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ABSTRACT
Background: Early response systems and efficient resource allocation are vital for ensuring timely and reliable accident detection
and prevention, especially in high-density urban environments such as Kolkata, India. Traditional cloud-based systems often face
challenges in latency, energy consumption, and execution cost.
Methods: This study proposes an Early Response, Zone-Based Accident Detection and Resource Allocation framework utilizing a
multi-tier fog–cloud architecture. Historical accident data from 2017 to 2023 are used to identify accident-prone zones. Advanced
machine learning models, including Decision Tree, Random Forest, and XGBoost, are employed to predict accident counts. Opti-
mal emergency routes to nearby ambulance centers, police stations, and hospitals are calculated using a shortest-path algorithm.
The framework is implemented and evaluated using the iFogSim2 simulator. Spatial analysis and visualization are performed
using Quantum Geographic Information System (QGIS).
Results: The proposed architecture shows significant performance improvements, including a 16.77% reduction in energy con-
sumption and an 89.66% reduction in execution cost. Latency and execution times are improved by 11%–20% and 12.08%, respec-
tively. The predictive models demonstrate high accuracy in forecasting accident counts, supporting efficient emergency resource
deployment.
Conclusion: The zone-prioritized fog computing framework enhances emergency response efficiency by minimizing latency
and energy consumption while offering scalable, real-time accident detection capabilities. The integration of spatial visualization
and predictive modeling provides policymakers and urban planners with critical, actionable insights to improve road safety across
metropolitan regions. This solution offers a promising direction for safety-critical applications in smart city environments.
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1 | Introduction

Worldwide, road safety is a critical public health concern, pro-
foundly affecting societal stability and human welfare. The World
Health Organization’s 2018 Global Status Report on Traffic Safety
indicates that more than 1.35 million deaths occur each year as
a result of traffic accidents. Developing nations, such as India,
account for about 90% of these deaths, underscoring an urgent
necessity for extensive safety measures. In India, traffic accidents
cause more than four hundred fatalities per day, highlighting the
need for sophisticated solutions for effective mitigation [1, 2].

The proliferation of mobile devices, sensors, and terminal nodes
has dramatically increased the demand for efficient resource allo-
cation in real-time applications, especially in fields requiring
rapid data processing and low latency [3]. Despite their enhanced
functionalities, modern mobile devices often face constraints
such as lower-speed processors and limited battery life, which
create significant challenges in maintaining both performance
and energy efficiency. Some approaches, like instruction-level
parallelism, power control, and runtime voltage scaling, have
been proposed to mitigate these issues. However, these advanced
hardware technologies are often cost-prohibitive, especially for
budget-constrained projects. This limitation is particularly rel-
evant for Internet of Things (IoT) applications, where multiple
devices continuously generate and transmit vast amounts of data,
placing further strain on energy and computational resources.

Cloud computing has become a popular solution for enhanc-
ing device performance by offloading computations to remote
servers. However, this introduces new challenges, such as
increased energy consumption and execution delays due to the
need for constant data transmission between mobile devices and
cloud servers. This is especially problematic for latency-sensitive
applications like accident detection, where an early response
alert is crucial. In scenarios such as smart cities, autonomous
driving, and transportation systems, cloud-based approaches can
struggle to meet the demands of low-latency services and energy
efficiency.

Fog computing, a decentralized computing infrastructure,
addresses these challenges by distributing computational power
and application services closer to the data source [4]. This
approach allows for the processing and analysis of data locally or
regionally, significantly reducing the amount of data that needs
to be sent to the cloud for processing [5]. Fog computing is partic-
ularly advantageous for latency-sensitive IoT applications, such
as real-time gaming, streaming, and, most importantly, accident
detection and prevention systems [6]. By processing data at the
edge of the network—closer to where it is generated—fog com-
puting reduces response times, minimizes energy consumption,
and enhances system efficiency.

Various tasks in accident detection and prevention systems can
be efficiently executed using fog computing. Traffic monitoring
involves continuous processing of data streams from cameras
and sensors at fog nodes, which can detect anomalies like sudden
stops, high traffic density, or accidents, and send early response
alerts. For accident detection, fog instances process sensor data
from vehicles and roadside units to quickly identify accidents and
trigger emergency protocols such as notifying nearby ambulance

centers, police stations, and hospitals. Weather and environmen-
tal data processing at fog nodes helps assess road conditions and
predict accident-prone scenarios, improving safety through more
accurate alerts. Additionally, fog nodes enable spatio-temporal
analysis of historical accident data, correlating it with real-time
traffic and environmental factors to predict high-risk areas
and allocate resources efficiently, ensuring faster responses in
accident-prone zones.

In fog computing, resource allocation refers to the efficient dis-
tribution of available computational resources (CPU, memory,
bandwidth) without the need for additional hardware [7, 8]. This
is crucial for achieving high performance, maintaining user satis-
faction, and ensuring optimal resource utilization. However, fog
computing faces its own challenges, including resource manage-
ment, scalability, energy consumption, job scheduling, and load
balancing [9]. Managing these challenges is essential, especially
for mission-critical systems like accident detection, where delays
can have severe consequences.

In contrast to cloud-based systems, where all data is transmitted
to and processed in centralized data centers, fog computing pro-
cesses data closer to the edge. This significantly reduces latency
and energy consumption, making it a more efficient option for
real-time accident detection and prevention systems [10]. In
such systems, accident detection requires immediate emergency
responses, and relying solely on cloud architecture can introduce
unacceptable delays [11]. Several studies have demonstrated the
effectiveness of fog computing in reducing latency, energy con-
sumption, and bandwidth usage in IoT networks [12], highlight-
ing its potential for real-time data processing.

Additionally, fog-based frameworks have been successfully
applied in health monitoring systems [13, 14], where they have
improved response times and resource utilization. These bene-
fits can be transferred to accident detection systems, where fog
computing’s decentralized architecture ensures faster medical
responses by processing critical data closer to where accidents
occur [15].

The paper proposes an early response, zone-specific machine
learning based accident detection and dynamic resource allo-
cation framework utilizing the iFogSim2 [16]. It identifies
accident-prone areas. We have used crash data from 2017 to 2023
for accident prediction. The system incorporates the machine
learning models (linear regression, lasso regression, ridge regres-
sion, support vector regression, KNN regression, decision tree
regression, random forest regression, and XGBoost regression)
in the cloud to predict accident-prone zones using the crash
data. Out of all models, Decision Tree Regressor, Random For-
est Regressor, and XGBoost Regressor have demonstrated good
results with high r2 scores. Additionally, the edge layer inte-
grates the shortest path algorithm to identify the nearest ambu-
lance centers, police stations, and hospitals, and the system can
leverage a mobile gateway or SMS gateway to send immediate
emergency notifications. We have used QGIS software to visual-
ize the accident distribution of hotspots. In the iFogSim2 frame-
work, fog agents act as intermediaries between terminal nodes
(e.g., sensors, cameras) and the fog server manager, enabling
localized data processing and resource management. This hierar-
chical deployment model reduces latency, energy consumption,
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and execution costs while enhancing the speed and efficiency of
emergency responses. By processing data closer to the source, our
system has the potential to save lives by reducing the time it takes
to detect accidents and respond to emergencies.

1.1 | Motivation and Contribution

In safety-critical applications like road safety, a rapid detection
and prevention system is essential to efficiently mitigate acci-
dent risks and respond to accidents in an early response. Road
safety systems require low-latency, high-reliability solutions that
quickly detect potential risks, forecast accident-prone zones,
and activate emergency actions. Traditional centralized mod-
els frequently exhibit deficiencies owing to elevated latency and
resource limitations, highlighting the necessity for distributed
frameworks such as fog computing. Fog-based architectures pro-
vide the decentralization of processing near the data source,
hence enhancing quick detection and reaction, which improves
overall safety and may save lives.

The key contributions of this paper include:

• Early Response, Zone-based Accident Detection and Resource
Allocation: We propose and design a multitier architecture
within a fog computing framework, designed to enable effi-
cient, early response accident detection across multiple geo-
graphic zones. This architecture supports dynamic resource
allocation, optimizing computational resources to address
high-demand areas and reduce response times.

• Accident Prediction using Historical Data in the Cloud with
Machine Learning: We develop and deploy cloud-hosted
machine learning models that predict accident-prone areas
using historical data. This predictive capability facilitates
proactive accident management by preemptively identifying
high-risk zones.

• Fog-based Simulation for Enhanced Efficiency: Using the
iFogSim framework [17], we simulate and validate our mul-
titier fog computing architecture. This simulation demon-
strates the efficiency of our design in terms of latency
reduction and energy optimization within a fog-cloud inte-
grated environment, highlighting the scalability and sustain-
ability of the system.

The remainder of this paper is organized as follows. Section 2
reviews recent advancements in fog computing applications,
specifically within accident detection and prevention sys-
tems. In Section 3, we introduce our proposed early response
accident detection and prevention mechanism, detailing its
architecture and algorithms. Section 4 provides a comprehensive
performance evaluation, including hotspot analysis, predictive
modeling results, and simulation outcomes. Finally, Section 5
concludes the paper, discussing the implications of our findings
and potential directions for future research.

2 | Related Work

Fog computing is increasingly recognized as a valuable exten-
sion of cloud computing, offering the benefit of decentralized

data processing close to the source, which is particularly
advantageous for latency-sensitive and resource-intensive appli-
cations such as accident detection and prevention systems
[18, 19]. By minimizing the need to offload tasks to centralized
cloud servers, fog computing reduces latency and bandwidth
usage, making it suitable for real-time IoT networks where
immediate responses are essential [20, 21]. Previous studies have
highlighted the success of fog-based frameworks in healthcare,
demonstrating significant improvements in response times and
resource utilization [22]. For example, SVM has been utilized to
predict the severity of aircraft damage [23], and various trans-
portation resource allocation strategies have been explored to
enhance performance based on latency and energy efficiency
[24, 25]. Authors developed an AI-based stock price prediction
framework using serverless cloud computing [26–28]. Authors
have used federated learning techniques for crop prediction.
Real-time data processing frameworks integrating fog and cloud
environments have been proposed to improve resource allo-
cation [29], including approaches using learning automata for
optimization [30]. Systems such as fog-based pedestrian and
vehicle (PV) alert systems have been developed to enhance road
safety by alerting pedestrians and drivers in real-time [31, 32].
To maintain quality of service (QoS) and experience (QoE), some
studies have employed multipath transmission protocols for
efficient road accident management [33]. The authors explored
spatio-temporal multimodal data for accident count prediction
in Kolkata city, highlighting the effectiveness of integrating
spatial, temporal, and contextual factors for improved forecast-
ing accuracy and used association rule mining and machine
learning techniques to unveil hidden patterns in traffic data,
contributing to the development of intelligent transportation
systems [34, 35].

In smart transportation, fog-cloud-IoT frameworks employing
machine learning algorithms have been deployed to support
data-driven insights [36, 37], while architectures integrating RNN
and LSTM models have focused on predicting faults in fog com-
puting systems proactively [38]. Hybrid fog-cloud solutions for
real-time transportation systems [39] and smartphone applica-
tions using cloud-fog environments to recommend safe driving
speeds [40] are among the innovations presented. Other studies
have reduced traffic data streams through clustering techniques
like DBSCAN and the OPTICS algorithm [41], while fog-cloud
setups have been applied to smart city and traffic management
scenarios [42, 43].

Moreover, hierarchical fog-cloud architectures have been pro-
posed for post-disaster management [44], ensuring prompt
alerts and efficient response mechanisms, such as ambulance
dispatches upon abnormality detection [45]. In healthcare,
cloud-fog-edge frameworks have been developed to improve data
management and resource allocation [46, 47], and similar archi-
tectures have been used in disaster management [48].

Despite these advances, many existing fog computing systems
do not consider zone-based priority resource allocation, often
treating all fog nodes uniformly. This neglects the opportunity to
prioritize accident-prone zones dynamically. Our proposed sys-
tem fills this gap by implementing a zone-based, priority-driven
resource allocation framework that processes data according to
accident frequency in specific areas. This ensures that high-risk
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TABLE 1 | Summary of existing works.

Paper (author, year)
Zone-
based

Local
processing

Early
response Forecasting Collaborative

Dhingra et al., 2021 × ✓ ✓ × ×
Peixoto et al., 2021 × ✓ ✓ × ×
Atiq et al., 2023 × ✓ ✓ × ×
Saini et al., 2023 × ✓ ✓ × ×
Lin et al., 2023 × ✓ × × ×
Ebrahim et al., 2024 × ✓ ✓ × ×
Mukherjee at al., 2024 × ✓ × × ×
Dey et al., 2024 × ✓ × × ×
Verma et al., 2025 × ✓ × × ×
Wang et al., 2025 × ✓ × × ×
Sunku et al., 2025 × ✓ × × ×
Proposed work ✓ ✓ ✓ ✓ ✓

TABLE 2 | Regression results (2017–2020 dataset) using grid search
with weather features.

Model name MAE RMSE R2 score

Linear Regressor 15.03 17.90 0.004
Lasso Regressor 15.01 17.89 0.003
Ridge Regressor 13.03 17.09 0.003
SVR 12.57 19.24 0.040
KNN Regression 14.06 17.43 0.007
Decision Tree 1.09 6.09 0.86
Random Forest Regressor 2.34 5.98 0.91
XGBoost Regressor 1.09 4.77 0.93

TABLE 3 | Regression results (2021–2023 dataset) using grid search
with weather features.

Model name MAE RMSE R2 score

Linear Regressor 20.67 25.11 0.006
Lasso Regressor 20.61 26.10 0.003
Ridge Regressor 20.50 25.07 0.002
SVR 17.07 23.25 0.127
KNN Regression 16.23 20.60 0.36
Decision Tree 7.06 12.18 0.81
Random Forest Regressor 6.30 9.08 0.90
XGBoost Regressor 2.30 4.07 0.92

zones receive immediate attention, improving response times and
reducing delays.

Additionally, most existing solutions rely on a uniform fog or
cloud architecture. In contrast, our system integrates both cloud
and fog components with an additional layer of foglets and fog
agents. This hierarchical, multitier architecture allows real-time
processing of roadside sensor data across four distinct zones. By

TABLE 4 | Actual vs. predicted accident counts.

Segment-id
Actual accident

point
Predicted accident

point

Si 22 22.20952
Sj 9 9.07
Sk 23 23
Sl 12 12.64
Sm 7 6.98
Sn 38 38.49
Sp 32 32
St 15 14.25

strategically deploying sensors and actuators, our system adapts
dynamically to zonal traffic conditions and accident patterns,
optimizing energy usage and enhancing system responsiveness
for high-priority incidents.

In summary, while existing research (refer Table 1) highlights the
potential of fog computing for early response applications, there
is a gap in addressing zone-based resource allocation and multi-
tier architectures. Our work provides a scalable, zone-prioritized
solution for accident detection, combining localized process-
ing with dynamic resource allocation to outperform traditional
cloud-only and uniform fog computing models (see Tables 2–6).

3 | Proposed Early Response Framework
and Methodology

The proposed four-layer multizone foglet-based accident detec-
tion paradigm for the transportation sector is illustrated in
Figure 1. A motivating scenario of the SMS alert message passing
scenario has also been provided. Figure 2

Figure 3 provides a flow diagram that outlines the working model
of the proposed system.
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TABLE 5 | Entity table 1.

Physical
entity

Processing
capability (MIPS)

RAM
(MB)

Uplink
bandwidth

Downlink
bandwidth Level

Cloud 10000 2048 100000 100000 0
Foglet 1000 1024 10000 10000 1
fog instance 500 512 5000 5000 2
Actuator (LED) 400 256 2500 2500 3
Sensor (Camera) 200 128 1000 1000 3

TABLE 6 | Network latency between entities.

Source Destination
Latency

(in milliseconds)

F1C1 FogDev1 4
F1C2 FogDev1 4
F1C3 FogDev1 4
F1C4 FogDev1 4
Actuator1 FogDev1 4
F2C1 FogDev2 4
F2C2 FogDev2 4
F2C3 FogDev2 4
F2C4 FogDev2 4
Actuator2 FogDev2 4
F3C1 FogDev3 4
F3C3 FogDev3 4
F3C4 FogDev3 4
Actuator3 FogDev3 4
F4C3 FogDev4 4
F4C4 FogDev4 4
Actuator4 FogDev4 4
FogDev2 Foglet1 8
FogDev3 Foglet2 8
Foglet1 Cloud 10
Foglet2 Cloud 10

3.1 | System Architecture and Methodology

The proposed paradigm comprises four layers that work together
to provide an efficient and scalable accident detection system:

• Terminal Nodes (Layer 3): Sensors and cameras are deployed
across different geographic zones to collect data related
to potential accidents. These terminal nodes continuously
gather real-time information and send it to the edge layer.

• Fog Instances (Layer 2): Fog instances, located closer to the
source of data, process and evaluate accident alerts. They
play a key role in ensuring low-latency responses by han-
dling urgent local processing.

• Foglets (Layer 1): Foglets aggregate and process data from
multiple fog instances. They perform deeper analysis and

manage resources among fog instances, ensuring efficient
task distribution and processing.

• Cloud Servers (Layer 0): Cloud servers provide large-scale
processing and storage capabilities. They handle long-term
data analytics, large-scale accident detection algorithms, and
scalable computing resources for complex tasks.

3.2 | Mathematical Models and Definitions

The system components are mathematically described as follows:

Sensor Node Sets (S):

𝑆 = {𝑆1, 𝑆2, 𝑆3, . . . , 𝑆𝑛} (1)

where 𝑆𝑖 represents a sensor node that collects
accident-related data.

Camera Node Set (C):

𝐶 = {𝐶1, 𝐶2, 𝐶3, . . . , 𝐶𝑛} (2)

where 𝐶𝑖 represents a camera node for capturing accident
information.

Zone Type Set (R):

𝑅 = {𝑅𝐸,𝑅𝑊 ,𝑅𝑁,𝑅𝑆} (3)

where each𝑅𝑖 refers to a specific geographic zone, corresponding
to areas where accident data is collected.

Definition 1 (Camera/Sensor/Actuator Node). The set
defines a sensor node.

{𝑆𝑖, 𝑅𝑖, 𝑡𝑦𝑝𝑒𝑖, 𝑢𝑠𝑒𝑟𝐼𝐷𝑖, 𝑎𝑝𝑝𝐼𝐷𝑖}, 1 ≤ 𝑖 ≤ 𝑛 (4)

where 𝑆𝑖 is the node ID, 𝑅𝑖 is the zone, and 𝑡𝑦𝑝𝑒𝑖 refers to the type
of application or data being collected.

An actuator node is similarly defined by:

{𝐴𝑖, 𝑅𝑖, 𝑢𝑠𝑒𝑟𝐼𝐷𝑖, 𝑎𝑝𝑝𝐼𝐷𝑖, 𝑡𝑦𝑝𝑒𝑖}, 1 ≤ 𝑖 ≤ 𝑛 (5)

Fog Instance Set (F):

𝐹 = {𝐹1, 𝐹2, 𝐹3, . . . , 𝐹𝑘} (6)
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FIGURE 1 | Proposed Four-Layer Multi-zone Foglet-Based Accident Detection Paradigm for the Transportation Sector.

FIGURE 2 | SMS alerting system for identifying accidents in the transportation sector.

where𝐹𝑖 represents a fog instance responsible for processing data
from sensors and cameras in the edge layer.

Hardware Specification of Fog Instances (𝐻𝑛): Hardware specifi-
cations for fog instances are defined as:

𝐻𝑛 = {𝐻𝑛1,𝐻𝑛2, . . . ,𝐻𝑛𝑘}, 𝑘 is the number of fog instances
(7)

Spatio-Temporal Accident Dataset (𝑆𝑇𝐴): The spatio-temporal
dataset for fog instances is defined as:

6 of 19 Software: Practice and Experience, 2025
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FIGURE 3 | Flow diagram of the proposed framework.

𝑆𝑇𝐴𝑛 = {𝑆𝑇𝐴1, 𝑆𝑇𝐴2, . . . , 𝑆𝑇𝐴𝑘},

𝑘 is the number of fog instances (8)

Definition 2 (Fog Instances). A fog instance is defined by
the set:

{𝐹𝑗,𝐻𝑛𝑗 , 𝑆𝑇𝐴𝑛𝑗,𝑀𝐼𝑃𝑆𝑗, 𝑅𝐴𝑀𝑗, 𝑈𝑝𝐵𝑤𝑗,𝐷𝑛𝐵𝑤𝑗, 𝐿𝑒𝑣𝑒𝑙𝑗 ,

𝐵𝑠𝑃𝑤𝑗, 𝐼𝑑𝑙𝑃𝑤𝑗}, 1 ≤ 𝑗 ≤ 𝑘

(9)

where 𝐹𝑗 represents the fog instance ID, 𝐻𝑛𝑗 denotes hardware
specifications, and 𝑆𝑇𝐴𝑛𝑗 denotes spatio-temporal accident data.

Network Specifications for Fog Instances (N𝑗): Network parame-
ters are defined as:

𝑁𝑗 = {𝑀𝐼𝑃𝑆𝑗, 𝑅𝐴𝑀𝑗, 𝑈𝑝𝐵𝑤𝑗,𝐷𝑛𝐵𝑤𝑗, 𝐿𝑒𝑣𝑒𝑙𝑗 , 𝐵𝑠𝑃𝑤𝑗, 𝐼𝑑𝑙𝑃𝑤𝑗}
(10)

Mapping from Sensor Nodes to Fog Instances: The mapping from
sensor or actuator nodes in Layer 3 to fog instances in Layer 2 is
denoted as:

𝑀𝑎𝑝
(⋅)
32 ∶ 𝑆′ → 𝐹𝑗 (11)

where 𝑆′ is a subset of sensor nodes mapped to fog instance 𝐹𝑗 .

Foglet Set (F_l):

𝐹𝑙 = {𝐹𝑙1, 𝐹𝑙2, 𝐹𝑙3, . . . , 𝐹𝑙𝑚} (12)

where 𝐹𝑙𝑖 represents a foglet managing data from fog instances in
its zone.

Hardware Specifications of Foglets (𝐻𝑓 ): The hardware specifica-
tions for foglets are defined as:

𝐻𝑓 = {𝐻𝑓 1,𝐻𝑓 2, . . . ,𝐻𝑓𝑚}, there are 𝑚 foglets (13)

Network Specifications of Foglets (𝑁𝑓 ): Network parameters for
foglets are defined as:

𝑁𝑓 = {𝑀𝐼𝑃𝑆𝑝,𝑅𝐴𝑀𝑝,𝑈𝑝𝐵𝑤𝑝,𝐷𝑛𝐵𝑤𝑝, 𝐿𝑒𝑣𝑒𝑙𝑝, 𝐵𝑠𝑃𝑤𝑝, 𝐼𝑑𝑙𝑃𝑤𝑝}
(14)

Definition 3 (Foglet). A foglet is defined as:

{𝐹 𝑝

𝑙
,𝐻

𝑝

𝑓
,𝑁

𝑝

𝑓
}, 1 ≤ 𝑝 ≤ 𝑚 (15)

where𝐹 𝑝

𝑙
represents the foglet ID,𝐻𝑝

𝑓
denotes the hardware spec-

ification, and 𝑁
𝑝

𝑓
denotes the network characteristics.

Mapping from Fog Instances to Foglets: The mapping from fog
instances in Layer 2 to foglets in Layer 1 is denoted as:
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𝑀𝑎𝑝
(⋅)
21 ∶ 𝐹 ′ → 𝐹

𝑝

𝑙
(16)

where 𝐹 ′ is a subset of fog instances mapped to foglet 𝐹 𝑝

𝑙
.

Cloud Computing Instance Set (C):

𝐶 = {𝐶1, 𝐶2, 𝐶3, . . . , 𝐶𝑟} (17)

where 𝐶𝑖 denotes a cloud computing instance responsible for
large-scale processing and storage.

Definition 4 (Cloud Server). A cloud server is defined by:

{𝐶𝑡, {𝑃𝑡}}, 1 ≤ 𝑡 ≤ 𝑟 (18)

where𝐶𝑡 represents the cloud instance ID and {𝑃𝑡} represents the
processing unit IDs for that instance.

Mapping from Foglets to Cloud Server: The mapping from foglets
in Layer 1 to cloud instances in Layer 0 is denoted as

𝑀𝑎𝑝
(⋅)
10 ∶ 𝐹 ′

𝑙
→ 𝐶 ′ (19)

where 𝐹 ′
𝑙

is a subset of foglets and 𝐶 ′ is a subset of cloud servers.

Resource Utilization: Resource utilization is defined as

𝑅𝑒𝑠𝑢𝑡 =
𝑅𝑒𝑠𝑢𝑠𝑒𝑑

𝑅𝑒𝑠𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒
(20)

where 𝑅𝑒𝑠𝑢𝑠𝑒𝑑 and 𝑅𝑒𝑠𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 denote the used and available
resources, respectively.

3.3 | Forecasting Future Accident Counts Using
Machine Learning

In addition to early response accident detection, the system incor-
porates a machine learning-based prediction model to forecast
future accident counts in specific zones. This section details
the prediction algorithm used to anticipate accident occurrences
based on historical data and environmental factors.

ALGORITHM 1 | Accident count prediction algorithm.

Require: Historical Accident Data 𝐻 , Clustered Accident Area
𝑍, Environmental Variables 𝐸

Ensure: Predicted Accident Counts 𝑃
1: Cluster accident data 𝐻 into areas 𝑍𝑖 based on geographic

proximity.
2: For each area 𝑍𝑖:
3: for each time period 𝑡 do
4: Extract historical accident counts and environmental

variables for 𝑍𝑖.
5: Train regression model 𝑀 using accident counts and

variables 𝐸.
6: Predict future accident counts 𝑃𝑖(𝑡 + 1) for the next time

period.
7: end for
8: End For return Predicted accident counts for each zone

𝑃 = {𝑃1, 𝑃2,… , 𝑃𝑛}

3.3.1 | Accident Prediction Algorithm

The following algorithm describes how future accident counts are
predicted using regression analysis on historical accident data.

The proposed accident prediction algorithm, shown in
Algorithm 1, uses historical accident data and weather fea-
tures (extracted from an API) to forecast future accident counts.
Accident-prone areas are clustered based on geographic prox-
imity, and a regression model is trained for each area. The
trained model predicts accident counts for the next period (year),
enabling proactive measures to be implemented.

3.4 | Accident Detection and Early Response
Algorithm

The accident detection system uses real-time data from sensors
and edge devices. When an accident is detected, the system com-
putes the nearest ambulance centers, police stations, and hospi-
tals using a shortest path algorithm. The enhanced algorithm for
this process is shown below:

Algorithm 2 outlines how accident detection and notification are
managed in a fog-based environment. Sensor data from vehicles
or roadside units is continuously evaluated against an accident
detection threshold 𝜃. If the sensor data indicates an accident (i.e.,
the value exceeds 𝜃), the location of the accident is passed to the
shortest path algorithm. This algorithm then calculates the near-
est ambulance centers, police stations, and hospitals by utilizing
a shortest path method (refer Algorithm 3), which leverages the
city’s weighted road network to determine the quickest possi-
ble route for emergency responders. Once the nearest emergency
centers are identified, the system sends an automated notifica-
tion containing essential accident details such as the exact acci-
dent location, severity, and time. To ensure prompt and reliable
communication with emergency services, the system can employ

ALGORITHM 2 | Accident detection and notification.

Require: Sensor Data 𝑆, List of Ambulance Centers 𝐴, List of
Police Stations 𝑃 , List of Hospitals 𝐻 , Accident
Detection Threshold 𝜃

Ensure: Notification to the ambulance centers, police stations,
and nearest hospital with accident details

1: Initialize accident detection threshold 𝜃.
2: for each data point 𝑠𝑖 ∈ 𝑆 do
3: if 𝑠𝑖 exceeds 𝜃 then
4: Accident detected at location 𝑙𝑜𝑐(𝑠𝑖).
5: Calculate nearest ambulance, police station, and

hospital:
6: ℎ𝐴

min ← 𝚂𝚑𝚘𝚛𝚝𝚎𝚜𝚝𝙿𝚊𝚝𝚑(𝑙𝑜𝑐(𝑠𝑖), 𝐴)
7: ℎ𝑃

min ← 𝚂𝚑𝚘𝚛𝚝𝚎𝚜𝚝𝙿𝚊𝚝𝚑(𝑙𝑜𝑐(𝑠𝑖), 𝑃 )
8: ℎ𝐻

min ← 𝚂𝚑𝚘𝚛𝚝𝚎𝚜𝚝𝙿𝚊𝚝𝚑(𝑙𝑜𝑐(𝑠𝑖),𝐻)
9: Send notification to ℎ𝐴

min with accident details.
10: Send notification to ℎ𝑃

min with accident details.
11: Send notification to ℎ𝐻

min with accident details.
12: end if
13: end for

return Notifications sent to relevant entities.

8 of 19 Software: Practice and Experience, 2025
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mobile gateways or SMS gateways, such as Twilio or Nexmo, to
send early response alerts directly from the fog nodes to the near-
est hospital, ambulance, and police station. This approach mini-
mizes latency, as notifications are sent without needing to route
through a central cloud server. In addition, the system can alter-
natively employ a secure REST API connection to directly com-
municate with emergency response platforms. This allows for
the automated dispatch of messages containing precise accident
information to relevant emergency responders, ensuring imme-
diate response initiation.

3.5 | Shortest Path to Nearest Ambulances
Centers, Police Stations, and Hospitals Calculation
Algorithm

To ensure a quick emergency response, the system calculates the
shortest path from the accident site to the nearest hospital using
Dijkstra’s algorithm. The detailed algorithm is presented below:

Algorithm 3 implements Dijkstra’s shortest path algorithm to
find the nearest ambulance centers, police stations, and hospi-
tals with the shortest travel time from the accident location. A
distance graph 𝐺 is initialized, where nodes represent geographic
points (the accident site, hospitals, ambulance centers, and police
stations), and edges represent the distances between them. A
priority queue is used to explore the shortest paths iteratively
between the accident location and these points. The algorithm
efficiently computes the shortest path by continuously updating
the distance for each ambulance center, police station, or hospital

ALGORITHM 3 | Shortest path calculation algorithm.

Require: Accident Location 𝑙𝑜𝑐(𝑠𝑖), List of Hospitals 𝐻 , List of
Ambulance Centers 𝐴, List of Police Stations 𝑃 ,
Distance Graph 𝐺

Ensure: Nearest hospital ℎmin, nearest ambulance center 𝑎min,
and nearest police station 𝑝min

1: Initialize a priority queue 𝑄.
2: Set 𝑑𝑖𝑠𝑡[𝑙𝑜𝑐(𝑠𝑖)] ← 0.
3: Set 𝑑𝑖𝑠𝑡[ℎ𝑗] ← ∞ for all ℎ𝑗 ∈ 𝐻 .
4: Set 𝑑𝑖𝑠𝑡[𝑎𝑘] ← ∞ for all 𝑎𝑘 ∈ 𝐴.
5: Set 𝑑𝑖𝑠𝑡[𝑝𝑙] ← ∞ for all 𝑝𝑙 ∈ 𝑃 .
6: Insert 𝑙𝑜𝑐(𝑠𝑖) into 𝑄.
7: while 𝑄 is not empty do
8: Pop the vertex 𝑣 with the smallest distance from 𝑄.
9: for each neighbor 𝑢 of 𝑣 do

10: if 𝑑𝑖𝑠𝑡[𝑣] + 𝐺(𝑣, 𝑢)<𝑑𝑖𝑠𝑡[𝑢] then
11: Update 𝑑𝑖𝑠𝑡[𝑢] ← 𝑑𝑖𝑠𝑡[𝑣] + 𝐺(𝑣, 𝑢).
12: Insert or update 𝑢 in 𝑄.
13: end if
14: end for
15: end while
16: Find the nearest hospital ℎmin ← arg minℎ𝑗∈𝐻 𝑑𝑖𝑠𝑡[ℎ𝑗].
17: Find the nearest ambulance center

𝑎min ← arg min𝑎𝑘∈𝐴 𝑑𝑖𝑠𝑡[𝑎𝑘].
18: Find the nearest police station

𝑝min ← arg min𝑝𝑙∈𝑃 𝑑𝑖𝑠𝑡[𝑝𝑙].return ℎmin, 𝑎min, 𝑝min.

as new nodes are explored. The nearest ambulance center, police
station, and hospital, denoted by 𝑎min, 𝑝min, andℎmin, respectively,
are then returned.

Algorithms 2 and 3 work together to ensure a timely response to
accidents. When an accident is detected, the system immediately
computes the shortest path to the nearest ambulance centers,
police stations, and hospitals and sends an automated notifica-
tion. The architecture supports low-latency processing by lever-
aging fog computing to handle sensor data at the edge, while
the shortest path algorithm ensures that emergency services can
respond as quickly as possible.

3.6 | Latency and Energy Consumption

3.6.1 | Latency

The total latency of the system is expressed as:

𝐷𝑙𝑎𝑡𝑒𝑛𝑐𝑦 = 𝐷𝑠 +𝐷𝑎𝑐 +𝐷𝑠𝑡𝑟 +𝐷𝑎𝑐𝑡𝑟 +𝐷𝐹𝐹𝑙 +𝐷𝑝𝑟𝑜𝑐𝐹 𝑙

+𝐷𝐹𝑙𝐶 +𝐷𝑝𝑟𝑜𝑝 (21)

3.6.2 | Energy Consumption

The total energy consumption of the system is calculated as:

𝐸𝑐𝑛𝑠𝑚𝑝 = 𝐸𝑠 + 𝐸𝑎𝑐 + 𝐸𝑠𝑡𝑟 + 𝐸𝑎𝑐𝑡𝑟 + 𝐸𝐹𝐹𝑙 + 𝐸𝑝𝑟𝑜𝑐𝐹 𝑙 + 𝐸𝐹 𝑙𝐶 + 𝐸𝑝𝑟𝑜𝑝

(22)

Finally, we formulated an objective function that ties the pro-
posed mathematical models together, ensuring a logical flow
from Equations (1–22). This function has formally defined the
optimization goals related to energy efficiency, latency reduction,
and resource allocation in our multitier fog-cloud framework.
Objective Function: We have combined the performance met-
rics into a single objective function that encapsulates the system’s
optimization goal.

3.6.3 | The Objective Function Could Be

Minimize 𝑍 = 𝛼 ⋅𝐷latency + 𝛽 ⋅ 𝐸consumption + 𝛾 ⋅ (1 − Resutil)
(23)

where: 𝐷latency = Total latency; 𝐸consumption = Total energy con-
sumption; Resutil = Resource utilization; 𝛼, 𝛽, 𝛾 are Weights indi-
cating the priority of each term.

4 | Performance Evaluation

This section evaluates accident locations to identify high-risk
zones by heat map analysis using QGIS. The next step is to exam-
ine the performance of the proposed machine learning algorithm
for cloud-based decision-making, aimed at forecasting future
accident counts. Finally, we evaluate the effectiveness of the pro-
posed system through simulation using iFogSim2 [16] and theo-
retical analyses conducted using MATLAB.
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FIGURE 4 | Crash points of study area (Kolkata).

4.1 | Heatmap Analysis Using QGIS

In this analysis, first, we visualized crash points using the
open-source software QGIS. A black point indicates the
2017-2020 crash points, and a red point indicates the 2021-2023
crash points (Figure 4). Then, we identified accident-prone zones
using combination of historical accident data analysis and spatial
hotspot detection techniques in QGIS. Specifically, we employed
kernel density estimation (KDE) to visualize high-density acci-
dent regions and spatial autocorrelation methods like Moran’s
I and Getis-Ord Gi* to validate clustering patterns [49]. The
heatmap analysis provides insights into the spatial distribu-
tion of accident locations, highlighting high-risk areas. Using
QGIS, accident locations were visualized based on the data
(Figure 5–9). Our analysis indicates that the western section
of the study area experiences more accidents than the eastern,
northern, and southern sectors. We identified four specific
zones with varying accident densities. The highest-risk zone is
Golpark–Gariahat on Raja Subhas Chandra Mukherjee Road,
near South City Mall. Another high-risk area is around Lady
Brabourne College and the intersection of Park Circus, Maa
Flyover, Circus Avenue, and Suhrma Avenue. The third zone

is Bidhannagar Road, particularly at the Ultodanga crossing.
Lastly, the Barabazar MG Road area and Khidirpur Road were
identified as additional accident-prone zones. In the identified
high-risk areas, we implemented sensors, actuators, and other
components to establish a foglet-based framework for early
response to accident detection and prevention.

4.2 | Future Accident Count Estimation Using
Regression Analysis

Road safety is a primary concern in urban settings. In populated
cities like Kolkata, India, preventable fatalities frequently occur,
necessitating robust road safety measures. We propose an acci-
dent prediction framework that uses multimodal data (historical
accident and weather data) collected between 2017–2020 and
2021–2023. After preprocessing the data, roads are segmented
into 200-meter lengths, and the number of accidents occurring
within each segment is counted. The choice of 200-meter road
segments was intentional and driven by the nature of urban
road networks. In densely populated urban areas, a 500-meter
segment can cover multiple intersections or varying traffic

10 of 19 Software: Practice and Experience, 2025
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FIGURE 5 | Heatmap of the study area.

FIGURE 6 | Heatmap zone 1.

conditions, which may dilute the accuracy of accident concen-
tration analysis. According to traffic experts, shorter segments
like 200 meters offer a finer spatial resolution, allowing for more
precise identification of high-risk zones and better alignment
with the dynamic nature of urban traffic patterns. In fact, some
urban intersections themselves span close to 500 meters. There-
fore, a finer resolution of 200 meters was chosen to capture
localized accident patterns more effectively and provide more
actionable insights. To identify accident-prone zones, roads were
segmented into 200-meter intervals. Each accident point was
then mapped to its nearest segment using latitude and longi-
tude coordinates. An iterative segmentation algorithm facilitated

this process. Based on the density of accident cluster points in
each segment, the data was categorized into four groups: 5–10,
10–20, 20–30, and more than 30 points. Any segment with
five or more accident points was classified as an accident-prone
zone. We then apply various regression techniques, including
Linear Regressor, Lasso Regressor, Ridge Regressor, Decision
Tree Regressor, KNN Regression, Random Forest Regressor, Sup-
port Vector Regressor (SVR), and XGBoost Regressor. Out of
these techniques, XGBoost Regressor showed the highest pre-
dictive capabilities with high R2 scores (refer Table 2–4). The
aim is to predict future accident counts in any road network seg-
ment. For future accident count prediction, a set of features such
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FIGURE 7 | Heatmap zone 2.

FIGURE 8 | Heatmap zone 3.

as LAT-DEG-MIN, LONG-DEG-MIN, ACC-TIME, MAX-TEMP,
MIN-TEMP, APP-TEMP-MAX, APP-TEMP-MIN, PRECIPITA-
TION, and DAYLIGHT-DURATION was used in the regression
modeling, with the target variable being the accident count for
each location. To evaluate the models’ performance, multiple
evaluation metrics, including Mean Squared Error (MSE), Mean

Absolute Error (MAE), Root Mean Squared Error (RMSE), and
R-squared (R2) scores, were calculated. The dataset was divided
into training and testing sets with a 70:30 ratio.

The favorable metric scores of algorithms like XGBoost, Random
Forest, and Decision Tree indicate their effectiveness in handling

12 of 19 Software: Practice and Experience, 2025
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FIGURE 9 | Heatmap zone 4.

the nonlinear and complex relationships between features and
target variables. The complexity of the multimodal datasets
enhances the models’ predictive efficiency. KNN performance
declines in high-dimensional data, explaining its suboptimal
results. In the case of SVR, the kernel fails to capture the intricate
relationships within the multimodal data. Linear, Lasso, and
Ridge Regressors produce subpar results due to their limitations
in modeling nonlinear separable datasets. Our ML-based acci-
dent count prediction method is adaptive, continuously updating
its prediction model using real-time accident reports and new
traffic data. We have developed an algorithm that not only pre-
dicts future accident counts but also identifies the shortest path.
The model parameters are periodically fine-tuned with the latest
data to ensure high accuracy over time.

A comparison between the predicted results and actual data
shows a strong agreement, indicating the model’s effectiveness
(Figure 10).

4.2.1 | Discussion

MATLAB 2015 was utilized for the theoretical analysis. The data
used for the analysis ranged from 100 MB to 1000 MB, encom-
passing the collection, transmission, and processing of spatiotem-
poral accident information.

Efficient energy usage is critical in accident detection and pre-
vention systems to ensure continuous and reliable operation. Fog

computing, where data processing occurs closer to the source, sig-
nificantly reduces energy consumption compared to traditional
cloud computing methods (Figure 11 and 12). The use of fog
agents, when compared to cloud computing, results in substantial
energy savings of approximately 16.77% (Figure 13). Implement-
ing fog agents not only improves sustainability but also enhances
response times and reduces operational costs, ultimately increas-
ing system efficiency and reliability. This efficiency is particularly
crucial for maintaining uninterrupted functionality in remote or
resource-constrained environments.

The energy savings achieved through fog computing reach
around 3.80%. This reduction ensures longer operational peri-
ods, faster data processing, and real-time responsiveness, all of
which are vital for maintaining continuous monitoring and quick
accident response, especially in environments with limited power
resources.

Furthermore, the proposed fog computing architecture achieves
a substantial cost saving of approximately 89.66%, highlighting
its economic advantages (Figure 14). Fog agents not only reduce
delays and improve response times but also minimize opera-
tional costs. This cost efficiency is critical for deploying scal-
able and sustainable accident detection systems, allowing for
broader implementation and improved performance across var-
ious environments.

Minimizing execution time is essential for the effectiveness of
accident detection and prevention systems. The fog computing
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FIGURE 10 | Actual vs predicted accident counts.

FIGURE 11 | Traditional method using only cloud.

approach results in a reduction of approximately 12.08% in exe-
cution time, demonstrating its efficiency (Figure 15). By pro-
cessing information closer to the source, fog agents facilitate
quicker decision-making and faster alerts, which are crucial for
preventing accidents and mitigating their impact. This improved
response time enhances the overall effectiveness of the system,
ensuring timely interventions and increasing safety in different
operational environments.

4.3 | Simulation Results

User-defined classes in iFogSim2 were used to represent the pro-
posed system. Initially, we created physical entities and enabled

them to interact and communicate with each other. We defined
five entities in total: Sensor, Actuator, Fog Agent, fog instance
(Foglet), and Cloud. Throughout the experiment, we exten-
sively utilized predefined functions from iFogSim2, such as
createFogDevice(), createSensor(), createActua-
tor(), and addAppEdge(), to establish the physical topology.
To create connections between these entities, user-defined func-
tions like addArea() and addCamera() were also employed.

createFogDevices(int userId, String appId):
This function sets up the physical infrastructure of the fog
computing environment, including hierarchical relationships
between the cloud, proxy servers, and area routers.

14 of 19 Software: Practice and Experience, 2025
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FIGURE 12 | Fog-cloud architecture.

FIGURE 13 | Energy consumption: Fog agent vs cloud.

addArea(String id, int userId, String appId,
int parentId, int proxyIndex, int areaIndex):
This function creates an area within the physical topology. Each
area contains a router connected to multiple smart cameras,
allowing for variability in parameters across different areas. It
also establishes connections between routers and cameras within
an area.

addCamera(String id, int userId, String
appId, int parentId, int cameraIndex, int
proxyIndex, int areaIndex): This function adds a smart
camera to a specific area, setting up the sensor and actuator for
that camera. It defines characteristics such as RAM, bandwidth,
power consumption, and latency for each smart camera, and
creates the necessary sensors and actuators for them.

The modules have specific data dependencies, as illustrated in the
workflow diagram of our proposed system. We simulated our sys-
tem, resulting in the depicted physical topology.

To provide a realistic representation, the experiment measured
the end-to-end latency of each device loop. The network latencies
between different devices are shown in the Table 6.

4.3.1 | Cloud Layer

The cloud Layer in an accident detection and prevention system
serves as the central hub for data aggregation, advanced analytics,
and global trend analysis. It collects and stores vast amounts of
data from connected fog and edge devices, using this aggregated
information to train and refine machine-learning models that
detect accident patterns. The cloud leverages complex algorithms
and deep learning to analyze historical data, predicting potential
accident hotspots/blackspots and times, thereby enabling pre-
emptive measures. Additionally, it distributes updates and poli-
cies to lower layers, ensuring that local devices operate with the
latest strategies for accident prevention. The cloud also man-
ages resource allocation across the network to maintain timely
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FIGURE 14 | Cost of execution: Fog agent vs cloud.

FIGURE 15 | Execution time: Fog agent vs cloud.

responses and prevent system overloads during peak times, mak-
ing it essential for both comprehensive analysis and centralized
management.

4.3.2 | Fog Layer

Due to their localized processing and real-time data analysis,
fog nodes are crucial in accident detection and prevention sys-
tems. They detect potential accidents through traffic camera feeds
and sensor data analysis, send immediate alerts to nearby ambu-
lance centers, police stations, and hospitals, and analyze local
data to mitigate risks. This layer is responsible for real-time
processing and immediate response actions to enhance the
system’s efficiency.

4.3.3 | Sensor/Actuator Layer

The Sensor Layer consists of various sensors (such as:F1C1
to F4C4) (refer Table 5) that continuously monitor critical
parameters such as vehicle speed, acceleration, distance to
obstacles, and environmental conditions with sudden changes
or extreme values indicating a potential accident. These sen-
sors collect real-time data and transmit it directly to the fog
layer. When an event such as a collision or abrupt stop is
detected, actuators take immediate physical actions, such as
braking, steering adjustments, or deploying airbags. This layer
also provides real-time feedback and assistance to drivers
through collision warnings, lane departure alerts, and adaptive
cruise control.
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In cloud fog systems process on local devices, reducing latency
and energy consumption. In a cloud-only system, sensors and
actuators are connected to a single server, a hierarchical architec-
ture. However, challenges like network latency and bandwidth
limitations may arise.

5 | Conclusions and Future Work

In this paper, we proposed an early response accident detection
and prevention system based on a multitier, multizone fog-cloud
architecture, designed to enhance efficiency, reliability, and
responsiveness in safety-critical applications. By processing
accident data closer to the source, our system ensures imme-
diate alerts to the nearest ambulance centers, police stations,
and hospitals through mobile gateway or SMS gateway upon
accident detection, optimizing emergency response times and
coordination. Additionally, our system incorporates a predictive
analysis model in the cloud that uses regression analysis on
historical accident data to forecast future accident counts,
thereby supporting proactive safety measures to help pre-
vent future incidents. Through QGIS-based hotspot analysis,
the system identifies high-risk accident zones, enabling tar-
geted resource allocation and safety interventions in the most
accident-prone areas. The hierarchical deployment of fog nodes
ensures that tasks are efficiently distributed across multiple
layers, reducing the computational load on central servers and
allowing for more effective resource management. Our results
demonstrate significant improvements in energy efficiency
(16.77% reduction), execution time (12.08% improvement), and
operational costs (89.66% decrease) compared to traditional
cloud-only models, making the system both scalable and sus-
tainable. This fog-cloud integrated approach offers a robust and
reliable solution for early response accident detection, preven-
tion, and emergency response, especially in densely populated
urban environments.

We selected Kolkata as the case study due to its high traffic den-
sity, frequent accident occurrences, and diverse urban infrastruc-
ture, making it an ideal setting for evaluating the effectiveness of
our fog-cloud-based early response framework. Furthermore, we
had access to extensive accident datasets from Kolkata’s traffic
police, enabling us to conduct a robust and data-driven analysis.
While this study focuses on Kolkata, our framework is general-
izable and can be extended to other urban regions. We plan to
extend our implementation to a lab testbed, which will allow
us to evaluate the system under controlled yet practical condi-
tions. We also aim to explore possibilities for field deployment
(with the help of Kolkata Traffic Police) to further demonstrate
the effectiveness and scalability of our approach. Looking for-
ward, future work could focus on optimizing resource allocation
through adaptive algorithms that dynamically adjust to traffic
patterns and demand, as well as on incorporating machine learn-
ing at the fog layer to further enhance the accuracy of accident
prediction. Additionally, integrating renewable energy sources
for powering fog nodes and implementing advanced data secu-
rity measures could further increase the system’s sustainability
and adoption potential. With these advancements, fog computing
stands poised to drive innovation in real-time IoT systems across

multiple sectors, including healthcare, smart cities, and indus-
trial automation, ultimately improving public safety and opera-
tional efficiency.
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