
Future Generation Computer Systems 79 (2018) 739–750
Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Scheduling dynamic workloads in multi-tenant scientific workflow as
a service platforms
Maria A. Rodriguez ∗, Rajkumar Buyya
Cloud Computing and Distributed Systems (CLOUDS) Laboratory, School of Computing and Information Systems, The University of Melbourne, Australia

h i g h l i g h t s

• A dynamic and scalable algorithm to schedule multiple workflows is presented.
• The algorithm is designed for multi-tenant Workflow as a Service platforms.
• It aims to minimize the total cost of leased resources while meeting the individual deadline of workflows.
• The use of containers is proposed to address resource usage inefficiencies.

a r t i c l e i n f o

Article history:
Received 31 January 2017
Received in revised form
10 April 2017
Accepted 7 May 2017
Available online 10 May 2017

Keywords:
Cloud computing
Cost minimization
Deadline
Workflow as a service
Resource provisioning
Scheduling

a b s t r a c t

With the advent of cloud computing and the availability of data collected from increasingly powerful
scientific instruments, workflows have become a prevailing mean to achieve significant scientific
advances at an increased pace. Emerging Workflow as a Service (WaaS) platforms offer scientists a
simple, easily accessible, and cost-effective way of deploying their applications in the cloud at anytime
and from anywhere. They are multi-tenant frameworks and are designed to manage the execution
of a continuous workload of heterogeneous workflows. To achieve this, they leverage the compute,
storage, and network resources offered by Infrastructure as a Service (IaaS) providers. Hence, at any
given point in time, a WaaS platform should be capable of efficiently scheduling an arbitrarily large
number of workflows with different characteristics and quality of service requirements. As a result, we
propose a resource provisioning and scheduling strategy designed specifically for WaaS environments.
The algorithm is scalable and dynamic to adapt to changes in the environment and workload. It leverages
containers to address resource utilization inefficiencies and aims to minimize the overall cost of leasing
the infrastructure resources while meeting the deadline constraint of each individual workflow. To the
best of our knowledge, this is the first approach that explicitly addresses VM sharing in the context of
WaaS by modeling the use of containers in the resource provisioning and scheduling heuristics. Our
simulation results demonstrate its responsiveness to environmental uncertainties, its ability to meet
deadlines, and its cost-efficiency when compared to a state-of-the-art algorithm.

© 2017 Elsevier B.V. All rights reserved.
1. Introduction

Workflows are defined by a set of computational tasks with
dependencies between them and are a commonly used application
model in computational science. They enable the analysis of data
in a structured and distributed manner and have been successfully
used to make significant scientific advances in various fields
such as biology, physics, medicine, and astronomy [1]. Their

∗ Corresponding author.
E-mail addresses:marodriguez@unimelb.edu.au.com (M.A. Rodriguez),

rbuyya@unimelb.edu.au.com (R. Buyya).

http://dx.doi.org/10.1016/j.future.2017.05.009
0167-739X/© 2017 Elsevier B.V. All rights reserved.
importance is highlighted in todays big data era as they offer an
efficient way of processing and extracting knowledge from the
data produced by increasingly powerful tools such as telescopes,
particle accelerators, and gravitational wave detectors. Hence, it
is common for scientific workflows to be large-scale data and
compute intensive applications that are deployed on distributed
environments in order to produce results in a reasonable amount
of time.

The emergence of cloud computing has brought with it
several advantages for the deployment of scientific workflows. In
particular, Infrastructure as a Service (IaaS) clouds allowWorkflow
Management Systems (WMSs) to access a virtually infinite pool of
resources that can be acquired, configured, and used as needed and
are charged on a pay-per-use basis. IaaS providers offer virtualized

http://dx.doi.org/10.1016/j.future.2017.05.009
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2017.05.009&domain=pdf
mailto:marodriguez@unimelb.edu.au.com
mailto:rbuyya@unimelb.edu.au.com
http://dx.doi.org/10.1016/j.future.2017.05.009

740 M.A. Rodriguez, R. Buyya / Future Generation Computer Systems 79 (2018) 739–750
Fig. 1. High-level overview of a workflow as a service application scenario.

compute resources called Virtual Machines (VMs) for lease. They
have a predefined CPU, memory, storage, and bandwidth capacity
and different resource bundles (i.e., VM types) are available at
varying prices. They can be elastically acquired and released and
are generally charged per time frame, or billing period. While
VMs deliver the compute power, IaaS clouds also offer storage and
networking services, providing the necessary infrastructure for the
execution of workflow applications.

Scheduling algorithms tailored for scientific workflows are cru-
cial in taking advantage of the benefits offered by clouds and they
have beenwidely studied in recent years. To achieve this, they need
not only to focus on the task to resourcemapping but also on decid-
ing the number and type of resources to use throughout the execu-
tion of the workflow (i.e., resource provisioning). The majority of
existing approaches focus on generating resource provisioning and
scheduling plans for a single instance of a workflow. They assume
application and resource models in which a single user submits a
single workflow for execution to aWMS. TheWMS is then respon-
sible for provisioning the required resources and mapping tasks to
them so that theworkflowexecution is completedwithin theQual-
ity of Service (QoS) constraints. While this is a valid model, as the
adoption of cloud computing becomes more widespread among
the scientific community, new application models are emerging.

In particular, Workflow as a Service (WaaS) is an emerging con-
cept in which the execution of workflows is offered as a service
to scientists. WaaS can be classified as an offering either at the
Platform as a Service or Software as a Service layers as providers
make use of compute, storage, and network resources offered by
IaaS vendors to fulfill requests sent to a multi-tenant WMS. Work-
flows submitted to suchWMS belong to different users and are not
necessarily related to each other; they may vary in structure, size,
input data, application, and QoS requirements among other fea-
tures. As a result, schedulers should be able to process a workload
of workflows with different configurations that are continuously
arriving for execution (without assuming that the number and type
of workflows are known in advance). A high-level overview of a
WaaS platform is depicted in Fig. 1. Frameworks realizing this ser-
vice model are beginning to appear in the literature. For exam-
ple, Filgueira et al. [2] present a data-intensive workflow as a ser-
vice model that enables the easy composition and deployment of
stream-basedworkflowapplications on cloudplatforms using con-
tainers. Similarly, Skyport [3] is an execution environment capa-
ble of managing the execution of multiple workflows in clouds
by leveraging Docker containers to address software deployment
problems and resource utilization inefficiencies. Other examples
include the middleware described by Esteves and Veiga. [4] and
the architecture presented by Wang et al. [5].

Scientific workflows are generally composed of tasks of differ-
ent types. In practical terms, all tasks of the same type run the same
software program; that is, they perform the same set of computa-
tions potentially on different data sets. This means that different
task types require different software components for their execu-
tion. Virtualization allows for the execution environment of these
tasks to be easily customized. For instance, hardware-level virtu-
alization can be used in such way that the operating system, soft-
ware packages, and directory structures, among others, can all be
tailored for a specific task and stored as a VM image. This image can
then be easily used to deploy VMs capable of executing the task or
tasks they were designed for. This is the model considered by the
majority of existing workflow scheduling algorithms for clouds.
They focus on efficiently leasing and releasing VMs with specific
characteristics in order to fulfill a set of QoS requirements and in
general assume that all VMs can be deployed using a single VM im-
age that contains all of the software required to execute any work-
flow task. This assumption is realistic and reasonablewhen consid-
ering the scheduling of a single workflow but not when scheduling
multiple workflows from different users.

The main reason for this is the impracticality of tailoring a
single VM image to support the execution of different tasks from
different workflows (e.g., consider the size of the image and
the incompatibility between software components required by
different tasks from different workflows). WaaS platforms can
adopt different approaches to circumvent this issue. An option is to
execute each individual workflow on its own set of dedicated VMs
or a set of relatedworkflows on their owndedicatedVMs, however,
this may result in an inefficient use of resources and higher costs.
Another option that addresses this issue is to combine the use of
VMs and containers, which are a form of operating system-level
virtualization. Containers allow applications to be packaged and
configured by providing a virtual environment that has its own
CPU, memory, block I/O, and network space. By allowing each
task or workflow to have a corresponding container image, a VM
can be reused to run tasks belonging to different workflows by
launching the corresponding container when a task is due to start
its execution on that resource. In this way, resource utilization is
maximized by reducing the wastage of idle time slots on leased
VMs.

In addition to having a well-defined VM sharing model,
algorithms tailored for WaaS platforms should be dynamic as they
have no knowledge on the arriving workflows. They should also be
scalable and capable of making decisions quickly as the number
of tasks that need to be processed at any given point in time
may be very large. Another important factor that should be taken
into consideration is the efficient auto-scaling and management
of VMs in order to increase their utilization as a cost controlling
mechanism while still being able to satisfy the QoS requirements
of individual workflows. This will potentially result in lower costs
for users and higher profit for providers. Finally, algorithms should
also address common challenges derived from the resource model
offered by clouds such as the abundance and heterogeneity of
resources, uncertainties derived from performance variation, VM
provisioning delays, and billing period pricing models.

In response to these requirements, we propose EPSM, an Elas-
tic resource Provisioning and Scheduling algorithm for Multiple
workflows designed for WaaS platforms. It considers containers
to address resource utilization inefficiencies and aims to minimize
the overall cost of leasing resources while meeting the indepen-
dent deadline constraint of workflows continuously arriving for
execution. Although there are some existing algorithms designed
to schedule multiple workflows, they either explicitly or implic-
itly assume that each workflow, or workflow type in some cases

M.A. Rodriguez, R. Buyya / Future Generation Computer Systems 79 (2018) 739–750 741
(i.e., same workflow but different number of tasks), has its own
designated resources. To the best of our knowledge, this is the
first approach that explicitly addresses VM sharing in the context
of WaaS by modeling the use of containers in the resource provi-
sioning and scheduling heuristics. Furthermore, the algorithm is
dynamic and scalable and our simulation results demonstrate its
responsiveness to environmental uncertainties, its ability to meet
deadlines, and its cost-efficiencywhen compared to a state-of-the-
art algorithm.

2. Related work

Themajority of algorithms in the literature focus on optimizing
the execution of a single workflowwith its own QoS requirements.
Hence, the resources are used exclusively for the execution of
a single application belonging to a single user. Most of these
algorithms have as objectives minimizing the total execution cost
while meeting a deadline constraint. Examples include IC-PCP and
IC-PCPD2 [6], EIPR [7], TB [8], the approach proposed by Dziok
et al. [9], and CCA [10]. To achieve this, they have policies in
place to elastically acquire and release resources and focus mostly
on reusing idle time slots of provisioned VMs when possible in
order tomaximize resource utilization and save cost. However, the
deadline constraint requirements and the dependencies between
tasks mean that unused time slots cannot be fully eliminated.

Some scientific applications [11–13] are composed of interre-
lated workflow instances known as ensembles. These workflows
are grouped together because their combined execution produces
a desired output [14]. There are several scheduling algorithms de-
signed for this type of applications in the literature [14–17]. They
differ from the solution presented in this paper in three ways.
Firstly, the QoS requirements are not defined for each workflow
instance, but rather for the entire ensemble. Hence, algorithms are
generally concernedwith the amount ofwork (number of executed
workflows) completed and tend to include this in the scheduling
objectives. Secondly, the number of workflow instances is gener-
ally known in advance and the scheduling strategies may use this
when planning the execution of tasks. Finally, the workflows in an
ensemble are of the same type, meaning they have a similar struc-
ture but differ in size and input data.

Yu and Shi [18] considered an application model similar to the
one addressed in this paper and proposed a scheduling algorithm
for multiple workflow applications submitted at different times
by different users. However, their solution is tailored for cluster
environments and as a result does not consider the cost of leasing
the infrastructure and it assumes a fixed number of resources that
are readily available. Also, the algorithm’s objective is to minimize
the makespan (i.e., the total execution time) of each workflow
instead ofmeeting a deadline constraint. Despite these differences,
we consider theirwork relevant as the authors not only identify the
need for such type or algorithms, even in cluster environments,
but also identify some key issues and characteristics that need
to be considered regardless of the distributed platform such as
the need for the algorithm to be dynamic and the importance
of considering the overall resource utilization from a system
management perspective.

Several works consider the scheduling of multiple workflows
in clouds. An example is the work by Jiang et al. [19], however, the
application model they consider is different to the one addressed
in this paper as they assume the number and type of workflows are
known in advance and that all of the workflows are submitted for
execution at the same time. Also, their algorithm does not consider
cost nor deadlines as its only objective is to improve the utilization
of resources. Another algorithm is proposed by Stavrinides and
Karatza [20], it is based on a list scheduling heuristic and their
application model is similar to ours but differs in the fact that
they consider the quality of the data produced by each workflow
as part of the QoS requirements. Similarly, Xu et al. [21] propose
a strategy with different objectives as they consider a budget
constraint as part of the QoS. Finally, Chen et al. [22] present an
algorithm that has the same application model and scheduling
objectives as our proposed solution. However, their solution as
well as the aforementioned solutions, differ from our proposal in a
key aspect. They assume a finite set of heterogeneous VMs that is
available throughout the entire lifetime of the systemand hence do
not consider the resource provisioning problem under elastic and
abundant resources.

On the contrary, Dyna [23] is a scheduling algorithm designed
for cloud workflow service providers with auto-scaling features
to dynamically allocate and deallocate VMs based on the current
status of tasks. It works by selecting VM types for each workflow
task based on an A star search so that the cost is minimized.
However, it differs from our approach in that it offers probabilistic
deadline guarantees and considers VMs priced under two different
models: static (e.g., Amazon on-demand instances) and dynamic
(e.g., Amazon spot instances). Also, although the VM sharing policy
is not explicitly stated in the paper, it can be inferred that a model
in which VMs are shared only between workflows of the same
type is used. This based on the resource model considered by the
authors and the evaluation which is performed with a workload
consisting of the same type of workflow but with different number
of tasks.

SCS [24] and WPPDS [25] are also capable of scheduling
a workload of workflows in clouds and have an auto-scaling
mechanism. SCS makes an initial resource provisioning plan based
on a global optimization heuristic and then refines it at runtime
to respond to delays that were unaccounted for. However, the
refinement of the provisioning plan is done by running the global
optimization algorithm for the remaining tasks every time a
task is scheduled. This introduces a high computational overhead
and hinders its scalability in terms of the number of tasks in
the workflow. WPPDS on the other hand considers a budget for
the entire workload and individual workflow deadlines and its
objective is to finish as many high-priority workflows as possible
with the given budget.

Wang et al. [5] proposed an architecture for a WaaS system
along with four heuristic-based scheduling algorithms: static,
dynamic, adaptive, and greedy. They differ from our proposal in
that they only allow VMs to be shared between tasks of the same
workflow but not between tasks belonging to different workflows.
Also, the objectives of their proposed algorithms are to minimize
makespan and cost and they do not consider VM provisioning
delays or data transfer times. It is worth noticing that out of the
surveyed algorithms, this is the only work that explicitly defines
a VM sharing policy. All of the other algorithms either naively
assume that any task can be deployed on any of the available VMs
or fail to adequately define their application model.

Finally, Skyport [3] and Asterism DIaaS [2] are other examples
of WaaS frameworks. They are relevant to this work in that they
identify the benefits and need of using containers but focus on how
they can be used to package workflow tasks and the convenience
of deploying them on already-provisioned VMs so that these
are capable of executing any tasks from any workflow. They do
no focus on the resource provisioning and scheduling problems
addressed in this paper. Esteves and Veiga [4] also define a
prototypical middleware framework that embodies the vision of a
WaaS system and address issues such as workflow description and
WMS integration, cost model, and resource allocation. Their work
focuses on workflows for continuous and incremental processing
of data, that is, workflows in which the end of the execution of a
task does not immediately trigger its successor tasks, instead, they
are only triggered when the task has generated output data with
sufficient impact in relation to the terminal task of the workflow.

742 M.A. Rodriguez, R. Buyya / Future Generation Computer Systems 79 (2018) 739–750
Although the authors emphasize on the design of aWaaS platform,
their proposed scheduling algorithm focuses on a single workflow.

3. Application and resource models

This work is designed to schedule a continuous workload of
scientific workflows submitted by users to a WaaS provider. The
workflows may have different characteristics such as application
type, number of tasks, input data, and deadline. TheWaaS provider
leases resources from a public IaaS vendor to fulfill the users’
requests and its goal is to minimize the total cost of renting
infrastructure resources while meeting the deadline constraint of
each of the submitted workflow applications.

Workflows are modeled as Directed Acyclic Graphs (DAGs);
that is, graphs with directed edges and no cycles or condi-
tional dependencies. At any given point in time, there is a set
W = {w1, w2, . . . , wn} of workflows that need to be sched-
uled. Formally, a workflow w is composed of a set of tasks T =

{t1, t2, . . . , tn} and a set of edges E. An edge eij = (ti, tj) exists if
there is a data dependency between ti and tj, case in which ti is
said to be the parent task of tj and tj the child task of ti. Based on
this, a child task cannot run until all of its parent tasks have com-
pleted their execution and its input data is available in the corre-
sponding compute resource. Finally, each workflow is associated
with a deadline δw , defined as a soft time limit for the execution of
the workflow and a container cw that contains all the libraries and
software required to execute any of the workflow tasks.

We consider a model in which tasks execute within containers
which in turn are deployed on VMs. A container can be deployed
on a VM at any time with a provisioning delay provc . This delay
corresponds to the time it takes to download the container image
from a global storage system such as Amazon S3 and initialize it
on the VM. We consider a model where only one container can
be deployed on a VM at a given point in time and as a result, we
assume containers inherit the same CPU and bandwidth capacity
of the host VM. We assume task executions can be triggered by
external schedulers by sending custom signals to the container by
using commands such as Docker exec. As a result, multiple tasks
can be executed sequentially on one container without the need of
redeployment.

We assume a pay-as-you go model where VMs are leased on-
demand and are charged per billing period τ .We acknowledge that
any partial utilization results in the VM usage being rounded up to
the nearest billing period. We consider a single cloud provider and
a single data center or availability zone. In thisway, network delays
are reduced and intermediate data transfer fees eliminated. Finally,
we impose no limit on the number of VMs that can be leased from
the provider.

The IaaS provider offers a range of VM types VMT = {vmt1,
vmt2, . . . , vmtn}with different prices and configurations.VM types
are defined in terms of their cost per billing period cvmt , CPU
processing capacity pvmt , and bandwidth capacity bvmt . An average
measure of their provisioning provvmt delay is also included as
part of their definition. The execution time, Evmt

t , of every task on
every VM type is available to the scheduler. Different performance
estimation methods can be used to obtain this value, in our
approach we calculate it based on an estimate of the size of the
task (It , in millions of instructions) and the CPU capacity of the
VM type (in million of instructions per second) as shown in Eq.
(1). Note that our solution acknowledges that this value is simply
an estimate and does not rely on it being one hundred percent
accurate to achieve its objectives.

Evmt
t = It/pvmt . (1)

Based on the characterization of workflow tasks performed by
Juve at al. [26] and the VM types offered by Amazon EC2, we
assume that all VM types have sufficientmemory to execute any of
the workflows’ tasks. However, as a future work we will consider
extending the algorithm to include heuristics that ensure tasks
are assigned to VMs with sufficient memory to execute them.
Additionally, we assume VMs have a single core for scheduling
purposes and hence are only capable of processing one task at a
time.

We define the sharing of data between tasks to take place via a
global storage system such as Amazon S3. In this way, tasks store
their output in the global storage and retrieve their inputs from the
same. We assume a global storage system with sufficient storage
capacity and reading andwriting rates ofGSr andGSw respectively.
The time it takes to transfer and write d output data from a VM of
type vmt into the storage is defined as

Nout
d,vmt = (d/bvmt) + (d/GSw). (2)

Similarly, the time it takes to transfer and read a task’s input
data from the storage to a VM of type vmt is defined as

N in
d,vmt = (d/bvmt) + (d/GSr). (3)

We acknowledge that characteristics such as virtualization,
multi-tenancy, and the heterogeneity of non-virtualized hardware
in clouds result in variability in the performance of resources
[27–31]. In particular, we assume a variation in the performance of
network resources and VM CPUs with their maximum achievable
performance being based on the bandwidth and CPU capacity
advertised by the provider. Ultimately, this results in a degradation
of data transfer times and task execution times. We do not assume
there is an additional degradation in performance due to the use of
containerized environments [32,33].

As shown in Eq. (4), the total processing time PT vmt
t of task t on

a VM of type vmt is calculated as the sum of the task’s execution
time and the time it takes to read the required nin input files from
the storage and write nout output files to it. Notice that there is no
need to read an input file whenever it is already available in the
VMwhere the task will execute. This occurs when parent and child
tasks run on the same resource.

Pvmt
t = Evmt

t +


nin
i=1

N in
di,vmt


+


nout
i=1

Nout
di,vmt


. (4)

The cost of using a resource rvmt of type vmt for leaser time units
is defined as

Crvmt = ⌈(provvmt + leaser)/τ⌉ ∗ cvmt . (5)

Finally, we assume data transfers in and out of the global
storage system are free of charge, as is the case for products like
Amazon S3, Google Cloud Storage and Rackspace Block Storage.
As for the actual data storage, most cloud providers charge based
on the amount of data being stored. We do not include this cost
in the total cost calculation of neither our implementation nor
the implementation of the algorithms used for comparison in the
experiments. The reason for this is to be able to compare our
approach with others designed to transfer files in a peer-to-peer
fashion. Furthermore, regardless of the algorithm, the amount of
stored data for a given workflow is most likely the same in every
case or it is similar enough that it does not result in a difference in
cost.

4. The EPSM algorithm

We propose EPSM, a dynamic heuristic-based algorithm that
makes resource provisioning and scheduling decisions to satisfy
the deadline of individual workflows while minimizing the cost
of leasing VMs. Its simplicity was a main design goal to facilitate
its implementation in real-world WaaS frameworks and to ensure

M.A. Rodriguez, R. Buyya / Future Generation Computer Systems 79 (2018) 739–750 743
its scalability with respect to the number of workflows and tasks.
Overall, the algorithmmaintains a pool of resourceswhich is scaled
in and out based on the current requirements of tasks that are
ready for execution. Its main goal is to efficiently utilize these
resources as a cost-controlling mechanismwithout compromising
the deadline of workflows. A high-level overview of a scheduling
scenario is depicted in Fig. 2 and the detailed strategy is as follows.

When a workflow is submitted to the scheduler, it is
preprocessed and a sub-deadline is assigned to each task. This sub-
deadline will guide the decisions made at runtime when mapping
each task onto either an existing or a newly provisioned resource.
The first step of the deadline distribution strategy is to calculate
the earliest finish time for each workflow task defined as eft t =

maxp∈t.parents{eftp}+PT vmt
t , where vmt corresponds to the VM type

with the least amount of CPU capacity. For simplicity, from here
on, we will refer to this VM type as the slowest type and to the VM
type with the most amount of CPU capacity as the fastest one. In
this way, the task runtime estimated using vmt leads to the largest
value (slowest runtime) but potentially the lowest cost (assuming
the price is proportional to the CPU capacity).

Afterwards, the makespan of the workflow, defined as mw =

maxt∈T {eft t}, is calculated. If this value exceeds the workflow’s
deadline, then the earliest finish time of tasks is recalculated using
the next fastest VM type until the makespan is smaller than or
equal to the workflow deadline. We assume the deadline is always
sufficient and hence do not consider cases in which the fastest
available VM type still leads to a makespan that is larger than
the deadline. An option for WaaS providers in this case would be
to reject the execution of the workflow or renegotiate the QoS
requirements with users.

After obtaining a suitable makespan, the amount of spare time
available defined as the difference between the deadline and the
makespan (i.e., δw − mw) is calculated. This spare time is then
distributed to individual tasks in a way that is proportional to their
runtime, that is, tasks with longer runtimes get assigned a larger
portion of the spare time compared to taskswith smaller runtimes.
Finally, each task is assigned a deadline δt = t.start + PT vmt

t +

t.sparewhere t.start is the task’s start time and t.spare is the spare
time assigned to the task.

Once a DAG is preprocessed the scheduling of its tasks can
begin, this process is illustrated in Algorithm 1. Its main goal is to
avoid leasing new VMs when possible and instead reuse existing
ones. In this way, the impact of VM provisioning delays in terms
of cost and uncertainty are reduced and the resources are better
utilized. This ultimately leads to a smaller number of VMs used and
less billing periods consumed.

At first, all the entry tasks (those that have no parent tasks)
in the workflow become ready for execution and are placed in a
scheduling queue. As the execution of theworkflowprogresses and
tasks are completed, child tasks that are ready to run (i.e., those
for which all parent tasks have completed their execution) are
released onto the queue. As a result, at any given point in time,
this queue contains all the tasks from all the workflows submitted
to the platform that are ready to be scheduled.

Every scheduling cycle, which occurs every schedint , each task in
the queue is processed in the followingway. The first step is to find
an idle VM that can finish the task on timewithminimum cost and
schedule the task on it. When estimating the time taken to execute
a task on an existing VM, not only is PT vmt

t taken into consideration,
but also provc in cases in which the container required to execute
the task needs to be deployed on the VM. As for the cost, if the
task can finish before the VM’s next billing cycle, then the cost is
estimated as zero, otherwise, it is calculated based onEq. (6),where
remaining r corresponds to the time remaining in the idle VM until
its next billing cycle,

C t
rvmt

= ⌈(Pvmt
t − remaining r)/τ⌉ ∗ cvmt . (6)
Fig. 2. Sample scheduling and resource provisioning scenario using EPSM.

The idle VM is first looked for in the set VM input
idle which is

composed of all currently idle VMs that contain all or part of the
task’s input data. In this way, child and parent tasks are always
encouraged to run on the same VM. The reasons for this are to
reduce the use of the data center networks as they are well-known
bottlenecks and sources of uncertainty, to reduce the processing
time of tasks as the input data does not need to be transferred
from the global storage system, and as a result to reduce cost
by incurring in less billing periods. Additionally, by considering
container provisioning delays when estimating the runtimes and
cost of tasks on leased VMs, an idle VM with the corresponding
container deployed on it will always be favored as long as it does
not lead to a violation of the deadline.

If no suitable VM is found in VM input
idle , then the algorithm tries

to reuse one from the set VMcontainer
idle containing all the idle VMs in

which the container associated to the task’s workflow is currently
deployed. In this way the container provisioning delay provc is
eliminated. If the set does not contain a VM that can finish the task
on time, then the algorithm looks for any remaining existing idle
VM that can satisfy the deadline with lowest cost.

If an existing VM is found, then the task is immediately
scheduled on it. If not, then as a last resort to reuse a leased VM,
the task is delayed to be scheduled in a subsequent scheduling
cycle, but only if that does not lead to a potential deadline violation.
Hence, the decision to delay a task is made based on the task’s
runtime on the slowest VM type and the amount of time remaining
to complete the task on time. Specifically, if scheduling the task
on the next cycle on a VM of the slowest available type still leads
to the task finishing by its deadline, then the task is delayed so

744 M.A. Rodriguez, R. Buyya / Future Generation Computer Systems 79 (2018) 739–750
Algorithm 1 Scheduling
1: procedure scheduleQueuedTasks(q)
2: sort q by ascending deadline (EDF)
3: while Q is not empty do
4: t = q.peek
5: dag = t.dag
6: container = dag.container
7: vm = null
8: VMidle = set of all idle VMs
9: VM input

idle = set of vm ∈ VMidle that have t ’s input data
10: vm = vm ∈ VM input

idle that can finish t before t.deadlinewith minimum
cost

11: if vm == null then
12: VMidle = VMidle \ VM input

idle
13: VMcontainer

idle = set of all vm ∈ VMidle that have container deployed
14: vm = vm ∈ VMcontainer

idle that can finish t before t.deadline with
minimum cost

15: if vm == null then
16: VMidle = VMidle \ VMcontainer

idle
17: vm = vm ∈ VMidle that can finish t before t.deadline with

minimum cost
18: if vm == null then
19: vmt = cheapest VM type
20: runtime = Pvmt

t
21: remaining = t.deadline − currentTime
22: spare = remaining − runtime − schedInterval
23: if spare <= 0 then
24: vmt = cheapest VM type that can finish t on time
25: vm = provisionVM(vmt)
26: end if
27: end if
28: end if
29: end if
30: if vm != null then
31: if vm.container! = container then
32: deployContainer(vm, container)
33: end if
34: q.poll
35: scheduleTask(t, vm)

36: end if
37: end while
38: end procedure

Algorithm 2 Resource Provisioning
1: procedure manageResources
2: VM idle

= all leased VMs that are currently idle
3: for each vmidle in VM idle do
4: tr = time remaining until next billing period
5: td = Deprovisioningdelayestimate
6: if (tr − td ≥ 0) AND
7: (tr − td ≤ PROV_POLLING_TIME) then
8: terminate vmidle
9: end if
10: end for
11: end procedure

that it can be potentially scheduled on an existing VM on a later
cycle.

If the task cannot be delayed, then the VM type that can finish
the task with the least amount of money within its deadline is
chosen. If there is no VM type that can finish the task on time,
then the VM type that can finish the task the fastest is selected.
When estimating the runtime and cost of tasks on different VM
types, our approach considers the task’s processing time, the VM
provisioning delay, and the container initialization delay. A VM of
the selected type is then provisioned, the corresponding container
deployed, and the task scheduled on it.

To better adapt to unexpected delays and environmental
uncertainties, every time a task finishes either earlier or later than
expected, the deadline of the remainingworkflow tasks is updated.
In this way, if a task finishes earlier, child taskswill havemore time
to run and hence they can either be assigned to a cheaper VM or
delayed to be scheduled in subsequent cycles. If a task finishes later
than expected, adjusting the deadline of the remaining tasks may
prevent the deadline from being missed.

Regarding the resource provisioning strategy, as already stated,
VMs are only provisioned when tasks cannot be delayed any
further. As for the deprovisioning strategy, leased VMs are
monitored every provint and any VMs that are idle and approaching
their next billing cycle are shut down. An overview of this strategy
is depicted in Algorithm 2. It is worthwhile mentioning that both
scheduling and provisioning intervals (schedint and provint) are
configurable parameters that can be provided as input to the
algorithm and their sizes lead to a trade-off between performance
in terms of cost and makespan and processing time spent on
scheduling and provisioning operations.

5. Performance evaluation

The performance of our proposal was evaluated using five well-
known workflows from different scientific areas. The Montage
application from the astronomy field is used to generate custom
mosaics of the sky based on a set of input images. Most of its
tasks are characterized by being I/O intensive while not requiring
much CPU processing capacity. The Ligo workflow from the
astrophysics domain is used to detect gravitational waves. It
is composed mostly of CPU intensive tasks with high memory
requirements. SIPHT is used in bioinformatics to automate the
search for sRNA encoding-genes.Most of the tasks in thisworkflow
have high CPU and low I/O utilization. Also in the bioinformatics
domain, the Epigenomics workflow is a CPU intensive application
that automates the execution of various genome-sequencing
operations. Finally, CyberShake is used to characterize earthquake
hazards by generating synthetic seismograms and can be classified
as a data intensive workflow with large memory and CPU
requirements. Samples of these workflows are depicted in Fig. 3
and their full description and characterization is presented by Juve
et al. [26].

The evaluation was performed with different workloads
containing a combination of all the aforementioned workflows
of five different sizes: extra-small (30 tasks), small (50 tasks),
medium (100 tasks), and large (1000 tasks). Each workload is
composed of a different number of workflows ranging from 1000
to 4000 and different arrival rates which were modeled following
a Poisson distribution. The workflows were generated using the
WorkflowGenerator [34] tool providedby the Pegasus groupwhich
uses traces of real executions to generate synthetic workflows. For
the experiments presented here, we used the runtime generated
for each task as the size of the task in Millions of Instructions (MI).

Each workflow in a workload was assigned a deadline. To do
this, first the minimum and maximum makespan values were
determined for each combination of workflow type and size. The
minimum makespan was estimated by simulating the execution
of each task on a VM of the fastest type. The maximum time
was defined as the execution time resulting from running all
tasks sequentially on a single VM of the slowest type. A deadline
between these minimum and maximum values was randomly
chosen for each workflow based on a uniform distribution. For
eachworkload, the number of workflows of each type and sizewas
selected at random based on a uniform distribution.

We extended CloudSim [35] to support the execution of
workflows and containers. An IaaS provider offering a single
data center and four types of VMs was modeled. The VM type
configurations used are shown in Table 1. Their CPU capacity
and price are a simplified version of the compute optimized
(c4) instance types offered by Amazon EC2 in which the EC2
Compute Units (which provide ameasure of the integer processing
power of an instance) and price have a linear relationship. A VM
billing period of one hour was modeled and for all VM types, the

M.A. Rodriguez, R. Buyya / Future Generation Computer Systems 79 (2018) 739–750 745
Fig. 3. Sample structure of five scientific workflows used in the evaluation of the algorithms. (a) LIGO. (b) Epigenomics. (c) Montage. (d) CyberShake. (e) SIPHT.
Table 1
Types of VMs used in the evaluation.

Name CPU capacity (MIPS) Price per hour

Small 2 $1
Medium 4 $2
Large 8 $4
Extra-large 16 $8

Table 2
Workloads used in the evaluation of the algorithms’ performance.

Workload name # of workflows # of tasks

Small 1000 307303
Medium 2000 626600
Large 4000 1193422

provisioning delay was set to 100 s based on the study by Mao
et al. [36]. Based on an average container image size of 600 MB,
a bandwidth of 500 Mbps, and an initialization delay of 0.4 s [37],
the container provisioning delay was set to 10 s. CPU performance
variation was modeled after the findings by Schad et al. [27]. The
performance of a VM was degraded by at most 24% based on a
normal distributionwith a 12%mean and a 10% standard deviation.
Based on the same study, the bandwidth available for each data
transfer within the data center was subject to a degradation of at
most 19% based on a normal distribution with a mean of 9.5% and
a standard deviation of 5%.

5.1. Algorithm performance

Wecompare EPSMwithDyna [23], an algorithmdeveloped for a
similar application scenario. Both solutions differ however, in two
aspects. Dyna was developed to offer probabilistic deadline guar-
antees and to use not only statically priced VMs (e.g., Amazon on-
demand instances), but also VMs priced dynamically (e.g., Amazon
spot instances). With simple modifications, we adapted Dyna to
consider non-probabilistic deadlines and use statically priced VMs
exclusively. Dyna performs an A star search to generate an instance
configuration plan for every task associating it to a VM type. At run-
time, this configuration plan, in addition to instance consolidation
and reuse techniques are used to schedule the tasks. The authors of
Dyna do not specify a VM sharing policy between workflows and
make no use of containers but rather deploy tasks directly on VMs.
We implemented two versions, one in which any task can be de-
ployed on any VM without the notion of containers (referred to as
Dyna), and one in which VMs can only be reused between work-
flows of the same type (referred to as Dyna-WS).

To demonstrate the benefits of using containers and sharing
VMs, we implemented two additional versions of our algorithm,
EPSM-NC and EPSM-NCWS. EPSM-NC ignores the use of containers
and naively assumes VMs can be used to run any task, it is compa-
rable to Dyna. EPSM-NCWS also ignores the use of containers but
assumes that VMs can be reused between tasks belonging towork-
flows of the same type (e.g., between a Ligoworkflowwith 50 tasks
and a Ligo workflow with 1000 tasks), it is similar to Dyna-WS. Fi-
nally, the scheduling and provisioning intervals for all versions of
EPSM were set to 10 s and 1 s respectively.

The goal of this set of experiments is to evaluate the perfor-
mance of the algorithms in terms of cost and ability to meet dead-
lines. We evaluate EPSM and Dyna as well as their variants un-
der three different workloads composed of 1000, 2000, and 4000
workflows as shown in Table 2. The arrival rate for the three work-
loads was set to 60 workflows per minute.

Fig. 4(a), (b) and (c) depict the cost obtained for each of
the algorithms and the small, medium, and large workloads
respectively. EPSM-NC obtains the lower cost in all of the three
scenarios, closely followed by EPSM. The slight difference between
the costs is due to the container provisioning delay considered by
EPSM since no tasks can be executed during the time in which
the container is being initialized. This demonstrates that with
adequate policies that avoid incurring in this delay when possible,
the additional cost of using containers is marginal.

As expected, the cost obtained by EPSM-NCWS is higher than
that obtained for EPSM for the three workloads. The reason for this
is that, by using containers and being able to reuse any VM for any

746 M.A. Rodriguez, R. Buyya / Future Generation Computer Systems 79 (2018) 739–750
Fig. 4. Cost of executing three different workloads. (a) Small workload with 1000 workflows. (b) Medium workload with 2000 workflows. (c) Large workload with 4000
workflows.
Fig. 5. Total number of VMs leased throughout the execution of the small, medium,
and large workloads.

Fig. 6. Average VMutilization during the execution of the small, medium, and large
workloads.

task, EPSM is able to better utilize the leased VMs. EPSM-NCWS
on the other hand, although it does not incur in additional costs
resulting from using containers, is restricted to deploy tasks only
on those VMs assigned to workflows of the same type. This further
illustrates the benefits of using containerized environments to
reduce cost inWaaS environments. The same reasoning applies for
Dyna and Dyna-WS.

When compared to Dyna, EPSM achieves considerably lower
costs for all the workloads even despite the fact that Dyna is not
impacted by container provisioning delays. As shown in Fig. 6, this
is due to EPSM achieving a much better utilization of the leased
VMs by reducing the number of idle time slots. The results are
similar for EPSM-NCWS and Dyna-WS.

To better understand the performance and behavior of the
algorithms, we evaluated them in terms of the total number of
VMs leased throughout the execution of the workload and their
average utilization. We define a VM’s utilization as the percentage
Fig. 7. Percentage of deadlines met for three different workloads: small (1000
workflows), medium (2000 workflows), and large (4000 workflows).

of time that it was busy executing tasks during its lease time. The
results for the three workloads are presented in Figs. 5 and 6.
EPSM and all of its variants lease a considerably smaller number
of VMs when compared to Dyna and Dyna-WS and utilize them
better, ultimately leading to the cost differences observed between
the algorithms. As expected, the results obtained for EPSM and
EPSM-NC are very similar and the utilization of the VMs is lower
for EPSM-WS when compared to EPSM. Interestingly, in the case
of EPSM, the number of VMs remains almost the same for the
three workloads but the utilization increases as the number of
workflows in the workload increases. The utilization for the small
workload is the lowest for all of the algorithms, this is explained
by the high arrival rate of the workflows and their deadlines, the
algorithms are left with no choice but lease new VMs in order to
fulfill the deadline requirements of tasks. However, as the number
of workflows increase, there are more opportunities to reuse idle
time slots as there are more tasks with different deadlines that can
be scheduled on them.

The percentage ofworkflows that finishedwithin their deadline
for each algorithm and workload are depicted in Fig. 7. All of the
evaluated algorithms have a satisfactory performance in this area
with all of the percentages being over 95%. This is one of the
main advantages of dynamic algorithms as they are able to recover
from unexpected delays due to performance degradation or other
sources of uncertainties. The slight variations in performance
between the different variants of EPSM may be attributed to
two factors. The first one is the fact that the VM sharing policy
has an impact on the number of VMs leased, their type, and
how they are reused. The second one is the statistical fluctuation
resulting from the stochastic nature of the simulated performance
degradation. As for the difference in performance between the
different sized workloads, this can be explained by the nature
of the workflows (type, size, and deadline) in the workloads as

M.A. Rodriguez, R. Buyya / Future Generation Computer Systems 79 (2018) 739–750 747
Fig. 8. Averagemakespan to deadline ratio of workflow executions that completed
after their corresponding deadline for the small workload.

Fig. 9. Percentage of deadlines met for six workloads of 1000 workflows each and
different arrival rates.

well as their submission time. Overall, EPSM and all its variants
outperform Dyna and Dyna-WS.

To analyze the makespan obtained in those cases in which
the deadline was missed, we plotted the average makespan to
deadline ratio for each of the workflow execution instances in
which the deadline was missed. The results are shown in Fig. 8,
where a ratio value greater than one indicates a makespan larger
than the deadline. The missed deadlines correspond to two types
of workflows, Epigenomics and SIPHT, and the ratio values are
below 1.1 in every case. This means that the difference between
the makespan and the deadline was marginal. Furthermore, after
analyzing the workflow instances for which Dyna failed to meet
the deadlines, we found that both algorithms failed to meet the
constraint for the same type of workflows the same number of
times. This may indicate that in those specific cases, the deadline
might have been too strict for the algorithms to be able to
finish on time. Another factor contributing to this is the fact that
Epigenomics and SIPHT are both CPU-bound workflows [26] and
hence are more negatively impacted by VM CPU performance
degradation.

EPSMwas also evaluated under differentworkflowarrival rates.
For this purpose, we conducted experiments with five workloads
each composed of 1000 workflows and five different arrival rates.
The results are shown in Figs. 9–12. Firstly, the percentage of dead-
linesmet is over 98% in every case, demonstrating the ability of the
algorithm to adapt and fulfill the time constraints under different
situations. The utilization and number of VMs greatly depend on
the workload as they are affected by the opportunities found by
EPSM to reuse already-leased VMs. The number of VMs remains
almost constant for the arrival rates of 0.5 through to 6 workflows
per minutes but the utilization consistently increases. This means
the algorithm successfully identifies opportunities to better utilize
Fig. 10. Cost of executing six workloads of 1000 workflows each and different
arrival rates.

Fig. 11. Total number of VMs leased throughout the execution of six workloads of
1000 workflows each and different arrival rates.

Fig. 12. Average VM utilization during the execution of six workloads of 1000
workflows each and different arrival rates.

idle time slots. For the arrival rate of 12 workflows per minute
however, there are more tasks at any given point in time in the
queue and a considerably larger number of VMs need to be leased
in order to execute themon time, leading to a lower utilization rate
and higher cost.We include the results obtained for Dyna as a point
of comparison and in every case EPSM outperforms it.

5.2. Provisioning delays sensitivity

Due to the large number of tasks in the scheduling queue
at any given point in time, frequent VM provisioning operations
may be performed in order to fulfill the approaching deadlines
of tasks. Therefore, it is important to evaluate the ability of
EPSM to finish the execution of the submitted workflows with
a makespan no greater than the given deadline under different

748 M.A. Rodriguez, R. Buyya / Future Generation Computer Systems 79 (2018) 739–750
Table 3
Evaluation of EPSM and Dyna with two workloads of 1000 workflows under various VM provisioning delays.

Arrival rate VM provisioning delay (s) Algorithm # of deadlines missed Cost # of VMs Average VM utilization

60 workflows/min

0 EPSM 4 $26855 1127 0.763
Dyna 24 $44895 37312 0.369

50 EPSM 13 $28782 16085 0.652
Dyna 26 $46143 38143 0.356

100 EPSM 12 $37391 27701 0.461
Dyna 23 $53043 44478 0.301

150 EPSM 12 $49370 40039 0.327
Dyna 24 $51839 42732 0.308

200 EPSM 11 $60683 51045 0.257
Dyna 28 $62652 53561 0.246

250 EPSM 13 $78203 62622 0.207
Dyna 31 $77353 68364 0.193

6 workflows/min

0 EPSM 12 $22980 1110 0.879
Dyna 27 $30416 13366 0.618

50 EPSM 13 $22956 1018 0.885
Dyna 25 $30786 13459 0.607

100 EPSM 21 $22769 879 0.893
Dyna 31 $31077 13544 0.600

150 EPSM 10 $22934 1588 0.901
Dyna 34 $31683 13830 0.582

200 EPSM 13 $24862 4592 0.818
Dyna 33 $32379 14257 0.562

250 EPSM 16 $25070 4744 0.815
Dyna 29 $33046 14552 0.542
Fig. 13. Cost of executing the small workload (1000 workflows, 60 work-
flows/minute) under different container provisioning delays.

VM provisioning delays. As a result, we evaluated EPSM under six
different VM provisioning delays ranging from 0 to 250 s and two
workloads with 1000 workflows and different arrival rates. The
results obtained for EPSM and Dyna are summarized in Table 3.

For EPSM, the percentage of deadlines met is over 97% in every
case,with the number of deadlinesmissed ranging from4 to 21. For
the arrival rate of 60 workflows per minute, there is a consistent
decrease in the VM utilization and a consistent increase in cost
and number of VMs as the provisioning delay increases. A possible
explanation is that larger delays lead to lower utilization rates as
the time period inwhich the VM is available to run tasks is reduced.
Another reason is the fact that as VMs take longer to provision,
the time remaining to run tasks in the queue becomes smaller,
forcing EPSM to lease new VMs in order to fulfill the deadline
constraints. As a result, the increased number of VMs and lower
utilization rates lead to higher costs. The behavior of the algorithm
under different delays will also greatly depend on the workload
and tasks in the execution queue. Longer provisioning times delay
the execution of tasks, which in turn result in subsequent tasks
having stricter deadlines. Depending on the type and number of
Fig. 14. Percentage of deadlines met for the small workload (1000 workflows, 60
workflows/minute) under different container provisioning delays.

tasks in the queue aswell as their deadlines and dependencieswith
previously executed tasks, idle slots may not be reused and faster
VM types may have to be provisioned to avoid deadline violations.
To demonstrate this, the results obtained for a workload with an
arrival rate of 6 workflows perminute are also shown in Table 3. In
this case, the number of VMs does not necessarily increase every
time the delay increases, the differences in cost are less significant
and the average VM utilization is much higher. It is worthwhile
noticing as well that the number of VMs and utilization are not the
only factors to impact the cost, but also they type of VMs and how
long they are leased for.

The results obtained forDynawere included as a reference point
and in every case except one, EPSM outperforms Dyna on every
metric. For the 60 workflow/minute arrival rate and provisioning
delay of 250 s, Dyna achieves a lower cost than EPSM. However, the
cost difference is marginal (1%) and Dynamissesmore than double
the number of deadlines than EPSM. This may be a result of EPSM’s
decision to lease more powerful VMs in order to finish tasks on-
time.

M.A. Rodriguez, R. Buyya / Future Generation Computer Systems 79 (2018) 739–750 749
Fig. 15. Percentage of deadlines met for a workload of 1000 workflows with two different arrival rates and varying maximum performance degradation percentages. (a)
Arrival rate of 1 workflow every 10 s. (b) Arrival rate of 1 workflow every second.
Regarding the container provisioning delays, we evaluated the
performance of EPSM with values ranging from 0 to 100 s. The
costs and percentages of deadlinesmet are depicted in Figs. 13 and
14 respectively. As expected, the larger the delay, the higher the
cost as a larger portion of a VM’s lease period is spent initializing
containers. However, by acknowledging container provisioning
delays when estimating runtimes and selecting idle VMs to
schedule tasks, EPSM tries to reduce such an increase in cost. This
is demonstrated by the obtained results of an increase in cost of
approximately 10% between a delay of 0 s to a delay of 100 s.
As for the percentage of deadlines met, the algorithm is capable
of adapting to increasing delays by maintaining the percentage
of deadlines met over 98% in every case. The marginal difference
of less than 1% between the performance EPSM under different
delays can be attributed to statistical variation and to the fact that
different delays lead to different types and number of VMs being
leased depending on the duration and submission order of the
tasks.

5.3. Performance degradation sensitivity

Recognizing performance variability is important for schedulers
so that they can recover from unexpected delays and fulfill the
QoS requirements. The sensitivity of the algorithm to VM CPU
performance variationwas studied by analyzing the percentages of
deadlines met, cost, number of VMs, and their average utilization
under different degradation values. This degradation wasmodeled
using a normal distribution with a variance of 1% and different
average and maximum values. The average values were defined as
half of the maximum CPU performance degradation which ranged
from 0% to 80%.

The results obtained for two workloads of 1000 workflows are
depicted in Fig. 15. For both algorithms and workloads, the per-
centage of deadlines met decreases as the degradation percentage
increases, however, even with a maximum performance degrada-
tion of 80%, the percentage of deadlines met remains over 92%. It
is not possible to completely eliminate the negative impact of per-
formance degradation when scheduling workflows as even if algo-
rithms are dynamic, they still rely on an estimate of a task’s run-
time tomake decisions. In thisway, even a single task taking longer
than expected may cause the deadline to become insufficient ei-
ther because the delay was significant enough, because it was the
last or exit workflow task, or because its delay affected its child
tasks causing a domino effect. In particular, we identify two char-
acteristics of EPSM that affect its adaptability. The first one is the
deadline distribution strategy, which although repeated through-
out the execution of the workflow, is based on estimates of task
runtimes. The second one is the decision to delay tasks in order to
favor leased VMs, which enables the algorithm to better minimize
the cost of workflows but affects its responsiveness to changes in
the environment. These results demonstrate however, that despite
this, EPSM is still successful in achieving its deadline goal in the
vast majority of cases.

6. Conclusions and future work

WaaS platforms are emerging with the vision of providing
scientistswith the ability to deploy their applications for execution
in the cloud in a simple and cost-effective manner. They have the
potential to revolutionize the way in which scientific workflows
are processed by offering a utility-like service that can be
accessed on-demand by anyone and from anywhere. An important
aspect, as is for any multi-tenant cloud-based framework, is
to efficiently manage the execution of workflows belonging to
different users and with different QoS requirements. This involves
having a scalable scheduling algorithm in place capable of making
decisions for large numbers of tasks dynamically as well as a
resource provisioning strategy capable of handling the abundance
of heterogeneous and elastic cloud resources. As a result, we
proposed EPSM, a dynamic algorithm designed to schedule
multiple workflows in WaaS environments. Its performance is
analyzed in detail and compared to Dyna, demonstrating not only
that EPSM is capable of producing higher-quality schedules but
also the benefits of sharing resources betweenmultiple workflows
in terms of cost which can be achieved in practice by using
containers.

This work is a first step towards scheduling in WaaS platforms
using containers. There are various aspects that can be considered
to improve EPSM and are left as future work. An example is
considering the case in which container images are cached on
a VM’s local storage; this would reduce the use of the data
center’s network and have a positive impact on cost andmakespan
metrics. For this purpose, the amount of available storage should be
included as part of the definition of VM and policies to decide the
number of cached images, their lifetime, and the tradeoff between
storing input/output files versus images should be considered.
Another future direction is to explore the deployment of multiple
simultaneous containers on a single VM in order to execute
multiple tasks in parallel. Investigating the effects of sharing
resources among multiple workflows and using containers on the
consumption of energy is also left as future work. Finally, it would
be of interest forWaaS platforms in general to collect andmake use
of workflow execution data to better estimate the runtime of tasks,
to address security and privacy issues that arise from their multi-
tenant nature, to develop failure recovery strategies at various
levels of the framework, and to study different pricing models that
WaaS providers could adopt to charge their customers.

750 M.A. Rodriguez, R. Buyya / Future Generation Computer Systems 79 (2018) 739–750
References

[1] Y. Gil, E. Deelman, M. Ellisman, T. Fahringer, G. Fox, D. Gannon, C. Goble, M.
Livny, L. Moreau, J. Myers, Examining the challenges of scientific workflows,
IEEE Comput. 40 (12) (2007) 26–34.

[2] R. Filgueira, R.F. da Silva, A. Krause, E. Deelman,M. Atkinson, Asterism: Pegasus
and dispel4py hybrid workflows for data-intensive science, in: Proceedings of
the International Workshop on Data-Intensive Computing in the Cloud, IEEE
Press, 2016, pp. 1–8.

[3] W. Gerlach, W. Tang, K. Keegan, T. Harrison, A. Wilke, J. Bischof, M. D’Souza,
S. Devoid, D. Murphy-Olson, N. Desai, et al., Skyport: container-based
execution environment management for multi-cloud scientific workflows,
in: Proceedings of the International Workshop on Data-Intensive Computing
in the Clouds, IEEE Press, 2014, pp. 25–32.

[4] S. Esteves, L. Veiga, Waas: Workflow-as-a-service for the cloud with
scheduling of continuous and data-intensive workflows, Comput. J. 59 (3)
(2016) 371–383.

[5] J. Wang, P. Korambath, I. Altintas, J. Davis, D. Crawl, Workflow as a service in
the cloud: architecture and scheduling algorithms, Procedia Comput. Sci. 29
(2014) 546–556.

[6] S. Abrishami, M. Naghibzadeh, D.H. Epema, Deadline-constrained workflow
scheduling algorithms for infrastructure as a service clouds, Future Gener.
Comput. Syst. 29 (1) (2013) 158–169.

[7] R.N. Calheiros, R. Buyya, Meeting deadlines of scientific workflows in public
clouds with tasks replication, IEEE Trans. Parallel Distrib. Syst. 25 (7) (2014)
1787–1796.

[8] S. Liu, K. Ren, K. Deng, J. Song, A task backfill based scientific workflow
scheduling strategy on cloud platform, in: Proceedings of the International
Conference on Information Science and Technology, IEEE, 2016, pp. 105–110.

[9] T. Dziok, K. Figiela, M. Malawski, Adaptive multi-level workflow scheduling
with uncertain task estimates, in: Parallel Processing and Applied Mathemat-
ics, Springer, 2016, pp. 90–100.

[10] A. Deldari, M. Naghibzadeh, S. Abrishami, Cca: a deadline-constrained
workflow scheduling algorithm for multicore resources on the cloud, J.
Supercomput. (2016) 1–26.

[11] P. Maechling, E. Deelman, L. Zhao, R. Graves, G. Mehta, N. Gupta, J.
Mehringer, C. Kesselman, S. Callaghan, D. Okaya, et al., SCEC CyberShake
workflowsautomating probabilistic seismic hazard analysis calculations,
in: Workflows for E-Science, Springer, 2007, pp. 143–163.

[12] E. Deelman, G. Singh, M. Livny, B. Berriman, J. Good, The cost of doing
science on the cloud: the montage example, in: Proceedings of the ACM/IEEE
Conference on Supercomputing, IEEE Press, 2008, p. 50.

[13] J.-S. Vöckler, G. Juve, E. Deelman, M. Rynge, B. Berriman, Experiences using
cloud computing for a scientific workflow application, in: Proceedings of the
InternationalWorkshop on Scientific Cloud Computing, ACM, 2011, pp. 15–24.

[14] M. Malawski, G. Juve, E. Deelman, J. Nabrzyski, Algorithms for cost-and
deadline-constrained provisioning for scientific workflow ensembles in iaas
clouds, Future Gener. Comput. Syst. 48 (2015) 1–18.

[15] I. Pietri, M. Malawski, G. Juve, E. Deelman, J. Nabrzyski, R. Sakellariou, Energy-
constrained provisioning for scientific workflow ensembles, in: Proceedings
of the International Conference on Cloud and Green Computing, IEEE, 2013,
pp. 34–41.

[16] Q. Jiang, Y.C. Lee, A.Y. Zomaya, Executing large scale scientific workflow
ensembles in public clouds, in: Proceedings of the International Conference
on Parallel Processing, IEEE, 2015, pp. 520–529.

[17] P. Bryk, M. Malawski, G. Juve, E. Deelman, Storage-aware algorithms for
scheduling of workflow ensembles in clouds, J. Grid Comput. 14 (2) (2016)
359–378.

[18] Z. Yu, W. Shi, A planner-guided scheduling strategy for multiple workflow
applications, in: Proceedings of the International Conference on Parallel
Processing-Workshops, IEEE, 2008, pp. 1–8.

[19] H.-J. Jiang, K.-C. Huang, H.-Y. Chang, D.-S. Gu, P.-J. Shih, Scheduling concurrent
workflows in hpc cloud through exploiting schedule gaps, in: Proceedings
of the International Conference on Algorithms and Architectures for Parallel
Processing, Springer, 2011, pp. 282–293.

[20] G.L. Stavrinides, H.D. Karatza, A cost-effective and qos-aware approach
to scheduling real-time workflow applications in paas and saas clouds,
in: Proceedings of the International Conference on Future Internet of Things
and Cloud, IEEE, 2015, pp. 231–239.

[21] M. Xu, L. Cui, H. Wang, Y. Bi, A multiple qos constrained scheduling
strategy of multiple workflows for cloud computing, in: Proceedings of the
IEEE International Symposium on Parallel and Distributed Processing with
Applications, IEEE, 2009, pp. 629–634.

[22] W. Chen, Y.C. Lee, A. Fekete, A.Y. Zomaya, Adaptive multiple-workflow
scheduling with task rearrangement, J. Supercomput. 71 (4) (2015)
1297–1317.
[23] A.C. Zhou, B. He, C. Liu, Monetary cost optimizations for hosting workflow-as-
a-service in iaas clouds, IEEE Trans. Cloud Comput. 4 (1) (2016) 34–48.

[24] M. Mao, M. Humphrey, Auto-scaling to minimize cost and meet application
deadlines in cloud workflows, in: Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis, ACM,
2011, p. 49.

[25] J. Shi, J. Luo, F. Dong, J. Zhang, A budget and deadline aware scientific workflow
resource provisioning and schedulingmechanism for cloud, in: Proceedings of
the IEEE International Conference on Computer Supported Cooperative Work
in Design, IEEE, 2014, pp. 672–677.

[26] G. Juve, A. Chervenak, E. Deelman, S. Bharathi, G.Mehta, K. Vahi, Characterizing
and profiling scientific workflows, Future Gener. Comput. Syst. 29 (3) (2013)
682–692.

[27] J. Schad, J. Dittrich, J.-A. Quiané-Ruiz, Runtime measurements in the cloud:
observing, analyzing, and reducing variance, Proc. VLDB Endow. 3 (1–2) (2010)
460–471.

[28] S. Ostermann, A. Iosup, N. Yigitbasi, R. Prodan, T. Fahringer, D. Epema,
A performance analysis of EC2 cloud computing services for scientific
computing, in: Cloud Computing, Springer, 2010, pp. 115–131.

[29] A. Gupta, D. Milojicic, Evaluation of hpc applications on cloud, in: Open Cirrus
Summit (OCS), 2011, pp. 22–26. http://dx.doi.org/10.1109/OCS.2011.10.

[30] A. Iosup, S. Ostermann, M.N. Yigitbasi, R. Prodan, T. Fahringer, D. Epema,
Performance analysis of cloud computing services for many-tasks scientific
computing, IEEE Trans. Parallel Distrib. Syst. 22 (6) (2011) 931–945.
http://dx.doi.org/10.1109/TPDS.2011.66.

[31] K.R. Jackson, L. Ramakrishnan, K. Muriki, S. Canon, S. Cholia, J. Shalf, H.J.
Wasserman,N.J.Wright, Performance analysis of high performance computing
applications on the amazon web services cloud, in: Proceedings of the
IEEE Second International Conference on Cloud Computing Technology and
Science, (CloudCom), IEEE, 2010, pp. 159–168.

[32] P. Di Tommaso, E. Palumbo, M. Chatzou, P. Prieto, M.L. Heuer, C. Notredame,
The impact of docker containers on the performance of genomic pipelines,
PeerJ 3 (2015) e1273.

[33] W. Felter, A. Ferreira, R. Rajamony, J. Rubio, An updated performance
comparison of virtual machines and linux containers, in: International
Symposium on Performance Analysis of Systems and Software, (ISPASS), IEEE,
2015, pp. 171–172.

[34] R.F. da Silva, W. Chen, G. Juve, K. Vahi, E. Deelman, Community resources for
enabling research in distributed scientific workflows, in: Proceedings of the
IEEE International Conference on E-Science, Vol. 1, (e-Science), IEEE, 2014,
pp. 177–184.

[35] R.N. Calheiros, R. Ranjan, A. Beloglazov, C.A. De Rose, R. Buyya, Cloudsim: a
toolkit for modeling and simulation of cloud computing environments and
evaluation of resource provisioning algorithms, Softw. - Pract. Exp. 41 (1)
(2011) 23–50.

[36] M. Mao, M. Humphrey, A performance study on the VM startup time in
the cloud, in: Proceedings of the IEEE International Conference on Cloud
Computing, IEEE, 2012, pp. 423–430.

[37] S.F. Piraghaj, A.V. Dastjerdi, R.N. Calheiros, R. Buyya, Containercloudsim: An
environment for modeling and simulation of containers in cloud data centers,
Softw. - Pract. Exp. 47 (4) (2017) 505–521.

Maria A. Rodriguez is a Post-Doctoral Research Fellow in
the Cloud Computing and Distributed Systems (CLOUDS)
Laboratory in the Department of Computing Information
Systems, The University of Melbourne, Australia. Her
research interests include resource management and
scheduling in clouds and scientific computing.

Rajkumar Buyya is a Professor of Computer Science and
Software Engineering andDirector of the CloudComputing
and Distributed Systems (CLOUDS) Laboratory at the
University of Melbourne, Australia. He is also the founding
CEO of Manjrasoft, a spin-off company of the University,
commercializing its innovations in Cloud Computing. He
has authored over 400 publications and four textbooks. He
is one of the highly cited authors in computer science and
software engineering worldwide.

http://refhub.elsevier.com/S0167-739X(17)30168-1/sbref1
http://refhub.elsevier.com/S0167-739X(17)30168-1/sbref2
http://refhub.elsevier.com/S0167-739X(17)30168-1/sbref3
http://refhub.elsevier.com/S0167-739X(17)30168-1/sbref4
http://refhub.elsevier.com/S0167-739X(17)30168-1/sbref5
http://refhub.elsevier.com/S0167-739X(17)30168-1/sbref6
http://refhub.elsevier.com/S0167-739X(17)30168-1/sbref7
http://refhub.elsevier.com/S0167-739X(17)30168-1/sbref8
http://refhub.elsevier.com/S0167-739X(17)30168-1/sbref9
http://refhub.elsevier.com/S0167-739X(17)30168-1/sbref10
http://refhub.elsevier.com/S0167-739X(17)30168-1/sbref11
http://refhub.elsevier.com/S0167-739X(17)30168-1/sbref12
http://refhub.elsevier.com/S0167-739X(17)30168-1/sbref13
http://refhub.elsevier.com/S0167-739X(17)30168-1/sbref14
http://refhub.elsevier.com/S0167-739X(17)30168-1/sbref15
http://refhub.elsevier.com/S0167-739X(17)30168-1/sbref16
http://refhub.elsevier.com/S0167-739X(17)30168-1/sbref17
http://refhub.elsevier.com/S0167-739X(17)30168-1/sbref18
http://refhub.elsevier.com/S0167-739X(17)30168-1/sbref19
http://refhub.elsevier.com/S0167-739X(17)30168-1/sbref20
http://refhub.elsevier.com/S0167-739X(17)30168-1/sbref21
http://refhub.elsevier.com/S0167-739X(17)30168-1/sbref22
http://refhub.elsevier.com/S0167-739X(17)30168-1/sbref23
http://refhub.elsevier.com/S0167-739X(17)30168-1/sbref24
http://refhub.elsevier.com/S0167-739X(17)30168-1/sbref25
http://refhub.elsevier.com/S0167-739X(17)30168-1/sbref26
http://refhub.elsevier.com/S0167-739X(17)30168-1/sbref27
http://refhub.elsevier.com/S0167-739X(17)30168-1/sbref28
http://dx.doi.org/10.1109/OCS.2011.10
http://dx.doi.org/10.1109/TPDS.2011.66
http://refhub.elsevier.com/S0167-739X(17)30168-1/sbref31
http://refhub.elsevier.com/S0167-739X(17)30168-1/sbref32
http://refhub.elsevier.com/S0167-739X(17)30168-1/sbref33
http://refhub.elsevier.com/S0167-739X(17)30168-1/sbref34
http://refhub.elsevier.com/S0167-739X(17)30168-1/sbref35
http://refhub.elsevier.com/S0167-739X(17)30168-1/sbref36
http://refhub.elsevier.com/S0167-739X(17)30168-1/sbref37

	Scheduling dynamic workloads in multi-tenant scientific workflow as a service platforms
	Introduction
	Related work
	Application and resource models
	The EPSM algorithm
	Performance evaluation
	Algorithm performance
	Provisioning delays sensitivity
	Performance degradation sensitivity

	Conclusions and future work
	References

