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 A B S T R A C T

In large-scale industrial product detection, the optimization of computing and storage resources becomes a key 
issue. Most of the existing methods focus on the feature compression of a single dimension or a specific scene, 
but less consideration is given to how to perform feature selection and compression in high-dimensional data 
and multi-task scenarios during the process of edge inference. To this end, a Smart Dimensionality Reduction 
Model (SDRM) with a novel AdaMatrix optimization is proposed to enhance the processing efficiency through 
dynamic compression and dimensionality reduction of 3D tensor. This model adopts a low-rank decomposition 
strategy based on truncated singular value decomposition (t-SVD), and combines regularization and gradient 
descent optimization to achieve progressive data compression. A collaborative optimization framework of t-SVD 
and gradient descent is constructed to optimize the homogeneous distributed multi-head attention mechanism. 
It reduces storage requirements while ensuring data accuracy, and utilizes the multi-head attention mechanism 
to enhance parallel processing capability. Theoretical proofs and various experiments with multifaceted metrics 
show that the proposed SDRM model outperforms existing related methods in terms of compression ratio, 
computational complexity and data processing efficiency in electronic component defect detection scenarios.
1. Introduction

Industrial product detection plays a vital role in the field of au-
tomation and quality control, especially in manufacturing, where it is 
critical to ensure that products meet specifications and performance 
requirements. In the process of detection, traditional methods such as 
machine vision technology based on image processing are often limited 
by large data volumes and low detection efficiency. At the same time, 
traditional methods lack flexibility and accuracy in processing data, 
which cannot meet industrial requirements. These problems are man-
ifested in two main aspects: the limited ability to process large-scale 
and high-dimensional data, and the insufficient ability to quickly and 
accurately identify defects in real-time or near-real-time environments.

In recent years, the Transformer model technology has shown better 
potential in vision tasks due to its self-attention mechanism, which 
can globally process image data. The structure of Transformer allows 
features to be captured at different scales [1], adapted to pixel-level 
prediction tasks, and provides novel solutions in defect detection [2]. 
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Although the Transformer model has demonstrated significant perfor-
mance in industrial product inspection, there are still some perfor-
mance gaps in current implementations due to a lack of local informa-
tion about retained spatial structure, and challenges in model training 
and convergence.

The computational complexity of multi-head attention mechanisms 
is very high when dealing with large data sets or high-dimensional 
inputs. Its temporal and spatial complexity has led to a surge in 
resource requirements [3–5]. When handling long sequences or large 
matrices of inputs, distributed sequence parallelism methods have been 
proposed [6,7] to distribute computational loads across multiple GPUs 
to process longer sequence data. However, the amount of computation 
required to compute the attention score matrix and perform matrix 
multiplication rises exponentially [6]. Meanwhile, there is also a lot of 
feature redundancy in high-dimensional data. These redundant features 
not only increase the computational complexity but also may lead to a 
decline in the model’s performance [7–9].
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Fig. 1. Utilizing distributed parallel processing for images of industrial components in 
an assembly Line.

For tensor decomposition and parallel computing, innovative so-
lutions have been proposed. Online tensor decomposition improves 
accuracy in dynamic data flow scenarios [10], but it is computation-
ally complex and sensitive to hyperparameters. Through the high-
dimensional tensor parallel design, the communication cost is effec-
tively reduced and the performance is improved [11,12], but the im-
plementation is complicated and depends on high-speed hardware, and 
the training cost is high and the interpretability is poor. Despite the 
improvement of computing efficiency, problems such as computing 
cost, hardware adaptation and theoretical depth still need to be solved.

In a nutshell, industrial product detection faces the triple challenge 
of real-time processing of large-scale data, high-precision detection 
and energy efficiency optimization. Toward this end, we propose a 
Smart Dimensionality Reduction Model (SDRM) with a fresh AdaMa-
trix optimization in industrial assembly lines, which effectively copes 
with above problems through intelligent downscaling techniques. The 
detection scenario for the model is shown in Fig.  1. SDRM adopts 
the key truncated singular value decomposition (t-SVD) for low-rank 
approximations and distributed multi-head attention mechanism for ef-
ficient processing of industrial detection image data, thus significantly 
improves the speed and accuracy of data processing by decreasing 
the number of dimensions in the data processing process, while re-
ducing the demand for computational resources and making industrial 
detection systems more economical.

The main contributions of this paper are summarized as follows:

1. Applying low-rank approximations to multi-head attention 
mechanism. By establishing the SDRM with a new AdaMatrix
optimization, the dimensionality of each head in the multi-
head attention mechanism is effectively reduced, which not only 
decreases the number of parameters in the model but also falls 
memory usage and computational complexity.

2. Designing the distributed multi-head attention mechanism 
for data processing. The proposed model improves the multi-
head attention mechanism by using a tensor-based approach, 
and replacing the traditional dot product attention with a mul-
tilinear form, which further reduces the model size, and obtains 
higher computational efficiency through parameter sharing.

3. Enhancing the generalization ability of the proposed model.
By adopting t-SVD truncation for low-rank approximation,
SDRM can not only reduce the dimension and computational 
complexity of the model, but also reduce the overfitting of 
the model. The truncation process only retains the core fea-
tures in the data, and SDRM can remove noise and redundant 
information in the data.

4. Conducting effective experimental validation on real hard-
ware inference boards. Based on experimental results on open 
2 
source datasets and our real hardware inference boards, SDRM is 
not only able to approach real images in the product detection, 
but also shows superior performance in quantitative and quali-
tative evaluation. It proves effectiveness in multi-head attention 
distributed parallel processing.

The rest of this paper is organized as follows. Section 2 outlines 
the related work. In Section 3, the basic structure and formula of 
SDRM proposed in this paper are expounded.  describes the process of 
scheduling tasks to edge devices and calculating multi-head attention. 
In Section 5, some comparative experiments are illustrated. Finally, 
Section 6 draws the conclusion and future work.

2. Related work

The multi-head attention mechanism is key to the Transformer 
architecture, enabling models to focus on different parts of the input se-
quence at the same time. The complexity of traditional perfect attention 
mechanisms increases with the quadratic length of the sequence, which 
brings computational challenges. This section explores various tensor 
parallelism and low-rank decomposition methods aimed at optimizing 
memory and computational efficiency.

2.1. The multi-head attention mechanism and its tensor parallel

Most of the work has recently focused on improving the efficiency of 
data processing in distributed systems, optimizing resource allocation, 
and improving the performance of large-scale model training. Khalesi’s 
model [13] and Li’s flexible matrix multiplication framework [14] 
enhance multitasking efficiency through dynamic data allocation strate-
gies. Jin’s edge co-training system [15] for balanced optimization 
of computation and communication in IoT scenarios. These studies 
achieve an important breakthrough at the computing paradigm level. In 
terms of model training acceleration, Dash’s LLM distributed training 
scheme [16] and Lai’s Merak 3D parallel framework [17] effectively 
mitigate giant model resource consumption. Liu’s Colossal-Auto [18] 
linearizes computational graphs by automating parallel strategies. Chen 
and Liang’s study optimizes the parallelization system at the method 
level and improves the computational efficiency [19,20]. Above all, 
these studies have driven the development of distributed computing 
techniques, especially in applications that handle large-scale data and 
model training, significantly improving efficiency and performance.

The multidimensional innovation of the Transformer framework is 
reflected in the synergistic breakthroughs of the underlying compo-
nents and cross-domain applications. Multi-head attention enhances 
feature capture by parallel parsing in subspace [1]. The Transformer 
framework has shown its potential in cross-domain applications, and 
the communication optimization strategy in [21] for dynamic tensor 
block scheduling has led to an increase in distributed data bandwidth 
utilization. Han [22] breaks through the traditional convolutional lim-
itations by hierarchical spatial modeling paradigm. The advantages 
of visual Transformer in object detection were found in the subse-
quent research [17,23]. And the end-to-end model based on semantic 
segmentation reaches the frontier metrics [24]. In combination with 
the architecture auto-search algorithm, the parameter efficiency of 
the Vision Transformer (ViT) is further optimized [25]. The temporal 
prediction direction reduces the prediction error through frequency 
enhancement and attention mechanisms [7,26]. The ViT improves 
the performance of image processing by segmenting an image into a 
sequence of blocks and applying the pure Transformer architecture 
directly [27]. Despite the breakthroughs in scalability that these dis-
tributed schemes go through, there are still common problems such 
as underutilization of memory bandwidth and high percentage of time 
consuming communication synchronization [18,21,26].

In recent years, the edge-optimized attention mechanism has signifi-
cantly improved the performance of visual tasks in resource-constrained
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Fig. 2. This is the process of the proposed SDRM which performs low-rank approximation through the t-SVD process. The detailed process of t-SVD is shown in Fig.  3. By 
performing low-rank approximation of data, SDRM can speed up data processing.
scenarios through structural innovation and the reform of evaluation 
indicators. Song proposes the C2f-FCA module [28], combined with 
multi-scale context attention and hardware adaptability design, to 
improve the real-time accuracy in the detection of small targets in 
unmanned aerial vehicles. EdgeViTs [29] inherits from attention and 
convolution through the local-all-local (LGL) bottleneck, significantly 
reducing the latency of ViT on mobile devices for the first time. 
BAAN [30] adopts the axial attention decomposition and boundary 
regularization module to solve the imbalance problem in pavement 
detection with low complexity.

The existing parallel frameworks of dynamic tensors still have cer-
tain limitations. High computational complexity and insufficient dy-
namic adaptability of static data allocation strategies. The feature 
collaboration mechanism is weak, and the static tensor transformation 
and lightweight strategy lead to certain deficiencies in the model’s 
capabilities.

2.2. Low-rank approximation of the tensor

The low-rank approximation technique reduces model complexity 
through matrix decomposition and tensor representation. It enables 
parameter scale compression in convolutional neural networks [31] 
and optimizes unilateral data processing efficiency [32]. Wang’s re-
search [33] in the field of multidimensional data complementation 
demonstrates that low-rank tensor representations based on coupled 
nonlinear transformations can improve the quality of complex image 
restoration. At the theoretical level, Sarlos’ complexity analysis ex-
plores [34] the fact that matrix computation with varying principal 
elements leads to a decrease in the convergence speed of the algo-
rithms, but the feature retention and computational overhead can be 
balanced by a dynamic rank-adaptive strategy [35].

Low rank approximation have wide applicability in different fields, 
and it plays a greater role in dealing with large scale and high dimen-
sional data. These studies have proposed different technical schemes, 
but the computational complexity is high and the essential character-
istics of the data are insufficient. The proposed SDRM in this paper 
utilizes an efficient dimensionality reduction strategy to reduce com-
putation and storage requirements, while it is able to retain more data 
features.

2.3. Tensor decomposition and operational optimization

Tensor decomposition technology achieves computational perfor-
mance breakthroughs in multiple domains through singular value op-
timization strategies. Where the stochastic fixed-precision algorithm 
reduces the decomposition elapsed time [36] and the hierarchical 
parallel architecture greatly improves the efficiency in distributed sys-
tems [37]. In the field of machine learning, Amiridi et al. [38] use 
3 
feature selection to improve the accuracy of classification tasks, and 
Razin et al. [39] avoided overfitting through implicit regularization. 
The Tesseract framework [11] greatly improves resource utilization 
through multidimensional parallelization. Cheng et al. [40] propose 
the dynamic load balancing via adaptive tensor parallel systems. And 
the MERIT method [41] makes the visual processing memory footprint 
reduced by tensor transformation. Tensor decomposition has a wide 
range of applications in real-time computing. The Nesterov-accelerated 
CP decomposition algorithm [10] improves the speed of iterative con-
vergence. Incremental decomposition techniques [42] greatly improve 
the efficiency of processing spatio-temporal data. Fawzi et al. [12] 
combine reinforcement learning with traditional matrix multiplication 
algorithms to provide new methods for machine learning to solve tradi-
tional tensor operational optimization problems. Existing optimization 
frameworks currently studied are deficient in dynamic adaptation, 
real-time efficiency and feature synergy.

As for the existing research on mature tensor decomposition meth-
ods. Incremental singular value decomposition gradually updates the 
decomposition to adapt to dynamic data streams. However, its block 
update mechanism brings relatively high computational complexity. 
Tucker decomposition utilizes high-order singular value decomposition 
to decompose tensors into core tensors and factor matrices. But it 
requires a large amount of storage and computing costs. CP decom-
position represents tensors as the sum of the ranks and tensors, and 
is suitable for data with simple patterns. However, when dealing with 
complex structures, its convergence speed is slow and the accuracy 
decreases.

Distributed tensor decomposition is widely applied in scenarios such 
as intelligent perception in the Internet of Things and cross-device data 
fusion. Currently, it is facing the communication and computing chal-
lenges of the surging multi-source data of edge devices. The FlyCom2

framework [43] realizes stream tensor decomposition through random 
sketch compression and MIMO aerial computing, and verifies its ad-
vantages of low complexity and high precision in scenarios with large 
feature value gaps. DiaMASTD [44] proposes a distributed framework 
for the dynamic multi-dimensional streaming tensor decomposition 
problem. This model designs two heuristic load balancing methods. 
However, there are still bottlenecks in resource consumption in large-
scale scenarios. Korthikanti [45] proposes that by integrating sequence 
parallelism and tensor parallelism, the memory of large-scale parameter 
Transformers could be reduced and the computational utilization rate 
could be improved. The HO-QRTP method [46] conducts a parallel low-
rank approximation strategy based on QR decomposition, and realizes 
distributed computing through tensor expansion and logical recombina-
tion. However, its accuracy is relatively weak, and the communication 
overhead is significant in high-order tensor scenarios.

The existing tensor decomposition methods face multiple challenges 
such as dynamic adaptability, real-time efficiency and feature col-
laboration in industrial product inspection. The high computational 
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Fig. 3. This is the process of t-SVD which preserves most of the features of the matrix by computing the singular value decomposition and retaining the eigenvectors corresponding 
to larger eigenvalues. Such a low-rank approximation is able to reduce the data dimensionality, while the removed redundant data will not affect the data processing.
complexity and storage cost of incremental SVD and Tucker limit 
real-time response to dynamic data streams and multi-modal feature 
collaborative modeling. Meanwhile, the convergence speed of the ex-
isting methods is insufficient, and it is difficult to meet the detection 
requirements of high-speed production lines. The static feature associ-
ation mechanism and the feature interaction caused by the lightweight 
strategy weaken the sensitivity to minor defects. In edge scenarios, the 
above-mentioned problems are further limited by issues such as poor 
hardware compatibility.

This paper proposes the Smart Dimensionality Reduction Model 
(SDRM), which uses truncated singular value decomposition technol-
ogy t-SVD to compress high-dimensional data, reduces the resources 
required for storage and processing, and speeds up data transmission 
and processing while decreasing storage costs. t-SVD is used to extract 
key features from complex data to improve the efficiency and effect of 
the learning algorithms. By reducing data dimensions and improving 
data quality, the model can significantly improve the performance of 
various machine learning algorithms, and the data after dimensionality 
reduction can reduce the risk of overfitting and improve the general-
ization ability of the model. SDRM combines low-rank approximation 
and dynamic incremental update to reduce computational complexity, 
and integrates gradient accelerated convergence with computational 
truncation optimization to adapt to dynamic data streams. Meanwhile, 
the adaptive truncation threshold and distributed gradient are utilized 
to balance the accuracy and energy consumption.

3. System model

In order to expedite data processing efficiency and decease data re-
dundancy in large dimension data, we propose the SDRM model which 
uses the tensor decomposition via gradient iterative learning to reduce 
the dimensionality of multi-head attention mechanism. Fig.  2 depicts 
the general framework of the SDRM model which includes the singu-
lar value decomposition (SVD), the tensor parallelism of multi-head 
attention and the attention score calculation.

3.1. Singular value decomposition for low-rank approximation

After entering the image data, we analyze its color space and 
transform it into tensor form. Then the data is distributed to different 
edge devices, and the t-SVD process of gradient descent is carried out 
to complete the low-rank approximation of the data. Finally, the results 
are output by tensor parallelism of multi-head attention mechanism and 
recombination of attention scores.

For a given three-dimensional tensor input 𝑋 ∈ R𝑏×𝑡×𝑑 , 𝑋 is the 
three-dimensional tensor data, where 𝑏 is the batch size, 𝑡 is the time 
4 
step, and 𝑑 is the characteristic dimension, expressed as follows:
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After data preprocessing, singular value decomposition is performed 
on the input data 𝑋. According to Algorithm 1, the tensor is expanded 
into a matrix 𝑏 × (𝑡 ⋅ 𝑑). That is, the time steps and feature dimensions 
of each sample are combined into one large feature vector. We chunk 
the input data 𝑋 to get 𝑋𝑖 for parallel singular value decomposition. 

𝑌𝑖 ≈ 𝑈𝑆𝑉 𝑇 (1)

The singular value decomposition proceeds as indicated in Eq.  (1), 
where we decompose the tensor expansion matrix 𝑌𝑖 into 𝑈,𝑆, 𝑉
matrices. For ease of presentation, we set up 𝛹 ∈ 𝑈,𝑆, 𝑉 .

Fig.  3 illustrates the process of the truncated singular value decom-
position. We obtain a low-rank approximation by a truncation method 
that preserves only the largest 𝑟 singular values. According to the 
singular value matrix 𝑆, we can obtain singular value 𝜎1, 𝜎2,… , 𝜎𝑛 of 𝑋. 
The singular value matrix is truncated, and only 𝑟 singular values and 
corresponding singular vectors are kept. The SVD is truncated to retain 
the largest 𝑟 singular values. We can use the energy retention strategy 
to determine the value of 𝑟. To calculate the total energy information, 
we need find the sum of squares of all singular values. The sum of the 
squares is added until the sum of the squares of the 𝑟 singular values 
reaches 𝜙% of the total value, as depicted in Eqs. (2) and (3).

𝐸 =
𝑛
∑

𝑖=1
𝜎2𝑖 (2)

𝑟
∑

𝑖=1
𝜎2𝑖 ≥ 𝜙% × 𝐸 (3)

After weighting matrix singular value decomposition, we can ac-
quire truncated matrices 𝑈𝑟, 𝑆𝑟, 𝑉 𝑇

𝑟 . When the redundant data is re-
duced, the data process of low rank approximation is just completed. 
This process decreases the data dimension, which makes the training 
and inference process of the model more efficient, and significantly 
reduces the computational complexity. The reduced-rank data saves 
storage space due to decreased dimensionality, and we give Theorem  1 
and its proof.
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Theorem 1.  When processing image data with large data size, the storage 
space required for the matrix can be lessened due to decreased redundant 
data of the images through the method of t-SVD.

Proof.  We can build a mathematical framework from the perspective 
of mapping space and matrix dimensions. There is an input three-
dimensional tensor 𝑋 ∈ R𝑏×𝑡×𝑑 . According to Algorithm 1, the tensor is 
expanded into a matrix 𝑏 × (𝑡 ⋅ 𝑑).

Set Y be the two-dimensional matrix 𝑌 ∈ R(𝑏⋅𝑡)×𝑑 reconstructed by 
X. SVD is applied to Y. We can get the matrix 𝑈,𝑆, 𝑉 , where 𝑈 ∈
R(𝑏⋅𝑡)×𝑟, 𝑆 ∈ R𝑟×𝑟, 𝑉 ∈ R𝑟×𝑡. The storage requirements for raw data that 
has not been processed are:
Soriginal = 𝑏 ⋅ 𝑡 ⋅ 𝑑 ⋅ size_of(element)

The matrix after t-SVD processing only retains 𝑟 eigenvectors with the 
largest eigenvalues, and the storage requirements are as follows:
St-SVD = ((𝑏 ⋅ 𝑡) ⋅ 𝑟 + 𝑟 + 𝑟 ⋅ 𝑑) × size_of(element)

By comparison, we can get the difference in storage requirements 
before and after data compression. Because of the truncated 𝑟 < 𝑑 and 
𝑟 < (𝑏⋅𝑡), the storage requirements of SVD are significantly smaller than 
the original storage requirements. Storage compression ratio is shown 
as follows.

CR =
Soriginal
St-SVD

= 𝑏𝑡𝑑
𝑏𝑡𝑟 + 𝑟 + 𝑟𝑑

> 1

However, when considering the boundary case, we find that trunca-
tion does not occur for 𝑟 = 𝑑 and the storage requirement is 𝑏𝑡𝑟+𝑟+𝑟𝑑 =
𝑏𝑡𝑑 + 𝑑 + 𝑑2, which is instead higher than the original storage. At this 
point the compression ratio is 𝑏𝑡𝑑

𝑏𝑡𝑑+𝑑+𝑑2 < 1, indicating that 𝑟 < 𝑑 is a 
prerequisite for this method. When the value of 𝑟 is small (we take 𝑟 = 1
for ease of computation), the storage requirement is 𝑏𝑡+ 1+ 𝑑, and the 
compression ratio is 𝑏𝑡𝑑

𝑏𝑡+1+𝑑 ≈ 𝑑. The compression is significant at this 
point, but a too low rank may bring a big reconstruction error. □

From Theorem  1, it can be known that the compression ratio CR =
𝑏𝑡𝑑

𝑏𝑡𝑟+𝑟+𝑟𝑑 . Similarly, according to the energy retention strategy, We can 
get information retention 𝜙 =

∑𝑟
𝑖=1 𝜎

2
𝑖

∑min(𝑏,𝑡,𝑑)
𝑖=1 𝜎2𝑖

. By setting the minimum ac-
ceptable average precision 𝑚𝐴𝑃 (𝜙) according to the task requirements, 
the minimum precision retention rate 𝜙min = 𝜙0 −

1
𝑘 ln(1 − 90%

𝑚𝐴𝑃 (𝜙) ) can 
be obtained. In this study, in order to ensure that the loss of defect 
identification accuracy is not significant, we limit the information 
retention rate.

t-SVD, through truncating singular values and matrix block decom-
position, has lower computational complexity and storage requirements 
than existing tensor decomposition methods (Tucker decomposition 
and CP decomposition). The t-SVD is an adaptive adjustment model 
based on truncated rank, which optimizes the balance of computing, 
communication and storage.

3.2. AdaMatrix gradient iteration for rank reduction

In the calculation of large-scale data, directly solving the singular 
value decomposition matrix will cause a huge amount of computa-
tion. This algorithm uses gradient iteration to solve the decomposed 
𝑈,𝑆, 𝑉  matrix, which reduces the required computation amount. SDRM 
combines Adaptive Moment Estimation [47] and Nesterov Accelerated 
Gradient [48] for gradient iteration of t-SVD. Then, a novel iteration 
optimization method named as AdaMatrix is proposed, which is an 
iterative update method for singular vector matrix based on Adam op-
timizer. We make a forecast update, which can provide more accurate 
gradient information closer to the optimal point, to the parameters 
based on momentum. The optimal solution of the loss function can be 
reached faster when dealing with large-scale data. AdaMatrix incorpo-
rates a dynamic adjustment strategy for the momentum term for the 
5 
low-rank decomposition problem and designs element-wise adaptive 
weights for the regularization term of singular matrices. To find the 
𝑈, 𝑉 𝑇  that could best represents the raw data, we can define the loss 
function as Eq. (4). Using gradient descent to optimize 𝑈𝑘, 𝑆𝑘, 𝑉𝑘, and 
perform further regularization 𝜆1‖𝑆𝑘‖1 to 𝑆𝑘 to compress model. Where 
‖𝑈‖∗ and ‖𝑉 ‖∗ matrices are respectively 𝑈 and 𝑉  nuclear norms, 
which are used to control low rank of matrix. We prove the convergence 
of AdaMatrix in Theorem  3. 
𝐿 = ‖

‖

‖

𝑌 − 𝑈𝑆𝑉 𝑇 ‖
‖

‖

2

𝐹
− 𝜆1‖𝑆‖1 + 𝜆2‖𝑈‖∗ + 𝜆3‖𝑉 ‖∗ (4)

Eqs. (5), (6) and (7) uses Hadamard product (i.e., a type of matrix 
calculation) to calculate the partial derivatives of 𝐿 with respect to the 
three matrices 𝑈,𝑆 and 𝑉 . Using this approach allows each element to 
be individually weighted and can be adjusted to the actual problem.
𝜕𝐿
𝜕𝑈

= 2
(

(𝑈𝑆𝑉 𝑇 − 𝑌 )⊙𝑊
)

𝑉𝑘𝑆
𝑇
𝑘 + 𝜆2‖𝑈‖∗ (5)

𝜕𝐿
𝜕𝑆

= 2𝑈𝑇 (𝑈𝑆𝑉 𝑇 − 𝑌 )𝑉 + 𝜆1 ⋅ sign(𝑆) (6)
𝜕𝐿
𝜕𝑉

= 2
(

(𝑈𝑆𝑉 𝑇 − 𝑌 )𝑇 ⊙𝑊
)

𝑈𝑆 + 𝜆3 ⋅ ‖𝑉 ‖∗ (7)

In Eq. (5), the first term is the reconstruction error gradient, and 𝑊  is 
the element-by-element weight matrix. The element-by-element weight 
matrix assigns an independent weight to each element in the matrix 
during the gradient calculation process. The value of 𝑊  is dynamically 
determined through the evaluation of data feature importance and 
gradient iterative optimization. According to the core strategy of the 
energy retention strategy in Eqs. (2) and (3), we initialize 𝑊  based 
on the energy distribution. For each singular value 𝜎𝑖, calculate its 
normalized energy as shown in Eq.  (8). 𝑤𝑖 reflects the importance of the 
characteristic necklace corresponding to the 𝑖th singular value in the 
total retained energy. We map 𝑤𝑖 to the elements of the corresponding 
matrices 𝑈 and 𝑉 . The value of the 𝑊  element in the high-energy 
feature region (i.e., the first 𝑟 singular values retained) is larger, and its 
reconstruction error contributes more significantly to the gradient. The 
value of the 𝑊  element in the low-energy or noisy region is relatively 
small, which suppresses its gradient update and avoids the interference 
of redundant information on the iteration. 

𝑤𝑖 =
𝜎2𝑖

∑𝑟
𝑗=1 𝜎

2
𝑗

(8)

At the same time, AdaMatrix introduces adaptive learning rate to im-
prove computing efficiency. It can dynamically adjust the learning rate 
and fit it to different singular value components. AdaMatrix performs 
the update of first-order moments 𝑚 and second-order moments 𝑣 in 
gradient descent, as described in Eqs. (9) and (10). In this way, we 
achieve smooth gradient update and adaptive learning rate by weighted 
moving average of first-order and second-order moments, as described 
in Eq.  (11).
𝑚𝛹 = 𝛽1𝑚𝛹 + (1 − 𝛽1)∇𝛹̃𝐿 (9)

𝑣𝛹 = 𝛽2𝑣𝛹 + (1 − 𝛽2)(∇𝛹̃𝐿)
2 (10)

𝛹 ←𝛹 − 𝜂
𝑚̂𝛹

√

𝑣̂𝛹 + 𝜖
+ 𝑚𝛥𝛹𝑝𝑟𝑒𝑣 (11)

Learning rate 𝜂 is the key to control each parameter update, and 
proper learning rate can ensure the model convergence and stability. 𝑚
is the momentum coefficient, and 𝛥𝛹prev ∈ 𝛥𝑈prev, 𝛥𝑆prev, 𝛥𝑉prev repre-
sents the parameter update of the last iteration, that is, the momentum 
of the last round. The introduction of momentum from the previous 
round can accelerate the process and reduce oscillations during suc-
cessive gradient descent, and we further present Theorem  2 and its 
proof.

Theorem 2.  The computational efficiency of the singular value decom-
position algorithm optimized by using gradient iteration in SDRM is much 
higher than that of the direct computational singular value decomposition 
method when the data size is large, and the truncated and retained matrix 
dimension 𝑟 is much smaller than the original dimension 𝑛.
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Proof.  We can make a comparative analysis by comparing the com-
plexity of the two computational methods.

For the generalization of this proof, we set the dimension of the 
input matrix 𝑋 to 𝑚 × 𝑛, and calculate the covariance 𝑋𝑇𝑋. Since this 
is a multiplication of 𝑚 × 𝑛 matrices, the complexity is 𝑂(𝑚𝑛2)

𝑋𝑇𝑋 =

⎛

⎜

⎜

⎜

⎜

⎝

𝑥11𝑥11 𝑥21𝑥12 ⋯ 𝑥𝑚1𝑥1𝑛
𝑥12𝑥21 𝑥22𝑥22 ⋯ 𝑥𝑚2𝑥2𝑛

⋮ ⋮ ⋱ ⋮
𝑥1𝑛𝑥𝑚1 𝑥2𝑛𝑥𝑚2 ⋯ 𝑥𝑚𝑛𝑥𝑚𝑛

⎞

⎟

⎟

⎟

⎟

⎠

An eigenvalue decomposition on 𝑋𝑇𝑋 is then performed to obtain 
𝑋𝑇𝑋 = 𝑉 𝛬𝑉 𝑇 . 𝑉 ∈ R𝑛×𝑛 is the right singular matrix containing 
the right singular vectors of 𝑋. 𝛬 is the diagonal matrix containing 
eigenvalues of 𝑋. Eigenvalue decomposition requires the calculation 
of eigenvalues of 𝑛 × 𝑛 matrices, so the complexity of eigenvalue 
decomposition is 𝑂(𝑛3). 𝑆−1 is the inverse of the singular value matrix, 
and the matrix 𝑈 = 𝑋𝑉 𝑆−1 is computed from the already obtained 𝑉
and 𝑆−1.

𝑆−1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1
𝜎1

0 ⋯ 0

0 1
𝜎2

⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 1

𝜎𝑛

⎞

⎟

⎟

⎟

⎟

⎟

⎠

We need to conduct matrix multiplication of X with two matrices of 
dimension 𝑛 × 𝑛, so the computational complexity of this process is 
𝑂(𝑚𝑛2). According to the above proof, the computational complexity 
of direct SVD calculation is about 𝑂(𝑚𝑛2).

In SVD using ordinary gradient iteration, we approximate the best 
low-rank approximation of 𝑋 through iterative optimization, 𝑋 ≈
𝑈𝑆𝑉 . Where 𝑈 is a 𝑚 × 𝑘 matrix, 𝑆 is a 𝑘 × 𝑘 matrix, and 𝑉 𝑇  is a 
𝑘 × 𝑛 matrix.

Initializing 𝑈,𝑆, 𝑉 , we can obtain the computational complexity 
𝑂(𝑚𝑘 + 𝑛𝑘 + 𝑘) based on the dimensions of the matrix. According to 
the matrix dimension, the complexity of calculating 𝑈𝑆𝑉 𝑇  is 𝑂(𝑚𝑛𝑘). 
On the basis of Eq.  (4), the dimension of matrix 𝑈𝑆𝑉 𝑇  and 𝑋 is 
𝑚 × 𝑛, computing 𝑈𝑆𝑉 𝑇 − 𝑋 computational complexity for 𝑂(𝑚𝑛). 
Therefore, the overall computational complexity of the reconstruction 
error calculation is 𝑂(𝑚𝑛𝑘). Suppose that the gradient descent requires 
𝑇𝐺𝐷 iterations, the total computational complexity is 𝑂[𝑇𝐺𝐷 × (𝑚𝑛𝑘 +
𝑚𝑛𝑘)] = 𝑂(𝑇𝐺𝐷 ⋅ 𝑚𝑛𝑘). In order to maintain the numerical stability of 
the matrices, we perform QR decomposition of the matrix 𝑈 and 𝑉
after the iterative update to ensure their orthogonality. The computa-
tional complexity of orthogonalizing 𝑈 and 𝑉  is 𝑂(𝑚𝑘2) and 𝑂(𝑛𝑘2), 
respectively. Thus, the total complexity of the truncated singular value 
decomposition optimized using gradient descent is 𝑂(𝑇𝐺𝐷 ⋅𝑚𝑛𝑘+𝑚𝑘2 +
𝑛𝑘2). Since 𝑟 ≪ 𝑛, the overall complexity is mainly 𝑂(𝑇𝐺𝐷 ⋅ 𝑚𝑛𝑟).

This study introduces AdaMatrix for gradient iteration, and ac-
celerates convergence through adaptive learning rate and Nesterov 
momentum. By using this method, the number of iterations 𝑇𝐴𝑑𝑎 re-
quired to achieve the same accuracy has been reduced. The single 
gradient complexity of AdaMatrix is the same as that of ordinary 
gradient descent, both being 𝑂(𝑛𝑚𝑟). The updates of the first-order 
momentum 𝑚𝛹  and the second-order momentum 𝑣𝛹  are element-by-
element operations, as well as the parameter updates in Eq.  (8), all 
with a complexity of 𝑂(𝑛𝑚𝑟). The orthogonalization constraint is also 
the same as that of the ordinary gradient iteration. Therefore, the 
complexity of a single iteration of AdaMatrix is consistent with that 
of the ordinary gradient iteration, and 𝑇𝐴𝑑𝑎 ≪ 𝑇𝐺𝐷:

𝑂(𝑇𝐴𝑑𝑎 ⋅ 𝑛𝑚𝑟 + 𝑚𝑟2 + 𝑛𝑟2) ≈ 𝑂(𝑇𝐴𝑑𝑎 ⋅ 𝑛𝑚𝑟), 𝑇𝐴𝑑𝑎 ≪ 𝑇𝐺𝐷

AdaMatrix reduces oscillations, and adapts to the importance of dif-
ferent characteristics through momentum accumulation and adaptive 
learning rate adjustment.

After the above proof, we can compare the computational complex-
ity of direct SVD and gradient iterative SVD. When the data scale is 
large, that is, the values of 𝑚 and 𝑛 are massive, the SVD algorithm 
using gradient iteration method is more efficient. □
6 
Theorem 3.  The gradient iteration process of AdaMatrix is convergent.

Proof.  Suppose the loss function 𝐿(𝛹 ) is quadratic differentiable at 
its parameter 𝛹 . According to Taylor expansion, the loss change after 
parameter update is as follows. Among them, 𝛹̃ is located within the 
interval [𝛹𝑡, 𝛹𝑡+1].

𝐿(𝛹𝑡+1) =𝐿(𝛹𝑡) + ∇𝐿(𝛹𝑡)𝑇 (𝛹𝑡+1 − 𝛹𝑡)

− 1
2
(𝛹𝑡+1 − 𝛹𝑡)𝑇∇2𝐿(𝛹̃ )(𝛹𝑡+1 − 𝛹𝑡)

We utilize the Lipschitz continuous gradient assumption to perform 
upper bound control on the second-order terms of Taylor expansion. 
Under the Lipschitz continuous gradient assumption, the spectral norm 
of the Hessian matrix ∇2𝐿(𝛹̃ ), denoted as ‖∇2𝐿(𝛹̃ )‖ ≤ 𝐿. Constraining 
the upper bound of the quadratic (𝛹𝑡+1 − 𝛹𝑡)𝑇∇2𝐿(𝛹̃ )(𝛹𝑡+1 − 𝛹𝑡) to be 
𝐿
2 ‖𝛹𝑡+1−𝛹𝑡‖

2, according to matrix quadratic property, the second-order 
term of the Taylor expansion satisfies the following equation.
1
2
(𝛹𝑡+1 − 𝛹𝑡)𝑇∇2𝐿(𝛹̃ )(𝛹𝑡+1 − 𝛹𝑡) ≤

𝐿
2
‖𝛹𝑡+1 − 𝛹𝑡‖

2

By using the Lipschitz continuous gradient assumption and replacing 
the second-order term of the Taylor expansion with an upper bound, 
the inequality of the single-step loss change is obtained as follow. 
Among them, the first-order term represents the loss descent along the 
gradient direction, and the second-order term represents the penalty of 
the parameter update amount.

𝐿(𝛹𝑡+1) ≤ 𝐿(𝛹𝑡) + ∇𝐿(𝛹𝑡)𝑇 (𝛹𝑡+1 − 𝛹𝑡) +
𝐿
2
‖𝛹𝑡+1 − 𝛹𝑡‖

2

The parameter update amount of AdaMatrix is 𝛥𝛹𝑡 = 𝛹𝑡+1 − 𝛹𝑡 =
−𝜂 𝑚̂𝑡

√

𝑣̂𝑡+𝜖
+ 𝜇𝛥𝛹𝑡−1. Among them, 𝑚̂𝑡 = 𝑚𝑡

1−𝛽𝑡1
 and 𝑣̂𝑡 = 𝑣𝑡

1−𝛽𝑡2
 are the 

momentum terms after correcting the deviation, respectively reflecting 
the first-order moment and second-order moment of the gradient. Sub-
stituting 𝛥𝛹𝑡 into the inequality of the single-step loss variation above 
results in:
𝐿(𝛹𝑡+1) ≤ 𝐿(𝛹𝑡) − 𝜂∇𝐿(𝛹𝑡)𝑇

𝑚̂𝑡
√

𝑣̂𝑡 + 𝜖
+ ∇𝐿(𝛹𝑡)𝑇 𝛥𝛹𝑡

− 𝐿
2

‖

‖

‖

‖

‖

‖

𝑚̂𝑡
√

𝑣̂𝑡 + 𝜖
+ 𝜇𝛥𝛹𝑡−1

‖

‖

‖

‖

‖

‖

2

During the gradient iteration process, in order to handle the influ-
ence of noise in the stochastic gradient, we will assign the stochastic 
gradient 𝑔𝑡 = ∇𝐿(𝛹𝑡; 𝜉𝑡) decomposes into the true gradient and the noise 
term 𝑔𝑡 = ∇𝐿(𝛹𝑡)+𝜁𝑡, where the expectation of the noise term E[𝜁𝑡] = 0. 
Variance E[‖𝜁𝑡‖2] ≤ 𝜎2. Using the momentum update rule 𝑚𝑡 = 𝛽1𝑚𝑡−1+
(1 − 𝛽1)𝑔𝑡, calculate the expectation for the deviation-corrected 𝑚̂𝑡. Get 
E[𝑚̂𝑡] = ∇𝐿(𝛹𝑡) +

𝛽1
1−𝛽𝑡1

∑𝑡
𝑖=1 𝛽

𝑡−𝑖
1 𝜁𝑖. Since the noise term is expected to 

be zero, the accumulation of the noise term tends to zero under the 
long-term expectation, and the momentum term approaches the true 
gradient, reducing the noise interference. Taking the expectation of the 
loss change inequality and comprehensively considering the combined 
influence of noise, momentum and regularization terms on the loss 
expectation, the expected expression of the loss change is obtained as 
follows.

E[𝐿(𝛹𝑡+1)] ≤ E[𝐿(𝛹𝑡)] − 𝜂E

[

‖∇𝐿(𝛹𝑡)‖2
√

𝑣̂𝑡 + 𝜖

]

+ 𝜇E[∇𝐿(𝛹𝑡)𝑇 𝛥𝛹𝑡−1] +
𝐿
2
E[‖𝛥𝛹𝑡‖

2]

Suppose the parameter is bounded ‖𝛹𝑡‖ 𝑙𝑒𝐷, recursively calculate 
the loss changes at all time steps. The total loss reduction is dominated 
by the gradient norm, while noise and momentum terms are secondary 
influences. Based on the above conditions, if the learning rate satisfies 
𝜂 ≤ 𝜖(1−𝛽1)

√

2𝐿(1+𝛽2)
, we can obtain the upper bound of the convergence rate 

of the iterative sequence:

1
𝑇
∑

E
[

‖∇𝐿(𝛹𝑡)‖2
]

≤
2(𝐿(𝛹1) − 𝐿∗)

+ 𝐶𝜎2
√
𝑇 𝑡=1 𝜂𝑇 𝑇
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The 𝐶 = 𝛽1
(1−𝛽1)

√

1−𝛽2
, 𝐿∗ for loss function is lower. √𝑣̂𝑡 + 𝜖 dynamically 

adjusts the step size to avoid unstable iteration caused by an overly 
large step size. It adaptively scales the learning rate based on the second 
moment of the historical gradient and balances the update speed in 
different directions. Thus, the actual learning rate 𝜂𝑒𝑓𝑓 = 𝜂

√

𝑣̂𝑡+𝜖
 is 

decreased in the direction of the large gradient amplitude, thereby 
reducing the oscillation. □

Algorithm 1 Combining the computational process of t-SVD of 
AdaMatirx
Input: 𝑋 ∈ R𝑏×𝑡×𝑑 , 𝜂, number of iterations 𝑛, convergence threshold 𝜖
Output: left singular vector matrix 𝑈 ∈ R𝑚×𝑟 , singular value diagonal 

matrix 𝑆 ∈ R𝑟×𝑟 , right singular vector matrix 𝑉 ∈ R𝑛×𝑟

1: Set 𝛹 ∈ 𝑈,𝑆, 𝑉
2: 𝑌 ← reshape(𝑋, (𝑏 ⋅ 𝑡, 𝑑))
3: 𝑈 ← random_normal ((𝑏 ⋅ 𝑡), 𝑟)
4: 𝑆 ← random_normal (𝑟, 𝑟)
5: 𝑉 ← random_normal (𝑑, 𝑟)
6: 𝑈prev, 𝑆prev, 𝑉prev ← 0, 0, 0
7: 𝑈, _← QR (𝑈 )
8: 𝑉 , _← QR (𝑉 )
9: for 𝑘 from 1 to 𝑛 do
10:  if min𝑈,𝑉 ‖𝑌 − 𝑈𝑆𝑉 𝑇

‖

2
𝐹 − 𝜆‖𝑆𝑘‖1 ≥ 𝜖 then

11:  𝑋̂ ← 𝑈𝑆𝑉 𝑇

12:  𝛹, _← 𝛹 − 𝑚𝛥𝛹prev
13:  𝑋̂ ← 𝑈, _ ⋅ 𝑆, _ ⋅ 𝑉 , _𝑇
14:  grad_𝑈 =

(

𝑋̂ − 𝑌
)

𝑉𝑘𝑆𝑇
𝑘

15:  grad_𝑆 = 𝑈𝑇
𝑘
(

𝑋̂ − 𝑌
)

𝑉𝑘
16:  grad_𝑉 =

(

𝑋̂ − 𝑌
)𝑇 𝑈𝑘𝑆𝑘

17:  𝑚𝛹 = 𝛽1𝑚𝛹 + (1 − 𝛽1)∇𝛹̃𝐿
18:  𝑣𝛹 = 𝛽2𝑣𝛹 + (1 − 𝛽2)(∇𝛹̃𝐿)

2

19:  𝑚̂𝑈 = 𝑚𝑈
1−𝛽1

20:  𝑣̂𝑈 = 𝑣𝑈
1−𝛽𝑡2

21:  𝛥𝛹 ← 𝜂 𝑚̂𝛹
√

𝑣̂𝛹+𝜖
+ 𝑚𝛥𝛹𝑝𝑟𝑒𝑣

22:  [𝑈,𝑆, 𝑉 ] ← [𝑈 − 𝛥𝑈, 𝑆 − 𝛥𝑆, 𝑉 − 𝛥𝑉 ]
23:  [𝛥𝑈prev, 𝛥𝑆prev, 𝛥𝑉prev] ← [𝛥𝑈, 𝛥𝑆, 𝛥𝑉 ]
24:  𝑈, _← QR (𝑈 )
25:  𝑉 , _← QR (𝑉 )𝑇

26:  else
27:  break
28:  end if
29: end for
30: return 𝑈𝑘, 𝑆𝑘, 𝑉𝑘

We design a corresponding algorithm for t-SVD combined with 
gradient descent, as shown in Algorithm 1. Lines 1 to 6 are the 
initialization phase. Line 2 expands the input 3D tensor into a 2D 
matrix 𝑌  in order to apply SVD. Lines 3 to 5 use random initialization 
methods to assign initial values to the 𝑈,𝑆, 𝑉  matrix. Line 6 initializes 
the momentum term of the previous round, setting the initial value to 
0. The momentum term is used in the NAG estimation step. Lines 7 
and 8 perform QR decomposition of 𝑈 and 𝑉  to ensure that their initial 
values are orthogonal matrices. Next, lines 9 to 30 are iterative singular 
value decomposition. Lines 9 and 10 are the conditions for iterating 
the loop and terminating. Lines 11 to 13 update the NAG momentum 
estimate. Lines 14 to 16 perform gradient calculations. Lines 17 to 20 
update AdaMatrix’s first-order moments and second-order moments. Af-
ter completing the above operation, the parameters 𝑈,𝑆, 𝑉  are updated 
in lines 21 to 23, and the momentum term of this cycle is updated and 
stored. Lines 24 to 25 perform the QR decomposition of the updated 
𝑈 and 𝑉  again. Finally, the algorithm outputs the truncated matrix 
𝑈𝑘, 𝑆𝑘, 𝑉𝑘. In this algorithm, ‘𝑈, _’ indicates all columns of a particular 
row, ‘𝑉 , _’ indicates all rows of a particular column, and so on. Where 
the ‘_’ indicates that a particular dimension of the matrix is selected 
7 
Fig. 4. Scheduling the sliced singular value and singular vector matrices to different 
edge devices.

for the operation on the matrix, and this dimension notation is used to 
emphasize the dimensionality in the gradient update.

Lines 14 to 22 in Algorithm 1 analyze the iterative process of
AdaMatrix. The complexity of the first-order and second-order momen-
tum updates is 𝑂(𝑚𝑟 + 𝑟2 + 𝑛𝑟), which is proportional to the dimension 
of the parameter matrix. The complexity of parameter update is 𝑂(𝑚𝑟+
𝑟2 + 𝑛𝑟). QR decomposition is subjected to orthognalization constraints, 
with a complexity of 𝑂(𝑚𝑟2 + 𝑛𝑟2). When 𝑟 ≪ min(𝑚, 𝑛), the total 
single-iteration complexity is approximately 𝑂(𝑚𝑛𝑟).

Some data in the data set have very small singular values. These 
data represent noise or unimportant information. To improve compu-
tational efficiency, we utilize a truncation process to filter out these 
noisy data and retain the most important information. We distribute the 
decomposed 𝑈,𝑆, 𝑉  matrix blocks to different edge devices, as shown 
in Fig.  4.

The feature dimension 𝑑 is divided into ℎ heads, each head has 𝑑∕ℎ
dimensions, for example, 𝑋 is divided into 𝑋𝑖 ∈ R𝑏×𝑡×𝑑∕ℎ. After that, 
truncated singular value decomposition of 𝑈𝑟, 𝑆𝑟, 𝑉 𝑇

𝑟  is segmentation 
for 𝑈𝑟,𝑖, 𝑆𝑟,𝑖, 𝑉 𝑇

𝑟,𝑖 .

4. Task scheduling to edge devices and calculation of multi-head 
attention

According to the computing power and load condition of each edge 
device, the attention head is allocated to different devices, and the 
delivery optimal strategy is introduced to optimize the transmission 
path and speed of data between different devices. Given an objective 
function to minimize data transfer time as depicted in Eq.  (12). 

min
𝑁
∑

𝑖=1

𝑀
∑

𝑗=1
𝑑𝑖𝑗𝑥𝑖𝑗 (12)

The 𝑑𝑖𝑗 represents the data transmission volume from device 𝑖 to 𝑗. 𝑥𝑖𝑗
is a decision variable, which denotes whether choose transmission path 
from device 𝑖 to 𝑗. By optimizing the value of 𝑥𝑖𝑗 to find the path which 
the data takes the least time to travel between all devices. In order to 
ensure that the total data sent and received on the device 𝑖 does not 
exceed the maximum bandwidth 𝐵𝑖 of the device, constraints are set as 
shown in Eq.  (13). The first summation term ∑𝑀

𝑗=1 𝑑𝑖𝑗𝑥𝑖𝑗 represents the 
total amount of data sent by device 𝑖 to 𝑗. The second summation term 
∑𝑁

𝑘=1 𝑑𝑘𝑖𝑥𝑘𝑖 ≤ 𝐵𝑖 represents the total amount of data sent to device 𝑖
from all other devices 𝑘. 
𝑀
∑

𝑑𝑖𝑗𝑥𝑖𝑗 +
𝑁
∑

𝑑𝑘𝑖𝑥𝑘𝑖 ≤ 𝐵𝑖, ∀𝑖 ∈ {1,… , 𝑁} (13)

𝑗=1 𝑘=1
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Algorithm 2 Feature-driven data distribution in SDRM
1: function forward(𝑋, feature,heads)
2:  𝑉 ← empty list of size 𝑙𝑒𝑛(heads)
3:  for 𝑖 = 1 to 𝑙𝑒𝑛(heads) do
4:  𝑄𝑖 ← 𝑋[∶, feature]
5:  𝑉𝑖 ← heads[𝑖](𝑄𝑖)
6:  𝑉 [𝑖] ← 𝑉𝑖
7:  end for
8:  return 𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(𝑉 )
9: end function
10: function backward(grad_output, feature,heads)
11:  grad_output ←zero matrix with dimensions of 𝑋
12:  for 𝑖 = 𝑙𝑒𝑛(heads) downto 1 do
13:  𝑔𝑟𝑎𝑑_𝑉𝑖 ← grad_output corresponding to output from heads[𝑖]
14:  𝑔𝑟𝑎𝑑_𝑄𝑖 ← heads[𝑖].𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑(𝑔𝑟𝑎𝑑_𝑉𝑖)
15:  grad_input[∶, feature[𝑖]]+ = 𝑔𝑟𝑎𝑑_𝑄𝑖
16:  end for
17:  return grad_input
18: end function
19: function concataenate(V)
20:  return concatenate(𝑉 , 𝑎𝑥𝑖𝑠 = 1)
21: end function

Algorithm 2 describes the distribution of data in SDRM. Line 2 
initializes an empty list 𝑉 , which store the processing results of each 
header in preparation for subsequent matrix block splicing. Line 3 
iterates through all the attention heads one by one. Line 4 and 5 extract 
the feature columns in the matrix and input them to the 𝑖th attention 
head for forward propagation. Line 8 consolidates all header data to 
form the final output. Lines 10 to 18 show the implementation of 
backpropagation. Line 11 initializes a zero matrix to store the gradients 
generated during backpropagation. Lines 13 to 15 extract the gradient 
of the current attention head. Line 17 returns the input gradient, thus 
updating the model parameters.

The edge devices process each set of matrix blocks in parallel. 
Each edge device is responsible for calculating the 𝑄,𝐾, 𝑉  of its cor-
responding fragment as shown in Eq.  (14). Among them, the matrices 
𝑄𝑖, 𝐾𝑖, and 𝑉𝑖 are respectively the query matrix, the key matrix, and the 
value matrix. After t-SVD decomposition, three low-rank matrix blocks, 
namely 𝑈𝑟,𝑖, 𝑆𝑟,𝑖, and 𝑉 𝑇

𝑟,𝑖 , are obtained. The 𝑊  matrix here is the weight 
matrix of the linear transformation. Projecting the low-rank matrix onto 
different subspaces generates the corresponding vectors. 
(𝑄𝑖, 𝐾𝑖, 𝑉𝑖) = 𝑈𝑟,𝑖𝑆𝑟,𝑖𝑉

𝑇
𝑟,𝑖(𝑊

𝑄,𝑊 𝐾 ,𝑊 𝑉 ) (14)

At this point, the input matrix of each attention head has undergone 
low-rank approximation through t-SVD. 𝑄𝑖, 𝐾𝑖, and 𝑉𝑖 are reconstructed 
through low-rank tensors. The parameter scale of each head is reduced 
from 𝑂(𝑑2) to 𝑂((𝑟∕ℎ)2), and the computational complexity is reduced 
from 𝑂(𝑛2) to 𝑂(𝑛𝑟). The decomposed low-rank matrix is allocated 
to different edge devices, and the attention score of each head is 
calculated in parallel using multiple devices. Storage requirements after 
a low rank approximation is reduced. The low-rank decomposition of 
the input tensor significantly reduces the computational complexity and 
storage requirement.

Algorithm 3 is the task scheduling algorithm of SDRM that schedules 
data to edge devices. The algorithm is based on the resource load of 
the devices and the optimal transmission capacity. Lines 1 to 4 are the 
initialization phase of the algorithm. Line 1 initializes M, which indi-
cates the number of available edge devices. Line 2 defines the maximum 
task queue size for each edge device, ensuring that the capacity of each 
device is not exceeded when performing task allocation. Line 3 assigns 
the input data X to each queue according to the size of the task queue. 
Line 4 initializes flag to false, which is used to keep track of whether 
the task scheduling is completed or not. We assume that N data blocks 
are allocated to the queue and the t-SVD operation is performed on N
elements, with a time complexity of 𝑂(𝑁). Lines 6 through 17 describe 
the process of task assignment and execution. Line 6 iterates through 
all tasks 𝑋  to determine the optimal execution device for each task. 
𝑚

8 
Based on Eqs. (12) and (13), line 7 determines the optimal distribution 
path for the tasks through an optimization problem. Then edge device 
𝑒𝑚 is facilitated to monitor the current resource load of each device. 
In lines 11 to 16, the load of the edge device is analyzed to see if 
it is above the threshold 𝑇 . If it is below 𝑇 , the task is assigned to 
the change edge device for the multi-head attention mechanism. If it 
is above the threshold, the system waits for the load of the device to 
decrease and then tries to assign the task to the device again. This 
nested loop operation has an outer layer for N tasks and an inner layer 
for M edge devices, with a time complexity of 𝑂(𝑁 ⋅𝑀). The results are 
reconstructed on lines 21 through 28. We traverse the edge device and 
check the device load. If the load is below 𝑇 , the result is reconstructed 
on the device. If the load is high, the system waits for the congestion 
to decrease before reconstructing the results on the device. The time 
complexity of result reconstruction for M devices is 𝑂(𝑀). Line 29 
caches the final result of the processing to the edge device. Lines 30 
through 31 set 𝑓𝑙𝑎𝑔 to 𝑡𝑟𝑢𝑒 and return the flag bit. Overall, the time 
complexity of Algorithm 3 is 𝑂(𝑁 ⋅𝑀).
Algorithm 3 The process of SDRM resource scheduling to edge devices
Input: Input data 𝑋, set of edge devices {𝑒1, 𝑒2,… , 𝑒𝑀

}

, threshold for resource 
utilization 𝑇

Output: Completion 𝑓𝑙𝑎𝑔 of SDRM task scheduling
1: 𝑀 ← Number of available edge devices
2: 𝑄𝑢𝑒𝑢𝑒𝑁𝑢𝑚 ← Maximum task queue size for each edge device
3: Distribute data chunks from 𝑋 into 𝑄𝑢𝑒𝑢𝑒𝑁𝑢𝑚 task queues
4: Initialize flag 𝑓𝑙𝑎𝑔 ← 𝑓𝑎𝑙𝑠𝑒
5: Execute t-SVD(𝑋𝑚) on local devices
6: for each task 𝑋𝑚 do
7:  Solve the optimization problem by using Equation (12) with the 
constraint condition Equation (13)

8:  for each 𝑒𝑚 ∈ 𝐸 do
9:  Monitor the resource load on edge device 𝑒𝑚
10:  if 𝐿𝑜𝑎𝑑(𝑒𝑚) < 𝑇  then
11:  Assign task 𝑋𝑚 to edge device 𝑒𝑚 for multi-head attention 

execution
12:  Execute multi-head attention(𝑋𝑚) on edge device 𝑒𝑚
13:  else
14:  Wait for 𝐿𝑜𝑎𝑑(𝑒𝑚) to decrease below 𝑇
15:  Retry task assignment to edge device 𝑒𝑚
16:  Execute multi-head attention(𝑋𝑚) on edge device 𝑒𝑚 by invoked 

Algorithm 2
17:  end if
18:  end for
19: end for
20: Gather the results from multi-head attention processing
21: for each 𝑒𝑚 ∈ 𝐸 do
22:  if 𝐿𝑜𝑎𝑑(𝑒𝑚) < 𝑇  then
23:  Perform local reconstruction of results on edge device 𝑒𝑚
24:  else
25:  Wait for 𝐿𝑜𝑎𝑑(𝑒𝑚) to decrease below 𝑇
26:  Perform local reconstruction of results on edge device 𝑒𝑚
27:  end if
28: end for
29: Cache the final results on edge devices for future use
30: Set 𝑓𝑙𝑎𝑔 ← 𝑡𝑟𝑢𝑒 when all tasks are completed
31: return 𝑓𝑙𝑎𝑔

For multi-head attention mechanism on the qkv calculation, each 
head calculates 𝑍𝑖 by Eq.  (15). 
𝑍𝑖 = 𝑉𝑖 ⊗

(

𝑄𝑖 ⊗𝐾𝑖
)

(15)

The first ⊗ in the above formula is the process of self-attention. By 
generating query, key, and value vectors, calculating and normalizing 
the attention score, and finally summing the value vectors weighted, 
we can obtain a weighted representation of each position in the input 
sequence.

When calculating the attention fraction, the multiplication opera-
tions of large-scale matrices are computationally intensive. Partitioning 
the query (𝑄), key (𝐾), and value (𝑉 ) matrices can make calculations 
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simpler. By dividing 𝑄,𝐾, 𝑉  into smaller blocks, the amount of data 
processed at each step is also reduced, thereby alleviating the compu-
tational pressure of a single operation. Divide 𝑄𝑖, 𝐾𝑖, 𝑉𝑖 into blocks of 
initial block size 𝑏. For 𝑄𝑖, we can get ⌈𝑚∕𝑏⌉ a block. For 𝐾𝑖 and 𝑉𝑖, we 
can get ⌈𝑛∕𝑏⌉ block.

Let us initialize block size and monitor key performance metrics, 
such as processing time, memory usage and processor usage. Based on 
the collected performance data, we can use a feedback mechanism to 
adjust the block size. Simple heuristic rules are applied to dynamically 
adjust strategies. If a decrease in processing speed or resource usage is 
detected, the size of the data block is automatically reduced so as to 
decrease the demand on resources. If resource usage is low, you can 
increase the block size to improve data processing efficiency. For each 
head 𝑖 and each pair of blocks 𝑄𝑖,𝑏, 𝐾𝑖,𝑏, the attention score is calculated 
as shown in Eq.  (16). 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑖,𝑏, 𝐾𝑖,𝑏) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥

(

𝑄𝑖,𝑏𝐾𝑇
𝑖,𝑏

√

𝑑𝑘

)

(16)

where 𝑑𝑘 is the dimension of the key vector, and is used to adjust 
the dot product result. The attention score matrix multiplied by the 
corresponding value matrix block 𝑉𝑖,𝑏 to get the output block 𝑍𝑖,𝑏 by Eq. 
(17). And then, all the output blocks of each head are summed or 
concatenated to form the final output matrix 𝑍𝑖 by Eq.  (18).

𝑍𝑖,𝑏 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑖,𝑏, 𝐾𝑖,𝑏) × 𝑉𝑖,𝑏 (17)

𝑍𝑖 = 𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(𝑍1, 𝑍2,… , 𝑍ℎ) (18)

Let us integrate 𝑍𝑖 in each header to get 𝑍′, and perform matrix 
multiplication with the output weight matrix 𝑊 𝑂 as shown in Eq.  (19). 
𝑍 = 𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(𝑍1, 𝑍2,… , 𝑍ℎ)⊗𝑊 𝑂 (19)

Algorithm 4 Calculation of piecewise matrix
Input: Query matrix 𝑄, Key matrix 𝐾, Value matrix 𝑉 , Weighting matrix 

𝑊 𝑄,𝑊 𝐾 ,𝑊 𝑉 , Output weight matrix 𝑊 𝑂, Block size 𝑏
Output: Output matrix of Multi Attention 𝑍
1: for each 𝑖 ∈ [1, 𝑛] do
2:  𝑄𝑖 = 𝑈𝑟,𝑖𝑆𝑟,𝑖𝑉 𝑇

𝑟,𝑖𝑊
𝑄

3:  𝐾𝑖 = 𝑈𝑟,𝑖𝑆𝑟,𝑖𝑉 𝑇
𝑟,𝑖𝑊

𝐾

4:  𝑉𝑖 = 𝑈𝑟,𝑖𝑆𝑟,𝑖𝑉 𝑇
𝑟,𝑖𝑊

𝑉

5:  for each 𝑏𝑄 ∈ [1, 𝑚∕𝑏] do
6:  𝑄𝑏 = 𝑄𝑖[∶, (𝑏𝑄 − 1) ∗ 𝑏 ∶ 𝑚𝑖𝑛(𝑏𝑄 ∗ 𝑏, 𝑚)]
7:  for each 𝑏𝐾 ∈ [1, 𝑚∕𝑏] do
8:  𝐾𝑏 = 𝑄𝑖[∶, (𝑏𝐾 − 1) ∗ 𝑏 ∶ 𝑚𝑖𝑛(𝑏𝐾 ∗ 𝑏, 𝑛)]
9:  𝑉𝑏 = 𝑄𝑖[∶, (𝑏𝑉 − 1) ∗ 𝑏 ∶ 𝑚𝑖𝑛(𝑏𝑉 ∗ 𝑏, 𝑛)]
10:  𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑏 = softmax

(

𝑄𝑏𝑙𝑜𝑐𝑘 ⋅𝐾𝑇
𝑏𝑙𝑜𝑐𝑘

√

𝑑𝑘

)

11:  𝑍𝑏 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑏 × 𝑉𝑏
12:  end for
13:  𝑍𝑖 = 𝑍𝑖 ⊕𝑍𝑏
14:  end for
15: end for
16: 𝑍 = 𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(𝑍1, 𝑍2,… , 𝑍ℎ)𝑊 𝑂

17: return 𝑍
Algorithm 4 calculates the 𝑄,𝐾 and 𝑉  matrices in the multi-head 

attention mechanism, and uses the block-matrix technique to optimize 
the process.

We analyze its power consumption through the model of SDRM. 
In AdaMatrix, the complexity of gradient calculation for each iteration 
is 𝑂(𝑚𝑛𝑟), and the number of iterations is 𝑇 . The power consumption 
per floating-point operation of the hardware is 𝛼flop. Meanwhile, our 
adjustment of the learning rate will introduce an additional overhead 
factor 𝜔. The power consumption of AdaMatrix can be obtained as 
𝑃𝐴𝑑𝑎𝑀𝑎𝑡𝑟𝑖𝑥 = 𝛼flop ⋅ 𝑇 ⋅ (𝑚𝑛𝑟 + 𝜔𝑟2). In AdaMatrix, the momentum 
coefficients 𝛽1, 𝛽2 and the learning rate 𝜂 indirectly affect the number 
of iterations 𝑇 ∝ 1

𝜂⋅(1−𝛽1)
 by adjusting the convergence rate. In the 

t-SVD decomposition stage, the computational complexity of a single 
SVD is 𝑂(𝑚𝑛𝑟). Considering QR decomposition and iterative processing, 
9 
the power consumption of this stage is 𝑃SVD = 𝛼flop(2𝑚𝑛𝑟 + 2𝑟2(𝑚 + 𝑛)). 
Multi-head attention is divided into multiple attention heads, and the 
computational complexity of each attention head is 𝑂( 𝑏𝑡

2𝑑
ℎ ). Therefore, 

the total power consumption of all heads is 𝑃MHA = 𝛼flop ⋅ 𝑏 ⋅ 𝑡2 ⋅ 𝑑. The 
matrix blocks are distributed to edge devices. We set the number of 
devices as 𝑀 and the size of the matrix blocks as 𝑠×𝑠. Then the overall 
transmission energy consumption is 𝑃comm = 𝛾bit ⋅𝑀 ⋅𝑠2, where 𝛾bit is the 
transmission power consumption per bit. Set the power consumption 
for reading and writing words as 𝛿access. The power consumption for 
memory access is related to the data dimension. According to the 
compression ratio in Theorem  1, The obtained storage access power 
consumption is 𝑃mem = 𝛿access ⋅ (𝑏𝑡𝑟+ 𝑟+ 𝑟𝑑) ⋅ size_of(element). As shown 
above, the overall power consumption of the SDRM model is:
𝑃𝑡𝑜𝑡𝑎𝑙 = 𝛼flop(2𝑚𝑛𝑟 + 𝑇 𝑟2(𝑚 + 𝑛)) + 𝛾bit𝑀𝑠2

+ 𝛿access(𝑏𝑡𝑑 − (𝑏𝑡𝑟 + 𝑟𝑑))

5. Performance evaluation

In this section, several experiments are conducted to evaluate the 
proposed rank reduction methods. We focus on comparing the compu-
tation and processing time of the data to analyze whether SDRM can 
effectively speed up the image data processing.

5.1. Experimental settings

5.1.1. Experimental environment and dataset
Our experiments use and extend the Image Transformer (ViT) [1,27] 

implemented by Python, and the experimental code1 was programmed 
based on the ViT. We trained and tested the model through adopting 
a database of circuit component product images from the open source 
dataset - Surface Defect Detection.2 In order to simulate the situation 
where the number of qualified products is often greater than that of 
defective products in industrial product defect detection, we preserve 
the imbalance between the number of qualified products and that of 
defective products in the open source dataset. To reduce the impact 
of the imbalance between the two categories in the dataset on the 
accuracy rate, we preprocess the data. We set the sample weight and 
pass in the weight through 𝑐𝑙𝑎𝑠𝑠_𝑤𝑒𝑖𝑔ℎ𝑡 to adjust the sensitivity of the 
loss function to the class imbalance. The minority class samples were 
given higher weights and the majority class samples were given lower 
weights. Setting the weights in this way allows the model to optimize 
its ability to recognize the minority class.

The NVIDIA Jetson Orin Nano and Xavier NX are utilized as the edge 
devices for our distributed parallel processing experiments based on 
homogeneous edge devices connecting to the same local area network 
through a switch, as shown in Table  1 and Fig.  5.

5.1.2. The brief description of the compared methods
We compared various rank reduction methods and analyzed the 

processing efficiency of distributed parallelism.
The SDRM in this study uses truncated singular value decomposi-

tion for low-rank tensor approximation. The low-rank approximation 
of high-dimensional data is performed to optimize the data transfer 
and processing analysis. The CoNoT (Coupled Nonlinear Transform) 
method [35] enhances low-rank tensor approximation through dual-
domain transformations: a 2D spatial convolution with nonlinear ac-
tivation coupled with a 1D spectral/temporal convolution, forming 
cascaded feature abstraction. The NRR is the original distributed model 
without rank reduction, which is a baseline approach to distributed 
models. The image is divided into blocks and then input into the multi-
layer self-attention module to achieve feature extraction. DeiT-B [49] 

1 https://github.com/doriz104/SDRM.
2 https://github.com/Charmve/Surface-Defect-Detection/tree/master.

https://github.com/doriz104/SDRM
https://github.com/Charmve/Surface-Defect-Detection/tree/master
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Table 1
Hardware type specification.
 Hardware CPU GPU Memory Quantity 
 Jetson Orin Nano 6-core ARM 

Cortex-A78AE @ 1.5 GHz
NVIDIA Ampere architecture
1024 × NVIDIA CUDA Cores 
32 × 3rd Gen Tensor Cores

8 GB 128-bit LPDDR5 68 GB/s 2  

 Jetson Xavier NX 6-core NVIDIA Carmel ARM 
v8.2 64-bit @ 1.4 GHz

NVIDIA Volta architecture 
384 × NVIDIA CUDA Cores 
48 × Tensor Cores

8 GB 128-bit LPDDR4x 51.2 GB/s 1  

 PC Core Ultra7 155H RTX 4060 32 GB RAM 1  
Fig. 5. NVIDIA edge GPU devices and PC used for our experiments.

adopts the Transformer architecture to handle image classification 
tasks and is a variant of the Visual Transformer (ViT, namely NRR). 
FLORA [50] maps the low-rank selection problem to NAS, combin-
ing the methods of eliminating inefficient architectures and weight 
inheritance. This model realizes the automatic search of fine-grained 
rank in hypernetwork training. The TRAWL [51] method stacks the 
weight matrices in the Transformer architecture into high-order tensors 
and implements low-rank decomposition by using CP decomposition or 
Tucker decomposition.

5.2. Experimental results

In this experiment, we focus on comparing the running time of 
each method. This is because the core purpose of this study is to 
improve the efficiency of parallel processing with multiple heads of 
attention. We compared the processing time of each processing stage 
under different parameters of SDRM. The processing time and inter-
device transfer time of different methods are also compared. These 
experiments well illustrate that the use of SDRM for high-dimensional 
data with reduced-rank processing improves the efficiency of parallel 
processing.

Through the comparison of various order reduction methods, the 
efficiency of image processing in terms of running time is reflected. 
On the basis of no great impact on the accuracy, the processing time 
is theoretically shortened after image rank reduction. The following 
validation results prove this point. Note that in order to keep the same 
context in the experiments, we transferred the rank reduction method 
in the comparison model to the scenario of distributed multi-head 
attention processing. We divide the whole processing into three phases: 
rank reduction (RR), multi-head attention (MHA), and validation (Val) 
(no time statistics performed in the training phase).

Fig.  6 shows the comparison of the time required for the three 
phases of RR, MHA, and Val in the SDRM study. This experiment 
investigated the time caused by different block sizes (block_size) with 
different SVD batch sizes (svd_batch_size = 8, 16, 32). The experimental 
10 
Fig. 6. Comparison of average running time of different phases for different svd_sizes at 
different block_sizes. (Other parameter standards: Learning rate lr = 1e−4, truncation 
threshold (energy retention value) 𝜙 = 90%, regularization coefficients 𝜆1, 𝜆2, 𝜆3 =
1e−3, 1e−4, 1e−4.).

Fig. 7. The processing times of the three processing stages at different energy retention 
values (0.7 to 0.95).

results show that matrix decomposition and dimensionality reduction 
are the most time-consuming processes.

Fig.  7 presents the processing times of the three processing stages of 
SVD, MHA, and Val under different energy retention values. Through 
the comparative analysis of the time efficiency at each stage, we can 
find that different energy retention values have little influence on the 
truncation of multi-head attention processing. In the Val stage, the 
processing times corresponding to 0.9 (90%) energy retention and 0.85 
(85%) energy retention were significantly shorter than those of other 
energy retention values. When the energy retention value is between 
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Fig. 8. Comparison of average running time of five phases.

85% and 90%, it can significantly improve the processing efficiency of 
SDRM.

The rank reduction operation is the most time-consuming in the 
whole data processing phase. However, a comparison of the runtimes of 
the different methods was made in Fig.  8. The computational overheads 
of NRR and DeiT-B are very high when raw image tensor is processed 
without rank reduction. On the contrary, the systematic rank-reduction 
operation through t-SVD greatly improves the processing efficiency, 
SDRM reduces the execution time of the attention mechanism by 87.6% 
and decreases the time required for the verification phase by 50% 
compared with NRR. Overall processing time for SDRM was reduced by 
20.4% compared to NRR without rank-down processing. CoNoT does 
not perform as well as SDRM in distributed systems. The rank-down 
operation of SDRM is 14.7% faster than CoNot, and the verification 
processing phase saves 47.9% of time. The overall processing time of 
CoNot is instead longer than that of NRR due to the time consumption 
of the descending-rank processing. Due to the complexity of CoNoT’s 
rank-reduction operations, it has no significant advantage in time. The 
running time of SDRM is lower than CoNoT and NRR in all of data 
processing phases, which demonstrates clearly greater efficiency the 
industrial product defect detection requiring faster processing speed. 
The rank reduction stage of TRAWL is the most time-consuming. This is 
because the Tucker decomposition method is used in this model, which 
consumes a large amount of storage and computing costs. The time 
differences of each method in the MHA stage are not significant. During 
the verification stage, when SDRM, FLORA and TRAWL maintain low 
consumption, these methods have obvious advantages at this stage. 
Although the NRR and DeiT-B methods without low-rank operations 
save some time, they have efficiency shortcomings in subsequent pro-
cessing. The cost of rank reduction required by CoNoT, FLORA and 
TRAWL is relatively high. When comparing as a whole, it is found 
that although these methods carry out rank reduction operations and 
shorten the verification time required, there is still a certain amount of 
time consumption overall. The time of each stage of SDRM is balanced, 
presenting high efficiency throughout the entire process.

As shown in Fig.  9, the time consumed by the three methods for 
transmission among edge devices is compared with different sizes of 
data sliced blocks. After the image down-ranking process, our SDRM’ 
transmission time of the same size image is always least under the same 
network conditions of the same device. The processing time reductions 
mentioned above are all based on the assurance that there is no signif-
icant decrease in verification accuracy after the image rank reduction, 
as depicted in Fig.  10. The training loss of SDRM converges stably to 
0.3 at different learning rates. Under multiple training epochs, SDRM 
11 
Fig. 9. Compare transfer times for different methods with different block_sizes.

Fig. 10. The training loss of SDRM at different learning rates and the accuracy 
comparison of several methods.

Table 2
Comparison of the training accuracy (train_acc), verification accuracy (val_acc), and 
test accuracy (test_acc) of multiple methods.
 train_acc(%) val_acc(%) test_acc(%)  
 NRR 95.24 ± 0.5 92.13 ± 0.2 91.73 ± 0.5 
 DeiT-B 94.70 ± 0.5 92.84 ± 0.3 91.53 ± 0.3 
 CoNoT 92.35 ± 0.5 89.5 ± 0.2 89.39 ± 0.3 
 FLORA 94.75 ± 0.5 91.50 ± 0.3 90.27 ± 0.3 
 SDRM 92.87 ± 0.5 91.43 ± 0.3 90.59 ± 0.3 

can achieve a similar accuracy to the model without rank reduction 
decomposition (0.91, with the accuracies of NRR and DeiT-B being 
approximately 0.92), while CoNoT and FLORA are slightly inferior in 
terms of accuracy.

SDRM can bring about a slight effect of reducing overfitting. We 
can see it from Table  2. Table  2 shows that by comparing the accuracy 
rates of various methods on different datasets, it can be seen that NRR 
presents a relatively high accuracy in the data of the training set, but 
the accuracy decreases most significantly in the validation set and the 
test set. SDRM and other methods reduce overfitting through low-rank 
approximation and regularization as well as other methods.

6. Conclusions

In this paper, we propose an intelligent dimensionality reduction 
model with gradient iterative learning applied to industrial product 
detection. The model improves the image processing and transmission 



Y. Du et al. Knowledge-Based Systems 325 (2025) 113946 
rate by low rank approximation to find the defective products at a faster 
rate. A low-rank approximation is presented by using truncated singular 
value decomposition based on Image Transformer, which reduces data 
redundancy while preserving important features of the images. Exper-
iments conducted on edge devices show that the model is stable and 
efficient. In the future, we will continue to improve the multi-attention 
computing performance of images on edge devices, and explore the 
efficient product detection on heterogeneous edge devices.
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