∗ cmem + wcpu ∗Hcpu() ∗ ccpu

wmem ∗ cmem + wcpu ∗ ccpu

(7)
Weightswmem andwcpu are the same differentiated service
level (gold, red and green) weights. The correction factor
for different machine resourcesR (e.g. cpu, mem etc.) is:

cR =
Roverall−max

Rcontainer−max

(8)

4. Migration Algorithm

There are five occasions when our system maymigrate
services in response to a: (1) constrained deployment (see
section 2.2), (2) new container joining the network, (3) con-
tainer having few services, (4) container leaves the network
for maintenance, or (5) predicted or real SLA violation. Mi-
gration is similar to deployment, although in this case the
query starts with a violating container detecting it has a
problem, and then issuing a bounded H-metric query (see
Figure 2) to locate a new container to host the service that
caused the (or is expected to cause a) violation.

Algorithm 1 gives the pseudo-code for a responding to
a service violation event. Firstly we stop registering SLA
violations for this container, as subsequent violations will
have the same outcome - migrate a service off this container.
Secondly we stop accepting incoming service migrations.
Next we pick a random unconstrained service with a green
SLA. If none is available we then try selecting a service
with a red SLA and then gold SLA.

Algorithm 2 gives the pseudo-code for the actual migra-
tion of the serviceS identified in algorithm1. Here we con-
struct a ’help’ message and append the H-metric and SLA
for S. Next we do a bounded depth H-metric query and find
the set of accepting containersA, from which we choose the
minimumdest. The serviceS is then migrated to container
dest and the algorithm terminates.

Algorithm 1 Pseudo-code for service violation events
Input: violation

Output: success, failure

STOP registering violations
START refusing inbound service migrations
S ← pickunconstrained(green)
if no value forS then

S ← pickunconstrained(red)
if no value forS then

S ← pickunconstrained(gold)
else

failure
end if

end if
if migrate(S)then

START registering violations
STOP refusing inbound service migrations

else
failure

end if

Algorithm 2 Pseudo-code for migrate
Input: S

Output: success, failure

msghelp ← {Hmetriccontainer, SLAS}
H ← HmetricQuery(msghelp, n)
A← ∀h ∈ H | isAccepting(h)
dest← min(A)
return move(S, dest)

5. Prototype and Evaluation

We have implemented the autonomic WSRF-P2P con-
tainer in a Geronimo [3] application server. The P2P Node
and the autonomic system manager are implemented as
Geronimo Beans (GBeans; [4]). The P2P functionality is
provided by an extension of freePastry [10], however it is
not critical which structured DHT package is used. The pro-
totype has been deployed and tested on five machines. How-
ever, to properly test the performance of the architecture we
ran the deployable prototype code but used the freePastry
overlay simulation mode to scale the simulation to 100 con-
tainers.

5.1. Results

To simplify analysis the only SLA parameter we con-
sidered was response time. The experimental configuration
was 450 services deployed over 100 containers. Each
service had an expected response time of 10ms, with 75
gold, 150 red and 225 green level SLAs. To explore how
our architecture responds to, and resolves SLA violations,
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all services were initially deployed to containers at random.
It is worth pointing out however, that deployments are
usually made much more carefully using the same H-metric
query as migration. Hence these experiments show that
the architecture can deal with a poor initial distribution
and can resolve the distribution of services to provide the
QoS dictated by the differentiated SLAs. The vast bulk
of violations and subsequent rectification migrations are
finished in 15-25 seconds after initial deployment when
using a query depth of 3.

Figure 4. Total number of SLA violations for
bounded H-metric queries.

Figure 4 shows how quickly the system manages to sta-
bilise at the agreed QoS after the initial random deploy-
ments. The slowest to stabilise on the agreed QoS was
when the destination was selected using a query depth of 1
(random), with depth 2 and 3 improving things respectively.
There are some single violations long after the bulk of the
migrations have finished, and this is due to the same des-
tination being chosen by two offloading containers (it is a
fully decentralised algorithm). The deeper the query depth,
the faster the system provides the agreed QoS to the vast
majority of hosted services.

Figure 5 shows the number of gold, red and green
service violations after initial deployment for a H-metric
query depth of 2. The results for level 1 and level 3 both
show similar decay curves but differ in the rate at which
they stabilise on the agreed QoS (as in Figure 4). It is worth
remembering that in response to any of these violations, a
green (then red if no green, then gold) service is chosen to
migrate from the host. Each of these violations results in
a service migration, however the vast bulk of the migrated
services are green, with few reds and minimal gold services

Figure 5. SLA violations shown by service
level for a H-metric query depth of 2.

migrating. Finally Figure 6 shows the total number of
violations for each query depth and service level domain.
Here the reduction in the number total of violations as
more effort is put into finding the best destination is clear,
although the improvement due to the query depth is subject
to diminishing returns.

Figure 6. Total number of violations for each
service level for bounded H-metric queries.
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6. Related Work

There have been a number of projects focusing on auto-
nomic behaviour for managing web services, in particular
Ecosystem [20] analyses and reconFigures a service-based
system (with MAPE) to satisfy Service Level Agreements
with minimal resource consumption. They conclude that
migration is a heavy-weight exercise and should be avoided
whenever possible and that migrating services to satisfy
the minimal resource consumption can lead to unnecessary
overhead. Like our approach, the principle is to migrate
only when resource bottlenecks occur. Hao [15] carries out
migration of weblets, specialized Web services, that can be
migrated, according to the round trip time, message size,
data location and load of the weblet containers.

Other projects have attempted to address scalability
issues for, such as that by El-Darieby and Krishna-
murthy [11], which partitions resources into individual,
cluster and grid resources. Dowlatshahi et. al [9] have de-
veloped an architecture that uses a hierarchical tree struc-
ture for participating nodes distant from the Internet back-
bone, and uses a single peer-to-peer structure for service
discovery at the root layer of the underlying tree struc-
tures. The key characteristics of their architecture are op-
timal search for both distant and close services, minimal
overhead traffic, scalability, robustness, and easier QoS sup-
port. A self-organizing P2P network of resource pools man-
aged by CONDOR [30] has been implemented by Butt et.
al [8]. Each resource manager periodically transmits a list
of resources that it is willing to share to resource managers
that are in close proximity. If a manager has insufficient re-
sources to handle their jobs, they can forward some of their
jobs to the advertising resource manager.

Kang et. al [18] divide SLAs into function domains (low,
medium and high function domains). The 95-percentile re-
sponse time of the real server is used as base for deter-
mining whether to allocate more computing resources to
clients demanding a high level of service. They do not
consider service migration to meet the QoS targets. Lee
and Lee[19] discuss how to integrate a service provider in
a negotiation framework. An important aspect is the need
for a quality measurement like the h-value developed in
this paper. Mikic-Rakic et. al. [21] present an applied
self-reconfiguration approach to support disconnected oper-
ations by allowing the system to monitor and automatically
redeploy itself.

Berenbrink et. al [7] introduce a game-theoretic mech-
anism which they use to find suitable allocations. Each
task is associated with a “selfish agent”, and requires each
agent to select a resource, with the cost of a resource be-
ing the number of agents to select it. Agents would then
be expected to migrate from overloaded to under loaded re-
sources, until the allocation becomes balanced. This sys-

tem is unlikely to scale well, as the resource discovery is
centralised. The research of Zeid and Gurguis [31] aims at
proving that with autonomic Web services, computing sys-
tems will be able to manage themselves as well as their re-
lationships with each other. To achieve this objective, the
research proposes a system that implements the concept of
autonomic Web services but without service migration.

The closest work to ours is that of P2PWeb [22], which
uses a P2P structured DHT, to deliver a SOA middleware
platform. However, although we share many of the high
level goals such as scalability, transparency and fault tol-
erance, there are many significant differences in the archi-
tecture itself. Load balancing in P2PWeb is an exercise in
selecting a replica, that is, P2PWeb does not deploy or mi-
grate services to satisfy QoS requirements.

In [17] deals with the load balancing and dependence
in service grid environment using a distributed scheduling
model oriented to grid service execution mechanisms. In
this model, agents are applied to enable service-level load
balancing and fault tolerance. The described functionalities
are similar to our approach but lack of service migration and
non-centralised monitoring approach.

7. Conclusions

In this paper we have presented a novel architecture that
combines the principles of autonomic management, service
oriented architecture, web services and service level agree-
ments. We use the decentralised, fault tolerant and dynamic
properties of a structured P2P DHT to create a scalable de-
centralised autonomic web service middleware that com-
plies with service level agreements and strives to deliver
QoS in response to client SLA specifications.

We have demonstrated that our autonomic SLA aware
containers, that monitor their SLA compliance and migrate
excess services to other containers with spare capacity, can
react to dynamic to runtime conditions. The rate at which
the system is capable of redistributing services to find a QoS
preserving distribution is very fast, and improves furtheras
the H-metric query depth increases. We have also provided
differentiated service level domains (green, red and gold)
in our SLAs, and using the health metric and service level
domains we have developed a decentralised migration algo-
rithm that redistributes services between containers to meet
agreed QoS. This is done in a distributed, scalable and ro-
bust way.

Finally, we have implemented the architecture using
standard modern technologies and with high levels of trans-
parency, indeed, conventional stateless web services and
stateful WSRF services can be deployed with the addition
of a SLA specification.
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