SINGLE SYSTEM IMAGE (SSl)

Rajkumar Buyya
MONASH UNIVERSITY, AUSTRALIA

Toni Cortes
UNIVERSITAT POLITECNICA DE CATALUNYA, SPAIN

Hai Jin

HUAZHONG UNIVERSITY OF SCIENCE
AND TECHNOLOGY, CHINA

The International Journal of High Performance Computing Applications,
Volume 15, No. 2, Summer 2001, pp. 124-135
© 2001 Sage Publications, Inc.

1 Introduction

A single system image (SSI) is the property of a system
that hides the heterogeneous and distributed nature of the
available resources and presents them to users and appli-
cations as a single unified computing resource. SSI can be
enabled in numerous ways, ranging from those provided
by extended hardware to various software mechanisms.
SSI means that users have a globalized view of the re-
sources available to them irrespective of the node to
which they are physically associated. Furthermore, SSI
can ensure that a system continues to operate after some
failure (high availability) as well as ensuring that the sys-
tem is evenly loaded and providing communal multipro-
cessing (resource management and scheduling).

SSI design goals for cluster-based systems are mainly
focused on complete transparency of resource manage-
ment, scalable performance, and system availability in
supporting user applications (Buyya, 1999; Pfister, 1998;
Hwang et al., 1999; Walker and Steel, 1999a; Popek and
Walker, 1996). A SSI can be defined as the illusion
(Buyya, 1999; Pfister, 1998), created by hardware or soft-
ware, that presents a collection of resources as one, more
powerful unified resource.

2 Services and Benefits

The key services of a single-system image cluster include
the following (Buyya, 1999; Hwang et al., 1999; Hwang
and Xu, 1998):

e Single entry point: A user can connect to the cluster as
avirtual host (e.g., telnet beowulf.myinstitute.edu), al-
though the cluster may have multiple physical host
nodes to serve the login session. The system transpar-
ently distributes the user’s connection requests to dif-
ferent physical hosts to balance the load.

e Single user interface: The user should be able to use
the cluster through a single GUI. The interface must
have the same look and feel as the one available for
workstations (e.g., Solaris OpenWin or Windows NT
GUI).

e Single process space: All user processes, no matter on
which nodes they reside, have a unique cluster-wide
process ID. A process on any node can create child
processes on the same or different node (through a
UNIX fork). A process should also be able to commu-
nicate with any other process (through signals and
pipes) on aremote node. Clusters should support glob-
alized process management and allow the manage-




ment and control of processes as if they are running on
local machines.

e Single memory space: Users have an illusion of a big,

centralized main memory, which in reality may be a set “A single system image (SSI) is the
of distributed local memories. Software DSM approach property of a system that hides the
has already been used to achieve single memory space heterogeneous and distributed nature of

on clusters. Another approach is to let the compiler dis-
tribute the data structure of an application across multi-
ple nodes. Itis still a challenging task to develop a single
memory scheme that is efficient, platform independent,
and able to support sequential binary codes.

e Single I/0 space (SIOS): This allows any node to per-
form 1I/O operations on local or remotely located pe-
ripheral or disk devices. In this SIOS design, disks asso-
ciated to cluster nodes, network-attached RAIDs, and
peripheral devices form a single address space.

e Single-file hierarchy: On entering into the system, the
user sees a single, huge file system image as a single hi-
erarchy of files and directories under the same root di-
rectory that transparently integrates local and global
disks and other file devices. Examples of single-file hi-
erarchy include NFS, AFS, xFS, and Solaris MC Proxy.

e Single virtual networking: This means that any node
can access any network connection throughout the clus-
ter domain even if the network is not physically con-
nected to all nodes in the cluster. Multiple networks
support a single virtual network operation.

e Single job management system: Under a global job
scheduler, a user job can be submitted from any node to
request any number of host nodes to execute it. Jobs can
be scheduled to run in either batch, interactive, or paral-
lel modes. Examples of job management systems for
clusters include GLUnix, LSF, and CODINE.

e Single control point and management: The entire clus-
ter and each individual node can be configured, moni-
tored, tested, and controlled from a single window us-
ing single GUI tools, much like an NT workstation
managed by the task manager tool.

e Checkpointing and process migration: Checkpointing
is a software mechanism to periodically save the pro-
cess state and intermediate computing results in mem-
ory or disks. This allows the rollback recovery after a
failure. Process migration is needed in dynamic load
balancing among the cluster nodes and in supporting
checkpointing.

the available resources and presents them
to users and applications as a single
unified computing resource.”

Figure 1 shows the functional relationships among vari-
ous key middleware packages. These middleware pack-
ages are used as interfaces between user applications and




User Applications

Management

level Job Management System (JMS)
(GLUnix, LSF, CODINE)

Z

N\ Programming

Single File Hierarchy (SFH)
(NFS,AFS,xFS, Proxy)

Distributed Shared Memory (DSM) level

(TreadMark, Wind Tunnel, etc)

~

Mmplementaﬁon level

Single Process Space (SPS) Checkpointing /Process Single I/O Space (SIOS)
Migration (CPM)

Cluster Hardware and OS Platform

Fig. 1 The relationships among middleware modules.

cluster hardware and OS platforms. They support each
other at the management, programming, and implementa-
tion levels.

The most important benefits of SSI include the follow-
ing (Buyya, 1999):

e It provides a simple, straightforward view of all system
resources and activities from any node in the cluster.

e It frees the end user from having to know where in the
cluster an application will run.

e It allows the use of resources in a transparent way irre-
spective of their physical location.

e It lets the user work with familiar interface and com-
mands and allows the administrator to manage the en-
tire cluster as a single entity.

e [t offers the same command syntax as in other systems
and thus reduces the risk of operator errors, with the re-
sult that end users see improved performance, reliabil-
ity, and higher availability of the system.

e Itallows one to centralize/decentralize system manage-
ment and control to avoid the need of skilled adminis-
trators for system administration.

e It greatly simplifies system management and thus re-
duced cost of ownership.




e [tprovides location-independent message communication.

e It benefits the system programmers to reduce the time,
effort, and knowledge required to perform the task and
allows current staff to handle larger or more complex
systems.

e It promotes the development of standard tools and
utilities.

3 SSI Layers/Levels

The two important characteristics of SSI (Buyya, 1999;
Pfister, 1998) are the following:

1. Every SSI has a boundary.
2. SSI support can exist at different levels within a
system—one able to be built on another.

SSI can be implemented in one or more of the following
levels:

e hardware,

e operating system (so-called “underware”) (Walker and
Steel, 1999a),

e middleware (runtime subsystems),

e application.

A good SSI is usually obtained by cooperation between all
these levels as a lower level can simplify the implementa-
tion of a higher one.

3.1 HARDWARE LEVEL

Systems such as Digital/Compaq Memory Channel and
hardware distributed shared memory (DSM)
(http://www.digital.com/info/hpc/systems/symc.html) of-
fer SSI at the hardware level and allow the user to view a
cluster as a shared-memory system. Digital’s Memory
Channel is designed to provide areliable, powerful, and ef-
ficient clustering interconnect. It provides a portion of
global virtual shared memory by mapping portions of re-
mote physical memory as local virtual memory (called re-
flective memory).

Memory Channel consists of two components: a PCI
adapter and a hub. Adapters can also be connected directly
to another adapter without using a hub. The host interfaces
exchange heartbeat signals and implement flow control
timeouts to detect node failure or blocked data transfers.
The link layer provides error detection through a 32-bit
CRC generated and checked in hardware. Memory Chan-

“A good SSI is usually obtained by
cooperation between all these levels as a
lower level can simplify the
implementation of a higher one.”




nel uses point-to-point, full-duplex switched 8 x 8 cross-
bar implementation.

To enable communication over the Memory Channel
network, applications map pages as read- or write-only
into their virtual address space. Each host interface con-
tains two page control tables (PCT), one for write and one
for read mappings. For read-only pages, a page is pinned
down in local physical memory. Several page attributes
can be specified: receive enable, interrupt on receive, re-
mote read, and so on. If a page is mapped as write-only, a
page table entry is created for an appropriate page in the
interface’s 128 Mbytes of PCI address space. Page attrib-
utes can be used to store a local copy of each packet, re-
quest acknowledgment message from the receiver side for
each packet, and define the packets as broadcast or point-
to-point packets.

Broadcasts are forwarded to each node attached to the
network. If a broadcast packet enters a crossbar hub, the
arbitration logic waits until all output ports are available.
Nodes, which have mapped the addressed page as a read-
able area, store the data in their local pinned-down mem-
ory region. All other nodes simply ignore the data. There-
fore, once the data regions are mapped and set up, simple
store instructions transfer data to remote nodes without
OS intervention.

Besides this basic data transfer mechanism, Memory
Channel supports a simple remote read primitive, a hard-
ware-based barrier acknowledge, and a fast-lock primi-
tive. To ensure correct behavior, Memory Channel imple-
ments a strict in-order delivery of written data. A write
invalidates cache entries on the reader side, thus providing
cluster-wide cache coherence.

Digital provides two software layers for Memory
Channel: the Memory Channel services and universal
message passing (UMP). The first is responsible for allo-
cating and mapping the individual memory page. UMP
implements a user-level library of basic message-passing
mechanisms. It is mainly used as a target for higher soft-
ware layers, such as MPI, PVM, or HPF. Both layers have
been implemented for the Digital UNIX and the Windows
NT operating systems.

Memory Channel reduces communication to the mini-
mum—just simple store operations. Therefore, latencies
for single data transfers are very low. This also enables the
Memory Channel to reach the maximal sustained data rate
of 88 Mbytes/s with relative small data packets of 32
bytes. The largest possible configuration consists of eight
12-CPU Alpha server nodes, resulting in a 96-CPU
cluster.

3.2 OPERATING SYSTEM LEVEL

Cluster operating systems support an efficient execution
of parallel applications in an environment shared with se-
quential applications. A goal is to pool resources in a clus-
ter to provide better performance for both sequential and
parallel applications. To realize this goal, the operating
system must support gang scheduling of parallel pro-
grams, identify idle resources in the system (such as pro-
cessors, memory, and networks), and offer globalized ac-
cess to them. It should optimally support process
migration to provide dynamic load balancing as well as
fast interprocess communication for both the system- and
user-level applications. The OS must make sure these fea-
tures are available to the user without the need for addi-
tional system calls or commands. OS kernel-supporting
SSI include SCO UnixWare NonStop Clusters (Walker
and Steel, 1999a, 1999b), Sun Solaris-MC (http://www.
cs.umd.edu/~keleher/dsm.html), GLUnix (Ghormley
et al., 1998), and MOSIX (Barak and La’adan, 1998).

SCO UnixWare. UnixWare NonStop Clusters is
SCO’s high-availability software. It significantly broad-
ens hardware support, making it easier and less expensive
to deploy the most advanced clustering software for Intel
systems. It is an extension to the UnixWare operating sys-
tem in which all applications run better and more reliably
inside a SSI environment that removes the management
burden. It features standard IP as the interconnect, remov-
ing the need for any proprietary hardware.

The UnixWare kernel has been modified via a series of
modular extensions and hooks to provide single clus-
ter-wide file system view, transparent cluster-wide device
access, transparent swap-space sharing, transparent clus-
ter-wide IPC, high performance internode communica-
tions, transparent cluster-wide process migration, node
down cleanup and resource fail-over, transparent clus-
ter-wide parallel TCP/IP networking, application avail-
ability, cluster-wide membership and cluster time sync,
cluster system administration, and load leveling.

UnixWare NonStop Clusters architecture offers built-
in support for application fail-over using an n + 1 ap-
proach. With this approach, the backup copy of the appli-
cation may be restarted on any of several nodes in the
cluster. This allows one node to act as a backup node for
all other cluster nodes.

UnixWare NonStop Clusters also supports active pro-
cess migration, which allows any application process to
be moved to another node between instruction steps. This
allows continuation without disruption to the application.




Active process migration allows dynamic removal and
addition of nodes within the cluster.

With the SSI capability of UnixWare NonStop Clus-
ters, both applications and users view multiple nodes as a
single, logical system. SSI also provides automatic pro-
cess migration and dynamic load balancing. Depending
on the workload and available resources in the cluster, the
system automatically reassigns processes among avail-
able nodes, delivering optimal overall performance. The
cluster offers a single UNIX system name space and ap-
pears to the application as a very large n-way SMP server.
The cluster services maintain the standard service call in-
terface, so upper levels of the operating system do not
need to be changed. Applications access clustered ser-
vices through standard UNIX system libraries, which in
turn access clustered services through the service call in-
terface. Applications do not need to be cluster aware and
may run unmodified in the cluster.

The cluster service determines whether a request can
be handled locally or must be forwarded to another node.
If the request is passed to another node, it uses an inter-
node communication system over ServerNet to commu-
nicate to the service peer on another node. The request is
then handled by the standard UNIX system service on the
targeted node.

Sun Solaris MC. Solaris MC is a prototype extension
of the single-node Solaris kernel. It provides single sys-
tem image and high availability at the kernel level. Solaris
MC is implemented through object-oriented techniques.
It extensively uses the object-oriented programming lan-
guage C++, the standard COBRA object model, and its
interface definition language.

Solaris MC uses a global file system called Proxy File
System (PXFS). The main features include single system
image, coherent semantics, and high performance. The
PXFS makes file accesses transparent to process and file
locations. PXFS achieves this single system image by in-
tercepting file access operations at the vnode/VFS inter-
face. When a client node performs a VES/vnode opera-
tion, Solaris MC proxy layer first converts the VES/vnode
operation into an object invocation, which is forwarded to
the node where the file resides (the server node). The in-
voked object then performs a local VFS/vnode operation
on the Solaris file system of the server node. This imple-
mentation approach needs no modification of the Solaris
kernel or the file system.

PXFS uses extensive caching on the clients to reduce
remote object invocations. PXFS uses a token-based co-
herency protocol to allow a page to be cached read-only
by multiple nodes or read-write by a single node.

Solaris MC provides a single process space by adding
a global process layer on top of the Solaris kernel layer.
There is a node manager for each node and a virtual pro-
cess (vproc) object for each local process. The vproc
maintains information of the parent and children of each
process. The node manager keeps two lists: the available
node list and local process list, including migrated ones.
When a process migrates to another node, a shadow vproc
is still kept on the home node. Operations received by the
shadow vproc are forwarded to the current node where the
process resides.

Solaris MC provides a single I/O subsystem image
with uniform device naming. A device number consists of
the node number of the device, as well as the device type
and the unit number. A process can access any device by
using this uniform name as if it were attached to the local
node, even if it is attached to a remote node.

Solaris MC ensures that existing networking applica-
tions do not need to be modified and see the same network
connectivity, regardless of which node the application
runs on. Network services are accessed through a service
access point (SAP) server. All processes go to the SAP
server to locate in which node a SAP is on. The SAP
server also ensures that the same SAP is not simulta-
neously allocated to different nodes. Solaris MC allows
multiple nodes to act as the replicated SAP server for net-
work services.

GLUnix. Another way for the operating system to
support a SSTis to build a layer on top of the existing oper-
ating system and to perform global resource allocations.
This is the approach followed by GLUnix from Berkeley
(Ghormley wt al., 1998). This strategy makes the system
easily portable and reduces development time.

GLUnix is an OS layer designed to provide support for
transparent remote execution, interactive parallel and se-
quential jobs, load balancing, and backward compatibil-
ity for existing application binaries. GLUnix is a multi-
user system implementation at the user level so that it can
be easily ported to a number of different platforms. It is
built as a protected user-level library using the native sys-
tem services as a building block. GLUnix aims to provide
cluster-wide name space and uses network PIDs (NPIDs)
and virtual node numbers (VNNs). NPIDs are globally
unique process identifiers for both sequential and parallel
programs throughout the system. VNN are used to facili-
tate communications among processes of a parallel pro-
gram. A suite of user tools for interacting and manipulat-
ing NPIDs and VNNSs is supported.

GLUnix is implemented completely in the user level
and does not need any kernel modification; therefore, it is




easy to implement. GLUnix relies on a minimal set of
standard features from the underlying system, which are
present in most commercial operating systems. So it is
portable to any operating system that supports
interprocess communication, process signaling, and ac-
cess to load information. The new features needed for
clusters are invoked by procedure calls within the applica-
tion’s address space. There is no need to cross the hard-
ware protection boundary and no need for kernel trap or
context switching. The overhead for making system calls
is eliminated in GLUnix. Using shared-memory segments
or interprocess communication, primitives can do the co-
ordination of the multiple copies of GLUnix, which are
running on multiple nodes.

The main features provided by GLUnix include
coscheduling of parallel programs; idle resource detec-
tion, process migration, and load balancing; fast user-
level communication; remote paging; and availability
support.

MOSIX. MOSIX (Barak and La’adan, 1998) is an-
other software package specifically designed to enhance
the Linux kernel with cluster-computing capabilities. The
core of MOSIX is adaptive (online) load balancing, mem-
ory ushering, and file I/O optimization algorithms that re-
spond to variations in the use of the cluster resources (e.g.,
uneven load distribution or excessive disk swapping due
to lack of free memory in one of the nodes). In such cases,
MOSIX initiates process migration from one node to an-
other to balance the load, move a process to a node that has
sufficient free memory, or reduce the number of remote-
file I/O operations.

MOSIX operates silently, and its operations are trans-
parent to the applications. This means that you can exe-
cute sequential and parallel applications just like you
would do in an SMP. You need not care about where your
process is running or be concerned about what the other
users are doing. Shortly after the creation of a new pro-
cess, MOSIX attempts to assign it to the best available
node at that time. MOSIX then continues to monitor the
new process, as well as all the other processes, and will
move it among the nodes to maximize the overall perfor-
mance. All this is done without changing the Linux inter-
face. This means that you continue to see (and control) all
your processes as if they run on your node.

The algorithms of MOSIX are decentralized—each
node is both a master for processes that were created lo-
cally and a server for (remote) processes that migrated
from other nodes. This means that nodes can be added or
removed from the cluster at any time, with minimal dis-
turbances to the running processes. Another useful prop-

erty of MOSIX is its monitoring algorithms, which detect
the speed of each node, its load and free memory, and the
IPC and I/O rates of each process. This information is
used to make near-optimal decisions about where to place
the processes.

The system image model of MOSIX is based on the
home node model, in which all the user’s processes seem
to run at the user’s login node. Each new process is cre-
ated at the same site(s) as its parent process. Processes
that have migrated interact with the user’s environment
through the user’s home node but, where possible, use lo-
cal resources. As long as the load of the user’s login node
remains below a threshold value, all the user’s processes
are confined to that node. However, when this load rises
above a threshold value, then some processes may be mi-
grated (transparently) to other nodes.

The Direct File System Access (DFSA) provision ex-
tends the capability of a migrated process to perform
some I/O operations locally in the current node. This pro-
vision reduces the need of I/0O-bound processes to com-
municate with their home node, thus allowing such pro-
cesses (as well as mixed I/O and CPU processes) to
migrate more freely among the cluster’s node (e.g., for
load balancing and parallel file and I/O operations).

Currently, the MOSIX File System (MFS) meets the
DFSA standards. MFS makes all directories and regular
files throughout a MOSIX cluster available from all
nodes while providing absolute consistency as files are
viewed from different nodes (i.e., the consistency is as if
all file accesses were done on the same node).

3.3 MIDDLEWARE LEVEL

Middleware, a layer that resides between OS and applica-
tions, is one of the common mechanisms used to imple-
ment SSI in clusters. They include cluster file system,
programming environments such as PVM (Geist and
Sunderam, 1990), job management and scheduling sys-
tems such as CODINE (Ferstl, 1999) and Condor
(Litzkow, Livny, and Mutka, 1988), and cluster-enabled
Java Virtual Machine (JVM) such as JESSICA (Ma,
Wang, and Lau, forthcoming). SSI offered by cluster file
systems makes disks attached to cluster nodes appear as a
single large storage system and ensure that every node in
the cluster has the same view of the data. Global job-
scheduling systems manage resources and enable the
scheduling of system activities and execution of applica-
tions while offering high-availability services transpar-
ently. Cluster-enabled JVM allows execution of Java
threads-based applications on clusters without any modi-
fications.




CODINE is aresource management system targeted to
optimize utilization of all software and hardware re-
sources in a heterogeneous networked environment
(Ferstl, 1999). It is evolved from the Distributed Queuing
System (DQS) created at Florida State University. The
easy-to-use graphical user interface provides a single sys-
tem image of all enterprise-wide resources for the user
and also simplifies administration and configuration
tasks.

The CODINE system encompasses four types of dae-
mons. They are the CODINE master daemon, the sched-
uler daemon, the communication daemons, and the exe-
cution daemons. The CODINE master daemon acts as a
clearinghouse for jobs and maintains the CODINE data-
base. Periodically, the master receives information about
the host load values in the CODINE cluster by the
CODINE execution daemons running on each machine.
Jobs, submitted to the CODINE system, are forwarded to
the CODINE master daemon and then spooled to disk.
The scheduler daemon is responsible for the matching of
pending jobs to the available resources. It receives all nec-
essary information from the CODINE master daemon and
returns the matching list to the CODINE master daemon,
which in turn dispatches jobs to the CODINE execution
daemons.

The CODINE master daemon runs on the main server
and manages the entire CODINE cluster. It collects all
necessary information and maintains and administers the
CODINE database. The database contains information
about queues, running and pending jobs, and the available
resources in the CODINE cluster. Information to this da-
tabase is periodically updated by the CODINE execution
daemons.

The CODINE master daemon has a critical function,
as the system will not operate without this daemon run-
ning. To eliminate this potential point of failure, CODINE
provides a shadow master functionality. Should the
CODINE master daemon fail to provide service, a new
CODINE master host will be selected, and another
CODINE master daemon will automatically be started on
that new host. All CODINE ancillary programs providing
the user or administrator interface to CODINE directly
contact the CODINE master daemon via a standard TCP
port to forward their requests and to receive an acknowl-
edgment or the required information.

The CODINE scheduler daemon is responsible for the
mapping of jobs to the most suitable queues. Jobs are sub-
mitted to the CODINE master daemon together with a list
of requested resources. A job that cannot be dispatched
immediately waits in a pending queue until the CODINE

scheduler daemon decides that the requested resources
for this job are available. The result of the mapping is
communicated back to the CODINE master daemon to
update the database. The CODINE master daemon noti-
fies the CODINE execution daemon on the corresponding
machine to start the job.

The CODINE execution daemon runs on every ma-
chine in the CODINE cluster where jobs can be executed.
It reports periodically the status of the resources on the
workstation to the CODINE master daemon. The
CODINE execution daemon is also responsible for start-
ing and stopping the jobs. For each job, the CODINE exe-
cution daemon starts a subordinate shepherd process,
which is responsible for running and monitoring its job.

One or more CODINE communication daemons have
to run in every CODINE cluster. These daemons are re-
sponsible for the communication between the other
CODINE daemons. This allows asynchronous communi-
cation between the various CODINE daemons, speeding
up the system and increasing efficiency. The communica-
tion daemons control the whole communication via a
standard TCP port.

3.4 APPLICATION LEVEL

Finally, applications can also support SSI. The applica-
tion-level SSI is the highest and, in a sense, most impor-
tant because this is what the end user sees. At this level,
multiple cooperative components of an application are
presented to the user as a single application. For instance,
a GUI-based tool such as PARMON (Buyya, 2000) offers
a single window representing all the resources or services
available. The Linux Virtual Server (Zhang, 2000) is a
scalable and high-availability server built on a cluster of
real servers. The architecture of the cluster is transparent
to end users as all they see is a single virtual server. All
other cluster-aware scientific and commercial applica-
tions (developed using APIs such as MPI) hide the exis-
tence of multiple interconnected computers and coopera-
tive software components and present themselves as if
running on a single system.

The Linux Virtual Server (LVS) (Zhang, 2000) directs
network connections to the different servers according to
scheduling algorithms and makes parallel services of the
cluster to appear as a virtual service on a single IP address.
Linux Virtual Server extends the TCP/IP stack of Linux
kernel to support three IP load-balancing techniques:
NAT, IP tunneling, and direct routing. It also provides
four scheduling algorithms for selecting servers from the
cluster for new connections: round-robin, weighted
round-robin, least connection, and weighted least con-




“The application-level SSI is the highest
and, in a sense, most important because
this is what the end user sees. At this
level, multiple cooperative components of
an application are presented to the user as
a single application.”

nection. Client applications interact with the cluster as if it
were a single server. The clients are not affected by interac-
tion with the cluster and do not need modification.
Scalability is achieved by transparently adding or remov-
ing a node in the cluster. High availability is provided by
detecting node or daemon failures and reconfiguring the
system appropriately.
Linux Virtual Server is a three-tier architecture.

e Load balancer is the front end to the service as seen by
the outside world. The load balancer directs network
connections from clients who know a single IP address
for services to a set of servers that actually perform the
work.

e Server pool consists of a cluster of servers that imple-
ments the actual services, such as Web, Ftp, mail, DNS,
and so on.

e Back-end storage provides the shared storage for the
servers, so that it is easy for servers to keep the same
content and provide the same services.

The load balancer handles incoming connections using
IP load-balancing techniques. Load balancer selects serv-
ers from the server pool, maintains the state of concurrent
connections, and forwards packets, and all the work is per-
formed inside the kernel, so that the handling overhead of
the load balancer is low. The load balancer can handle a
much larger number of connections than a general server;
therefore, a load balancer can schedule a large number of
servers, and it will not be a bottleneck of the whole system.

Cluster monitor daemons run on the load balancer to
monitor the health of server nodes. If a server node cannot
be reached by ICMP ping or there is no response of the ser-
vice in the specified period, the monitor will remove or dis-
able the server in the scheduling table of the load balancer.
The load balancer will not schedule new connections to the
failed one, and the failure of server nodes can be masked.

To prevent the load balancer from becoming a single
point of failure, a backup of the load balancer is set up. Two
heartbeat daemons run on the primary and the backup; they
heartbeat the health message through heartbeat channels
such as serial line and UDP periodically. When the heart-
beat daemon on the backup cannot hear the health message
from the primary in the specified time, it will use ARP
spoofing to take over the virtual IP address to provide the
load-balancing service. When the primary recovers from
its failure, then the primary becomes the backup of the
functioning load balancer, or the daemon receives the
health message from the primary and releases the virtual IP




address, and the primary will take over the virtual IP ad-
dress. The fail-over or the takeover of the primary will
cause the established connection in the state table lost,
which will require the clients to send their requests again.

3.5 PROS AND CONS OF EACH LEVEL

Each level of SSI has its own pros and cons. The hard-
ware-level SSI can offer the highest level of transparency,
but due to its rigid architecture, it does not offer the flexi-
bility required during the extension and enhancement of
the system. The kernel-level approach offers full SSI to all
users (application developers and end users). However,
kernel-level cluster technology is expensive to develop and
maintain, as its market share is or will be probably limited,
and it is difficult to keep pace with technological innova-
tions emerging into mass-market operating systems.

An application-level approach helps realize SSI par-
tially and requires that each application be developed as
SSIaware separately. A key advantage of application-level
SSI compared with the kernel level is that it can be realized
in stages, and the user can benefit from it immediately, but
in the kernel-level approach, unless all components are
specifically developed to support SSI, it cannot be used or
released to the market. Due to this, the kernel-level ap-
proach appears as a risky and economically nonviable ap-
proach. The middleware approach is a compromise be-
tween the other two mechanisms used to provide SSI. In
some cases, such as in PVM, each application needs to be
implemented using special APIs on a case-by-case basis.
This means that there is a higher cost of implementation
and maintenance; otherwise, the user cannot get any bene-
fit from the cluster. The arguments on the so-called “under-
ware” versus middleware level of SSI are presented in
Walker and Steel (1999a).

4 Conclusions

SSI can greatly enhance the acceptability and usability of
clusters by hiding the physical existence of multiple inde-
pendent computers by presenting them as a single, unified
resource. SSI can be realized either using hardware or soft-
ware techniques; each has its own advantages and disad-
vantages. The middleware approach appears to offer an
economy of scale compared with other approaches, al-
though it cannot offer full SSI like the OS approach. In any
case, the designers of software (system or application) for
clusters must always consider SSI (transparency) as one of
their important design goals in addition to scalable perfor-
mance and enhanced availability.

“Each level of SSI has its own pros and
cons. The hardware-level SSI can offer the
highest level of transparency, but due to its
rigid architecture, it does not offer the
flexibility required during the extension
and enhancement of the system.”




BIOGRAPHIES

Rajkumar Buyya is a research scholar at the School of Com-
puter Science and Software Engineering, Monash University,
Melbourne, Australia. He was awarded the Dharma Ratnakara
Memorial Trust Gold Medal for his academic excellence in 1992
by Kuvempu/Mysore University. He is coauthor Mastering
C++ and Microprocessor x86 Programming. Recently, he has
edited a two-volume book on high performance cluster comput-
ing: Architectures and Systems (Vol. 1) and Programming and
Application (Vol. 2). He served as guest editor for the special is-
sues of the following international journals: Parallel and Dis-
tributed Computing Practices, Informatica: An International
Journal of Computing and Informatics, Journal of Supercom-
puting, and Future Generation Computing Systems. He is a
speaker in the IEEE Computer Society Chapter Tutorials Pro-
gram and foundation co-chair of the IEEE Computer Society
Task Force on Cluster Computing. He has contributed to the de-
velopment of HPCC system software environment for the
PARAM supercomputer developed by the Centre for Develop-
ment of Advanced Computing, India. He has lectured on ad-
vanced technologies such as parallel, distributed, and multi-
threaded computing; client/server computing; Internet and Java;
cluster and grid computing; and Java and high performance
computing in many international conferences held in Korea, In-
dia, Singapore, United States, Mexico, Australia, Norway,
China, Canada, Germany, and France. His research papers have
appeared in international conferences and journals.

Toni Cortes is an associate professor at Universitat
Politecnica de Catalunya, Barcelona, Spain. He obtained his
Ph.D. degree in computer science in 1997 from Universitat
Politecnica de Catalunya. He is currently the coordinator of the
single system image technical area in the IEEE CS Task Force
on Cluster. Besides working in many academic projects, he has
been cooperating in European industrial projects such as Paros,
Nanos, and Dimemas. He organized (along with Rajkumar
Buyya) the Cluster Computing Technologies, Environments,
and Applications session organized as part of the PDPTA’99
Conference. He has also been a reviewer for important interna-
tional conferences such as ISCA, ICS, and SCCC and interna-
tional journals such as IEEE Transactions on Computers, Paral-
lel and Distributed Computing Practices, and Software-
Practice & Experience. He has also published more than 20 pa-
pers in international journals and conferences (most of them
about parallel I/0). He has also published a chapter on parallel
I/O in High Performance Cluster Computing (1999). His re-
search interests cover computer architecture, parallel /O, RAID
architecture design, high performance storage system, cluster
computing, and operating systems.

Hai Jin is a professor of computer science at Huazhong Uni-
versity of Science and Technology (HUST) in China. He re-
ceived his Ph.D. in computer engineering from HUST in 1994.
In 1996, he was awarded the German Academic Exchange Ser-
vice (DAAD) fellowship for visiting Technical University of

Chemnitz in Chemnitz, Germany. He has worked at the Univer-
sity of Hong Kong, where he participated in the HKU cluster
project. Presently, he works as a visiting scholar at the Internet
and Cluster Computing Laboratory at the University of South-
ern California. He is a member of IEEE and ACM. He chaired
the 2000 Asia-Pacific International Symposium on Cluster
Computing (APSCC’00) and the First International Workshop
on Internet Computing and E-Commerce (ICEC’01). He serves
as program vice chair of the 2001 International Symposium on
Cluster Computing and Grid (CCGrid’01). He has coauthored
four books and published more than 30 papers. His research in-
terests cover parallel I/0, RAID architecture, fault tolerance,
and cluster computing.

REFERENCES

Barak, A., and La’adan, O. 1998. The MOSIX multicomputer
operating system for high performance cluster computing
(ftp). Journal of Future Generation Computer Systems [On-
line]. Available: http://www.mosix.cs.huji.ac.il/.

Buyya, R.,ed. 1999. High Performance Cluster Computing: Ar-
chitectures and Systems. Vol. 1. Englewood Cliffs, NI:
Prentice Hall.

Buyya, R. 2000. PARMON: A portable and scalable monitoring
system for clusters. Journal of Software: Practice & Experi-
ence [Online]. Available: http://www.csse.monash.edu.au/
~rajkumar/parmon/.

Ferstl, F. 1999. Job and Resource Management Systems, High
Performance Cluster Computing: Architectures and Sys-
tems. Vol. 1. Englewood Cliffs, NJ: Prentice Hall.

Geist, A., and Sunderam, V. 1990. PVM: A framework for paral-
lel distributed computing. Journal of Concurrency: Practice
and Experience [Online]. Available: http://www.epm.ornl.
gov/pvi/.

Ghormley, D., Petrou, D., Rodrigues, S., Vahdat, A., and Ander-
son, T. 1998. GLUnix: A global layer Unix for a network of
workstations. Journal of Software Practice and Experience
[Online]. Available: http://now.cs.berkeley.edu/Glunix/
glunix.html.

Hwang, K., Jin, H., Chow, E., Wang, C. - L., and Xu, Z. 1999.
Designing SSI clusters with hierarchical checkpointing and
single I/O space. IEEE Concurrency 7 (1): 60-69.

Hwang, K., and Xu, Z. 1998. Scalable Parallel Computing:
Technology, Architecture, Programming. New York:
McGraw-Hill.

Litzkow, M., Livny, M., and Mutka, M. 1998. Condor: A hunter
of idle workstations. Proceedings of the Sth International
Conference of Distributed Computing Systems [Online].
Available: http://www.cs.wisc.edu/condor/.

Ma, M., Wang, C., and Lau, F. Forthcoming. JESSICA: Java-en-
abled single-system-image computing architecture. Journal
of Parallel and Distributed Computing.

Pfister, G. F. 1998. In Search of Clusters. 2nd ed. Englewood
Cliffs, NJ: Prentice Hall.

Popek, G., and Walker, B., eds. 1996. The Locus Distributed
System Architecture. Cambridge, MA: MIT Press.




Walker, B., and Steel, D. 1999a. Implementing a full single sys- Proceedings of the International Conference on Parallel and

tem image UnixWare cluster: Middleware vs. underware. Distributed Processing Techniques and Applications
Proceedings of the International Conference on Parallel and (PDPTA’99) [Online]. Available:
Distributed Processing Techniques and Applications http://www.sco.com/products/clustering/nscwhtpaper/.
(PDPTA’99), Las Vegas, NV. Zhang, W. 2000. Linux virtual servers for scalable network ser-
Walker, B., and Steel, D. 1999b. Implementing a full single sys- vices. Ottawa Linux Symposium 2000, Canada [Online].

tem image UnixWare cluster: Middleware vs. underware. Available: http://www.Linux VirtualServer.org/.




