
Dynamically Scaling Applications in the Cloud

Luis M. Vaquero Luis Rodero-Merino Rajkumar Buyya
Hewlett Packard Labs, Bristol,

UK, EU
LIP ENS Lyon, Graal/Avalon Group, INRIA,

France, EU
The University of Melbourne,

Australia
lmvaquero@ieee.org luis.rodero-merino@ens-lyon.fr raj@csse.unimelb.edu.au

ABSTRACT

Scalability is said to be one of the major advantages brought
by the cloud paradigm and, more specifically, the one that
makes it different to an “advanced outsourcing” solution.
However, there are some important pending issues before
making the dreamed automated scaling for applications come
true. In this paper, the most notable initiatives towards
whole application scalability in cloud environments are pre-
sented. We present relevant efforts at the edge of state of
the art technology, providing an encompassing overview of
the trends they each follow. We also highlight pending chal-
lenges that will likely be addressed in new research efforts
and present an ideal scalable cloud system.

Categories and Subject Descriptors

C.4 [Performance of Systems]: reliability availability and
serviceability, design studies

General Terms

Management, Performance

Keywords

Cloud Computing, Scalability

1. INTRODUCTION
Cloud computing is commonly associated to offering of

new mechanisms for infrastructure provisioning [1, 2]. The
illusion of a virtually infinite computing infrastructure, the
employment of advanced billing mechanisms allowing for a
pay-per-use model on shared multitenant resources, the sim-
plified programming mechanisms (platform), etc. are some
of the most relevant features.
Among these features/challenges, those introduced by adding

scalability and automated on-demand self-service are re-
sponsible for making any particular service something more
than “just an outsourced service with a prettier marketing
face” [3].
As a result of its relevance, the wealth of systems dealing

with “cloud application scalability” is slowly gaining weight
in the available literature [4, 5, 6, 7, 8, 9, 10, 11, 12, 13]. As
can be observed in the previous references, automation is
typically achieved by using a set of service provider-defined
rules that govern how the service scales up or down to adapt
to a variable load. These rules are themselves composed
of a condition, which, when met, triggers some actions on
the infrastructure or platform. The degree of automation,

abstraction for the user (service provider) and customiza-
tion of the rules governing the service vary. Some systems
offer users the chance of building rather simple conditions
based on fixed infrastructure/platform metrics (e.g. CPU,
memory, etc.), while others employ server-level metrics (e.g.
cost to benefit ratio) and allow for more complex conditions
(e.g. arithmetic and logic combinations of simple rules) to
be included in the rules. Regarding the subsequent actions
launched when the conditions are met, available efforts focus
on service horizontal scaling (i.e. adding new server replicas
and load balancers to distribute load among all available
replicas) or vertical scaling (on-the-fly changing of the as-
signed resources to an already running instance, for instance,
letting more physical CPU to a running virtual machine
(VM)). Unfortunately, the most common operating systems
do not support on-the-fly (without rebooting) changes on
the available CPU or memory to support this “vertical scal-
ing”. Some authors tried to mimic this by adding more
powerful servers to replace less powerful ones [11].

Beyond mere server scalability, some other elements need
to be taken into account that affect the overall application
scaling potential. For instance, load balancers (LBs) need
to support the aggregation of new servers (typically, but not
necessarily, in the form of new VMs) in order to distribute
load among several servers [14, 15, 16]. Amazon already
provides strategies for load balancing your replicated VMs
via its Elastic Load Balancing capabilities [9]. LBs and the
algorithms that distribute load to different servers are, thus,
essential elements in achieving application scalability in the
cloud.

Having several servers and the mechanisms to distribute
load among them is a definitive step towards scaling a cloud
application. However, there is another element of the da-
tacenter infrastructure to be considered towards complete
application scalability. Network scalability is an often ne-
glected element that should also be considered [17]. In a con-
solidated datacenter scenario, several VMs share the same
network, potentially producing a huge increase in the re-
quired bandwidth (potentially collapsing the network). It
is, thus, necessary to extend infrastructure clouds to other
kinds of underlying resources beyond servers, LBs and stor-
age. Cloud applications should be able to request not only
virtual servers at multiple points in the network, but also
bandwidth-provisioned network pipes and other network re-
sources to interconnect them (Network as a Service, NaaS)
[17].

Clouds that offer simple virtual hardware infrastructure
such as VMs and networks are usually denoted Infrastruc-
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Figure 1: Summary of the Available Mechanisms for

Holistic Application Scalability.

ture as a service Clouds (IaaS) [2, 18]. A different abstrac-
tion level is given by Platform as a Service (PaaS) clouds.
PaaS clouds supply a container-like environment where users
deploy their applications as software components [19]. PaaS
clouds, provide sets of “online libraries” and services for
supporting application design, implementation and main-
tenance. Despite being somewhat less flexible than IaaS
clouds, PaaS clouds are becoming important elements for
building applications in a faster manner [2, 1] and many im-
portant IT players such as Google and Microsoft have devel-
oped new PaaS clouds systems such as Google App Engine1

(GAE) and Microsoft Azure2. Due to their importance this
document also discusses scalability in PaaS clouds at two
different levels: container level and database level.
Figure 1 provides an overview of the mechanisms handy

to accomplish the goal of whole application scalability. The
rest of this paper is organized as follows: Section 2 highlights
state of the art technologies for managing applications in a
holistic manner, including LB approaches for cloud appli-
cations. After this, Section 3 presents the few proposals
dealing with the concept of NaaS. Section 4 presents cur-
rent status on platform scalability and challenges ahead for
the next generation of clouds. Finally, we wrap up our con-
clusions in Section 5.

2. SERVER SCALABILITY
Most of the available IaaS clouds deal with single VM

management primitives (e.g. elements for adding/removing
VMs) [4, 5, 6, 7, 8], lacking mechanisms for treating applica-
tions as a whole single entity and dealing with the relations
among different application components; for instance, rela-
tionships between VMs are often not considered, ordered
deployment of VMs containing software for different tiers of
an application is not automated (e.g. the database’s IP is
only known at deployment time; thus, the database needs
to be deployed first in order to get its IP and configure the
Web server connecting to it), etc. Application providers
typically want to deal with their application only [11, 20],
being released from the burden of dealing with (virtual) in-
frastructure terms.

2.1 Towards Increased Abstraction and Au-
tomation: The Elasticity Controller

Such a fine-grained management (VM-based) may come
in handy for few services or domestic users, but it may be-
come intractable with a big number of deployed applications
composed of several VMs each. The problem gets worse if

1http://code.google.com/appengine
2http://www.microsoft.com/windowsazure

application providers aim at having their application auto-
matically scaled according to load. They would need to mo-
nitor every VM for every application in the cloud and make
decisions on wether or not every VM should be scaled, its
LB re-configured, its network resources resized, etc. Two
different approaches are possible: 1) increasing the abstrac-
tion level of the provided APIs and/or 2) advancing towards
a higher automation degree.

Automated scaling features are being included by some
vendors [4, 9], but the rules and policies they allow to ex-
press still deal with individual VMs only; one cannot easily
relate the scaling of the VMs at tier-1 with its load balancers
or the scaling of VMs at tier-3, for instance. As an example
of this behavior, Marshall et al. proposed a resource man-
ager built on top of the Nimbus toolkit that dynamically
adapted to a variety of job submission patterns increasing
the processing power up to 10 times by federating on top
of Amazon’s (deploying new VMs adhered to the cluster on
separate infrastructures) [13].

On the other hand, [20, 12, 11] propose more abstract
frameworks (they allow users to deal with applications as a
whole, rather than per individual VM) that also convey au-
tomation. Unavoidably, any “scalability management sys-
tem” (or elasticity controller in Figure 2) is bound to the
underlying cloud API (the problem of “discrete actuators”
as named by Lim et al. [12]). One essential task for any
application-level elasticity controller is, thus, mapping user
scaling policies from the appropriate level of abstraction for
the user to the actual mechanisms provided by IaaS clouds
(depending on the specific underlying API)3.

The implementation of the elasticity controller can be
done in several different ways with regard to the provided
abstraction level:

• a per-tier controller, so that there is a need for coordi-
nation and synchronization among multiple controller-
actuator pairs [12]. Treating each tier as an indepen-
dent actuator with its own control policy can cause
shifting of the performance bottleneck between tiers.
Lim et al propose that a tier can only release resources
when an interlock is not being held by the other tiers.

• a single controller for the whole application (for all
tiers), which let users specify how an application should
scale in a global manner. For instance, the application
provider could specify (based on her accurate knowl-
edge of her application) to scale the application logic
tier whenever the number of incoming requests at the
web tier is beyond a given threshold [11].

2.2 Expressing How andWhen to Scale: Feed-
ing Controller with Rules and Policies

All the works above rely on traditional control theory in
which several sensors feed a decision making module (elas-
ticity controller) with data to operate on an actuator (cloud
API), as shown in Figure 2. Similarly, all the systems above
answer the question on how to automate scalability (i.e. how
to implement the elasticity controller) in a similar manner
either for VM-level [4, 9] or for application-level “scalability
management systems” [12, 11].

3In practice, most of the available cloud APIs expose VM
level management capabilities, so that controller-actuator
pairs are limited to adding/removing VMs
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Figure 2: Conventional Control Theory Applied to

the Application Level Scalability in the Cloud.

User-defined rules are the chosen mechanism (as opposed
to preconfigured equations sets) to express the policies con-
trolling scalability as shown below. A rule is composed of
a series of conditions that when met trigger some actions
over the underlying cloud. Every condition itself is com-
posed of a series of metrics or events that may be present
in the system, such as “money available” or “authorization
received” (either provided by the infrastructure or obtained
by the application provider herself), which are used together
with a modifier (either a comparison against a threshold, the
presence of such events) to trigger a set of cloud-provided
actions.

RULE:

if CONDITION(s) then ACTION(s)

CONDITION:

(1..*) (metric.value MODIFIER)

ACTION:

(*) IaaS cloud-enabled actions (e.g. deploy new VM)

If we focus on application-level scalability (rather than
dealing with per VM scaling), Lim et al. present a mathe-
matical formulation in which the user just configures the
threshold4 for replicating storage servers so as to increase
the cloud storage capability [21, 12]. Rodero-Merino et al.
leave full control for users to express their rules and use a
rule engine as a controller. The Open Virtual Format (OVF)
is extended to define the application, its components, its
contextualization needs, and the rules for scaling [10]. This
way, service providers can generate a description of their
application components, the way their application behaves
with regards to scalability and the relevant metrics that will
trigger the actions expressed in such rules.
As shown in Figure 1, in addition to dynamically adding

more VM replicas, application behavior could also include
many other aspects determining application scalability: adding
load balancers to distribute load among VM replicas is also

4Lim et al propose the proportional thresholding mecha-
nism, which considers the fact that going from 1 to 2 ma-
chines can increase capacity by 100% but going from 100 to
101 machines increases capacity by no more than 1%.

an important point. In an IaaS cloud the number of VMs
balanced by a single LB can hugely increase, thus overload-
ing the balancer5.

LB scalability requires the total time taken to forward
each request to the corresponding server to be negligible for
small loads and should grow no faster than O(p) (p being
the number of balanced VMs) when the load is big and the
number of balanced VMs is large [22]. However, although
mechanisms to scale the load balancing tier would benefit
any cloud system, they are missing in most current cloud
implementations.

Amazon already providers its Elastic Load Balancer ser-
vice aimed at delivering users with a single LB to distribute
load among VMs. However, Amazon does not provide mech-
anisms to scale LBs themselves. Virtualization of the load
balancing machines offers the chance to define scalability
rules by using previously presented systems [20, 12, 11]. Re-
cently, Liu and Wee [23, 24] proposed a “rule of thumb”
procedure to configure presentation-tier (Web server) scal-
ability: for CPU-intensive web applications, it is better to
use a LB to split computation among many instances. For
network intensive applications, it may be better to use a
CPU-powerful standalone instance to maximize the network
throughput. Yet, for even more network intensive applica-
tions, it may be necessary to use DNS load balancing to
get around a single instance bandwidth limitation [23]. The
question emerges whether DNS-based load balancing can be
scalable enough or not. Practical experiences with large
well-known services such as Google’s search engine and re-
cent experimental works on cloud settings [23, 24] seem to
point in that direction. Also, for many enterprise applica-
tions, hardware LB is the most common approach.

3. SCALING THE NETWORK
Properly replicated/sized VMs led us to think about LBs

as a possible bottleneck. Assuming this problem is also re-
solved takes us to think about the link that keeps application
elements stuck together, even across different cloud infras-
tructure services: the network, which is often overlooked in
cloud computing.

Networking over virtualized resources is typically done in
two different manners: “Ethernet virtualization” and over-
lay networks and TCP/IP virtualization. These techniques
are respectively focused in the usage of virtual local area
network (VLAN) tags (L2) to separate traffic or public key
infrastructures to build L2/L3 overlays [25, 26, 17, 27].

Separating users’ traffic is not enough for reaching com-
plete application scalability: the need to scale the very net-
work arises in consolidated datacenters hosting several VMs
per physical machine. This scalability is often achieved by
over-provisioning the resources to suit this increased de-
mand. This approach is expensive and induces network in-
stability while the infrastructure is being updated. Also, it
is static and does not take into account that not all the ap-
plications consume all the required bandwidth during all the
time. Improved mechanisms taking into account actual net-
work usage are required. On the one hand, one could period-
ically measure actual network usage per application and let
applications momentarily use other applications’ allocated

5Although we recognize the importance of load balancing
algorithms, the wealth of available literature on this matter
places them well beyond of the scope of this work.
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bandwidth. On the other hand, applications could request
more bandwidth on demand over the same links [17]. Bal-
dine et al. proposed to “instantiate” bandwidth-provisioned
network resources together with the VMs composing the ser-
vice across several cloud providers [17]. Similar to the OVF
extensions mentioned above, these authors employ Network
Description Language (NDL)-based ontologies for express-
ing the required network characteristics. These abstract re-
quirements are mapped to the concrete underlying network
peculiarities (e.g. dynamically provisioned circuits vs. IP
overlays). A complete architecture to perform this map-
ping has also been proposed [28]. Unfortunately, there is no
known production-ready system that fully accomplishes the
need for dynamically managing the network in synchrony
with VMs provisioning.
These techniques to increase the utilization of the net-

work by virtually “slicing” it have been dubbed as “net-
work as a service” [17]. This à la cloud network provision
paradigm can be supported by flow control [29], distributed
rate limiting [30], and network slicing techniques [31]. By
applying this mechanism the actual bandwidth can be dy-
namically allocated to applications on demand, which would
benefit from a dynamic resource allocation scheme in which
all the users pay for the actual bandwidth consumption. To
optimize network usage statistical multiplexing is used to
compute the final bandwidth allocated to each application.
Statistical multiplexing helps to allocate more bandwidth to
some applications while some others are not using it (most
system administrators usually provision on a worst-case sce-
nario and never use all the requested resources). This way,
the cloud provider can make a more rational use of its net-
work resources, while still meeting applications’ needs.

4. SCALING THE PLATFORM
IaaS clouds are handy for application providers to control

the resources used by their systems. However, IaaS clouds
demand application developers or system administrators to
install and configure all the software stack the application
components need. In contrast, PaaS clouds offer a ready to
use execution environment, along with convenient services,
for applications. Hence, when using PaaS clouds developers
can focus on programming their components rather than on
setting up the environment those components require. But
as PaaS clouds can be subject to an extensive usage (many
concurrent users calling to the hosted applications), PaaS
providers must be able to scale the execution environment
accordingly. In this section, we will explore how scalability
impacts on the two core layers of PaaS platforms: the con-
tainer and the database management system (DBMS), as
they are the backbone of any PaaS platform: the combina-
tion container + database is the chosen stack to implement
many networked (e.g. Internet) applications, which are the
ones PaaS platforms are oriented to.
The container is the software platform where users’ com-

ponents will be deployed and run. Different PaaS clouds
can be based on different platforms, for example GAE and
its open source counterpart AppEngine [32] provide contain-
ers for servlets (part of the J2EE specification) and Python
scripts, while Azure and Aneka [33] offer an environment for
.NET applications. Each platform type can define different
lifecycles, services and APIs for the components it hosts.
Databases, on the other hand, provide data persistence

support. The database storage service must address the de-

Figure 3: Schematic View of a PaaS System.

mand for data transactions support combined with big avail-
ability and scalability requirements. As it is explained later
in this section, this can be addressed in different manners.

Figure 3 shows an overview of the possible architecture of
a PaaS system, where both the container and the database
layer achieve scalability through replication of the container
and the DBMS (horizontal scaling). This is the scenario
this work focuses on, as it is the only one the authors deem
feasible in clouds with certain scalability requirements. Ap-
plying vertical scaling by using “more powerful” hardware
would soon fail, as many clouds will typically face loads that
one single machine cannot handle whatever its capacity.

Other services can be offered by a PaaS platform apart
from the container and the database, which also will need
to be scaled to adapt to demand. For example, Azure offers
services for inter-component communication (bus) or access
control. Unfortunately, in this work it would only be possi-
ble to study scalability issues of all those services in a too
superficial manner. Instead, a most thorough analysis of the
most important services, the container and the database, has
been preferred.

4.1 Container-level Scalability
At container level, a better scalability can be achieved

by enabling multitenant containers (having the ability to
run components belonging to different users). This imposes
strong isolation requirements which maybe not all platforms
can achieve by default. For example, the standard Java
platform is known to carry important security limitations
that hinder the implementation of safe multitenant environ-
ments [34]. A more straightforward option is to run each
user’s components on non-shared containers, which is the
approach taken by GAE.

In both cases scaling is implemented by instantiating/releasing
containers where several replicas of the developer compo-
nents can be run (i.e. it is a form of horizontal scaling).
This should automatically be done by the platform, so de-
velopers are not forced to constantly monitor their services’
state. Either automatic scaling IaaS systems (such as those
mentioned in Section 2) can be used, or the platform itself
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can scale up and down the resources. The latter approach
is the one used by both AppEngine and Aneka. AppEngine
can run in any Xen based cloud, private (built for example
with Eucalyptus [35]) or public (such as EC2). However,
it is not clear from [32] if AppEngine supports transparent
cloud federation so that a private PaaS cloud could deploy
its containers in VMs running in third party-owned IaaS
clouds to face sudden load peaks. In any case AppScale
could apply Eucalyptus ability to be integrated with other
clouds. Aneka, on the other hand, supports cloud federation
natively, so federated Aneka clouds can borrow resources
among them, or a given Aneka cloud can use containers
hosted in VMs running in different IaaS clouds.
Automatic scaling of containers has several implications

for developers regarding component design. If the PaaS plat-
form can stop container replicas at any moment (for exam-
ple due to low load), components could be designed to be
as stateless as possible (as GAE recommends for the appli-
cations it hosts). In order to ease application development,
support for stateful components should be offered by the
platform. In this case with stateful components, LB and
container replica management modules must be aware of
state. This way, LBs know which container replicas hold
session data to forward requests accordingly; and container
instances are not removed as long as they hold some session.
If more than one container instance holds data from the

same session (for better scalability and failure resilience),
then some mechanism is necessary that allows to keep the
different data replicas updated. Transparent session data
(e.g. “shopping cart”) replication, usually denoted soft state
replication can be offered through systems such as Tem-
pest [36] tool or SSM [37]. It is also possible to use dis-
tributed cache systems such as memcached [38] for explicit
data sharing among component replicas. Each solution will
have a different impact on component development. Roughly
speaking, distributed caches work at application level, i.e.
they are explicitly accessed by the hosted components code
to store/retrieve the information shared among component
replicas, while soft state/session replication systems work in
a transparent manner for the application developer.

4.2 Database Scalability
The abundance of literature on database scalability is

huge, but only the most important points for PaaS databases
are highlighted here. PaaS systems must expect very high
requests rates as they can host many applications that de-
mand intense data traffic. Three mechanisms can be used
(and combined) to handle this: distributed caching, NoSQL
databases, and database clustering.
Caching systems, such as memcached [38], are used to

store intermediate data to speed up frequent data queries.
A request for some data item will first check the cache to
see if the data is present, and will query the database only if
the data is not in the cache (or it has expired). Distributed
caching systems provide the same cache across several nodes,
which is useful in clustered applications. For example, GAE
offers memcache6 as a service for application developers.
The term “NoSQL” refers to a wide family of storage

solutions for structured data that are different from the
traditional relational, fully SQL-compliant, databases [39].
NoSQL systems offer high scalability and availability, which

6http://code.google.com/appengine/docs/java/
memcache/

seems a good fit in cloud environments with potentially
many applications hosted under high demand. On the other
hand, the replica management mechanisms they use, provide
less guarantees than traditional systems. Usually, updates
on data copies are not immediately done after each write op-
eration, they will be “eventually” done at some point in the
future. This causes these systems to be unable to implement
support for transparent and fully ACID compliant transac-
tions, hence imposing some limitations on how transactions
can be used by developers. Besides, the fact that they only
support (the equivalent to) a subset of SQL can be a hurdle
for some applications. An example is BigTable [40], which is
used by GAE to provide its object oriented data storage ser-
vice. HBase7, an open source implementation of BigTable,
is used by AppEngine.

Finally, if fully relational and SQL-compliant databases
are to be provided (as in the case of Microsoft’s Azure),
clusters can be built to provide better scalability, availabil-
ity and fault tolerance to typical DBMS systems. Unfortu-
nately, these clusters must be built so several or all nodes
contain a replica of each data item, which is known to com-
promise performance even for moderate loads when transac-
tions are supported [41]. Present database replication sys-
tems from every major relational DBMS have several limita-
tions, and further research is needed to achieve the desired
performance [42]. The major problem comes from the fact
that transactions require protecting the data involved while
the transaction lasts, often making that data unavailable to
other transactions. The more transactions running at the
same time, the more conflicts will be raised with the corre-
sponding impact on the application performance.

Yet, some database replication solutions exist that offer
some degree of scalability. These can be part of the DBMS
itself (in-core) or be implemented as a middleware layer be-
tween the database and the application. Most of the mid-
dleware based solutions use a proxy driver used by client
applications to access the database. This proxy redirects re-
quests to the replication middleware, which forwards them
to the database. The middleware layer handles requests
and transforms then in database operations to ensure that
all data copies are updated. Also, it takes care of load bal-
ancing tasks. Examples of such solution are C-JDBC [43],
Middle-R [44] and DBFarm [45].

It can be concluded from this section that replication of
databases/components is the most important issue to con-
sider when scaling a PaaS platform. Accordingly, Figure 4
sketches the main replication ideas presented in this section.
At container level, the same component can be run on differ-
ent container instances to achieve better scalability and fail-
ure tolerance. But then the platform should make available
some mechanism for consistent data replication among com-
ponents. At database level, copies of the application data
can be hosted in different DBMS instances again for bet-
ter scalability and failure tolerance. Unfortunately, keeping
consistency can lead to transaction conflicts.

Table 1 sums up the most relevant works related to holis-
tic application scaling in cloud environments at the three
different levels discussed in this short review: server, net-
work and platform level. The most relevant features are
highlighted and appropriate references are given for read-
ers’ convenience.

7http://hbase.apache.org
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SERVER LEVEL

Automatic VM Scaling [4,
9]

Services that scale single VMs horizontally depending on a set of predefined, fixed and VM-related performance metrics.

Dynamic Workload-
pattern Matching [13]

Nimbus scaled out by federating on top of Amazon’s (deploying new VMs adhered to the cluster on separate infrastructures as in
the row above). However, Nimbus included a new technique: it dynamically adapted to a variety of job submission patterns, which
resulted in further scalability.

Whole Application Scal-
ing [20, 12, 11]

Mechanisms to express the scaling features of the whole service are provided by these systems. Complex rules are available based on
service performance metrics that relate measurements of different VMs or different tiers to control scalability.

Non-scalable Load Bal-
ancing

Amazon offers Load Balancers to distribute load among your created VM replicas. However, this system does not offer any mechanism
to scale load balancer themselves.

DNS-based Load Balanc-
ing

DNS load balancing seems to be a reasonable approach in a public cloud where every VM receives a public IP. What is the away to
go in private or hybrid clouds in which application components can be placed in public and private clouds.

NETWORK LEVEL

On-demand Creation
of Virtual Network Re-
sources [28, 17]

An architecture and proof of concept system are available that “instantiate” bandwidth-provisioned network resources together with
the VMs composing the service across several cloud providers.

Network slicing [29, 17, 31,
30]

Keep separate per application flows by adapting to on demand network utilization needs by every application, dynamic network
bandwidth allocation.

PLATFORM LEVEL

AppScale [32] Platforms will require container replicas to be deployed or released dynamically to handle load variations. AppScale can scale the
VMs used to host containers depending on actual application demand, automatically configuring the load balancers.

Aneka [33] For high loads, and to avoid overprovisioning of resources, it would be useful to be able to federate clouds so components can be run
in external/public clouds if needed. Aneka is able to deploy containers and run users applications in several IaaS providers.

Tempest/SSM [36] “Soft state” in its title refers to data that does not need to be permanently stored, such as user session data. Replication of soft state
data makes such data available to all application replicas so that everyone can attend user requests.

Automatic Session Repli-
cation

Some container implementations can use soft state replication solutions or their own replication system for automatic replication of
users sessions. These solutions work at container level and are transparent to the application developer.

memcached [38] Distributed cache systems, such as memcached, offer a key/value distributed storage system that can be used to reduce database access
requests. The values stored are available to all application replicas, so distributed caches can be used to share state information among
those replicas in an explicit manner.

BigTable/HBase [40] Traditional fully SQL and ACID compliant DBMSs have limited scalability. Recent DBMSs are rather oriented to high availability
and scalability, although they can relax some ACID conditions and do not fully implement SQL. This approach can be more suitable
in cloud platforms.

C-JDBC/Middle-
R/DBFarm [43, 44, 45]

If fully SQL and ACID compliance is a requirement, then an option to increase the scalability is to combine several DBMS to manage
replicas of all or part of each database. C-JDBC and Middle-R provide a middleware layer that allows to combine DBMS in a flexible
manner.

Table 1: Works Related with Scalability at Different Levels

Figure 4: Data Replication in PaaS.

5. CONCLUSIONS
There have been great advances towards automatically

managing collections of interrelated and context-dependent
VMs (i.e. a service) in a holistic manner by using policies
and rules. The degree of resource management, the bonding
to the underlying API and coordinating resources spread
across several clouds in a seamless manner while maintaining
the performance objectives are major concerns that deserve

further study. Also, dynamically scaling LBs and its effects
on whole application scalability are yet to be reported.

The reported works on network scalability are also scarce.
Some experimental reports have shed some light on possible
ways to go, but there is no known production-ready system
that fully accomplishes the need for dynamically managing
the network in synchrony with VM provisioning. Also, such
approaches will have to convince carriers, which are very
reluctant to introduce innovations in production networks
since they can damage the provided service when taken to
such a demanding production environment.

On the other hand, to achieve proper PaaS scalability
cloud providers must address issues both at container and
database level. Multitenant containers could be used to save
resources, but this implies unsolved security concerns, while
non-shared containers will demand more resources (and so
imply more operation costs for the cloud provider). Repli-
cation of components and databases can be also applied for
better scalability. However, replication often brings strong
performance penalties that must be taken into account. How
to achieve replication without incurring in high performance
degradation is an open research topic.

Grouping all the elements reviewed in this work in dif-
ferent functionalities provides us with the set of must have
elements in an “ideal” elastic cloud. This system should
contain the appropriate elements so that applications can
be scaled by replicating VMs (or application containers), by
reconfiguring them on the fly, and by adding load balan-
cers in front of these replicas that can scale by themselves
(even relying on DNS to do so). Also, the selection of the

ACM SIGCOMM Computer Communication Review 50 Volume 41, Number 1, January 2011



appropriate algorithms for load balancing is a crucial de-
cision element. At the network level, such ideal scalable
cloud should offer users the chance to dynamically ask for
the network resources they are actually using. For instance.
enabling applications to ask for more dedicated bandwidth
at a given stage in the application lifecycle, or adding virtual
routers to create a separated Internet-connected overlay for
an application.
Regarding PaaS, the “ideal” scalable platform should be

able to instantiate or release instances of users’ components
as demand changes, and transparently distribute the load
among them. To ease developers tasks, the concept of ses-
sion should be implemented by the platform, which requires
support for (transparent) data replication. But data repli-
cation requires that component instances keep an updated
copy of the data. The necessary updates consume band-
width and time, and can lead to big delays on requests pro-
cessing. An equivalent problem is found at database level.
A PaaS platform should ideally give access to traditional re-
lational databases with support for ACID transactions. But
as more replicas are created to attend an increasing demand,
the overload necessary to keep consistency will induce delays
on requests. The ideal PaaS cloud must balance the need
for powerful programming abstractions that ease developers
tasks with the support for transparent scalability.

6. DISCLAIMER
The opinions herein expressed do not represent the views

of HP Labs or INRIA. The information in this document is
provided as is, no guarantee is given that the information is
fit for any particular purpose. The above companies shall
have no liability for damages of any kind that may result
from the use of these materials.
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