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A B S T R A C T

In a big data stream computing environment, the arrival rate of data streams usually fluctuates over time,
posing a great challenge to the elasticity of system. The performance of stream computing system is crucial,
especially when dealing with unbounded and fluctuating data streams. Most prior studies have primarily
focused on one or two aspects to enable elasticity, often lacking prompt and comprehensive performance
optimization. This limitation could lead to a tuning bottleneck, preventing the system’s performance from
consistently reaching its optimal state. Additionally, many stream computing systems are not intelligently
adaptive in real time due to the challenges of manual parameter reconfiguration for fluctuating streams.
To better address these issues, we propose a framework named Sgp-Stream, which orchestrates scheduling,
grouping and parallelism (Sgp). To enhance the system performance. We conduct the following research: (1)
Running experiments to evaluate the impact of different factors such as scheduling, grouping and parallelism
on system performance. Results show that factors at a single level usually have an upper limit on tuning
system performance, and better overall performance can be achieved by coordinating multi-level factors. (2)
Establishing quantitative models for stream application that consider computational cost and communication
cost, multi-dimensional featured data stream, data center resources, and latency & throughput performance.
(3) Demonstrating the effectiveness of the proposed runtime-aware data stream grouping based on smooth
weighted polling, elastic adaptive scheduling based on Linear Deterministic Greedy and elastic scaling
strategy based on Gradient Descent in Sgp-Stream, for continuous performance optimization.(4) Evaluating the
application latency, throughput and resource utilization objectives using a real-world elastic stream computing
system and twitter data set. Experimental results show that, compared to existing state-of-the-art works, the
proposed Sgp-Stream outperforms them by reducing latency by 26%–48%, improving throughput by 14%–20%,
and increasing resource utilization rate by 15%–21%, especially under increasing data stream input rates.
1. Introduction

Large volume of continuous data have brought great challenges
to stream computing systems, particularly in terms of system perfor-
mance during operation. Stream computing systems can be applied in
various emerging scenarios (Ramesh et al., 2021), such as monitoring
infrastructure sensors (Sun et al., 2019), intelligent household (Cao
et al., 2020) and smart healthcare (García-Vico et al., 2021). In these
applications, data can be produced at incredibly high rates, reach-
ing up to 40 billion bits per second (bps), demanding real-time pro-
cessing (Herodotou et al., 2022). Nowadays, research is extensive,
and some streaming computing frameworks efficiently process and
analyze real-time data streams by utilizing the combined capabilities
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of containerization, edge computing, and cloud technologies (Scolati
et al., 2020). BriskStream framework enhances the performance of
data stream processing by utilizing the powerful capabilities of shared-
memory multicore architectures (Zhang et al., 2019). Besides of data,
the availability of computing resources also changes over time, requir-
ing stream computing systems to support continuous processing with
low latency and high stability.

Several stream computing platforms, such as Cao et al. (2020),
Flink (2024), Samza (2024), Spark (2024) and Storm (2024), are
widely used. Among these, Apache Storm stands out due to its strong
scalability and simple architecture design. However, Storm’s optimiza-
tion technology lacks consideration of multiple factors that influence
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system performance at different stages. Therefore, there is room for
improvement. For example, Storm’s performance may not meet the
demands of emerging scenarios, particularly when dealing with real-
time input rate fluctuations during operation (Sahni & Vidyarthi, 2021).
Manually configuring running parameters, or using immutable resource
configurations can be infeasible or inefficient. These approaches often
usually underutilize cluster resources (Liu & Buyya, 2020), leading
to unstable system operation, increased latency and reduced resource
utilization.

When dealing with fluctuating data rates, it is effective to adjust
the system at run time for persistent performance (Röger & Mayer,
2019). However, the factors within the stream computing system are
not independent of each other, and optimizing solely based on one
factor may yield limited improvements, or even ineffective results due
to constraints imposed by other factors.

1.1. Key contributions

In this paper, we investigate these challenges and propose a so-
lution. We propose a framework named Sgp-Stream by orchestrating
scheduling, grouping and parallelism. Sgp-Stream orchestrates
scheduling, grouping of data streams, and operator parallelism (Sgp).
Within our framework, Apache Storm can rapidly adapt to fluctuat-
ing input rates and improve its performance, compared to its native
strategies. Our main contributions are as follows:

• We investigate how various factors at different stages of stream
application execution can influence the performance of a stream
computing system. Through experiments conducted with on
Apache Storm, we evaluate the impact of three distinct factors
on system performance. Our results show that individual factors
can only fine-tune system performance up to a certain limit.
Effective performance tuning requires the coordination of these
factors to meet requirements for latency, throughput and resource
utilization.

• We introduce formal models for stream application represented
by directed acyclic graph (DAG), multi-dimensional featured data
streams, data center resource, and latency & throughput perfor-
mance from a quantitative perspective. Our proposal, the Sgp-
Stream framework, incorporates strategies for runtime-aware data
stream grouping based on smooth weighted polling, elastic adap-
tive scheduling based on Linear Deterministic Greedy (𝐿𝐷𝐺), and
elastic scaling based on Gradient Descent (𝐺𝐷). The framework
supports adaptive coordination at three levels, allowing these
factors to quickly adapt to real-time input changes.

• We implement and integrate Sgp-Stream into Apache Storm, and
evaluate its performance using large-scale Twitter data set and
classic topology that handle real-time data streams. We compare
Sgp-Stream with existing state-of-the-art works based on key
system metrics, including application latency, average throughput
and resource utilization.

1.2. Paper organization

The rest of the paper is organized as follows: Section 3 discusses
the challenges and opportunities brought by Apache Storm’s strategies
for data stream grouping, elastic scaling and scheduling. Section 4
defines the models for stream application, data stream, resources and
performance. Section 5 introduces the Sgp-Stream framework and its
multi-level adaptive algorithms, including strategies for runtime-aware
data stream grouping based on smooth weighted polling, elastic adap-
tive scheduling based on Linear Deterministic Greedy (𝐿𝐷𝐺), and
lastic scaling based on Gradient Descent (𝐺𝐷). Section 6 discusses the

experimental settings and performance evaluation. Section 2 reviews
state-of-the-art work relevant to task scheduling, data stream grouping
and elastic scaling. Finally, conclusion and future work are given in
Section 7.
2

2. Related work

In this section, we review three broad categories of related works:
DAG scheduling strategies, stream grouping and elastic scaling strate-
gies, as well as comparing our work with the closely related papers as
shown in Table 1.

2.1. DAG scheduling strategies

Task scheduling is the most important part for a stream computing
system to deploy applications. Scheduling is also one of the key factors
for stream processing performance. It involves the efficient allocation
of tasks under limited computational resources to minimize processing
latency and ensure the continuity and stability of data processing (Nico-
leta Tantalaki & Roumeliotis, 2020). It steps in after the input stream
is partitioned and allocated to each task, meanwhile, the SLA service
level agreement predefined by users should be satisfied (Govindarajan
et al., 2017). There are different scheduling methods that dynamically
map tasks onto the cluster nodes. For example, FineStream facilitates
task scheduling research by decomposing computational tasks into
smaller subtasks and dynamically scheduling them between CPUs and
GPUs (Zhang et al., 2020). The default scheduler of Storm adopts
polling for task allocation, while ignoring issues such as the commu-
nication cost between tasks, resource requirements and load balancing,
etc. In recent studies, researchers tried to improve the default scheduler
of Storm (Duan & Zhou, 2020; Farrokh et al., 2022; Muhammad &
Aleem, 2021b; Muhammad et al., 2021).

In Muhammad and Aleem (2021a), a scheduler was proposed which
considers the historical communication between tasks and the hetero-
geneity of computing resources. Its core target is using a resource-
aware mapping mechanism for higher throughput and less application
latency.

In Zhou et al. (2020), a scheduler based on topology structure was
proposed, where the scheduling strategy is divided into two stages to
reduce the communication overhead. A self-adjustment mechanism is
applied for uniform distribution of workload between operating time
points.

The scheduling of tasks needs to consider the topological structure,
communication traffic and resource utilization. To better adapt to
changes in data stream grouping and parallelism elastic scaling, we
propose a scheduling strategy to improve the processing performance
of the stream computing system.

2.2. Stream grouping

There are many data stream grouping strategies built for Apache
Storm, among which, Shuffle grouping and Key grouping are the most
common ones. Shuffle grouping distributes data to all the downstream
tasks in a polling way. It does not store data state, so it can only process
stateless data. Key grouping uses hash function to distribute data to
specific downstream tasks. It ensures the data with the same key can
be sent to the same task. However, the system may be overloaded when
it comes to high-skew data (Zhou et al., 2019).

In Nasir et al. (2015), a partial Key Grouping (PKG) method was
proposed, based on which, the ‘‘W-choices’’ strategy was developed to
support hotkey selection of multiple tasks. However, these two methods
only consider load balancing. The problem of load imbalance still exists
when the application topology is large.

In Chen et al. (2017), a protocol-aware heterogeneous distributed
stream computing system was proposed. It uses a ‘‘coin experiment’’
approach to identify potential hotkeys. This method can quickly adapt
to the change of key frequency in highly dynamic data streams.

In Chen et al. (2018), a network aware grouping framework was
proposed, in which each network channel is assigned a different num-
ber of tuples by weight and priority. The weight of network channel
is dynamically adjusted by dynamic weight control. This method can



Expert Systems With Applications 254 (2024) 124346D. Sun et al.
Table 1
Comparison of Sgp-Stream and related work.

Parameters Related work Sgp-Stream

Chen et al. (2018) Cardellini et al. (2016) Sahni and Vidyarthi (2021) Muhammad and Aleem (2021a) Zhou et al. (2020)

Performance modeling ✓ ✓ ✓ ✓ ✓ ✓

Adaptive grouping strategy ✓ × × × × ✓

Operator parallelism × ✓ ✓ × × ✓

Scheduling × ✓ ✓ ✓ ✓ ✓

Resource utilization rate × × ✓ ✓ ✓ ✓
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effectively deal with data skew and heterogeneous cluster environment
and rationally allocate data components to different network channels.

All the above strategies have advantages, but they did not improve
the grouping strategy, or consider the load change issue after the elastic
scaling of downstream operators. In order to adapt each task to changes
in input load and processing resources in the stream environment,
the number of data stream tuples distributed needs to be dynamically
adjusted for load balancing.

In this paper, the grouping strategy of data stream is improved
compared to the Shuffle grouping. An adaptive grouping strategy based
on smooth weighted polling is adopted to load balance downstream
operators. This strategy can cooperate well with the elastic scaling and
the scheduling strategies for better performance.

2.3. Elastic scaling strategies

To make the system meet the SLA requirements during opera-
tion and to ensure the low latency and high stability, different op-
timization methods are put forward at different levels to support
elasticity (Borkowski et al., 2018; Dias de Assunção et al., 2018;
Marangozova-Martin et al., 2019).

Aiming to address the issues brought by unpredictable input rate,
paper (Cardellini et al., 2016) proposed two new strategies, i.e., elastic
scaling and state transition for Apache Storm. The new strategies can
dynamically adapt to unpredictable rates. Stream parallel compression
algorithms decompose a stream compression procedure into multiple
fine-grained tasks for more efficient processing. Their competing mech-
anisms (Zeng & Zhang, 2023) have a reference value for operator
parallelism research. Among them, the elastic scaling strategy uses a
simple addition plus multiplication minus method to adjust the degree
of parallelism.

In Xie et al. (2017), experiments verified that a reasonable number
of topology workers helped improve the system performance. The paper
also proposed an algorithm that computes the resources required by the
topology and adaptively allocates cluster resources. The performance
comparison test of DefaultScheduler in Apache Storm proves that the
algorithm improves the performance. However, this method can only
analyze the parallelism of topology statically, but not support dynamic
adaption to fluctuating rates at runtime.

In Sahni and Vidyarthi (2021), a new elastic scaling method was
proposed from two dimensions: parallelism and resource. This method
not only supports the adjustment to the parallelism of operators, but
also expands the available resources on virtual machine. It can effec-
tively adapt to the changes of data stream and improve the resource
utilization.

When the parallelism of components in stream applications cannot
adapt to the current streaming environment in real time, the effect of
optimizing system performance in other aspects cannot reach the best
possible outcome. All the above elastic scaling strategies have certain
advantages, but the combination of the elastic scaling strategy with the
operator parallelism and the grouping & scheduling strategies is rarely
considered.

In this paper, we consider both, i.e., the elastic scaling strategy with
the operator parallelism. It not only enables Sgp-Stream to adapt to the
changing data stream dynamically, but also assists it in cooperating
with the grouping and scheduling strategies at multiple levels. The
3

gradient descent based elastic scaling strategy reduces the operation
bottlenecks, thereby reducing the application latency and increasing
the resource utilization.

3. Observations

In a big data stream computing environment, users need to man-
ually write the business logic of their stream application and submit
it to the system for analysis and deployment. The execution process
of the application can be divided into three phases. In the logical
construction phase, the user is responsible for coding the data stream
application and submitting it to the stream computing platform. In
big data stream computing environments, each application is com-
monly represented as a set of sub-vertices interconnected via data
dependencies, and described by a corresponding directed acyclic graph
(DAG). In the operator parallelism and grouping phase, the platform
parses the execution logic of the DAG. In this phase, the operator
parallelism settings, grouping strategy and scheduling strategy are
determined. Each DAG is coordinated by multiple workers distributed
across multiple worker nodes. There are multiple executors in each
worker, each executor is a thread running Spout or Bolt processing
logic. In the task scheduling and computation phase, the platform
ssigns the instantiated computation tasks (the basic unit of execution,
nstantiated from spout or bolt) to clusters for execution based on the
elected scheduling strategy, while the transmission path of data stream
s determined by the grouping strategy. The whole process is shown in
ig. 1.

Each phase has an influence on the system performance
Sarathchandra et al., 2021; Yudong et al., 2020). For example, in
pache Storm, users must design the DAG and configure parameters in
dvance. Due to the lack of knowledge or experience, these parameters
ight not be set optimally. It is also challenging to manually adjust key
arameters (e.g., operator parallelism, task scheduling and data stream
rouping strategies) in real time based on changing application states
nd resource consumption (Vogel et al., 2021). In cloud computing,
esource elasticity allows for an application to scale out/in according
o demand, which brings new ways to adjust system performance (Dias
e Assunção et al., 2018). Multiple factors within a stream computing
ystem are interconnected, and optimizing performance solely from
he perspective of one factor may result in limited improvements.
onsidering multiple factors at various stages can improve processing
ottlenecks and low resource utilization. It can also optimize the
roblem of resource overutilization caused by high operational loads
n machine resources. Resource overutilization refers to the state
here machine resources are overloaded due to high operational loads.
ith virtual machine CPU overcommitment technology, machines may

verload resources within time slice periods. This can result in resource
ontention between virtual machines and may even lead to machine
owntime. Therefore, excessively high resource utilization can signifi-
antly impact system performance. To mitigate processing bottlenecks
nd resource utilization problems, we aim to consider multiple factors
t different stream processing stages (De Matteis & Mencagli, 2017; Ni
t al., 2020).

In a streaming computing system, a streaming application needs
o go through the coordination of multiple phases during runtime.
cheduling strategy, grouping strategy and parallelism scaling strategy
re the three key aspects for optimizing system performance. Before
roposing any solution, we first identify the factors influencing the
ystem performance in each phase through case studies.
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Fig. 1. Execution process of a stream application.

3.1. CASE 1: DAG scheduling

In Apache Storm, a stream application is represented by a directed
acyclic graph (DAG) and described as a topology. A topology is a
network of spouts and bolts. A spout is a source of streams in a
computation, while a bolt processes any number of input streams and
produces any number of new output streams.

After the topology is submitted, Storm instantiates components (ver-
tices in DAG) according to the application’s parameter configuration
and schedules tasks to run on cluster nodes through the scheduler. Dif-
ferent scheduling strategies influence the performance differently (Fu
et al., 2015; Qureshi et al., 2020; Souravlas et al., 2021; Storm, 2024).
Since the stream environment changes over time, continuous adjust-
ments to the scheduling strategy of the stream computing system are
necessary. However, the parallelism of topology cannot be dynam-
ically adjusted by scheduling strategies alone, and the performance
improvements brought by adjustments to scheduling strategies are
limited (Govindarajan et al., 2017).

We run observation experiments on an Apache Storm cluster to
investigate the impact of different factors on system performance while
4

Fig. 2. Logical graphs of WordCount and Top-N.

keeping the operator parallelism fixed. In these experiments, we pur-
posely used low-performance machines for two main reasons: (1). Using
low-performance machines helps us quickly identify the bottleneck
factors that affect system performance without the performance pattern
being influenced. (2). Compared to using high-performance machines,
finding more efficient ways to utilize low-performance ones is more
practical for resolving the performance issues in distributed stream
computing systems.

The Top-N and WordCount topologies are the fundamental and
widely used streaming applications, commonly adopted in various
studies for comparisons. To ensure the universality and comprehen-
siveness of our experimental comparison, we have selected Top-N and
WordCount topologies as benchmarks in our experiments.

WordCount counts the frequency of words in English text. In its
topology (Fig. 2(a)), the Spout vertex simulates a data stream by ran-
domly sending sentences; Bolt A and Bolt B split sentences and calculate
statistics, respectively. The Top-N topology sorts the frequency of words
at given time intervals. In its topology (Fig. 2(b)), the spout vertex
simulates a data stream by randomly sending words; Bolt A, Bolt B
and Bolt C calculate the occurrence, sort frequency and sum results,
respectively.

When a streaming computing system is in operation, each com-
ponent in a streaming application is instantiated as multiple tasks
executed in parallel. To thoroughly evaluate the impact of parallelism
on system performance, we build the application with a wide range
of parallelism degrees for each Spout or Bolt. This results in a more
intricate data transmission process as data stream through multiple
component tasks during operation.

For WordCount, we keep the data input rate fixed, set the paral-
lelism to 3 for Spout, to 1 for Bolt A and Bolt B, and use Storm’s built-in
schedulers DefaultScheduler, Isolation, Multitenant and ResourceAware
Scheduler (Peng et al., 2015; Storm, 2024). The variation in application
latency is shown in Fig. 3(a), and the relationships among system
throughput, schedulers and Bolt A’s capacity are depicted in Fig. 4(a).
As can be seen in Fig. 3(a), the application latency stays between
6∼8 ms after the system stabilizes. Under normal circumstances, the
capacity (%) falls within the [0.0, 0.1] range. When the capacity value
approaches 1, it indicates that the bolt is more heavily loaded and
requires higher parallelism.

Through several adjustments to the input rate during the observa-
tion experiment, it was determined that a capacity within [0.0, 0.4] is
optimal given the hardware conditions of the virtual machine running
the bolt. This capacity ensures the stable operation of the system and
facilitates the experimental observation.

In Fig. 4(a), Bolt A’s capacity remains within [0.25, 0.3] under
the fixed input rate. This suggests that different schedulers in this
parallelism configuration are not effective in improving throughput and
reduce latency. Even the ResourceAware Scheduler, which considers
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Fig. 3. Impact of different schedulers on application latency with fixed parallelism and
fixed input rate.

computing resources and communication distance, does not signifi-
cantly improve the system performance. The underlying reason might
be that the inappropriate parallelism of Bolt vertices leads to low
parallel execution ability of tasks, and the system performance cannot
be substantially improved by adjusting the scheduling strategy alone.

To eliminate potential interference from topology, we also use Top-
N (Fig. 2(b)) in the experiments while maintaining a fixed data input
rate, setting the parallelism to 3 for Spout and 1 for the rest, and
using the same schedulers. Fig. 3(b) illustrates the application latency
over time and Fig. 4(b) shows Bolt A’s capacity and throughput under
different schedulers. The trends align with the observations made in the
WordCount experiments.

To sum up, when the Storm system schedules an application, dif-
ferent scheduling strategies influence different aspects of performance,
such as resource utilization, communication costs, application latency,
and throughput. The choice of a scheduler significantly influences the
system performance optimization (Liu et al., 2019). It is understandable
that static configuration for a topology, set by inexperienced users,
might not be optimal in a changing environment. If the parallelism of
topological components is modified, the current balanced scheduling
scheme may be no long appropriate, causing higher communication
latency between tasks.

However, when dynamic adjustments are necessary for parallelism
and the resource demands of components change, the previously bal-
anced scheduling might also become unbalanced. This imbalance can
lead to task computation latency and excessively high communica-
tion latency between tasks. Unfortunately, the built-in scheduler in
the Storm system lacks the flexibility and self-adaptiveness to adjust
according to the changes in parallelism. This observation has driven
us to design an adaptive scheduling strategy that allows the system to
adapt to dynamic adjustments in topological parallelism.
5

Fig. 4. Impact of different schedulers on system throughput and Bolt A’s capacity with
fixed parallelism and fixed input rate.

3.2. CASE 2: Operator parallelism

In this case, we investigate the performance of static topological
structures under fluctuating input rates. We explore the relationship
between operator parallelism and system performance, discussing the
challenges related to adaptive elastic scaling strategies (Fu et al., 2017;
Kombi et al., 2017).

System performance metrics used in the experiment include
throughput, application latency and CPU utilization (i.e. the overall
CPU utilization rate of the cluster). These values can be obtained via
the Storm UI or the ‘top’ command.

For WordCount (Fig. 2(a)), we fix the parallelism to 3 for the Spout
and 1 for the remaining Bolts. Between 0 and 30 min, as we increase the
input rate from 100 tuples/s to 1000 tuples/s, the system throughput
roughly matches the input rate. After 30 min, as the input rate varies
from 1000 tuples/s to 5000 tuples/s with an increment of 1000 tuples/s
every 5 min, the system throughput does not increase proportionately.
Fig. 5(a) shows the variation of input rate and throughput. When
the input rate gradually increases beyond the capacity of the fixed
parallelism, the throughput no longer increases proportionally to the
input rate. Instead, data starts to queue in the input. To eliminate the
potential interference of topology, we also use Top-N (Fig. 2(b)) with
parallelism fixed to 5 for the Spout and 1 for the remaining Bolts.
Fig. 5(b) shows the variation of input rate and throughput, which is
consistent with the trends observed in WordCount.

Fig. 6(a) shows the changes of application latency and Bolt A’s
capacity in WordCount when the input rate increases from 10,000
tuples/s to 50,000 tuples/s. With the increase of input rate, the latency
increases, so does the capacity of Bolt A. At the same time, the fixed
parallelism configuration begins to impact the system performance. As
Bolt A is reaching its processing limit, its processing rate gradually
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Fig. 5. Throughput in WordCount and Top-N with fixed parallelism and changing input
rate.

decreases and the application latency gradually increases. Fig. 6(b)
shows a similar trend in Top-N as in WordCount when the input rate
increases from 20,000 tuples/s to 70,000 tuples/s.

To investigate the influence of parallelism on system performance
and CPU utilization, we fix the Spout parallelism of WordCount and
keep a constant input rate. As shown in Fig. 7(a), at first, Bolt A’s
capacity stays in the range of [0.27,0.3]. When we gradually increase
the degree of parallelism (executor number), both Bolt A’s capac-
ity and application latency decrease, suggesting that higher paral-
lelism is beneficial for performance. However, when Bolt A’s capacity
reaches[0.01,0.1], further increases in parallelism do not lead to lower
Bolt A’s capacity or reduced application latency (see Fig. 7(a)), and
there is no significant increase in throughput either (see Fig. 8(a)).
Resource competition between component’s tasks may be the reason
behind this.

Meanwhile, CPU utilization decreases (see Fig. 8(a)). This decrease
might be caused by task overscheduling, which increases communi-
cation costs, application latency, and lowers resource utilization. To
verify these findings, we also run Top-N with fixed Spout parallelism
and input rate. The results, shown in Figs. 7(b) and 8(b), follow the
same trend.

The above observations reveal that there is no simple linear rela-
tionship between tuning operator parallelism and system performance,
especially when the input rate fluctuates. From a quantitative point of
view, increasing operator parallelism can enhance performance when
the input rate exceeds the processing capability of the parallelized
operators. However, after a certain point, further adjustments to par-
allelism yield diminishing returns, and may increase the resource and
communication costs, thus negatively impacting system performance.
Currently, there is a need for stream computing systems to flexi-
bly and continuously adjust parallelism during runtime to optimize
6

Fig. 6. Application latency and Bolt A’s capacity in WordCount and Top-N with fixed
parallelism and changing input rate.

system performance in real time. How to properly adjust the par-
allelism for components in a topology at runtime remains a major
challenge (Lombardi et al., 2018; Röger & Mayer, 2019; Wang et al.,
2019).

To sum up, real-time adaptive parallelism adjustment plays an
important role in improving system performance. The above observa-
tion prompts us to design an adaptive elastic scaling mechanism to
fine-tune parallelism parameters. Moreover, under fluctuating inputs,
system performance is closely related to parallelism configuration, load
distribution, communication, and scheduling strategies. To optimize
system performance, multi-level coordination is necessary.

3.3. CASE 3: Stream grouping

Stream Grouping defines how data tuples are transferred between
two components that share a communication relationship and how the
stream should be partitioned among the bolt’s tasks. Existing research
on Stream grouping strategies can be mainly categorized into two types:
key based and non-key based (Son et al., 2021). The former mainly
employs hash functions for stateful operators to ensure that tuples with
the same hash key are mapped to the same task. The latter is more
common in stream applications with stateless operators. This paper
specifically focuses on non-key based grouping strategies.

Different stream grouping strategies are required for different data
tuple distribution scenarios. we examine all the grouping methods sup-
ported by Storm (2024). Commonly used key-based and non-key-based
grouping methods in Storm include:

• Shuffle Grouping randomly distributes tuples to tasks instanti-
ated by the bolt, with each task at the same level accepting an
equal number of tuples.
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Fig. 7. Application latency and Bolt A capacity in WordCount and Top-N with fixed
input rate and changing parallelism.

• Fields Grouping groups tuples based on the key(s) of one or more
specified fields.

• All Grouping copies all tuples to all tasks instantiated by the bolt.
• Global Grouping sends all tuples to one specific task instantiated

by the bolt. Typically, Storm selects the task with the smallest task
ID as the receiver.

• Direct Grouping directly specifies the receiving task.

In non-key-based Grouping strategies, we use the All Grouping strat-
egy to broadcast data tuples to all tasks of the downstream operator. If
a data tuple needs to be distributed to a specific task or a specified set
of tasks in the downstream operator, we select the Global Grouping
or Direct Grouping strategy. On the other hand, we use the Shuffle
Grouping strategy when data tuples need to be randomly distributed
to different tasks within the bolt. To increase the processing rate of
downstream operators for tuples, we typically use the Shuffle Grouping
strategy to distribute tuples in a polling mode, ensuring an even number
of tuples accepted by each task of the downstream operators. To
maintain consistency in message processing with a key-based grouping
strategy, we usually use the Field Grouping strategy to group fields in
a data tuple. Tuples with the same fields are distributed to the same
task.

When the system scheduling strategy places tasks in the cluster,
these tasks run on different worker nodes. However, competition for
resource among workers may lead to varying resource utilization rates
for worker nodes, especially in heterogeneous cluster environments.
If the system uses the Shuffle grouping method, tasks with fewer
resources often perform poorly, resulting in higher task and application
latency and lower throughput. Obversely, tasks with more resources
may not fully utilize them. The grouping method significantly affects
7

Fig. 8. Throughput and CPU usage in WordCount and Top-N with fixed input rate and
changing parallelism.

task processing performance, which in turn impacts application la-
tency, throughput and resource utilization (Yudong et al., 2020). This
observation inspired us to design a grouping method that distributes
tuples based on the real-time load of downstream operator tasks. We
anticipate that this approach can improve system performance by
dynamically distributing tuples to the least loaded tasks.

3.4. Challenges

Our focus in this paper is on integrating multiple layers to optimize
system performance. We recognize the challenge in balancing localized
optimization strategies at each level with achieving global performance
through cooperative optimization across levels.

In a multi-source and dynamic stream computing environment, at
the scheduling level, there exists a conflict between the communication
costs among operators and the diverse, limited resources of compute
nodes during runtime scheduling. We can reconcile this by scheduling
complex instances onto compute nodes with lower communication
costs and sufficient resources.

Regarding the elastic parallelism scaling, a tension exists between
the stability of the stream computing system and the flexibility of on-
demand elasticity in operators. To resolve this, we can periodically
iterate to adjust the number of instances for key nodes.

At the stream grouping level, operating under vast and unbounded
data streams, a discrepancy exists between the processing capacity
of operators and their dynamic load states. We can address this by
grouping data streams based on the load status of operators, thus
reducing transmission latency across multiple data links.
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4. Problem statement

This section introduces the models commonly used in big data
stream computing systems, including DAG, data stream, resource and
optimization objectives.

4.1. DAG model

The logic of a stream application is typically described using a
directed acyclic graph (DAG) (Cugola & Margara, 2012). It is composed
of a vertex set and a directed edge set, denoted as 𝐺 = (𝑉 (𝐺) , 𝐸 (𝐺)),

here 𝑉 (𝐺) =
{

𝑣1, 𝑣2,… , 𝑣𝑛
}

represents a finite set with n vertices.
(𝐺) =

{

𝑒1,2,… , 𝑒𝑖,𝑗 ,… , 𝑒𝑛−𝑖,𝑛
}

⊂ 𝑉 (𝐺)×𝑉 (𝐺) is a finite set of directed
edges. These edges suggest execution precedence among vertices.

A vertex represents a component that processes data stream. Each
vertex 𝑣𝑖 can instantiate one or more tasks on demand, i.e. 𝑡𝑎𝑠𝑘𝑣𝑖 =
𝑡𝑎𝑠𝑘𝑣𝑖1 , 𝑡𝑎𝑠𝑘𝑣𝑖2 ,… , 𝑡𝑎𝑠𝑘𝑣𝑖𝑘 ,… , 𝑡𝑎𝑠𝑘𝑣𝑖𝑚

}

, 𝑚 ∈ (1, 2,…). Each instantiated

task 𝑡𝑎𝑠𝑘𝑣𝑖𝑘 performs the same function as defined by vertex 𝑣𝑖 and can
e scheduled onto a compute node by the scheduler.

The function of DAG is achieved by all n vertices, represented as
𝑂 = 𝐹 (𝐼), where I, F and O are the input data steam, function of
application DAG and output data steam, respectively. In the DAG, if 𝑣𝑖
oes not have input data stream 𝑖𝑣𝑖 , it is an input vertex, represented

as 𝑣𝑖𝑛; if 𝑣𝑖 does not have output data stream 𝑜𝑣𝑖 , it is an output vertex,
epresented as 𝑣𝑜𝑢𝑡. For 𝑣𝑖, assume its input rate is 𝐼𝑟𝑣𝑖 , the processing
ate is 𝑃𝑟𝑣𝑖 , the time consumed by vertex 𝑣𝑖 running in a cluster is 𝑇 𝑐𝑣𝑖 ,
hen 𝑇 𝑐𝑣𝑖 is related to 𝐼𝑟𝑣𝑖 and 𝑃𝑟𝑣𝑖 . To lower the influence of input
luctuation, we use the mathematical expectation 𝐸𝐼𝑟𝑣𝑖

to represent the
nput rate 𝐼𝑟𝑣𝑖 of 𝑣𝑖 per unit time. 𝑇 𝑐𝑣𝑖 , as the time consumed by vertex
𝑖, can be described by Eq. (1).

𝑐𝑣𝑖 =
𝐸𝐼𝑟𝑣𝑖

⋅ △𝑡

𝑃 𝑟𝑣𝑖
, (1)

where △𝑡 represents the period from the beginning of counting the
number of tuples to the end. The average processing rate 𝑃𝑟𝑣𝑖 of vertex
𝑖 can be calculated by Eq. (2).

𝑟𝑣𝑖 = 𝑁(𝐸𝑥(𝑣𝑖)) ⋅
1
𝑚

𝑚
∑

𝑘=1
𝑃𝑟𝑡𝑎𝑠𝑘𝑖𝑘 , 𝑚 ∈ {1, 2, 3,…} . (2)

where 𝑃𝑟𝑡𝑎𝑠𝑘𝑣𝑖𝑘 is the real processing rate of 𝑡𝑎𝑠𝑘𝑣𝑖𝑘 , and 𝑁(𝐸𝑥(𝑣𝑖)) is
he parallelism of vertex 𝑣𝑖.

It can be seen that when the parallelism 𝑁(𝐸𝑥(𝑣𝑖)) increases, the
rocessing rate 𝑃𝑟𝑡𝑎𝑠𝑘𝑣𝑖𝑘 of vertex 𝑣𝑖 increases, as well as the average

rocessing rate 𝑃𝑟𝑣𝑖 . Therefore, with a high data input rate 𝐼𝑟𝑣𝑖 or the
athematical expectation 𝐸𝐼𝑟𝑣𝑖

, increasing the average processing rate
𝑟𝑣𝑖 can improve the average processing rate 𝑃𝑟𝑣𝑖 of 𝑣𝑖, thus reducing

he processing time 𝑇 𝑐𝑣𝑖 .
In a DAG, each vertex processes tuples received before sending

hem to downstream vertices. A directed edge between two vertices
epresents a transmission path from one vertex to another. If ∃𝑒𝑖,𝑗 ∈
(𝐺), then 𝑣𝑖, 𝑣𝑗 ∈ 𝑉 (𝐺), 𝑣𝑖 ≠ 𝑣𝑗 , and

⟨

𝑣𝑖, 𝑣𝑗
⟩

is an ordered pair. This
rdered pair signifies a data dependency relationship between 𝑣𝑖 and 𝑣𝑗 ,
.e., data streams from 𝑣𝑖 to 𝑣𝑗 . Vertex 𝑣𝑗 cannot commence processing
ntil the tuples have been processed by tasks of 𝑣𝑖.

We define 𝑇 𝑠𝑒𝑖,𝑗 as the tuple transmission time on directed edge 𝑒𝑖,𝑗 .
t is determined by the network link bandwidth 𝐵𝑎𝑛𝑑𝑒𝑖,𝑗 between 𝑣𝑖 and
𝑗 (bps) and the size of output data 𝑑𝑣𝑖 by 𝑣𝑖 (bits). If 𝑣𝑖 and 𝑣𝑗 are on
he same worker, their transmission time is generally considered as 0.
𝑠𝑒𝑖,𝑗 can be described by Eq. (3).

𝑠𝑒𝑖,𝑗 =

⎧

⎪

⎨

⎪

0, 𝑖𝑓 𝑣𝑖 𝑣𝑗 𝑜𝑛 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒𝑤𝑜𝑟𝑘𝑒𝑟,
𝑑𝑣𝑖

𝐵𝑎𝑛𝑑𝑒
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(3)
8

⎩

𝑖,𝑗 s
4.2. Data stream model

In a running process, data flows from upstream to downstream
tasks. This continuous and unbounded sequence of data tuples is ab-
stracted as a data stream. The 𝑖th data tuple, denoted as 𝑑𝑡𝑖, which
is transmitted between communication groups, can be represented by
a tuple id 𝑖𝑑𝑖, key 𝑘𝑖, its value 𝑣𝑎𝑙𝑖 and the timestamp 𝑡𝑠𝑖, i.e., 𝑑𝑡𝑖 =
(

𝑖𝑑𝑖, 𝑘𝑖, 𝑣𝑎𝑙𝑖, 𝑡𝑠𝑖
)

. The data stream 𝑆(𝐺), which consists of multiple
tuples from 𝐺, is represented by Eq. (4).

𝑆(𝐺) =
{(

𝑖𝑑1, 𝑘1, 𝑣𝑎𝑙1, 𝑡𝑠1
)

,…
(

𝑖𝑑𝑖, 𝑘𝑖, 𝑣𝑎𝑙𝑖, 𝑡𝑠𝑖
)

,…
}

. (4)

Data tuples are distributed from upstream to downstream tasks
based on the grouping strategy. To minimize data loss, a sliding win-
dow can be used to enhance reliable transmission. For stateless vertices,
the sliding window can cache tuples awaiting for processing. For state-
ful vertices, the sliding window effectively maintains processed tuple
information and saves node states.

4.3. Resource model

We represent a network data center with 𝑁 compute nodes as 𝐷𝐶 =
{

𝑐𝑛1, 𝑐𝑛2,… , 𝑐𝑛𝑁
}

. They are virtual machines running on physical com-
puters.

Resources of compute node 𝑐𝑛𝑖 can be measured in various dimen-
sions, such as CPU, memory, network bandwidth and I/O. We use
𝑃𝑤

(

𝑐𝑛𝑖
)

to denote the computing power of node 𝑐𝑛𝑖. It can be calcu-
lated by considering the CPU resources and system memory resources
of 𝑐𝑛𝑖 in a weighted manner, as described by Eq. (5).

𝑃𝑤
(

𝑐𝑛𝑖
)

= 𝛼 ⋅ 𝐶𝑃𝑈𝑐𝑛𝑖 + (1 − 𝛼) ⋅𝑀𝑒𝑚𝑐𝑛𝑖 . (5)

Here, the resource weight coefficient 𝛼 is a constant determined
based on the ratio of CPU-type to Memory-type components in the
committed topology, where 𝑀𝑒𝑚𝑐𝑛𝑖 represents the compute node 𝑐𝑛𝑖’s
memory resources. 𝐶𝑃𝑈𝑐𝑛𝑖 is 𝑐𝑛𝑖’s Floating Point Operations Per Second
(𝑓𝑙𝑜𝑝𝑠), and is described by Eq. (6).

𝐶𝑃𝑈𝑐𝑛𝑖 = 𝐶𝑜𝑟𝑒 ⋅
𝐶𝑦𝑐𝑙𝑒𝑠
𝑆𝑒𝑐𝑜𝑛𝑑

⋅
𝑓𝑙𝑜𝑝𝑠
𝐶𝑦𝑐𝑙𝑒

, (6)

where 𝐶𝑜𝑟𝑒 indicates the total number of cores a processor has, 𝐶𝑦𝑐𝑙𝑒𝑠
𝑆𝑒𝑐𝑜𝑛𝑑

is the clock frequency (Hz) of a core, and 𝑓𝑙𝑜𝑝𝑠
𝐶𝑦𝑐𝑙𝑒 is the total number

of floating-point operations per cycle. Floating-point operations per
second (FLOPS, flops, or flop/s) is a measure of computer performance
that is useful in scientific computing scenarios where floating-point
calculations are required.

4.4. Optimization objectives

Low latency of stream application and high throughput are two
critical performance requirements for stream computing system (Kari-
mov et al., 2018). In this section, we profile mathematical relationships
between the application latency, throughput and data streams. We also
outline the constraints required to achieve low application latency and
high throughput in common stream computing environments.

Within these systems, data tuples are transmitted in multiple
streams among vertices. If the processing of one tuple fails, it is
considered a 𝑓𝑎𝑖𝑙𝑒𝑑 data tuple; otherwise, it is an 𝐴𝑐𝑘𝑒𝑑 data tuple.
The 𝐴𝐶𝐾 mechanism ensures that data tuples are processed properly.
The 𝐴𝑐𝑘𝑒𝑑 tuples contribute to the application’s throughput. We refer
to the amount of data properly processed per unit time of the system
as the system throughput. We represent system throughput as 𝑇𝑝 (𝐺).

igher throughput indicates better performance.
The application latency consists of two components: computation

atency and transmission latency. The application latency is deemed
cceptable by users if it remains at the millisecond level. We use 𝑇𝑙 (𝐺)
o denote the application latency. It includes the input tuple’s transmis-
ion time from the input to the output vertex and the processing time
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of each vertex. For the convenience of calculation and without loss of
generality, we assume the DAG has only one input vertex 𝑣𝑖𝑛, and one
output vertex 𝑣𝑜𝑢𝑡.

We denote the directed path from vertex 𝑣𝑖 to 𝑣𝑗 as 𝑃𝑣𝑖 ,𝑣𝑗 =
⟨

𝑣𝑖,… , 𝑣𝑗
⟩

, and the application latency 𝑇𝑙
(

𝑝𝑣𝑖 ,𝑣𝑗
)

of one tuple can be
calculated by adding up all the vertices’ processing time and the data
tuple’ transmission time along the path 𝑃𝑣𝑖 ,𝑣𝑗 . It can be described by
Eq. (7):

𝑇𝑙
(

𝑝𝑣𝑖 ,𝑣𝑗
)

=
∑

𝑣𝑘∈𝑝𝑣𝑖 ,𝑣𝑗

𝑇 𝑐𝑣𝑘 +
∑

𝑣𝑖 ,𝑣𝑘∈𝑝𝑣𝑖 ,𝑣𝑗

𝑇 𝑠𝑒𝑣𝑖 ,𝑣𝑘 . (7)

Here, 𝑇 𝑠𝑒𝑣𝑖 ,𝑣𝑘 represents the transmission time of one data tuple on

the directed edge 𝑒𝑣𝑖 ,𝑣𝑘 between a pair of communication vertices 𝑣𝑖
and 𝑣𝑘, and 𝑇 𝑐𝑣𝑘 represents the tuple processing time spent by vertex
𝑣𝑘.

The application latency of the DAG for one tuple is the maximum
time in the directed path from input vertex 𝑣𝑖𝑛 to output vertex 𝑣𝑜𝑢𝑡
when processing that tuple. It can be described by Eq. (8).

𝑇𝑙 (𝐺) = max
𝑝𝑣𝑖𝑛,𝑣𝑜𝑢𝑡∈𝑝𝑣𝑖𝑛,𝑣𝑜𝑢𝑡 (𝐺)

(

𝑇𝑙
(

𝑝𝑣𝑖𝑛 ,𝑣𝑜𝑢𝑡
))

, (8)

where, 𝑝𝑣𝑖𝑛 ,𝑣𝑜𝑢𝑡 (𝐺) is the set of directed paths in 𝐺, starting from the
input vertex 𝑣𝑖𝑛 and ending at the output vertex 𝑣𝑜𝑢𝑡. The critical nodes
𝑣𝑖 are determined based on the method where the earliest time 𝐸𝑆𝑇 (𝑣𝑖)
and the latest time 𝐿𝑆𝑇 (𝑣𝑖) of the data stream arriving at the vertex are
equal. The computation latency and transmission latency are used as
the weights of the activities according to the critical path method (Sun
& Huang, 2016). The vertex path with the maximum latency between
𝑣𝑖𝑛 and 𝑣𝑜𝑢𝑡 is called a critical path 𝐺𝑣𝑖𝑛 ,𝑣𝑜𝑢𝑡 of a tuple, and all nodes on
the critical path are critical nodes. Under fluctuating input, different
tuples may have different critical paths. For each tuple, the critical path
is always the one with the longest latency. The focus is on the critical
paths of 𝐺 as a whole, rather than the individual path for a specific
tuple.

The Sgp-Stream framework aims to optimize several aspects: (1)
Data scheduling by considering resource and communication cost and
adopting an elastic scheduling strategy. (2) Data grouping by sensing
the downstream load states. (3) Operator parallelism by tuning the
parallelism degree to adapt to the input rate. (4) Coordination of factors
from multiple dimensions in real-time to enable continuous system
performance optimization.

5. Sgp-Stream overview

Our Sgp-Stream framework addresses the unique challenges posed
by multi-stage data processing in data stream computing. These chal-
lenges involve the adjustment of scheduling, grouping, and parallelism
degree, which are not inherently cooperative and are often constrained
by the architecture of stream computing systems.

In this section, the overall structure of Sgp-Stream is discussed,
including its system architecture, online monitoring, and algorithms for
adaptive grouping based on workload, elastic scaling based on heuristic
techniques, and lightweight scheduling.

5.1. System architecture

Built on top of Apache Storm, Sgp-Stream consists of several key
subsystems: Nimbus, Zookeeper, and Supervisors, as shown in Fig. 9.
Nimbus subsystem serves as the primary node in the cluster, responsible
for tasks like receiving code from users, creating DAG diagrams based
on the code logic, and deploying these diagrams to the appropriate
Supervisors. Additionally, Nimbus plays a role in monitoring and co-
ordinating the work of Supervisors and Nimbus itself, swiftly restarting
any failed workers in Supervisor subsystem. Various scheduling strate-
gies can be implemented through the IScheduler interface. Storm 1.1.0
9

Fig. 9. Sgp-Stream architecture.

or later offers support for 4 built-in schedulers: Default Scheduler, Isola-
tion Scheduler, Multitenant Scheduler, and Resource-Aware Scheduler.
Users can further customize the scheduling strategy in the storm.yaml
configuration file.

Zookeeper subsystem function as a centralized service for maintain-
ing configuration information. It communicates with Nimbus and Su-
pervisors, preserving information about the working status of Nimbus
and Supervisors, and ensuring proper coordination across the cluster.
Each Supervisor subsystem is responsible for managing the worker
processes, enabling a number of worker slots based on the hardware
capacity of the machine it runs on, and overseeing the execution of
tasks.

Sgp-Stream supports dynamic elasticity in real time, with 3 essential
steps:

(1) It provides dynamic adaptive scheduling via the IScheduler
interface. DAG graphs are initially scheduled based on the available
resources. They are then incrementally adjusted by the elastic scaling
strategy. (2) An online monitoring module is deployed in each Supervi-
sor subsystem. This module stores all collected performance statistical
information in a database, including data stream transmission rates,
task processing rates, and node performance information. This data is
used to monitor the load of downstream operator tasks and the per-
formance changes of compute node running tasks, helping determine
if the current data stream distribution strategy remains suitable. (3)
The elastic scaling module reads information from the database to
identify any operators causing parallelism bottlenecks. If the elastic
scaling conditions are met, the module recalculates the parameter plan
of the operator parallelism and executes the ‘‘Rebalancing’’ command
to reconfigure the system’s resources.

5.2. DAG scheduling algorithm

The scheduler is responsible for arranging the execution of submit-
ted stream applications based on specific scheduling strategies. Our
primary goal is to minimize communication cost between tasks during
scheduling while also balancing the load in heterogeneous clusters for
performance purposes. Communication overhead is mainly influenced
by 3 factors: inter-process communication between compute nodes,
intra-process communication on a single compute node, and commu-
nication among threads within a process. In this paper, we focus on
addressing the communication costs associated with inter-process and
intra-process communication, as these are generally more expensive (Li
& Zhang, 2017).
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To meet these objectives, we design a resource-aware scheduling
strategy based on Linear Deterministic Greedy (𝐿𝐷𝐺). This strategy
consists of 3 steps: (1) Calculate the appropriate number of workers
according to the resource requirements of the topology and the avail-
able resources of compute nodes. (2) Allocate the executors, which are
threads spawned by worker processes responsible for running tasks,
with high communication loads to the same worker and ensure that
these workers are placed on the same compute node. (3) Balance load
based on the workers’ maximum available capacity and the executors’
resource requirements. To calculate the number of workers suitable for
the topology, we collect runtime information such as data transmission
rates between executors, resources consumed by each executor, and
the availability of resources on the compute nodes. The appropriate
number of workers, denoted as 𝑘, can be calculated as shown in Eq. (9).

𝑘 =
𝑅𝑒(𝐺)
𝐶𝑎𝑣𝑔

, 𝑘 ∈ {1, 2, 3,…} , (9)

where 𝑅𝑒(𝐺) represents the amount of resources used by the thread
executor instantiated by the Spout or Bolt in the DAG 𝐺, and 𝐶𝑎𝑣𝑔
epresents the maximum capacity value set for each worker process on
he compute node. To handle heterogeneity among compute nodes, we
alculate the average capacity of each worker 𝐶𝑎𝑣𝑔 using Eq. (10).

𝐶𝑎𝑣𝑔 = 1
𝑁

𝑁
∑

𝑖=1

𝑃𝑤
(

𝑐𝑛𝑖
)

𝑆𝑙𝑜𝑡
(

𝑐𝑛𝑖
) , 𝑆𝑙𝑜𝑡𝑖 ∈ {1, 2, 3,…} . (10)

𝑆𝑙𝑜𝑡
(

𝑐𝑛𝑖
)

is the number of available slots on compute node 𝑐𝑛𝑖.
It indicates the percentage of resources that can be used. 𝑃𝑤

(

𝑐𝑛𝑖
)

represents the computing power of the 𝑖th node 𝑐𝑛𝑖 in the cluster.
To evaluate the communication cost and load when allocating an

executor to a worker, we construct an objective function described by
Eq. (11).

𝑔
(

𝐸𝑥𝑒𝑐𝑢𝑡𝑜𝑟, 𝑃𝑖
)

= 𝑇
(

𝐸𝑥𝑒𝑐𝑢𝑡𝑜𝑟, 𝑃𝑖
)

⋅ 𝐿
(

𝑃𝑖
)

, (11)

where 𝑔(𝐸𝑥𝑒𝑐𝑢𝑡𝑜𝑟, 𝑃𝑖) represents the construction objective function
that evaluates the communication cost and load that the thread execu-
tor assigns to the worker 𝑃𝑖.

𝑇 (𝐸𝑥𝑒𝑐𝑢𝑡𝑜𝑟, 𝑃𝑖) represents the statistical traffic between the 𝐸𝑥𝑒𝑐𝑢𝑡𝑜𝑟
to be allocated and the already allocated executors on worker 𝑃𝑖. Larger
values of 𝑇 (𝐸𝑥𝑒𝑐𝑢𝑡𝑜𝑟, 𝑃𝑖) indicate lower communication costs. 𝐿(𝑃𝑖)
captures the load constraint on worker 𝑃𝑖, as expressed in Eq. (12).

𝐿
(

𝑃𝑖
)

= 1 −
𝑙𝑜𝑎𝑑𝑃𝑖
𝐶𝑎𝑣𝑔

, (12)

where 𝑙𝑜𝑎𝑑𝑃𝑖 signifies the load generated by all executors on 𝑃𝑖,
and 𝐶𝑎𝑣𝑔 represents the average computing resource as calculated in
Eq. (10). It is important to note that the topology requires resources
while the cluster is running; otherwise, it cannot be committed suc-
cessfully, so the average resource must be greater than 0. To minimize
inter-process communication cost and balance the load across compute
nodes, we first select the worker with the highest evaluation function,
that is, 𝑀𝑎𝑥

(

𝑔
(

𝐸𝑥𝑒𝑐𝑢𝑡𝑜𝑟, 𝑃𝑖
))

for allocating executors. Then, we allo-
cate the required 𝑘 workers based on the available resources of each
compute node. We follow a rule of placing workers on the same node
to load balance the cluster. This scheduling strategy is described in
Algorithm 1.

Algorithm 1 Scheduling Algorithm
Input: 𝐺, current available capacity 𝑃𝑤 (𝑁𝑜𝑑𝑒) of compute nodes in

the data center 𝐷𝐶.
Output: Vertices scheduling scheme on compute nodes.
1: 𝐺 = (𝑉 (𝐺) , 𝐸 (𝐺))
2: 𝐷𝐶 =

{

𝑐𝑛1, 𝑐𝑛2,… , 𝑐𝑛𝑁
}

3: if 𝐺 or number of available compute nodes is null then
10

w

4: Return null.
5: end if
6: for each vertex 𝑣𝑖 in 𝐺 do
7: Determine the state of 𝑣𝑖 in 𝐺 according to its function.
8: Determine the degree of parallelism for each vertex 𝑣𝑖 in 𝐺 based

on system configuration parameters.
9: if 𝑣𝑖 is a stateful vertex then

10: Create a new vertex 𝑣′𝑖 for sharing the states of all tasks.
11: end if
12: end for
13: Calculate the number of workers 𝑘 for the topology by Eq. (9).
14: Calculate the maximum capacity of each worker 𝐶𝑎𝑣𝑔 in the cluster

by Eq. (10).
15: Create the collection 𝐸𝑥𝑒𝑐𝑢𝑡𝑜𝑟𝑠 of 𝐺, and get all executors of 𝐺 and

add to 𝐸𝑥𝑒𝑐𝑢𝑡𝑜𝑟𝑠.
16: while 𝐸𝑥𝑒𝑐𝑢𝑡𝑜𝑟𝑠 is not null do
17: for each 𝐸𝑥𝑒𝑐𝑢𝑡𝑜𝑟 in 𝐸𝑥𝑒𝑐𝑢𝑡𝑜𝑟𝑠 do
18: Create the unallocated set 𝑈𝑛𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑, and add the pending

𝐸𝑥𝑒𝑐𝑢𝑡𝑜𝑟 to 𝑈𝑛𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑.
19: for 𝑖 = 1 to 𝑘 do
20: 𝑇 (𝐸𝑥𝑒𝑐𝑢𝑡𝑜𝑟, 𝑃𝑖), get communication traffic between the

𝐸𝑥𝑒𝑐𝑢𝑡𝑜𝑟 and the existing executors on worker 𝑃𝑖 based on
statistics.

21: Calculate the load constraint 𝐿(𝑃𝑖) of worker 𝑃𝑖 by Eq. (12).

22: Calculate the evaluation function 𝑔
(

𝐸𝑥𝑒𝑐𝑢𝑡𝑜𝑟, 𝑃𝑖
)

by
Eq. (11).

23: end for
24: Get 𝑀𝑎𝑥

(

𝑔
(

𝐸𝑥𝑒𝑐𝑢𝑡𝑜𝑟, 𝑃𝑖
))

, the 𝑖th worker 𝑃𝑖 that maximizes
the evaluation function.

25: if Assign 𝐸𝑥𝑒𝑐𝑢𝑡𝑜𝑟 to the specified worker 𝑃𝑖 then
26: Remove 𝐸𝑥𝑒𝑐𝑢𝑡𝑜𝑟 from 𝑈𝑛𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑.
27: end if
28: end for
29: end while
30: if 𝑈𝑛𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 is not null then
31: Poll and schedule unassigned 𝐸𝑥𝑒𝑐𝑢𝑡𝑜𝑟 in 𝑈𝑛𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 based on

current workload of worker 𝑃𝑖.
32: end if
33: for 𝑖 = 1 to 𝑘 do
34: Sort 𝑁 nodes in 𝐷𝐶 by current available capacity in descending

order.
35: Assign worker 𝑃𝑖 polled to compute nodes.
36: end for
37: return Vertices scheduling scheme on compute nodes.

In Algorithm 1, the inputs include the application DAG graph 𝐺 and
the set of available resources 𝑃𝑤

(

𝑐𝑛𝑖
)

for each compute node 𝑐𝑛𝑖 in
the cluster 𝐷𝐶. The output is a vertices scheduling scheme on compute
nodes.

Start by creating a shared state node 𝑣′𝑖 from the stateful node
in 𝐺 (Step 1 to Step 12). We then calculate the evaluation function
size 𝑔

(

𝐸𝑥𝑒𝑐𝑢𝑡𝑜𝑟, 𝑃𝑖
)

based on the traffic 𝑇 (𝐸𝑥𝑒𝑐𝑢𝑡𝑜𝑟, 𝑃𝑖) between the
executor to be allocated and the allocated executors on each worker,
as well as the load constraints 𝐿(𝑃𝑖) for each worker 𝑃𝑖.

The worker with the maximum value of the evaluation function 𝑔,
i.e., 𝑀𝑎𝑥

(

𝑔
(

𝐸𝑥𝑒𝑐𝑢𝑡𝑜𝑟, 𝑃𝑖
))

, is selected to allocate the executor. If there
are still unallocated executors, we poll the allocation based on worker
load (Step 13 to Step 32).

At the end, we determine the weight of CPU and memory accord-
ing to the type of DAG diagram to calculate the available resources
𝑃𝑤

(

𝑐𝑛𝑖
)

for each compute node 𝑐𝑛𝑖 in the cluster. We sort them based
n computing capacity from largest to smallest, and assign the polled
orker 𝑃 to the compute nodes, ensuring that all workers in 𝐺 can
𝑖
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quickly allocate appropriate resources and load balance the nodes in 𝐺
Step 33 to Step 36).

This scheduling strategy adjusts the location of executor and worker
ithin the compute node. It places the executor into the worker in turn
ased on the communication cost and the amount of resources, mini-
izing executor communication costs and ensuring a more balanced
tilization of worker resources.

.3. Stream grouping algorithm

The stream grouping strategy distributes data tuples from the up-
tream to downstream tasks. To make each downstream task adapt
o changes in input load and available resources, it is necessary to
ynamically adjust the distribution of tuples for load balancing. Based
n the smooth weighted grouping strategy (Nandal et al., 2021), we use
weighted polling algorithm to direct upstream tuples to lightly loaded
ownstream tasks. This reduces the risk of overloading the already
eavily loaded tasks and improves the resource utilization rate.

Assume that 𝑣𝑖 is an upstream vertex of 𝑣𝑗 , i.e.
⟨

𝑣𝑖, 𝑣𝑗
⟩

is an ordered
air. There are 𝑚 tasks on 𝑣𝑗 , denoted as 𝑡𝑎𝑠𝑘𝑣𝑗 . To support the weighted
olling process, we use three sets of weights (𝑊𝑗 , 𝐶𝑊𝑗 and 𝐸𝑊𝑗). We
nitialize the configured weight 𝑊𝑗 =

{

𝑤𝑗1, 𝑤𝑗2,… , 𝑤𝑗𝑚
}

, 𝑚 ∈ (1, 2,…)
based on the load value of each task in 𝑡𝑎𝑠𝑘𝑣𝑗 . Higher load indicates
smaller weight value. Current weight value of 𝑡𝑎𝑠𝑘𝑣𝑗 is denoted as
𝑊𝑗 =

{

𝑐𝑤𝑗1, 𝑐𝑤𝑗2,… , 𝑐𝑤𝑗𝑚
}

, where 𝑚 ∈ (1, 2,…). The effective
weight, represented as 𝐸𝑊𝑗 and 𝐸𝑊𝑗 =

{

𝑒𝑤𝑗1, 𝑒𝑤𝑗2,… , 𝑒𝑤𝑗𝑚
}

, also
depends on 𝑚 ∈ (1, 2,…). At the beginning, current weight 𝐶𝑊𝑗 is
initialized to 0 for each term, and the effective weight 𝐸𝑊𝑗 is aligned
with the configured weight 𝑊𝑗 , as expressed by Eq. (13).

𝐸𝑊𝑗 = 𝐶𝑊𝑗 +𝑊𝑗 . (13)

When 𝑣𝑖 sends a tuple to downstream 𝑡𝑎𝑠𝑘𝑣𝑗 , we allocate the tuple
to the task with the highest 𝑒𝑤𝑗𝑘, which is determined by taking the
maximum of 𝐸𝑊𝑗 . Subsequently, the value of the effective weight 𝐸𝑊𝑗
is synchronized with the current weight 𝐶𝑊𝑗 , and the weight 𝐶𝑊𝑗𝑘 of
he selected task is updated within the current weight 𝐶𝑊𝑗 . It can be
xpressed by Eq. (14).

𝑤𝑗𝑘 = 𝑒𝑤𝑗𝑘 − 𝑆𝑢𝑚(𝑊𝑗 ), (14)

where parameter 𝑆𝑢𝑚(𝑊𝑗 ) can be calculated by Eq. (15).

𝑆𝑢𝑚(𝑊𝑗 ) =
𝑚
∑

𝑘=1
𝑤𝑗𝑘, (15)

𝑆𝑢𝑚(𝑊𝑗 ) represents the sum of configured weights of all tasks of 𝑣𝑗 .
We update the weight values 𝑐𝑤𝑗𝑘 in 𝐶𝑊𝑗 , and this updated 𝐶𝑊𝑗 is
used to select the tuple receiver from the downstream tasks during the
next iteration. The assignment iteration is considered complete when
the values of all weights in the current weight 𝐶𝑊𝑗 are reduced to 0,
as specified by Eq. (16).
𝑚
∑

𝑘=1
𝑐𝑤𝑗𝑘 = 0, 𝑚 ∈ {1, 2, 3,…} . (16)

To dynamically perceive the new load state of each task of 𝑣𝑗 , we
djust the weight of each task in the configured weight 𝑊𝑗 according to
heir current load state. First, we analyze run-time metrics, such as data
olume, input queue waiting time, and processing time. The average
uple processing rate 𝑣𝑟𝑎𝑡𝑒 measures the task load and can be calculated
y Eq. (17).

𝑟𝑎𝑡𝑒 =
𝐷𝑎𝑡𝑎𝑡
𝑇𝑢

, (17)

here 𝐷𝑎𝑡𝑎𝑡 represents the number of tuples processed within the time
rame of 𝑐𝑜𝑜𝑙𝑇 𝑖𝑚𝑒, 𝑇𝑢 is the time required for processing a tuple within
𝑜𝑜𝑙𝑇 𝑖𝑚𝑒, which includes the tuple’s input queue waiting time and
11

rocessing time. 𝑐𝑜𝑜𝑙𝑇 𝑖𝑚𝑒 is related to the start of the elastic scaling I
trategy. This process allows us to adjust the weight in 𝑊𝑗 based on
he load of each task, reducing the weights for heavily loaded tasks
nd increasing them for those with lighter load. The Stream Grouping
lgorithm is described in Algorithm 2.

Algorithm 2 Stream Grouping Algorithm
Input: task set 𝑡𝑎𝑠𝑘𝑣𝑗 of downstream vertex 𝑣𝑗 , input tuple 𝑡𝑢𝑝𝑙𝑒,

configured weight 𝑊𝑗 , cooling-down time 𝑐𝑜𝑜𝑙𝑇 𝑖𝑚𝑒 and adjustable
parameter 𝜆.

Output: 𝑡𝑎𝑟𝑔𝑒𝑡𝑇 𝑎𝑠𝑘 to receive the 𝑡𝑢𝑝𝑙𝑒
1: 𝑡𝑎𝑠𝑘𝑣𝑗 =

{

𝑡𝑎𝑠𝑘𝑗1, 𝑡𝑎𝑠𝑘𝑗2,… , 𝑡𝑎𝑠𝑘𝑗𝑚
}

, 𝑚 ∈ (1, 2,…)
2: Get a collection of weights 𝑊𝑗 for all tasks of 𝑣𝑗 .
3: if 𝑊𝑗 not exist then
4: Initialize weight 𝑊𝑗 of set 𝑡𝑎𝑠𝑘𝑣𝑗 .
5: else
6: Initialize 𝐸𝑊𝑗 by Eq. (13) .
7: Select the largest 𝑒𝑤𝑗𝑘 = 𝑀𝑎𝑥(𝐸𝑊𝑗 ) from the effective weights

𝐸𝑊𝑗 for all tasks of 𝑣𝑗 .
8: Synchronize the effective weight 𝐸𝑊𝑗 and the current weight

𝐶𝑊𝑗 for all tasks of 𝑣𝑗 .
9: Assigns 𝑡𝑢𝑝𝑙𝑒 to 𝑡𝑎𝑠𝑘𝑗𝑘 with weight 𝑐𝑤𝑗𝑘,

𝑡𝑎𝑟𝑔𝑒𝑡𝑇 𝑎𝑠𝑘 ← 𝐴𝑠𝑠𝑖𝑔𝑛𝑠(𝑐𝑤𝑗𝑘, 𝑡𝑢𝑝𝑙𝑒)
0: Calculate 𝑆𝑢𝑚(𝑊𝑗 ) by Eq. (15) .
1: Calculate 𝐶𝑊𝑗 by Eq. (16).
2: Get the cooling-down time 𝑐𝑜𝑜𝑙𝑇 𝑖𝑚𝑒 from the configuration file.
3: Get 𝑢𝑝𝑑𝑎𝑡𝑒𝑇 𝑖𝑚𝑒 since the last weight update.
4: if 𝑢𝑝𝑑𝑎𝑡𝑒𝑇 𝑖𝑚𝑒 ≥ 𝑐𝑜𝑜𝑙𝑇 𝑖𝑚𝑒 then
5: for each 𝑡𝑎𝑠𝑘𝑗𝑘 ∈ 𝑡𝑎𝑠𝑘𝑣𝑗 do
6: Get statistical processing time 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑇 𝑖𝑚𝑒, the total number

of tuple 𝐷𝑎𝑡𝑎 and the amount of time 𝑇𝑢 within the period
of 𝑐𝑜𝑜𝑙𝑇 𝑖𝑚𝑒.

7: Calculate 𝑣𝑟𝑎𝑡𝑒 by Eq. (17) .
8: end for
9: Calculate average tuple execution rate 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑣𝑟𝑎𝑡𝑒) for all

tasks in 𝑡𝑎𝑠𝑘𝑣𝑗 .
0: 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑇 𝑖𝑚𝑒 ← 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑇 𝑖𝑚𝑒)
1: for each 𝑡𝑎𝑠𝑘𝑗𝑘 ∈ 𝑡𝑎𝑠𝑘𝑣𝑗 do
2: if 𝑣𝑟𝑎𝑡𝑒[𝑡𝑎𝑠𝑘𝑗𝑘] ≥ 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑣𝑟𝑎𝑡𝑒) then
3: 𝑤𝑗𝑘 ← 𝑤𝑗𝑘∕2
4: else
5: 𝑤𝑗𝑘 ← 𝑤𝑗𝑘 + 𝜆
6: end if
7: end for
8: 𝑈𝑝𝑑𝑎𝑡𝑒(𝑊𝑗 )
9: end if
0: end if
1: return 𝑡𝑎𝑟𝑔𝑒𝑡𝑇 𝑎𝑠𝑘 to receive the 𝑡𝑢𝑝𝑙𝑒

In Algorithm 2, the inputs include the task set of the downstream
vertex 𝑣𝑗 , denoted as 𝑡𝑎𝑠𝑘𝑣𝑗 , the configured weight 𝑊𝑗 , the cooling-
down time 𝑐𝑜𝑜𝑙𝑇 𝑖𝑚𝑒, an adjustable parameter 𝜆, and the data stream
tuple 𝑡𝑢𝑝𝑙𝑒 sent from 𝑡𝑎𝑠𝑘𝑣𝑖 to 𝑡𝑎𝑠𝑘𝑣𝑗 . The output of the algorithm is
𝑎𝑟𝑔𝑒𝑡𝑇 𝑎𝑠𝑘 in 𝑡𝑎𝑠𝑘𝑣𝑗 , which represents the receiver of the 𝑡𝑢𝑝𝑙𝑒.

First, we obtain the weight 𝑊𝑗 for each task of 𝑣𝑗 . For the first run,
eight 𝑊𝑗 is set to a default value chosen by the user (Step 2 to 5).
fter obtaining the configured weight 𝑊𝑗 for the tasks, we check the
urrent load of the downstream tasks in vertex 𝑣𝑗 . The task with the
ighest weight in 𝐶𝑊𝑗 is selected to receive the tuple first. Then, the
urrent weight 𝑐𝑤𝑗𝑘 of this task and the overall weight 𝐶𝑊𝑗 of all the
ther tasks are updated (Step 6 to 11).

We then analyze the average real-time tuple processing rate 𝑣𝑟𝑎𝑡𝑒 for
ll tasks. This analysis informs the dynamic adjustment of weight 𝑊𝑗 .
f the task’s average processing rate 𝑣 is higher than the average rate
𝑟𝑎𝑡𝑒
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𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑣𝑟𝑎𝑡𝑒) for all tasks, it indicates a high-load state, and the task’s
weight is reduced. Otherwise, if the task has a lower load, its weight
is increased. To minimize frequent weight calculations and update
frequency, we introduce a cooling-down period, denoted as 𝑐𝑜𝑜𝑙𝑇 𝑖𝑚𝑒,
to reduce the update frequency. This strategy enables the system to
quickly adapt to changing data streams (Step 14 to 29).

In summary, the grouping strategy involves adjusting the allocation
of data streams to less loaded tasks in downstream operators. The
strategy allocates the adjusted data stream to the task with the lowest
real-time load for processing and updates the load status of the current
task. This helps reduce the processing strain on overloaded tasks,
improves resource utilization, and ensures a more even distribution of
tuples among downstream vertex tasks.

5.4. Elastic scaling algorithm

The elastic scaling strategy is used to identify critical nodes (ver-
tices) in real time bottlenecks. A heuristic algorithm is employed iter-
atively to calculate new parallelism for each bottleneck node (vertex).

The first step is to identify the bottleneck vertices on the critical
path 𝐺𝑣𝑖𝑛 ,𝑣𝑜𝑢𝑡 within 𝐺. Assuming that 𝑣𝑖 is a critical node on this path
𝐺𝑣𝑖𝑛 ,𝑣𝑜𝑢𝑡 , and 𝑚 is the number of tasks of 𝑣𝑖. We use the set 𝐸𝑥

(

𝑣𝑖
)

to
represent the 𝑛 available executors for the critical node 𝑣𝑖, described by
Eq. (18).

𝐸𝑥
(

𝑣𝑖
)

=
{

𝑒𝑥𝑖,1, 𝑒𝑥𝑖,2,… , 𝑒𝑥𝑖,𝑛
}

, 𝑛 ∈ (1, 2,… , 𝑚) . (18)

In this equation, 𝑒𝑥𝑖,𝑘 denotes the 𝑘th executor of 𝑣𝑖. 𝑈𝑒𝑥𝑖,𝑘 represents
the CPU utilization of executor 𝑒𝑥𝑖,𝑘, while 𝑈 (𝑣𝑖) signifies the average
CPU usage of all executors in 𝑣𝑖, which can be calculated by Eq. (19).

𝑈 (𝑣𝑖) =
1
𝑛

𝑛
∑

𝑘=1

(

𝑈𝑒𝑥𝑖,𝑘

)

. (19)

If the average CPU utilization 𝑈 (𝑣𝑖) exceeds the maximum threshold
𝑚𝑎𝑥, it indicates the processing capability of critical node 𝑣𝑖 cannot
atisfy the current input rate and is likely to result in a long waiting
ueue. At this point, 𝑣𝑖 is identified as a performance bottleneck vertex,
nd it becomes necessary to adjust its parallelism to improve processing
apacity. On the other hand, if the average CPU utilization 𝑈 (𝑣𝑖)
s lower than the minimum threshold 𝜃𝑚𝑖𝑛, the number of executors
(𝐸𝑥(𝑣𝑖)) needs adjustment for better resource utilization.
To adjust the parallelism of 𝑣𝑖, we first calculate the current bot-

leneck degree 𝑓
(

𝑣𝑖
)

based on the average input rate 𝐼𝑟𝑣𝑖 and the
rocessing rate 𝑃𝑟𝑣𝑖 of 𝑣𝑖. Then we determine the adjustment priority
or each node on the critical path based on their respective bottleneck
egrees. This is described by Eq. (20).

(

𝑣𝑖
)

=
𝑃𝑟𝑣𝑖

𝐼𝑟𝑣𝑖 + 𝑃𝑟𝑣𝑖
. (20)

The closer 𝑓
(

𝑣𝑖
)

∈ (0, 1) approaches to 0, the higher chance that the
processing rate 𝑃𝑟𝑣𝑖 of 𝑣𝑖 fails to match the input rate 𝐼𝑟𝑣𝑖 . In such cases,
we increase the number of executors 𝑁(𝐸𝑥(𝑣𝑖)) on the fly to lower the
risk of bottleneck, and vice versa.

The value of 𝑓
(

𝑣𝑖
)

indicates the adjustment priority of 𝑣𝑖. We use
Gradient Descent (𝐺𝐷) to iteratively calculate the parallelism, making
it satisfy the current input rate. The calculation is described by Eq. (21).

𝑁𝑡+1(𝐸𝑥(𝑣𝑖)) = 𝑁𝑡(𝐸𝑥(𝑣𝑖)) − 𝜉 ⋅
( 1𝑚

∑𝑚
𝑘=1 𝑃𝑟𝑡𝑎𝑠𝑘𝑖𝑘 )−𝐼𝑟𝑣𝑖

𝐼𝑟𝑣𝑖
. (21)

here, 𝑁𝑡(𝐸𝑥(𝑣𝑖)) represents the parallelism of 𝑣𝑖 at time 𝑡. Based on
urrent monitoring information, we can obtain each task’s processing
ate 𝑃𝑟𝑡𝑎𝑠𝑘𝑖𝑘 of 𝑣𝑖, followed by the average input rate 𝐼𝑟𝑣𝑖 and the
arallelism 𝑁𝑡+1 of node 𝑣𝑖 at time 𝑡 + 1. The parameter 𝜉 is used to
djust the speed of scaling. We set 𝜉 to avoid elastic scaling being too
low or too fast during the system operation period. A scaling cooling
ime (or thread sleeping time) is also set to allow the adjustment to
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r

ake effect and the monitoring module to catch the updates. The elastic
caling strategy is described in Algorithm 3.

Algorithm 3 Elastic Scaling Algorithm
Input: critical path 𝐺𝑣𝑖𝑛 ,𝑣𝑜𝑢𝑡 , max threshold 𝜃𝑚𝑎𝑥, min threshold 𝜃𝑚𝑖𝑛,

scaling cooling time 𝑠𝑐𝑎𝑙𝐶𝑜𝑜𝑙𝑇 𝑖𝑚𝑒.
Output: parallelism 𝑁𝑡 of 𝑣𝑖
1: Get 𝑢𝑇 𝑖𝑚𝑒, the time elapsed since the last parallelism 𝑁𝑡 update.
2: if 𝑢𝑇 𝑖𝑚𝑒 ≥ 𝑠𝑐𝑎𝑙𝐶𝑜𝑜𝑙𝑇 𝑖𝑚𝑒 then
3: for each 𝑣𝑖 ∈ 𝐺𝑣𝑖𝑛 ,𝑣𝑜𝑢𝑡 do
4: Get all the executors 𝐸𝑥

(

𝑣𝑖
)

.
5: Get 𝑁(𝐸𝑥(𝑣𝑖)), the size of 𝐸𝑥(𝑣𝑖).
6: Get the CPU usage 𝑈𝑒𝑥𝑖,𝑘 of all executors 𝐸𝑥

(

𝑣𝑖
)

of 𝑣𝑖.
7: 𝐸𝑥

(

𝑣𝑖
)

, get all executor of 𝑣𝑖.
8: Calculate 𝑈 (𝑣𝑖) =

1
𝑁(𝐸𝑥(𝑣𝑖))

∑𝑁(𝐸𝑥(𝑣𝑖))
𝑘=1

(

𝑈𝑒𝑥𝑖,𝑘

)

9: while 𝑈 (𝑣𝑖) > 𝜃𝑚𝑎𝑥 ∥ 𝑈 (𝑣𝑖) < 𝜃𝑚𝑖𝑛 do
0: Get the data input rate 𝐼𝑟𝑣𝑖 of 𝑣𝑖
1: Get the average processing rate 𝑃𝑟𝑣𝑖 of 𝑣𝑖
2: Calculate 𝑓

(

𝑣𝑖
)

, the bottleneck degree of 𝑣𝑖 by Eq. (20)
3: Calculate 𝑁𝑡+1, the parallelism of 𝑣𝑖 by Eq. (21)
4: 𝑁𝑢𝑚(𝑡𝑎𝑠𝑘𝑣𝑖 ), get the number of all tasks of 𝑣𝑖
5: if 𝑁𝑡+1 ≤ 0 then
6: 𝑁𝑡+1 ← 1
7: 𝐵𝑟𝑒𝑎𝑘
8: end if
9: if 𝑁𝑡+1 ≥ 𝑁𝑢𝑚(𝑡𝑎𝑠𝑘𝑣𝑖 ) then
0: 𝑁𝑡+1 ← 𝑁𝑢𝑚(𝑡𝑎𝑠𝑘𝑣𝑖 )
1: 𝐵𝑟𝑒𝑎𝑘
2: end if
3: end while
4: 𝑁𝑡 ← 𝑁𝑡+1
5: end for
6: end if
7: return 𝑁𝑡

In Algorithm 3, we use a heuristic algorithm to adjust the par-
allelism 𝑁𝑣𝑖 of node 𝑣𝑖 on the critical path 𝐺𝑣𝑖𝑛 ,𝑣𝑜𝑢𝑡 . First of all, the
average CPU usage 𝑈 (𝑣𝑖) of critical node 𝑣𝑖 is calculated by monitoring
he CPU usage 𝑈𝑒𝑥𝑖,𝑘 of each executor in the critical node 𝑣𝑖 (step

8). When the average CPU usage 𝑈 (𝑣𝑖) of 𝑣𝑖 exceeds the maximum
threshold 𝜃𝑚𝑎𝑥 or is lower than the minimum threshold 𝜃𝑚𝑖𝑛, the optimal
parallelism 𝑁𝑣𝑖 (step 9 to 13) is calculated iteratively. The threshold
parameter can be set based on the historical data analysis of the
monitoring module. The node’s parallelism is bounded between 1 and
the maximum 𝑁𝑢𝑚(𝑡𝑎𝑠𝑘𝑣𝑖 ), which corresponds to the number of tasks of
𝑣𝑖 (step 14 to 22). To avoid potential performance fluctuations brought
y frequent changes in the elastic scaling module, it is recommended
o set the scaling cooling time 𝑠𝑐𝑎𝑙𝐶𝑜𝑜𝑙𝑇 𝑖𝑚𝑒 properly, which can be
ynchronized with the ‘‘Rebalance’’ time (1 min by default).

The elastic scaling strategy involves modifying the parallelism of
pout/bolt in the critical path. This strategy iteratively adjusts the
umber of spout/bolt’s executors, evaluating spout/blot bottlenecks
ased on CPU resource utilization. This elastic strategy can improve
pout/bolt’s parallel processing capabilities of spout/bolt components.

. Performance evaluation

This section evaluates performance of Sgp-Stream and presents the
xperimental environment, large-scale data set, and the analysis of the

esults.
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Fig. 10. Application latency of WordCount under a stable input rate of 6000 tuples/s.

Table 2
Software configurations of Sgp-Stream.

Software Version

OS Ubuntu 20.04.1 64 bit
Storm Apache-Storm-2.1.0
JDK Jdk1.8 64 bit
Python Python 2.7.2
Zookeeper Zookeeper-3.4.14
Kafka Kafka-2.3.0
Redis Redis-6.0.5

6.1. Implementation and evaluation methodology

Apache Storm, the most popular distributed stream processing plat-
form, is used in our experiments. It supports scalability, fault tolerance,
and real-time data stream processing on clusters.

Our Sgp-Stream is developed on top of Apache storm 2.1.0 and
installed on Ubuntu Server 20.04.1. It is deployed on Ali Cloud comput-
ing platform. The cluster consists of 28 machines, with one designated
as master node running Storm Nimbus, two designated as Zookeeper
nodes, and the rest 25 machines working as Supervisor nodes. Each
machine is running Ubuntu 20.04.2 LTS with 2-Core, Intel(R) Xeon(R)
CPU X5650, 2.67 GHz, 2 GB Memory, and 100M bps network interface
card. All the machines in the cluster are connected. The software
configuration of Sgp-Stream is shown in Table 2.

The performance of Sgp-Stream is compared the existing state-of-
the-art optimization strategy in Apache Storm. Apache Storm’s Re-
sourceAware Scheduler(RAS) strategies are used. Partial Key Grouping
(PKG) sets up custom stream grouping strategies.
13
Fig. 11. Application latency of WordCount under fluctuating input rates.

We use real-time data streams built from large-scale Twitter data
set as data sources to access the WordCount topology. It is a typical
data stream application that counts the frequency of words in text
and consumes considerable CPU resources during execution. Different
operators in this topology have different computational complexity and
require different resources. Its logical structure is shown in Fig. 2(a).

To demonstrate the effective utilization of limited resources in
the cluster by the Sgp-Stream framework, we intentionally set each
compute node with lower hardware configurations. This enables us
to observe how the framework manages the fluctuating data stream,
while verifying that the Sgp-Stream framework, through its collabora-
tive & multi-dimensional adaptive adjustment, achieves optimal system
performance.

6.2. Application latency

Stream computing systems need to process data in real time, so the
application latency is an important metric. It must be at the acceptable
millisecond level. Usually, the lower the application latency, the higher
the real-time processing capability. We use the Storm UI to detect the
application latency, which is measured periodically (every 60 s) at
runtime. In the experiments, we use Kafka to control the data input
rate, simulating the fluctuating load in real-life scenarios.

First, we set the input rate to 6000 tuple/s. Under this rate, Sgp-
Stream has better application latency than RAS. As shown in Fig. 10,
when the data input rate is stable, the average application latency of
Sgp-Stream and of Storm in the stable phase are about 4.927 ms and
6.699 ms, respectively. Under an input rate of 6000 tuple/s, Sgp-Stream
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Fig. 12. Capacity of Bolt A under fluctuating input rates.

has a lower average latency than RAS. Meanwhile, we also conduct
comparative experiments between PKG and Sgp-Stream, and observe
that Sgp-Stream also has a lower average latency than PKG.

We then increase the input from 6000 tuple/s to the rate of 60 000
tuple/s. At this point, the parallelism is no longer suitable for the
current data input rate, resulting in the average CPU utilization of the
critical node exceeding the set threshold, so the parallelism adjustment
mechanism is triggered. After a period of adjustment, Sgp-Stream still
has lower application latency and takes less time to enter a steady state.
As shown in Fig. 11, the application latency of Sgp-Stream and of RAS
are 11.656 ms and 18.951 ms, respectively. As the input rate increases,
the system requires more resources and Sgp-Stream can adapt to the
changes of input through multi-layer coordination, therefore achieving
a lower average latency. Similarly, Sgp-Stream has a lower average
latency than PKG.

As shown in Fig. 12, when the input rate increases from 6000
tuple/s to 60 000 tuple/s at the 25th min, the capacity of Bolt A
in Word-count topology changes over time. Under the rate of 6000
tuple/s, the capacities of Bolt A in Sgp-Stream and RAS are both
in [0.01, 0.2]. However, when the input rate increases at the 25th
min, the capacities of Bolt A in Sgp-Stream and RAS are 0.35 and
0.7 respectively. As shown in Figs. 12(a) and 12(b), under different
strategies, the change trend of Bolt A’s capacity is highly similar. It
can be seen that with the increase of input rate, the capacity of Bolt
A increases suddenly, and then gradually decreases until it stabilizes.
This may be because the input rate exceeds the processing capacity
of Bolt A, causing the processing delay to increase and then plateau
as the processed tuples reach a bottleneck. When the processing delay
exceeds a certain threshold, the system discards tuples that have been
waiting for an extended period and categorizes them as failed tuples. As
a result, the number of tuples processed by Bolt A decreases, resulting
14
Fig. 13. Application latency of WordCount under the data rates of 60 000 tuples/s.

in a gradual decrease in its processing capacity. However, the elastic
scaling module can adjust the parallelism of Bolt A in time, thus the
capacity of Bolt A under Sgp-Stream is kept at [0.2, 0.4], compared to
those under RAS and PKG.

Under a steady input rate of 6000 tuple/s, Sgp-Stream has a lower
average application latency compared to the ResourceAware Scheduler
of Storm. As shown in Fig. 13, during the period of 30 min to 60 min,
the average latency of Sgp-Stream and of RAS in the stable phase are
10.352 ms and 16.140 ms, respectively, under the condition that the
required capacity of the entire topology keeps stable and satisfied. The
average latency of Sgp-Stream is lower than those of RAS and PKG
under a high and steady rate.

6.3. System throughput

System average throughput is one of the important indicators to
measure the performance of a stream computing system. It is esti-
mated based on the number of output tuples per second. The higher
the average throughput is, the better the processing performance the
system has. We use the Storm UI to retrieve the average throughput,
which is measured periodically (every 60 s) at runtime. The input rate
used in the experiments for application latency testing does not reach
the upper limit of the system throughput. To observe the effectiveness
of Sgp-Stream, we further increase the input rate to test the system
throughput.

When we change the input rate from 10 000 tuples/s to 70 000
tuples/s, the system throughput also increases accordingly. As shown
in Fig. 14, when the input rate has not changed (Bolt A is not a
bottleneck), the average throughput of Sgp-Stream and RAS are 9289
tuples/s and 7808 tuples/s, respectively. When the input rate increases
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Fig. 14. System average throughput of WordCount under different input rates.

rapidly (Bolt A becomes a bottleneck), the average throughput of Sgp-
Stream and RAS are 49 937 tuples/s and 44 135 tuples/s, respectively.
This shows that under the input rate of 10 000 tuples/s, the system is
underloaded and Sgp-Stream outperforms RAS in terms of throughput,
but the difference is not significant. However, under the input rate of
70 000 tuples/s, the system has higher load and the average throughput
of Sgp-Stream is significantly higher than those of RAS and PKG.

When the input rate is kept 70 000 tuples/s, the average throughput
of the system will gradually stabilize to a reasonable level as the time
elapses. As shown in Fig. 15, the average throughput of Sgp-Stream
and RAS from 30 to 60 min is 49 880 tuples/s and 41 814 tuples/s,
respectively. This shows that Sgp-Stream has better average system
throughput than RAS strategy and PKG strategy under a steady input
rate of 70 000 tuples/s.

6.4. Resource utilization rate

The average CPU utilization of compute nodes in the cluster is also
used as one of the indicators to measure system performance. When the
system is running stream applications, higher CPU usage in the cluster’s
compute nodes generally correlates with better performance indica-
tors. The system consumes cluster resources to process data stream.
The average CPU utilization measures whether the system effectively
uses the cluster resources. In the following experiments, we use the
‘‘top’’ command to periodically measure the average CPU utilization
of multiple heavily loaded compute nodes in the cluster.

When the input rate is set to 10 000 tuples/s, as shown in Fig. 16,
the average CPU utilization of Sgp-Stream is higher than those of RAS
and PKG during the first 25 min. When the CPU load of compute
nodes stays in [25,40], in order to better use the resources, Sgp-Stream
aggregates the load from the compute nodes with low CPU utilization
15
Fig. 15. System average throughput of WordCount under input rates of 70 000 tuples/s
within [30 min, 60 min].

into a smaller number of compute nodes without overloading them.
This ‘‘movement’’ will reduce the communication cost between nodes
and improve the average CPU utilization of the cluster. However,
RAS and PKG cannot dynamically adjust the number of workers and
parallelism configuration used in the topology, resulting in a waste of
resources and low utilization.

When the input rate is set to 70 000 tuples/s, as shown in Fig. 16,
the average CPU utilization of RAS and PKG is consistently lower than
Sgp-Stream from 30 min to 60 min. This shows that Sgp-Stream can
efficiently utilize the resources of each compute node in the cluster, and
maintain a higher average CPU utilization, which not only improves
the system performance, but also greatly improves the average CPU
utilization of the cluster.

When the input rate remains 70 000 tuples/s, the average CPU
utilization of the system gradually stabilizes to a certain level as the
time passes by. As shown in Fig. 17, Sgp-Stream stabilizes the average
CPU utilization in [75,85] between 38 min and 60 min. Compared to
the ResourceAware Scheduler strategy, Sgp-Stream makes better use of
resources of the cluster.

7. Conclusions and future work

We evaluate the impact of multiple factors on system performance
across multiple dimensions and analyze their interactions. Our analysis
suggests that better overall performance can be achieved by coordinat-
ing multiple factors at multiple levels. We further establish quantitative
models for stream applications represented by directed acyclic graphs
(DAG), multi-dimensional featured data stream, data center resources,
and latency & throughput performance.
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Fig. 16. System average CPU utilization of WordCount under different input rates.

Then, we propose a framework named Sgp-Stream by orchestrating
scheduling, grouping and parallelism. The objective of this paper is to
achieve optimal system performance by employing simple yet effective
algorithm for each level of strategy — scheduling, grouping, and par-
allelism scaling within the Sgp-Stream framework. Each strategy aims
for minimal cost while optimizing local performance, yet there is room
for improving the global optimization.

We adopt strategies for runtime-aware data stream grouping based
on smooth weighted polling, elastic adaptive scheduling based on Lin-
ear Deterministic Greedy (𝐿𝐷𝐺) and elastic scaling based on Gradient
Descent (𝐺𝐷) to handle fluctuating data streams from different levels.
Through the coordination of different levels of improvement schemes,
the system performance can continuously reach its optimal state.

Experimental results show that the performance under Sgp-Stream
is significantly better than the ResourceAware Scheduler and PKG
strategy, in terms of application latency, throughput and resource
utilization.

In the future, we will include a prediction module to predict the
change of input rate, and apply artificial intelligence algorithms such
as machine learning or deep learning to further optimize system per-
formance globally. Furthermore, we will investigate the relationship
between high capacity, input rate, and system performance. The com-
plex relationship between resource utilization and power consumption,
as well as the issue of maintaining stateful operators’ state consistency
during load redirection, will be investigated within the Sgp-Stream
framework as part of our research agenda.
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