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Abstract: The Internet of Things (IoT) has seen remarkable advancements in recent years,
leading to a paradigm shift in the digital landscape. However, these technological strides
have introduced new challenges, particularly in cybersecurity. IoT devices, inherently
connected to the internet, are susceptible to various forms of attacks. Moreover, IoT services
often handle sensitive user data, which could be exploited by malicious actors or unau-
thorized service providers. As IoT ecosystems expand, the convergence of traditional and
cloud-based systems presents unique security threats in the absence of uniform regulations.
Cloud-based IoT systems, enabled by Platform-as-a-Service (PaaS) and Infrastructure-as-
a-Service (IaaS) models, offer flexibility and scalability but also pose additional security
risks. The intricate interaction between these systems and traditional IoT devices demands
comprehensive strategies to protect data integrity and user privacy. This paper highlights
the pressing security concerns associated with the widespread adoption of IoT devices and
services. We propose viable solutions to bridge the existing security gaps while anticipating
and preparing for future challenges. This paper provides a detailed survey of the key secu-
rity challenges that IoT services are currently facing. We also suggest proactive strategies to
mitigate these risks, thereby strengthening the overall security of IoT devices and services.

Keywords: cloud; security; IoT security; IoT privacy; IaaS

1. Introduction
Imagine your morning coffee starts brewing as you wake up, your thermostats adjust

automatically based on the weather, and a notification pops up reminding you to take your
medication. The ubiquitous Internet of Things (IoT) is weaving itself into the fabric of our
daily lives, promising a seamless and convenient future. Applications range from smart
homes to AI-powered medical equipment, intelligent agriculture, and advancements in
the automotive industry [1]. Notably, IoT health monitoring systems have significantly
improved the quality of life for the elderly and disabled, with the COVID-19 outbreak
highlighting IoT’s potential in health [2]. Unlike traditional IoT, which relies on localized
processing and storage, cloud-based IoT utilizes external cloud infrastructure for scalability,
advanced analytics, and seamless device connectivity. This shift introduces unique chal-
lenges, including reliance on third-party providers, expanded attack surfaces, and privacy
risks from centralized data storage, necessitating specialized security and privacy solutions.

With every connected IoT device comes a question: are we prioritizing comfort over
security? This concern becomes even more serious as we delve into the world of cloud-
based IoT. This survey delves into the critical security and privacy risks emerging from
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the integration of IoT devices with cloud-based services, which facilitate data processing,
storage, and communication. These challenges, central to this study, highlight the need
for robust strategies to safeguard IoT systems as they increasingly depend on cloud infras-
tructure. Traditional IoT systems come with inherent limitations, particularly in terms of
memory, storage, processing, and communication capabilities. This has prompted many
cloud-based third-party service companies to offer external solutions like Amazon Web
Services (AWS) IoT and Azure IoT. These services provide a spectrum of capabilities, in-
cluding data storage, data processing, and application hosting, which can help IoT devices
collect, analyze, and act on data more effectively [3]. However, entrusting sensitive data
and device functionality to external providers introduces a new set of security challenges
apart from already existing challenges in IoT that demand immediate attention.

In Figure 1, we illustrate the comparison between traditional and cloud-based IoT sys-
tems, denoted by a dashed line. Essential components include IoT devices like temperature
sensors and smart air conditioners, a local server in traditional IoT setups, an IoT gateway,
and the cloud in cloud-based systems, all interconnected to end users through mobile
apps. The IoT system is a complex ecosystem of interconnected components that collect,
process, store, and control data from IoT devices. This interaction is fundamental to the
seamless functioning of the entire system. However, the involvement of third-party systems
introduces a new dimension to this ecosystem, one that requires careful consideration,
particularly in terms of security. For example, inadequately secure third-party systems
may lead to data leaks, compromising the integrity of the IoT ecosystem. Moreover, the
diversity of IoT components introduces additional security challenges, as each component
may possess unique vulnerabilities. Consequently, prioritizing robust security measures
becomes imperative for ensuring the resilience of IoT systems, especially since these devices
frequently interact with human users and are sometimes connected to critical infrastructure.

Figure 1. IoT cloud ecosystem model.

Cloud-based IoT has transformed our lives, making homes smarter and more con-
venient. However, as it expands into critical areas like consumer devices and transporta-
tion, addressing security vulnerabilities becomes crucial. Despite efforts by major cloud
providers like AWS, Microsoft Azure, Google Cloud, and IBM Cloud, security remains a
significant concern. This has drawn substantial attention, prompting researchers to actively
identify vulnerabilities in the existing IoT infrastructure [4–10].

For example, a hacker could exploit a vulnerability in a wearable device to access
users’ personal health data. Jin et al. [11] discovered vulnerabilities in 36 cloud-based
IoT devices, including the ’Hippokura’ medical IoT system, where an attacker could gain
unauthorized access and read conversations between patients and doctors. Additionally,
incidents where an attacker hacks into a smart car’s system to take control of the vehicle
could become common in the future. To make matters worse, an attacker can lure a vehicle
to a different location than intended using a ‘GPS deception attack’ [12].
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The integration of IoT with cloud systems involves continuous communication, mak-
ing them susceptible to adversarial attacks, eavesdropping, MITM attacks, and packet
tampering [13,14]. These security concerns are critical, especially for IoT devices in es-
sential systems like power grids, where a cyber attack could cause widespread outages.
Multiple IoT systems relying on cloud infrastructure pose significant security risks.

The rapid development of IoT systems often prioritizes cost over security, creating
exploitable vulnerabilities. Manufacturers frequently neglect device security, viewing the
cloud merely as a platform. IoT’s distributed architecture and communication complexities
pose unique security challenges [11]. Despite ongoing research, there are a lack of frame-
works to systematically categorize IoT devices for addressing security issues, hindering the
development of effective security measures.

We aim to review security issues in cloud-based IoT systems and address gaps in
the literature, motivated by the need for a targeted security approach. Unlike existing
studies [15,16] that focus on isolated IoT scenarios, this paper categorizes cloud-based IoT
into ten distinct types, each with unique challenges, and proposes tailored mitigation strate-
gies. We highlight the importance of addressing these issues amid evolving technologies
and regulatory demands. This leads to the following research questions:

• RQ1: can we comprehensively categorize the various cloud-based IoT devices based
on their specific purpose and address their existing or future security/privacy issues?

• RQ2: what mitigation approaches can be employed in each category to address the
identified security/privacy issues?

• RQ3: how can standardized verification protocols be customized to balance security
and usability across all distinct IoT categories?

In our article, Figure 2 outlines the key sections, providing an overview of the structure,
while Figure 3 provides an overview of the main content, emphasizing key challenges
and corresponding mitigation strategies. We begin with a system model to understand
security challenges, followed by blocks that examine security/privacy risks and mitigation
approaches. The final block showcases real use cases addressing these issues.

The rest of this article is structured as follows: Section 2 covers the IoT cloud ecosystem
model, literature review (Table 1), and our novel contributions. Section 3 categorizes IoT
challenges and solutions, addressing RQ1 and RQ2. In Section 4, we explore the way
forward (RQ3), culminating in our conclusions. We have included a summary table
(Table 2) at the end that consolidates the key points from each category for quick reference.

Figure 2. Article framework. This figure outlines the system model, IoT categories, security risks,
mitigations, and related use cases. The ’Use Cases’ represent real-world scenarios that illustrate the
identified security issues or demonstrate the application of proposed mitigation strategies. While
some use cases highlight cloud-based IoT systems, others showcase IoT systems transitioning toward
cloud integration, emphasizing the relevance of the cloud in their future evolution.
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Figure 3. Overview of the article, highlighting key security challenges and providing examples of
mitigation strategies.

2. Background and Related Work
This section delves into the fundamental concepts of IoT and cloud computing. We ex-

plore how these separate domains mutually benefit. However, it is noteworthy to acknowl-
edge that this integration also brings forth concerns regarding security and privacy [17].

2.1. IoT Cloud Ecosystem Model

Traditional IoT relies on localized data processing, offering better control but limited
scalability. In contrast, cloud-based IoT enables real-time analytics and high scalability
via cloud storage but introduces risks such as reliance on central storage, trust issues, and
amplified privacy concerns. While data breaches affect both systems, the aggregation of
sensitive user data in cloud-based IoT increases the attack surface, necessitating robust
trust and privacy safeguards.

IoT devices form a connected system enabling electronic devices and sensors to
communicate via the internet, enhancing daily life. Modern IoT cloud systems go beyond
traditional frameworks, supporting large-scale implementations that serve millions of users
and manage vast amounts of data from IoT devices [18]. In this context, the IoT gateway
(refer to Figure 1) connects IoT devices to the cloud, enabling local communication and
edge data processing. A key feature of cloud-based IoT systems is interoperability through
standard protocols like HTTP PUT and GET requests, allowing user access. The IoT hub is
another essential component, enabling various devices, manufacturers, and users to join
the IoT ecosystem [19].

2.1.1. IoT Systems

The concept of IoT revolves around the idea of “smartness”, enabling devices and
sensors to autonomously acquire and apply knowledge [20]. An IoT system is a network
of interconnected devices, sensors, and software that collect, exchange, and analyze data,
each presenting unique security challenges.

2.1.2. Cloud Computing in IoT

Cloud computing’s three service models—Infrastructure as a Service (IaaS, e.g., Ama-
zon Web Services), Platform as a Service (PaaS, e.g., Microsoft Azure), and Software as a
Service (SaaS, e.g., Google Apps)—benefit IoT devices based on their specific needs [21]. It
offers massive data storage, scalability, computational power, and infrastructure to support
the extensive data processing and analytics required for IoT applications [22].
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2.2. Literature Review and Surveys on IoT Security and Privacy

Research often lags behind, leaving gaps in addressing security challenges at the
intersection of IoT and cloud computing. For instance, Thakor et al. [23] highlight the
challenge of securing resource-constrained devices and proposing cryptographic solutions.
As IoT systems increasingly rely on cloud computing, recognizing the importance of cloud
integrations and their associated security risks is urgent, as shown in Table 1. However,
these studies often lack systematic categorization of IoT vulnerabilities across scenarios
like healthcare, children’s IoT, and agriculture, while offering limited insights into open
challenges and future directions in cloud-integrated IoT.

In this direction, Chen et al. [24] highlighted rising security risks with the increased
use of IoT devices and cloud computing in consumer applications. They identified vulnera-
bilities like weak passwords, unsecured communications, and poor access controls. They
recommend implementing strong security measures and educating consumers about risks
and protections.

Table 1. Comparison with recent surveys.

Publication
(Year)

IoT
Challenges

Cloud
Challenges Mitigations Use Cases

[25]
(2017)

[3]
(2017)

[1]
(2019)

[26]
(2019)

[20]
(2020)

[27]
(2020)

[28]
(2020)

[29]
(2021)

[23]
(2021)

[24]
(2021)

[30]
(2022)

[31]
(2022)

[15]
(2023)

Our survey
(2024)

Full cover: , partial cover: , not covered:

Almolhis et al. [28] highlighted new security concerns when smart homeowners’ data
are stored and processed in third-party clouds. While these studies focus on specific
domains like smart homes, they lack a unified framework for vulnerabilities or strategies
for areas like children’s and healthcare IoT. Our work fills this gap by systematically
categorizing IoT into ten types and addressing their unique challenges. Studies on smart
cities, logistics, buildings, homes, and retailing reveal inherent IoT security issues like
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interoperability, privacy, and scalability [32]. Sivaraman et al. [33] emphasized the security
challenges related to IoT systems. Similarly, Harbi et al. [26] studied the various taxonomy
of security requirements related to IoT along with their mitigation approaches. Digital
forensics is also impacted by IoT security concerns [34]. While promising solutions exist [35],
IoT-cloud integration is still emerging, bringing additional complexities and unaddressed
security challenges as more private players enter this field.

Modern IoT cloud systems consist of large-scale systems and cloud applications with
millions of users, generating vast amounts of data. Protecting these devices and the data
presents a significant challenge, especially in the absence of uniform laws and regulations
for deployment and development [11]. The marriage of IoT and cloud technology has
sparked a revolution in the production of IoT devices and increased security vulnerabilities.
The vast amount of data collected by these devices, often personal and sensitive, makes
them prime targets for cyber attacks. This study builds on previous work by proposing
a comprehensive framework that categorizes cloud-based IoT systems into ten distinct
types, addressing both systemic vulnerabilities and specific domain-related security issues.
Unlike the prior literature, we focus on underexplored IoT domains and highlight actionable
insights for mitigating risks. Given the growing complexity of these threats, a systematic
approach becomes crucial. Categorizing vulnerabilities based on their nature enables
the development of targeted defense mechanisms. Through this categorization, we can
design more effective security solutions to mitigate these risks and ensure the safety of
these devices.

2.3. Uniqueness of Our Survey

This article introduces a comprehensive classification system for IoT security vulnera-
bilities, categorizing them into ten distinct groups based on the purpose and application of
IoT devices.

Why Ten Categories of Cloud-Based IoT?
The rationale behind selecting ten categories lies in their ability to comprehensively

encompass the diversity of use cases and their unique security challenges. We derived
these categories based on an extensive review of the existing literature, current IoT applica-
tions, and the security vulnerabilities. In our study, each category showcases a significant
domain where cloud-based IoT introduces unique challenges which necessitate targeted
mitigation strategies.

We consider the following criteria for selecting these specific categories:

• Relevance to Major IoT Domains: each category is tied to major IoT domains, such
as consumer IoT, healthcare IoT, or agriculture IoT, which are widely adopted and
significant in real-world applications.

• Distinct Security Challenges: the categories were chosen to address scenarios pos-
ing specific vulnerabilities, such as centralized data breaches, malicious access, or
system disruptions.

• Diversity of Use Cases: the ten categories collectively cover a broad spectrum of IoT
use cases, ranging from critical infrastructure and healthcare to consumer devices and
smart environments.

• Scalability and Adaptability: our category classification ensures that as IoT use cases
evolve, our framework remains flexible enough to accommodate emerging domains
or new categories.

For example, consumer IoT, such as voice assistants, faces unique threats like voice
squatting attacks, where malicious user can exploit ambiguities in voice commands to
gain unauthorized access. Similarly, healthcare IoT devices, including medical devices, are
highly vulnerable to private data breaches that compromise sensitive patient information,
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posing significant risks to both privacy and safety. Meanwhile, industrial IoT, which powers
life critical infrastructure, is particularly susceptible to attacks targeting operational integrity.
This systematic approach ensures that the classification captures the most prevalent and
significant IoT domains while providing a strong framework for addressing both existing
vulnerabilities and emerging threats as the IoT landscape continues to evolve.

To address our research, we defined three key questions. The first question (RQ1)
involves categorizing IoT devices into ten distinct groups by purpose and function, as
shown in Figure 2, to identify their specific security and privacy issues. The second question
(RQ2) explores various mitigation strategies for these issues and identifies remaining
challenges that need further study. Finally, the third question (RQ3) assesses the feasibility
and effectiveness of a standardized security solution across all categories, with a focus on
finding the next best solution if a uniform approach is unworkable.

3. Categorical Study on Cloud-Based IoT, Their Security and Privacy
Challenges, Mitigation Approach, and Open Problems

This section elaborates on the security challenges associated with each of the ten
categories (RQ1) and their corresponding mitigation approaches (RQ2). Additionally, we
have dedicated a section to open problems that highlight security issues requiring future
attention and resolution. Consequently, the following section provides responses to both
RQ1 and RQ2.

3.1. Category 1: Consumer-Oriented IoT
3.1.1. Security Challenges

Consumer-oriented IoT devices, like voice assistants, enhance convenience but pose
significant security and privacy risks. A major issue is the voice squatting attack (VSA),
where devices dependent on third-party natural language processing can be compromised.
Cloud servers like Amazon and Google do not guarantee security against vulnerabilities,
allowing malicious third-party apps to access and potentially steal sensitive user data.

Precise accuracy in voice command recognition is crucial for reliable performance in
voice-based systems. Attackers may use voice synthesis or replay attacks to mimic users,
potentially accessing financial accounts [36]. Attackers may also install malicious apps on
users’ phones, increasing the risk of financial loss [37–39]. Notable speech-based IoT devices
such as Google Assistant, Apple’s Siri, and Microsoft’s Cortana are widely used, highlight-
ing the urgent need to enhance security to protect user privacy and prevent attacks.

Interoperability issues and unauthorized access are key security concerns for cloud-
based IoT. Interoperability problems arise when devices allow multiple apps to coexist, such
as Samsung SmartThings, which is vulnerable to 20 different security threats [40]. Samsung
SmartThings is an IoT device that uses Linux OS and supports ZigBee, Z-wave, and Blue-
tooth. Its frequent data transmissions make it highly susceptible to cyber attacks [7,41–43].
Footnote text removed. Attackers can exploit these channels through vulnerabilities like
unsecured data transfer protocols or MITM attacks, compromising user security and pri-
vacy [14]. These breaches allow unauthorized access to networks and remote manipulation
of devices, threatening data privacy and synchronization. Additionally, source code flaws
could give apps excessive privileges, enabling them to spy on other installed applications.
Reliance on a single-factor authentication mechanism, like a password, makes users prone
to brute-force attacks [44], where attackers can try a large number of passwords to gain
access. Sharing the same Wi-Fi network with an attacker makes it easier for them to steal
passwords and initiate unauthorized actions. Furthermore, bugs in SmartThings’s code,
varying programming styles, and the utilization of the “If This, Then That” (IFTTT) plat-
form introduce vulnerabilities and potential command injection attacks [45]. Concerns
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over the security of Wi-Fi networks are heightened by the vulnerabilities inherent in Smart-
Things systems. Notably, the trigger-action rules in the IFTTT platform can be bypassed,
conflicts can arise, and actions may be repeatedly executed, leading to denial of service
attacks (DDoS) [46]. Not confined to particular devices like SmartThings, DDoS attacks are
recognized as particularly vulnerable targets, notably emphasized by the 2016 Mirai botnet
attack, acclaimed as the most extensive of its kind in history [47]. Ensuring robust security
measures and addressing these vulnerabilities is essential to safeguard the integrity and
privacy of IoT systems utilizing SmartThings and the IFTTT platform. In addition to the
vulnerabilities discussed earlier, another significant security concern arising in this category
involves the potential for MITM. These attacks include a shared private key to encrypt a
task linked to a specific assistant, like Amazon Alexa or Google Assistant [29].

In such attacks, hackers can intercept and decrypt sensitive information exchanged
between the IoT cloud and the assistant, compromising the integrity and confidentiality
of the data. The IoT devices sharing the same network or relying on Wi-Fi are more
susceptible to MITM attacks [48,49]. Many consumer-oriented devices are vulnerable to
data leakage due to inadequate protection. This weakness raises another significant security
issue due to inadequate protection, making the device vulnerable to data extraction via
reverse engineering [50]. Essential elements such as certificates, keys, algorithms, private
authentication, and other sensitive personal human behaviors (such as motion and voice)
are often stored within this flash memory (storage device) device, making them a prime
target for malicious actors [51].

Furthermore, many IoT consumer-oriented IoT devices are susceptible to unprotected
debugging interface vulnerabilities, which can be exploited by attackers to gain unautho-
rized access and misuse [52]. Many IoT devices are often left unprotected by manufacturers
despite being intended for device debugging purposes. Intruders can access device shells to
manipulate or inject harmful commands, leading to device damage and security breaches.
Issues like data leakage and debugging further compound security concerns, particularly
in devices like smart cameras [53–56].

The persistent use of hardcoded passwords poses significant security risks in many
IoT devices, such as smart cameras. These passwords, often stored in unprotected flash
memory, are easily cracked and can only be changed by manufacturers, complicating
updates or resets if compromised. Additionally, some cloud-based IoT devices have flawed
authentication mechanisms, overly dependent on static identifiers like MAC addresses,
which can be exploited to disrupt connections between the camera and the cloud server.

The security of IoT devices is often compromised by the lack of authentication in data
transfer from devices like cameras to the cloud, enabling attackers to easily upload videos
via constructed URLs. Insecure communication protocols, such as using unencrypted
HTTP instead of HTTPS and simplistic proprietary protocols, allow attackers to intercept
communications, decode video streams, and access sensitive information like app SSIDs
and passwords for remote camera connectivity.

Another authentication-related security issue arises due to the use of fixed hash value,
which persists in many current cloud-based IoT devices including hue light bulb [57]. The
vulnerabilities in interconnected devices, which are essential components of cloud-based
IoT systems, are also contributing to the growing security concerns [58–60].

Weak authentication practices in smart home devices can lead to unauthorized access
and data breaches, especially when multiple devices are interconnected. These vulnerabili-
ties could be exploited by third-party companies to collect user data for targeted advertising
or selling purposes. Shared use of devices like smart speakers among family members
increases the risk of unintended access and privacy breaches, particularly if user data are
not deleted from cloud servers when a user stops using the device. Additionally, weak
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authentication practices heighten vulnerability to unauthorized access and enable excessive
data collection from users by cloud-based IoT devices.

Researchers have raised concerns over the amount of data these devices send to cloud
servers, often in the form of unencrypted data packets with unknown content [61,62]. This
discrepancy in data size and content raises suspicions about the devices’ communication.
Studies have shown that even with the restriction to send only a small amount of 20 KB
of encrypted data, the server can still trigger emergency notifications on the users’ app,
suggesting the data likely include private information collected without the user’s explicit
consent. For instance, researchers found excessive data collection loopholes in Nest smoke
alarms [62]. There are concerns about the device collecting potentially sensitive data beyond
intended functionality, as it captures human movements and assesses user states based
on lighting conditions. Addressing these security issues is crucial to ensure the privacy
of users and build trust in smart home technologies. We will now present some of the
available solutions in the following section.

3.1.2. Mitigation Approaches

As we acknowledge that virtual personal assistants (VPAs) are vulnerable to voice
squatting attacks (VSAs) and voice masquerading attacks (VMAs), several mitigation
approaches have been proposed. One such approach developed by Zhang et al. [38] is a
mitigation technique to address voice masquerading attacks in VPAs.

• The approach involves: (1) Phonetic analysis to detect similarly pronounced invocation
names. (2) Natural language processing (NLP) to understand user intent and context.
(3) Machine learning to identify patterns and flag suspicious activity.

• When a risk is detected, the system captures the ongoing impersonation threat and
then alerts the user in real time to prevent data breaches.

This technique strengthens VPA security and protects sensitive user data. Another
proposed solution includes the voice authentication technique [63]. This work advocates
for the use of a voice spoofing detection framework which integrates four modules for effec-
tively securing speaker verification in voice-based IoT devices. Hooda et al. [64] proposed a
systems-oriented defense against voice-based confusion attacks where an attacker exploits
ambiguities in voice commands to mislead VPAs into triggering malicious actions or skills
instead of intended ones. Termed SkillFence by the author, it is a browser extension de-
signed to thwart voice-based confusion attacks targeting voice assistants, such as Amazon
Alexa. Concurrently, researchers are actively seeking optimal solutions to address interoper-
ability challenges in IoT devices, including platforms like Samsung SmartThings. Similarly,
Chatterjee et al. [65] developed a lightweight identity-based cryptosystem employing a
physically unclonable function (PUF) suitable for IoT to enable secure authentication and
message exchange among the devices.

Nazzal et al. [66] proposed a multi-stepped categorization of SmartThings vulnera-
bilities based on the platform’s component and nature of the attack and thus proposed
relative mitigations. Consumer-oriented IoTs are particularly vulnerable to DDoS attacks,
which are currently one of the most serious virtual threats. Emerging technologies like
software-defined networking (SDN) can help mitigate DDoS attacks for IoT devices. One
of the mitigation approaches for DDoS attacks through SDN is flow filtering. The flow
filtering strategy is a straightforward approach that uses centralized control to block or
allow network traffic based on packet header information. While the use of software-
defined networking (SDN) to mitigate DDoS attacks is promising, implementing SDN in
consumer IoT devices faces scalability and cost barriers. Moreover, deploying flow filtering
or rate-limiting approaches in resource-constrained devices could lead to bottlenecks and
performance degradation.
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However, it may cause delay and bottleneck issues due to statistics gathering and
packet inspection [67–69]. The honeypot technique is another mitigation approach that cre-
ates a simulated environment to collect information about malicious traffic and can be used
with SDN to update detection and mitigation policies [70]. Security applications usually
adopt a rate-limiting approach in conjunction with deep package inspection procedures.
The idea implies that to prevent network overload caused by volumetric attacks (a massive
volume of traffic), SDN controllers can set a traffic volume limit and reject subsequent
traffic when the limit is reached, often used in combination with Deep Package Inspection
procedures for enhanced security [70].

Moving Target Defense (MTD) is another DDoS mitigation approach that involves
dynamically reconfiguring a network/system based on random values to prevent attackers
from making the system unavailable. This includes techniques such as randomizing IP
and MAC addresses to prevent DDoS attacks. However, there are concerns about the
impact on performance and cost when deploying MTD on large-scale networks [71,72].
MTD involves dynamically reconfiguring a network to prevent attackers from making it
unavailable [72] while another approach, Traceback, uses the packet header information
to identify an attacker’s origin. SDN’s control plane provides a holistic view for effective
mitigation solutions [73].

In response to security concerns, researchers have proposed several solutions to
strengthen the security of cloud-based IoT devices. One such approach is the secure IoT
structural design for smart cities proposed by Bhattacharjya et al. [74]. This design applies
to various contexts, including smart homes and the Power Internet of Things (PIoT).

• The approach leverages a three-layered security framework: (1) perception layer,
(2) network layer, (3) application layer.

• The approach employs a hybrid RSA cipher, which combines public and private key
encryption for secure and efficient data transmission, to ensure robust architectures in
IoT devices.

• Cryptographic algorithms are foundational elements of such secure design. They
provide a layer of encryption to protect data confidentiality and integrity during
communication between devices and the cloud.

Cryptographic algorithms can prevent security threats to a certain extent for smart
homes or smart cities [75]. However, there are certain technical issues with the application
of high-end security to these IoT devices due to their low computing power, limited space,
short memory, and limited battery life [76]. Thus, a lightweight encryption such as Piccolo
or PICARO [23] offers a better balance between the security and resource constraints of
IoT devices. The smart home IoT devices are heavily vulnerable to private and sensitive
data of consumers, and, in this direction, Gerber et al. developed LOKI, an interface that
enables control of a smart home using local information processing and protecting smart
home systems from hacking attacks [77].

3.1.3. Open Problems

Security solutions using SDN could mitigate common IoT issues like DDoS attacks
but face challenges due to IoT complexity and diverse attack methods. Additionally,
manufacturers often neglect regular firmware updates for IoT devices, jeopardizing the
future security of IoT and cloud ecosystems. Key concerns include the reliability of cloud
providers, inconsistent firmware updates, absence of standards, privacy risks, and complex
security strategies. Addressing these will necessitate cooperation among manufacturers,
cloud services, policymakers, and consumers.
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3.2. Category 2: Children’s IoT (Smart Toys)
3.2.1. Security Challenges

Children’s IoT devices, tailored for entertainment, development, and education, fea-
ture specialized sensors and firmware for personalized interactions with kids. These
devices are subject to stringent privacy regulations like the COPPA rule [78], which man-
dates confidentiality and security for online services aimed at children. Inadequate data
security in these devices can lead to significant privacy risks.

Insecure communication channels, weak authentications, and limited parental control
over data collection and setting further intensify these concerns. For instance, a case
study by Chu et al. [8] revealed that the hydrogen tracker, a children’s IoT device, violates
COPPA rules. Interestingly, cloud-based IoT toys are vulnerable not only to children but
to everyone in the home who owns them. The statement “Someone is watching through
Barbie’s eyes” holds enough significance to warrant sharing it with every household
member, as it highlights the vulnerability at stake [79]. These are open to eavesdropping
attacks by malicious users [80].

Ling et el. [30] concluded that data security has emerged as a growing concern regard-
ing children’s IoT. Jamming attacks are one of the prominent attacks found in entertainment-
based drones where the malicious user intentionally captures and manipulates drone data
via unauthorized transmitting channels [16]. These drones and vibrators also carry privacy
concerns, as the attacker can access sensitive information, including videos and audio
stored on cloud servers, shared by children with these toys. The hydrogen tracker, a type
of IoT device designed for monitoring a baby’s hydrogen level, exhibits security vulner-
abilities both in its cloud infrastructure and user applications [5,8,79,81,82]. The access
control mechanism between children’s IoT devices and cloud servers has vulnerabilities,
allowing attackers to intercept authentication packets. This flaw lets attackers access sen-
sitive information, such as profile images, and manipulate cloud services to retrieve user
files. The devices communicate with servers using HTTP GET and POST requests, which
has led to reported security issues, including token reuse problems in systems like the
hydrogen tracker.

For instance, in the hydrogen tracker, whenever the child drinks water, the user app
sends this information to the cloud. Here, the attacker can capture the packets containing
the authentication token and the HTTP header information and upload fake content to the
cloud. These fake data can disrupt the proper functioning of the hydrogen tracker and
potentially lead to misdiagnosis or improper treatment decisions. The URL token for the
user pictures contains 12 letters. On the cloud side, it returns the HTTP 301 response as
long as the first three letters pair with the legitimate token. However, the cloud returns
HTTP 404 for the nonexistent token. This helps to reduce the time needed to guess the
correct tokens. When combined with the two security risks, the attacker can easily use
brute force to exhaust the remaining 9 letters, and, hence, the user profile is leaked.

A significant security issue is the failure to delete expired files from the cloud, leading
to privacy breaches when new profile images remain linked to old ones. Referring to the
security issues for the children’s IoT application side, researchers primarily acknowledge
three main issues.

(1) The primary concern is the presence of third-party services integrated into the
user application, posing a substantial security vulnerability. In the case of the
hydrogen tracker, the mobile app utilizes four third-party analytics and performance
monitoring services. Although the traffic data are encrypted, it remains uncertain
whether private data are being leaked through these services.
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(2) Another concern arises from the use of plain-text APIs in applications. This lack
of data encryption during transmission to the cloud server heightens the risk of
privacy breaches, including eavesdropping.

(3) The attacker can obtain the intermediate packets exchanged between the app and
the cloud, enabling packet spoofing. Spoof packets may change the codes and cause
the app to malfunction.

The attacker can intercept packets exchanged between an app and the cloud, leading
to personal data leaks. Additionally, when network errors occur, user apps send crash
reports containing personal details like name, age, and weight to third-party IoT developers,
inadvertently exposing sensitive information. A major security flaw in many children’s IoT
devices is the persistent enabling of remote access post-release, which offers attackers a
straightforward way to exploit these vulnerabilities [83].

Furthermore, the use of plain-text API for communication between the IoT device and
the cloud significantly increases the risk of unauthorized data interception. A prevalent
security issue observed in both consumer-oriented devices and children’s IoT devices
involves the storage of fixed user data in the IoT memory card, which can be easily accessed
by malicious individuals if the card is detached. This vulnerability raises concerns about
the potential exposure of sensitive user information to unauthorized parties. Having an
active default development account in the IoT device, which grants root privileges and has
vulnerable passwords, presents a major security risk. This allows attackers to effortlessly
access sensitive information and exploit the devices’ vulnerabilities. In addition to these
existing issues, children’s IoT devices face other critical issues, including inadequate pro-
tection of the universal asynchronous receiver/transmitter (UART) interface. Commonly
used for troubleshooting, the UART’s conventional method makes it easy for attackers to
manipulate device parameters and extract sensitive information [84].

In addition to the previously mentioned security issues, many children’s IoT devices
suffer from security flaws attributed to weak authentication and the use of plain-text API.
These vulnerabilities undermine the overall security of the devices, making them more
susceptible to unauthorized access and potential data breaches. It is crucial to address these
weaknesses by implementing stronger authentication mechanisms and ensuring secure
communication protocols to protect user data and maintain the integrity of IoT systems.

3.2.2. Mitigation Approaches

Children’s IoT has the potential to collect terabytes of sensitive personal, contextual,
and usage information, which may be a subject of cybercrime. In smart toys’ hardware re-
strictions, a specific encryption and authentication mechanism is required. In this direction,
Rivera et al. [85] designed and built specific security mechanisms for the smart toys and
also validated them on the platform.

Children lack an understanding of privacy and online safety, especially in social media
and cloud environments. Rafferty et al. [86] proposed a model that somehow puts the
obligations for children’s privacy on parents or guardians and alerts them in case of any
violation. Similarly, Yankson et al. [87] presented an abstract forensics investigation frame-
work focused on using non-conventional means that allow investigators to successfully
“Plan”, “Preserve”, “Process”, and “Present” (4P) as a systematic means to conduct digital
forensic analysis.

3.2.3. Open Problems

Children’s IoT devices pose notable security and privacy risks due to young users’
lack of awareness. Many devices fail to inform parents about potential privacy breaches.
Therefore, it is essential that these IoT devices include notifications or mechanisms that
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require parental supervision for their operation. Any forthcoming IoT devices must comply
with regulations like COPPA and similar guidelines specifically designed for children’s IoT.

3.3. Category 3: Healthcare IoT and Medical Equipment
3.3.1. Security Challenges

Healthcare IoT, including wearables, implants, and remote monitoring, improves
patient outcomes, reduces costs, and personalizes care. Post-COVID-19, interest in IoT
devices, especially in healthcare, has surged. IoT healthcare solutions have proven to
significantly enhance patient care and save millions of lives. Some of the examples are
remote patient monitoring (RPM), decentralized clinical trials (DCT) [88], pulse oximeters,
glucometers [89,90], etc.

The significant shifts in IoT devices in healthcare offer staggering benefits but also
elevate the risk of cyber attacks on interconnected medical devices. Many cloud-based
medical devices transmit unencrypted data, creating vulnerabilities. Attackers could ma-
nipulate these data, disrupting treatment plans and jeopardizing patient well-being[91].
Healthcare institutions utilize a range of IoT devices for accurate patient and asset track-
ing, commonly referred to as indoor localization facilities in healthcare [6,92,93]. Indoor
localization facilities for healthcare face significant security vulnerabilities in both IoT and
cloud server environments. Two primary concerns are prevalent. First, weak password
security is common, with devices often using default, widely known passwords. Second,
there is inadequate memory protection. Many IoT devices include built-in SSH services,
compounding the risk when default passwords are not changed.

A critical security issue is the use of default passwords on devices, making them
easy targets for attackers. This vulnerability can compromise entire systems and expose
sensitive patient data. The second issue is insufficient memory protection. Devices in
public areas can be easily removed, and sensitive data on memory cards accessed. On
the cloud side, a major vulnerability exists where communication between the cloud and
server uses unencrypted plain-text APIs. Healthcare facilities transmit database credentials
every few seconds without proper protection, making them susceptible to interception over
unsecured Wi-Fi. Attackers can exploit this to access log files or disrupt device functionality
through denial-of-service attacks [6].

Moreover, cloud-based pulse oximeters and glucometers, which store health data
offline, are susceptible to hijacking attacks. In such scenarios, unauthorized access to all
offline readings becomes straightforward for hackers after obtaining user credentials [94].
Cloud-based health image IoT systems face issues with data integrity, availability, and
confidentiality due to unencrypted processing of medical image data between IoT devices
and the cloud. To address this issue, Jin et al. [11] analyzed access policies in 36 IoT devices,
which included medical equipment. The authors discovered several design deficiencies
within the access control mechanism of medical devices provided by established companies.
These deficiencies, such as overly permissive settings or a lack of proper authentication,
could allow several unauthorized users to access various sensitive health data, such as
blood pressure, age, height, and weight, for all consumers of specific medical equipment
companies, such as Biobeat and Hippokkura (used as a case study).

Many medical IoT devices are vulnerable to hardware attacks. Attackers can implant
hardware trojans during chip manufacturing, compromising device functionality and
integrity and posing risks to patient safety [95]. The U.S. Food and Drug Administration
(FDA) has expressed serious concerns about this, issuing reports indicating instances of
tampering with patients’ health data that occurred after modifying the hardware of medical
IoT devices [96,97].
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The use of drones in healthcare has surged, especially for collecting samples, delivering
medications, and supplying resources. [98]. However, this deployment of drones also brings
several vulnerability issues, such as replay, MITM, impersonation, and privileged-insider
attacks. These vulnerabilities stem from the wireless nature of communication between
deployed drones and their ground station servers. For instance, in replay attacks, the
attacker intercepts the communication between the drone and the ground station and later
replies to that communication to deceive one of the parties. Similarly, in an MITM attack,
a malicious user secretly intercepts and possibly alters the communication between two
parties without their prior knowledge. Meanwhile, privileged-insider attacks involve a
legitimate person with authorized access to an organization’s resources and information
misusing that information access for malicious purposes. These medical devices not only
enable attackers to compromise security systems but also expose patients’ health data to
the risk of being accessible to the public.

3.3.2. Mitigation Approaches

Various techniques can help mitigate security issues in medical IoT. One such approach
focusing on location privacy was proposed by Alishahi’s group [99].

• This technique utilizes multiple anonymization methods, including k-anonymity,
ℓ-diversity, t-closeness, α-anonymity, and δ-presence, to offer online location-based
healthcare services while ensuring robust protection of patient location data.

• However, there is a trade-off that this technique might produce some data obfuscation,
impacting the accuracy of exact location tracking in some cases.

• This prioritizes user privacy but might limit the precision of location-based services.
To safeguard against unauthorized access and data breaches in drone-aided medical
services, it is crucial to implement reliable authentication, access control, and key
management schemes in the IoT environment.

• These preventive measures ensure that only authorized users can access sensitive data
transmitted by drones, protecting patient privacy and sensitive information.

Additionally, incorporating Blockchain mechanisms with authentication deployment
can further enhance its robustness against various types of attacks. Blockchain technology
can assist in ensuring a transparent audit by maintaining a secure ledger [100], making
it difficult for attackers to manipulate or steal sensitive medical information. To mitigate
such issues, Bu et al. [101] proposed a robust approach, Bulwark, for guarding against
existing and potential communication-based attacks on implantable medical devices. This
secure protocol allows authorized third-party medical teams to securely access the internal
memory device (IMD) in emergencies. Bulwark can address not only MITM but potentially
other communication vulnerabilities as well.

Ma et al. [102] proposed the use of Time Modulated Arrays (TMAs) to improve
covert communication in IoT systems, offering a low-complexity alternative with enhanced
beamforming precision and timeliness, which could be particularly valuable for drone-
assisted IoT applications. Wazid et al. [98] proposed another approach that leverages a
private-Blockchain-based technology to establish secure communication in an IoT-enabled
drone-aided healthcare environment.

• This framework utilizes a secure voting mechanism to ensure the authenticity and
integrity of data transmission.

• This mechanism involves mining, verifying, and adding blocks containing medical
requirements in the P2P network, all based on the PBFT consensus algorithm.

• The security analysis performed on the proposed framework demonstrates its ability to
withstand various potential attacks. Furthermore, the framework has been practically
implemented through a Blockchain simulation.
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ML-based approaches are also one of the potential solutions for detecting attacks
on healthcare systems. ML can analyze vast datasets of network and device behavior to
identify patterns that deviate from normal functioning, potentially indicating malicious
activity. In this direction, Saeedi et al. [103] demonstrated how a decision tree algorithm
can be used to detect malicious attacks on healthcare IoT devices.

HealthGuard is a novel machine-learning-based security framework that observes
the crucial signs of different connected devices of a medical IoT and correlates the crucial
signs to understanding the changes in body functions of the patient to distinguish benign
and malicious activities. The authors have used four different (artificial neural network,
decision tree, random forest, k-nearest neighbor) ML-based detection techniques [104].

Techniques such as Blockchain and machine learning for healthcare IoT systems offer
robust solutions; however, they require high computational power and substantial storage,
which are not feasible for resource-constrained medical devices.

Beyond securing data transmission, robust security solutions are also essential to
safeguard medical IoT devices from hardware-level attacks. Srivastava et al. [105] presented
an improved method for secure data transmission between a network and storage using
lightweight cryptographic techniques, such as the ARX encryption scheme. The ring
signatures have also been introduced to the communication process, which offers significant
privacy benefits, including Signer’s Anonymity and Signature Correctness. In addition,
the same group of researchers developed GHOSTDAG, a new Blockchain protocol that
uses a directed acyclic graph to monitor the health data of patients remotely. This protocol
employs smart contract programs from Blockchain technology to facilitate the monitoring
process [106].

Security solutions for hardware attacks are specially designed to safeguard medical
IoT from hardware-level attacks such as physical tampering [107]. For instance, Wu and
colleagues introduced a “golden die” mechanism designed to identify hardware trojans
with a substantial footprint, making them easily distinguishable from the standard base con-
figuration [108]. Finally, it is worth mentioning that deep learning-based approaches have
also been implemented to enhance the security and resilience of medical IoT devices [109].
Edge computing, serving as an alternative to cloud-based systems for processing data
nearby, emerges as a promising solution for addressing the challenges posed by critical IoT
devices. Li et al. [110] proposed solutions incorporating SDN edge computing, where edge
servers authenticate medical devices before allowing them to transmit data. This approach
keeps sensitive patient data localized at edge servers, minimizing the risk associated with
long-distance data transfer.

3.3.3. Open Problems

Cloud-based medical IoT devices face significant security challenges, including inade-
quate access policies and unsecured data transmission that allow malicious interception
of sensitive medical information. While AI and Blockchain offer potential solutions, they
require substantial resources and computational power, complicating their implementa-
tion. Figuring out how to efficiently use these approaches remains an ongoing challenge
for researchers.

Moreover, the transmission of data between the cloud and IoT devices occurs in plain-
text, exposing patient data to unauthorized access and posing risks to data confidentiality,
medical operations, and patient safety.

Addressing these concerns requires continued research efforts in areas such as robust
access control mechanisms for cloud-based medical IoT services, secure communication
protocols for encrypted data transmission, and privacy-preserving data analysis techniques.
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3.4. Category 4: Industrial IoT
3.4.1. Security Challenges

Beyond the healthcare sector, security challenges are also prevalent in cloud-based
industrial IoT (IIoT). Industry 4.0, marked by advanced smart technologies, has transformed
industrial processes but increased attack surfaces. Examples include temperature and
pressure sensors. The integration of massive data from assets and sensors into cloud
servers heightens future risks [111].

Smart meters, a key IIoT technology for monitoring power consumption, face signif-
icant security challenges [112–115]. Researchers highlight two main issues: inadequate
internal hardware data protection, leading to incorrect identity information and poten-
tial energy theft [115], and unprotected hardware interfaces, allowing attackers to access
and modify memory by reactivating the debug interface. These vulnerabilities result in
economic losses and compromised data integrity.

IIoT systems face security challenges beyond vulnerabilities in industrial devices. One
major concern lies in the widespread susceptibility to DDoS attack [15,116]. In this attack,
devices are overwhelmed with a flood of traffic, making them unavailable to legitimate
users. In the IIoT context, this can have disastrous consequences. For instance, a DDoS
attack on a power plant control system could disrupt critical operations, causing blackouts
and potentially damaging sophisticated instruments [117]. Compounding these issues
are vulnerabilities within the analog components of some major IIoT devices. For exam-
ple, a temperature-based control system relies on an analog sensor to sense temperature.
Researchers have also identified security issues related to remote tempering through elec-
tromagnetic interferance [118]. The non-linear nature of sensors in these devices allows
attackers to alter the output reading, potentially disrupting critical industrial processes or
causing severe safety hazards. This vulnerability is not confined to temperature sensors,
similar security risks have been identified in various other IIoTs such as medical, laboratory,
and PID control applications [118].

Beyond vulnerabilities in industrial control systems and IIoT devices, severe security
concerns are prevalent in cloud-based video surveillance systems, extensively utilized in
both industrial and private settings as a means of crime prevention. In a study by Obermaier
et al. [53], they examined four video surveillance systems and identified multiple security
concerns, including the utilization of insecure fallback functions, weak passwords, insecure
authentication processes, and the absence of robust security standards. There are also
critical issues in video frame recognition, which has an accuracy of less than 90% in modern
cloud-based IoT devices, particularly stemming from the use of limited eigenfaces for the
principal component analysis (PCA). To improve this, a recent study using a hybrid face
detection system integrated with cloud-IoT and distributed computing exhibited better
face recognition with accuracy above 90% [119].

Finally, the Internet of Battle Things (IoBT), a novel iteration of IoT envisioned as
the battlegrounds of tomorrow, comprises interconnected multi-devices capable of com-
munication, action, and collaboration to achieve military objectives [120]. The reason for
incorporating this IoT into industrial IoT lies in the sourcing of its interconnected devices
from manufacturing sectors. These devices also possess a vulnerability in terms of secu-
rity, wherein the multitude of entry points provide avenues for attackers to infiltrate any
connected device across the network.

3.4.2. Mitigation Approaches

The implementation of robust hardware data protection in smart meters is presently a
critical necessity for crafting resilient IIoT. To address this need, in this direction, Maritsch’s
group [121] proposed a hardware-secured and transparent multi-stakeholder data exchange
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framework for Industrial IoT systems. This framework is designed to enable secure and
streamlined data sharing among various stakeholders, including manufacturers, operators,
and regulators, all the while maintaining the confidentiality and integrity of the data.

To accomplish this, the authors propose the use of hardware-based security modules,
such as Trusted Platform Modules (TPMs), as critical components to secure the data
exchange process from the local server to the remote server. TPMs can be incorporated
into IIoT devices to offer a secure means of storing and processing sensitive data, including
device identities, keys, and certificates. However, a holistic approach may also involve ad-
ditional measures, which include encryption protocols and secure communication channels
to further strengthen the data protection framework [122]. Beyond hardware-based security
solutions, other approaches have been proposed to address security challenges in IIoT
systems. Tan et al. [123] proposed a Blockchain-based Shamir’s Threshold Cryptography
(STC) scheme for data protection in IIoT systems. The scheme is designed to provide secure
and efficient data sharing among multiple IIoT devices while preserving data privacy
and confidentiality.

• The STC scheme consists of multiple IIoT devices, a trusted authority that manages
the STC keys, and a Blockchain network The IIoT devices use Shamir’s secret sharing
scheme to split their data into shares, which are then encrypted using the STC scheme
and stored on the Blockchain network.

• The trusted authority manages the keys and controls access to the data shares.

DDoS attack pose another major threat to industrial IoT. Fortunately, researchers have
proposed various novel approaches to detect and mitigate DDoS attacks in IIoT [124,125].
Performance indicators using security virtual network functions on network function
virtualization (NFV) have been recently used to mitigate DDoS attacks in IIoT [124]. In
this approach, various data sets were used with ML classifications to achieve very high
accuracy (>99 %) in mitigating DDoS attacks in IIoTs. The results indicate that ML models
implementing tree-based structures and XGBoost decision-making trees are the most
suitable for achieving higher accuracies. This model brings out that it is not the different
sizes of the networks that influence that ML, it is the fog servers.

‘FLEAM’ is another approach to mitigate DDoS attacks by federated learning [126].
FLEAM consists of a set of edge devices, a coordinator device, and a cloud server. The
edge devices collect data and use machine-learning algorithms to detect anomalous traffic
patterns, which further indicate a DDoS attack. The coordinator device aggregates the data
from the edge devices and trains a global machine-learning model using federated learning
techniques. Finally, the cloud server deploys the trained model to the edge devices, enabling
them to detect and respond to DDoS attacks in real time. Evesti’s group [127] believes
that different IoT, either smart home or smart industry, can be secured via trusted network
edge devices. A rectification attack is a type of cyber attack in which the attacker can
manipulate critical temperature-based control systems. To tackle this issue, Tu et al. [118]
proposed a prototype design of a low-cost anomaly detector for critical applications to
ensure the integrity of temperature sensor signals. Stocchero et al. [128] suggested a secure
command and control (C2) approach for IoBT by integrating the application and network
layers through the utilization of an SDN-based cybersecurity mechanism.

3.4.3. Open Problems

As the IIoT continues to evolve, emerging security and vulnerability concerns accom-
pany the introduction of new devices. In this multifaceted IIoT environment involving
multiple stakeholders, the establishment of transparent data ownership, robust access
control policies, and effective data governance practices becomes imperative. Without
these measures, there is a high chance that sensitive data might be compromised, leading
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to privacy violations. Furthermore, the efficient handling and analysis of the vast volume
of data generated by IoT devices remain persistent challenges alongside well-known issues
like interoperability. These challenges restrict the wider and long-term sustainability of
IIoT deployments.

3.5. Category 5: Smart Vehicles’ IoT
3.5.1. Security Challenges

The integration of IoT devices with advanced driver assistance systems (ADAS) in
modern vehicles enhances driving comfort but introduces significant security challenges
too [31]. Connected vehicles use vehicle-to-vehicle (V2V) and vehicle-to-internet (V2I) com-
munication, improving driving experiences through critical information exchange. How-
ever, this interconnection raises concerns about sensitive data leakage and privacy risks.

Integrating IoT with the cloud increases cyber attack vulnerabilities, especially in
life-critical systems. Hackers can steal vehicle data, take control of vehicles, infiltrate
secure sensors, affect critical functions like airbags and door locks, and even disable the
vehicle entirely.

Not limited to this, by pilfering data and deploying malicious software updates,
hackers can transmit false information to drivers, initiate DDoS attacks, reprogram ECUs
with infected software, and download inaccurate navigation maps.

These attacks are categorized as follows: data authenticity attacks, which prevent
unauthorized data alterations during cloud transmission, and availability attacks, including
denial of service and channel interference, exploiting bandwidth and power constraints to
disrupt the IoV system’s functioning [129].

• Authentication attacks on IoT vehicles (IoV) include Sybil attacks, GPS deception,
masquerading, wormhole, and replay attacks.

• In Sybil attacks, attackers create fake identities to disrupt authentication and manipu-
late data [130].

• GPS deception leads to inaccurate location data and potential property damage.
• Masquerading involves impersonating vehicle features to infiltrate the network.
• Wormhole attacks hide the true path length between malicious nodes, causing routing

errors and congestion.
• Replay attacks repetitively replay and delete messages, reducing efficiency and in-

creasing bandwidth costs.

Data injection attack in cloud-based vehicle IoT systems pose serious risks, including
loss of control, accidents, and fatalities. These attacks occur when unauthorized access
exploits outdated software, known security flaws, or insufficient cloud security. Attackers
can inject or alter data, causing malfunctions or unexpected behaviors. For example, false
sensor data can lead to misinterpretation and accidents, while altered software may cause
sudden acceleration or braking. Addressing these vulnerabilities is crucial to fully harness
the potential of IoT devices [131].

3.5.2. Mitigation Approaches

The ever-evolving landscape of security threats in the connected car market neces-
sitates continuous research and development of robust solutions. Researchers are ac-
tively exploring various avenues to combat cyber threats in next-generation autonomous
vehicles [132].

Some of these studies focus on the potential risks associated with car hacking, while
others delve into encryption methods, in-vehicle network communication modules, and
security enhancements for Electronic Control Units (ECUs). ISAC with Massive MIMO
transforms smart vehicles by enabling high-resolution sensing and reliable communication.
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Zhang et al. [133] introduced a unified tensor-based framework that efficiently estimates
channel and target parameters, addressing challenges such as Doppler shifts and beam
squint effects. This approach enhances sensing accuracy and communication reliability,
critical for applications like autonomous driving and intelligent transportation systems.

Khan et al. [134] proposed a mitigation approach like secure software development
practices, which includes the adoption of writing secure codes, reviewing, threat modeling,
and vulnerability testing. Secure boot processes and hardware-based encryption methods
can secure the hardware of automotive cars. Smart vehicles must use network security
protocols to prevent unauthorized access to the car’s communication system. Researchers
are delving into the potential of machine learning and artificial intelligence to improve
the security of smart vehicles. Zewdie and Co. [135] suggested that incorporating AI/ML
technology into IoT security can help combat emerging cyber threats. The paper proposes
several ML/AI approaches, such as predictive analysis, threat detection and response,
behavior analysis, and risk assessment, which can be used to enhance IoT security. The
authors conclude that AI/ML algorithms can enhance the security of IoT devices and the
cloud computing environment in which they operate by analyzing large amounts of data
and detecting anomalies in real time.

In addition to AI/ML, other promising technologies are also emerging to enhance
security. Blockchain-based architecture can be another solution to enhance smart vehicle
security. Smys and Wang [136] argued that as vehicles become increasingly connected and
autonomous, they become more vulnerable to cyber attacks. Therefore, they suggest that
a distributed ledger technology like Blockchain can provide a secure and tamper-proof
platform for managing data in smart vehicles.

• The proposed architecture consists of several components, including a Blockchain
network, a smart contract layer, and a data management layer.

• The Blockchain network provides a decentralized and secure platform for storing
and sharing data, while the smart contract layer enables the automated execution of
contracts between different entities in the system.

• The data management layer is responsible for managing data storage and access.
• By leveraging the Blockchain’s immutability and transparency, unauthorized data

modification becomes easily detectable, enhancing security.

Zhao et. al. [137] addressed the problem of false data injection attacks in connected
and automated vehicles, which can compromise the safety and performance of the vehicle.
The authors proposed a cloud-based sandboxing approach to detect and mitigate these
attacks. The proposed approach consists of three main components: a data acquisition
module, a cloud-based sandbox, and a detection module. The data acquisition module
collects data from the sensors and other components of the vehicle, which are then sent to
the cloud-based sandbox for analysis. The sandbox simulates the behavior of the vehicle
and analyzes the incoming data for anomalies that may indicate a false data injection attack.
The detection module then generates an alert if an attack is detected.

3.5.3. Open Problems

While Vehicle IoT (VIoT) and its corresponding security solutions are still evolving,
there remain numerous unanswered questions within this domain that demand significant
attention, especially since they may pertain to critical life-related issues. For instance,
ensuring the integrity of the data transmitted between vehicles and the cloud remains a
challenge. Additionally, the rise of sophisticated cyber attacks targeting VIoT systems raises
serious concerns about unauthorized access and vehicle control. These issues, along with
the other growing risks of personal data breaches, necessitate continued research efforts to
develop robust security solutions for cloud-based VIoT.
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3.6. Category 6: Wearable IoT
3.6.1. Security Challenges

Wearable devices like smartwatches, medical patches, fashion items, gaming gadgets,
and VR headsets are key IoT technologies, often worn close to the body and collecting
various personal data. The basic architecture of a cloud-based wearable medical IoT system
involves a patient wearing a health tracker (like an ECG monitor) that transmits data
wirelessly to a cloud service (see Figure 4). The cloud stores and manages the patient’s
health information, enabling remote monitoring.

Figure 4. Basic architecture for cloud-based wearable IoT device.

While wearable IoT devices may sometimes be classified as consumer IoT, their unique
characteristics—such as continuous data collection tied to personal physiological attributes
and their proximity to the human body—introduce distinct security challenges. These
include the risk of identity theft from lost or stolen devices, unauthorized access to biometric
data, and resource constraints that limit robust security measures. These challenges differ
significantly from those faced by general consumer IoT devices, such as interoperability
and multi-user access issues.

Unlike traditional computing systems, WIoT devices consist of a wide range of soft-
ware, hardware, and communication protocols. This diversity makes it challenging to
establish a one-size-fits-all security solution, thereby impacting the ability to ensure confi-
dentiality, availability, and integrity, collectively called the CIA triad [138] of the data and
system functions. The diverse functionalities of WIoT devices and their intricate data lifecy-
cle—collection, processing, storage, and transfer—expose consumers to significant security
and privacy risks [139]. Worn on the body, these devices continuously collect environmental
data, making them accessible to attackers. The security and privacy issues of WIoT include
three factors. The first one is device architecture, the second is network connectivity, and
the third is data collected by wearable devices [140]. The security concerns surrounding
device architecture encompass both hardware and software aspects. Due to low-resource
device features (in terms of power source, memory size, and low-bandwidth communi-
cation), it may result in severe security flaws [141]. From the software perspective, the
basic operating system used in wearable devices is highly exposed to vulnerabilities [142].
Software security vulnerabilities also stem from the limited experience of programmers
creating software for wearable IoT devices. Serious bugs in the software or applications
are rarely identified, and the involvement of multiple parties in the development and
deployment of WIoT means that no one is willing to take responsibility for these flaws.

Many IoT devices automate their functionalities, e.g., Google Glass devices. This
often exposes wearable devices to security risks. Since cloud-based WIoT devices are
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connected to the internet, they are highly exposed to traditional attacks, such as DDoS
attacks, data leakage, MITM attacks, phishing attacks that lure users into revealing sensitive
information, eavesdropping, side-channel attacks, and compromised attacks. In addition,
many WIoT devices rely on weak authentication protocols, making them susceptible to
unauthorized access and data manipulation during data transfer. The major concern related
to wearable devices is data collection, storage, and processing. Most of the wearable IoT
data include personal data that may contain sensitive information about users’ habits and
even financial information. Situations can become grave, specifically in the case of medical
IoT, which includes a medical history, particularly heart rate, blood sugar level, and even
doctor–patient conversations.

Jin et al. [11] conducted a study focusing on the security vulnerabilities of medical IoT
devices, particularly those utilizing Govee technology and Amazon cloud services. Their
findings revealed that simple modifications to the devices’ access policies significantly
compromised the confidentiality of doctor–patient communications. This vulnerability was
not isolated to Govee devices alone; the authors identified similar security and privacy
issues in a range of medical equipment, underscoring their susceptibility to cyber attacks.
This highlights the widespread nature of security risks in WIoT devices, especially those
handling sensitive medical data. Beyond the security and privacy vulnerabilities discussed
earlier, the potential for theft or loss of these WIoT devices is another serious concern.

Since these devices contain personally identifiable information (PII), losing one could
expose sensitive data to attackers, who could exploit them for identity theft. In the con-
temporary era, as the market for VR headset usage expands, privacy concerns are also
escalating at a similar rate [143]. In this direction, Adams et al. [144] conducted an inter-
view with 20 participants and concluded that to what extent the users and developers are
concerned about the data collection practices in VR headsets. According to the HP security
report [145], smartwatches face multiple security vulnerabilities such as inadequate user
authentication, absence of encryption, and insecure interfaces. Given their widespread use
in the WIoT, addressing these issues should be a top priority.

In short, some of the common security vulnerability problems with wearable
IoT devices include hardcoded password issues, code injection issues, unsecured
API issues, web application vulnerability issues, and lack of proper encryption in
communication [138] and most importantly, privacy violation issues.

3.6.2. Mitigation Approaches

Well, there is no doubt that it is a complex setting and nightmare as far as securities in
WIoT are concerned. Building security into solutions and platforms at every component
level is crucial. As discussed earlier, weak user authentication methods expose sensitive
user data to potential attackers through passive or active attacks. Fortunately, researchers
are actively working to develop solutions to address these security concerns. One such
promising approach is out-of-band biometrics authentication (OOB-BA), proposed by
Singh et al. [146].

• This method utilizes enhanced out-of-band (e-OOBA) two-factor biometric authentica-
tion to create trust relationships between users and services and protect users’ data.

• OOB-BA can provide better security and minimize information leakage, and it can be
an alternative authentication model for future wearable technology adoption.

Wearable IoT devices, including medical wearables like electronic skin patches, ECG,
monitors, watches, fit bits, etc., are vulnerable to cyber attacks.

Kavianpour et al. [147] propose an “Attack-Surface-Reduction by Design” approach
to mitigate security risks in medical WIoT. This framework consists of a pronged strategy.
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(1) Network Traffic Analysis: The ML technique is used to analyze network traffic
patterns of IoMT devices to identify anomalies that may indicate a potential cy-
ber attack.

(2) Attack Surface Reduction by Design: The authors propose a set of guidelines for
reducing the attack surface of IoMT devices. This includes hardening the devices’
firmware and software, limiting their functionality to only what is necessary, and
ensuring that only authorized users can access them.

(3) Forensics: The framework includes a forensic component to aid in the investiga-
tion of security incidents. This component uses digital forensics techniques to
gather evidence of an attack and reconstruct the sequence of events leading up to
the attack.

(4) Overall, the proposed framework aims to increase the security of networked medical
devices and reduce the risk of cyber attacks that could compromise patient safety
and privacy.

To mitigate the same issue, in case of device loss/theft, Bhatia et al. [148] proposed
a soft computing approach for mitigating real-time abuse in IoT systems by detecting
and predicting anomalies. The proposed approach uses a hybrid model that combines
an online clustering algorithm with a time-series prediction model. The online clustering
algorithm is used to identify anomalous data points in real time, while the time-series
prediction model is used to predict future values of the IoT data. Since these devices hold
sensitive data, they need a strong authentication mechanism to make them more secure.
One possible mitigation approach is continuous authentication, which is possible in the
case of skin-attached medical wearable equipment.

Zhao et al. [149] proposed a continuous authentication system based on cardiac biomet-
rics measured from wrist-worn wearables. This approach aims to address the limitations
of traditional authentication methods by using a biometric that is difficult to forge or
steal and can be watched continuously without causing inconvenience to the user. The
proposed system uses machine-learning algorithms to classify the users’ cardiac biometrics
and authenticate the user in real time. Continuous biometric authentication methods,
while effective, raise concerns about user convenience and the accuracy of measurements
under varying physical conditions. Gulhane et al. [150] introduced a novel risk assessment
framework for VR learning environments, employing attack trees to compute a risk score
for diverse threats within VRLEs.

In pursuit of striking a balance between privacy and data access, Fang et al. [151]
introduced a fine-grained privacy-preserving access control architecture (FPAS) tailored
for smartwatches. Their approach utilizes an identity-based authentication scheme
leveraging cryptography, coupled with the segmentation of data requesters based on
distinct attributes.

3.6.3. Open Problems

Wearable devices, often worn near the human body, store a wealth of user information,
including personal sensitive biomedical data, heart rate, sleep patterns, and even user
behavior. The leakage of such sensitive information represents a significant threat to user
privacy and well-being, potentially leading to identity theft or manipulation of health
records. Addressing this critical issue should be at the forefront for researchers, particularly
in developing a robust data encryption method and secure communication protocols for
wearable devices.
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3.7. Category 7: IoT in Smart Retail and Supply Chain.
3.7.1. Security Challenges

The burgeoning adoption of IoT in the retail sector, projected to reach a staggering
$94 billion by 2025, presents a new wave of security challenges [152]. As retailers start
integrating smart systems like contactless point of sale (POS), systems, mobile transactions,
or smart shelves to enhance customer experience and business agility [153,154], these
interconnected devices create a complex attack surface for malicious actors. The security
risks in the retail IoT (RIoT) are multifaceted. Data security has been the prime concern as
retailers face the rising threat of complex cyber attacks and the potential for data breaches.
Such breaches can lead to significant brand damage and customer loyalty loss [155]. Major
retail companies’ utilization of payment platforms like Apple Pay and Google Pay is
causing concerns about cyber attacks and potential financial losses. It is reported that since
2005, retailers have seen over 10,000 data breaches, mainly due to flaws and vulnerabilities
in the payment system [156].

POS systems often involve multiple components, including external hardware, soft-
ware, and cloud-based services. Security vulnerabilities in such intricate networks can
explode at any instance, and thus, it is very cumbersome to tackle RIoT security on a
device-by-device basis. Cybercriminals have numerous opportunities to exploit retail
systems, whether it is at the vendor’s source or during on-site technology deployment.
Exploiting a security issue in the software used on POS devices or the cloud server could
allow the deployment of malware or infected software. This malicious software cannot
only damage the retail system but can also steal customer financial information, leading
to significant financial loss and reputational damage to the brand of the company. While
RIoT can enhance the consumer–brand relationship through features like purchase history
tracking, customers might feel hesitant to engage in such technologies if they fear their data
are not secure. A data breach exposing customer purchase history could lead to financial
losses and erode customer trust. Unreliable code and/or software of RIoT introduces an
additional layer of security risk, as attackers can easily manipulate the code to access sensi-
tive information. The other security threat is the surveillance system of RIoT. RIoT often
utilizes customer tracking technologies, raising privacy concerns. While tracking customer
movements and purchasing habits can be beneficial for targeted marketing/advertisements,
it is crucial to prioritize user privacy by ensuring data collection security, transparency, and
compliance with regulations like general data protection regulation (GDPR) or country-
specific data protection laws [157]. We know that RIoT tracks customers’ movements and
purchasing habits deliberately, as purchasing behavior correlated with consumers’ move-
ments can reveal extremely private habits. Tracking technologies like Wi-Fi logging and
biometric imaging pose significant privacy risks, as they may create full behavioral profiles
of consumers and could be misused for targeted marketing or discriminatory pricing [158]
Ransomware attacks are also prevailing in the supply chain networks due to overlapping
security systems. Ransomware attacks on supply chains exploit interdependencies, causing
cascading disruptions that amplify financial losses and operational delays across upstream
and downstream partners. The ransom is lowest for a hub and spoke network and highest
for a line network. For example, the attack on Kojima Industries disrupted Toyota’s pro-
duction, showcasing the vulnerability of interconnected systems and the critical need for
coordinated cybersecurity strategies [159]. Supply chain attacks are adversarial attacks on
supply chain methods.

• In supply chain systems, several IoTs act as network-connected sensors that may be
part of cyber–physical systems. Hence, each IoT is being treated as a new door for
adversaries [160].
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• It is conceivable that this could lead to supply chain attacks, as the same type of attack
that caused a single disruption in production could potentially be employed to impact
and disrupt an entire supply chain simultaneously.

Retail IoT systems are also vulnerable to DDoS attacks, which can disrupt critical
systems such as POS terminals and inventory management systems. These attacks can
also result in financial losses and damage to retailers’ reputations. The short lifespan of
IoT devices introduces a significant security challenge [27]. Once these devices meet their
end-of-life and are no longer supported with security updates, they become vulnerable
to exploitation. Intruders can potentially compromise outdated devices to gain access to
sensitive data within a large supply chain, leading to confidentiality breaches, integrity, or
availability of the entire system.

3.7.2. Mitigation Approaches

The new era of finding security solutions is inclining toward machine learning, AI,
Blockchain, etc. Fog computing, ML, and AI can all play important roles in enhancing
the security of retail IoT devices and systems. Additionally, homomorphic encryption
(HE) provides an innovative solution to enhance the security of Retail IoT systems by
enabling computations on encrypted data without decrypting them. This ensures that
sensitive customer data remain secure even during processing. For instance, Fully Homo-
morphic Encryption (FHE), a robust subset of HE, allows complete arithmetic operations
on encrypted data, thereby reducing the risk of exposure to data breaches [161].

Fog computing involves processing data at the network’s edge, closer to the devices
generating the data, rather than sending all the data to the cloud for processing. This
approach can improve security by reducing the amount of sensitive data that needs to be
transmitted over the network, minimizing the potential attack surface for malicious actors.
Additionally, fog computing allows for real-time analysis of data, enabling tasks like moni-
toring devices’ behavior for anomalies, triggering alerts for suspicious activities, and even
blocking unauthorized access attempts. The rapidly evolving landscape of RIoT security
demands innovative solutions. Fog computing brings a powerful solution to enhance secu-
rity, particularly within supply chains. In this direction, Musa and Vidyasankar et al. [162]
proposed a fog computing framework that integrates edge/cloud-computing and IoT to
real-time monitoring and analysis of supply chain data. This framework also includes a
security layer to enhance the efficiency and security of BlackBerry’s sensitive information.
To address the DDoS attack in RIoT systems, Brasilino et al. [163] proposed a custom
hardware solution. The solution consists of two main components:

• A hardware module that performs the actual DDoS mitigation and,
• A software framework that orchestrates the hardware module and provides an inter-

face for configuring and managing the mitigation process.

The proposed custom hardware is designed to be placed between the IoT devices and
the network. The integration of IoT technologies into retail oil outlets (ROO) presents a mix
of opportunities and challenges. While technologies like cloud-based IoT offer numerous
advantages for streamlining operations and gathering valuable data, it also introduces
new security concerns. To address this concern, Das et al. [164] propose a model for ROO
by incorporating “data security” into the existent framework of technology, organization,
and environment within the IoT ecosystem. This model is effective in providing a holistic
approach to secure data throughput in the lifecycle of ROO operation.

To further strengthen Das’s data-centric model, Mohanta et al. [165] proposed the use
of ML, AI, and Blockchain technology as potential solutions. Specifically, these technologies
can be used for: Intrusion detection and prevention: machine learning and AI are being
used to analyze network traffic and identify anomalous behavior that may indicate a
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security breach. As discussed earlier, securing device identity is paramount. Blockchain
technology excels in creating a secure and decentralized system for authenticating IoT
devices and controlling access to sensitive data. This ensures that only authorized devices
can connect to the internet, alleviating the risk of unauthorized access. Data encryption
and privacy protection: to encrypt data and protect the privacy of sensitive information, AI
and ML are being used extensively. Threat intelligence and incident response: machine
learning and AI can analyze data security and provide real-time insights into emerging
threats, allowing for more effective incident response.

3.7.3. Open Problems

A major challenge facing RIoT security revolves around financial transactions. Many
of these transactions involving IoT devices rely on personal information stored in the cloud,
thereby introducing an additional vulnerability susceptible to potential malicious attacks.
These inherent vulnerabilities necessitate robust security measures to safeguard financial
data and transactions within the RIoT ecosystem.

3.8. Category 8: IoT in Agriculture
3.8.1. Security Challenges

In the facets of changing climate and exploding global population, smart devices are
emerging as an essential tool for precision agriculture [166,167]. However, integrating the
Agriculture Internet of Things (AIoT) and cloud computing promises enhanced crop produc-
tion through cost reduction, efficient monitoring of crops, and maintenance. It also introduces
security concerns and major cyber attacks on critical agriculture infrastructure [168–170]. The
most common examples of cloud-based IoT applications in agriculture are (1) smart sensor-
based IoT devices for monitoring crops, soil, fields, livestock, storage facilities, or generally
any necessary factor that influences agriculture production [171,172]; (2) smart IoT agriculture
vehicles, drones, autonomous robots, and actuators (e.g., DroneSeed, SenseFly, SoilCares [173]);
(3) smart greenhouse and hydroponics [174]; (4) for data analytics, data visualization, and
data management systems in agriculture; (5) predictive modeling and planning; (6) precision
agriculture using IoT [167,175].

The rapid evolution of IoT, communication technology, and digitization intro-
duces new security risks in AIoT. In agriculture, interconnected AIoT systems collect
and analyze data, creating vulnerabilities that can be exploited, leading to significant
disruption [176,177]. Mori et al. [178] have further explored these security concerns in
detail, highlighting the complexity of securing a secure environment with multiple inter-
connected IoT devices. AIoT relies on multiple interconnected sensors, so compromising
one device can create a domino effect, making others vulnerable. When interconnected
devices such as sensors are compromised, the disruptions can propagate through the entire
network, affecting water distribution, sensor readings, and automated equipment. This can
significantly hinder agricultural productivity and expose unforeseen vulnerabilities in sup-
ply chains reliant on stable operations. Data tampering is another issue where hackers can
access and alter data transmitted to weather stations or cloud servers, leading to inaccurate
analysis and poor decision-making by farmers.

AIoT security vulnerabilities manifest across all layers of the IoT framework. The first
application layer, where farmers connect with IoT devices, has a high risk of data theft [179].
The layer experiences a range of security challenges, including data theft, access control
sniffing attacks, and service interruption attacks. These threats can potentially disrupt the
delivery of IoT services to farmers [180,181]. Security vulnerabilities with AIoT have a cas-
cading effect, impacting not only IoT–farmer relationships but also retailers–stakeholders
throughout the agriculture supply chain. Attacks targeting the application layer can po-
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tentially disrupt communication and data access for all connected individuals (farmers,
retailers, stakeholders), jeopardizing trust and collaboration. The security vulnerabilities in
the AIoT framework extend beyond the application layer.

The middleware layer, acting as an intermediary between hardware and applications,
presents significant security risks, including MITM, SQL injection, signature wrapping,
cloud malware injection, and flooding attacks. These attacks compromise device data,
disrupt access control mechanisms, and may hurt the farmer’s decision-making abilities.
Thus, it is of paramount importance to explore the security of these devices, ensure process
and access control, and maintain the integrity of data analysis [182,183].

The cloud server connecting AIoT devices to the internet is a critical vulnerability
point, susceptible to phishing, access, DDoS, data transit, and routing attacks [184].

This layer is responsible for conducting communication between device-to-device,
device-to-cloud, device-to-gateway, and back-end data-sharing. A disruption at this layer
could result in the device and service becoming non-functional. Moreover, if the data
exchanged between IoT devices and the cloud are transmitted in plain-text without encryp-
tion, it can raise privacy concerns that impact both the IoT device and the farmers’ data.

3.8.2. Mitigation Approaches

Due to the complexity of the smart agriculture environment, AIoT is vulnerable to
intrusion attacks. These attacks involve unauthorized access to a farm’s IoT network, com-
promising sensitive data related to crop production, livestock monitoring, or equipment
management. ML can play a vital role in mitigating these attacks. Raghuvanshi et al. [185]
proposed an intrusion detection mechanism using machine-learning techniques, designed
to detect abnormal behavior in the smart irrigation system, which could be indicative of
a security breach. Through the utilization of machine-learning algorithms for intrusion
detection, the system can evolve to address emerging threats and enhance its accuracy
progressively. Building on this, federated learning frameworks offer a decentralized ap-
proach to training machine-learning models across multiple devices. This approach en-
ables collaborative learning for applications like disease detection and yield forecasting
while preserving sensitive agricultural data on local devices [186]. As machine learning
continues to advance, deep learning emerges as a modern tool that offers a secure and
privacy-preserving framework for smart agriculture. One such example is the Secured
Privacy-Preserving Framework (SP2F) proposed by Kumar et al. [187]. The proposed
framework is designed to protect the privacy and security of data collected by UAVs while
still allowing for efficient and effective data analysis. To address the risks posed by data
tampering, integrating anomaly detection algorithms with real-time monitoring systems
can help identify irregularities in weather or soil data. Additionally, deploying redundant
sensors and implementing cross-verification mechanisms can maintain data accuracy and
reliability, even when some systems are compromised [188].

Another approach for preserving privacy in smart agriculture involves a data aggrega-
tion scheme. Song et al. [189] proposed a scheme that uses the ElGamal Cryptosystem to
enable secure aggregation of data while protecting individual data points.

• The proposed scheme has been rigorously analyzed and designed to particularly
benefit farmers to share and analyze their combined data sets without compromising
the privacy of the sensor reading.

• This approach is capable of solving the privacy-preserving issue not only in smart
agriculture scenarios but also in the other applications of IoT.

Furthermore, Zhou et al. [190] have proposed a complementary privacy-preserving
solution, specifically designed for fog-based agricultural IoT systems.



Sensors 2025, 25, 79 27 of 45

• The scheme leverages secure multi-party computation techniques, allowing data
owners to query the maximum value within a specific range without disclosing any
sensitive information about their data to the fog nodes.

• The proposed scheme is particularly useful when analyzing aggregate data at the
fog, which can help to minimize computation and communication overhead while
ensuring data privacy [190].

While privacy preservation is crucial, another security challenge exists in smart agri-
culture, another approach involves a framework designed to detect anomalies in data
collected from various sources within a smart farming system while preserving the privacy
of sensitive data using homomorphic encryption techniques [191].

Looking beyond privacy, Kumar et al. [192] proposed a deep privacy-encoding-based
federated learning framework (PEFL) to address privacy concerns associated with feder-
ated learning in smart agriculture systems by utilizing a deep privacy-encoding mechanism.
Federated learning allows distributed training on devices, further minimizing the security
risk associated with data sharing. Minimizing the risk of cascading failures in intercon-
nected systems can be achieved through decentralized approaches, such as edge computing
and Blockchain-based coordination. These methods help contain compromised devices and
prevent disruptions from spreading across the network [193]. Anidu and Dara et al. [194]
believe that standardization could be a potential solution for interoperability and consis-
tency issues in a smart agriculture environment, whereas the Blockchain and distributed
ledger technology could help in mitigating data integrity and data confidentiality issues
and thus making the data storage system more secure than before.

Security monitoring is crucial to ensure the safety of smart farming. Modern technol-
ogy can avail better security solutions for vulnerabilities within AIoT. One such example is
the cloud-based security monitoring framework proposed by Chaganti et al. [195]. This
framework effectively monitors device status and sensor data for anomalies, potentially
identifying unauthorized access or other security breaches. Additionally, it utilizes a
Blockchain-based smart contract application to securely store information about identified
security anomalies. This allows for proactive mitigation for other similar attacks targeting
other farms within the network.

3.8.3. Open Problems

AIoT devices are often resource-constrained, with limitations in processing power,
memory, and battery life. These constraints make it challenging to implement robust secu-
rity measures, leaving them widely vulnerable to unauthorized access and data breaches.
These vulnerabilities could compromise sensitive agricultural information like crop yields,
weather data, and farm operations. Human factors such as negligence, weak passwords, or
poor security practices by farm personnel further complicate security issues. To effectively
secure AIoT devices, lightweight security protocols specifically designed for resource-
constrained devices are crucial. While designing these protocols, care must be taken to
balance the need for strong security while still preserving the user-friendly experience for
farmers, considering the inherent device limitations.

3.9. Category 9: IoT in Smart Grids
3.9.1. Security Challenges

As demand for sustainable energy grows, smart grid technologies are attracting
attention for their efficient energy distribution, improved grid reliability, and integration
of renewable sources [196]. Some examples of IoT in smart grids include smart switches,
smart metering systems [197], smart thermostats [198], smart batteries [199], etc. Smart
grid IoT devices, which are used to monitor, control, and optimize the distribution of
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energy across the power grid, are increasingly being integrated with cloud-based services
to enable remote management and analysis. While cloud-based smart grid systems offer
numerous benefits, they also pose several security risks that need to be addressed. Some of
the security issues that arise in cloud-based smart grid IoT devices are data privacy issues,
malware attacks issue, DDoS attacks, standardization, transparency issues, etc.

Smart grid systems generate huge amounts of sensitive and private data, including
customer personal information, energy usage patterns, and grid performance data which
are vulnerable to leaks. These data need to be protected from unauthorized access, theft,
or misuse [200]. One particular security threat in the smart grid is a false data injection
attack. In this attack, the attacker injects false or malicious data into the system to disrupt
its operation or steal information. In a smart grid, IoT devices are used to monitor and
control the flow of electricity, and attackers can exploit vulnerabilities in these devices to
inject false data. These false data can then cause the smart grid to malfunction or behave
in unexpected ways, potentially leading to power outages or other disruptions. These are
just some concerning examples of the security risks associated with cloud-based smart
grids. Addressing these issues is crucial for ensuring the reliable and secure operation of
the smart grid system.

Another security threat to the smart grid is a DDoS attack. Various types of DDoS
attacks can be directed at different components of the smart grid, including meters, com-
munication networks, and control systems. Successful DDoS attacks on the smart grid
infrastructure can have severe consequences, potentially resulting in power outages, data
loss, and financial damages [201]. Cloud-based smart grid systems are susceptible to
various cyber attacks that can disrupt operations or compromise sensitive data. Mali-
cious software malware and DDoS are major concerns for this category. Malware can
be introduced through compromised IoT devices or phishing attacks on cloud service
providers [202]. DDoS attacks can be used by attackers to overload cloud-based smart grid
systems, leading to system crashes or unavailability. This can lead to disruptions in energy
distribution and other critical services [203].

Additional challenges exist beyond cyber attacks and DDoS attacks. Insider threats
can arise if unauthorized personnel misuse this private information for personal gain,
potentially engaging in illegal activities [204].

A lack of standardization in cloud-based smart grid systems can create vulnerabilities,
as different vendors may have different security protocols or use different data formats that
may not be compatible with each other. Lack of transparency in cloud-based smart grid
systems poses other vulnerabilities, as users may not have full visibility into the data being
collected, processed, or shared. Smart batteries are also prone to unauthorized access to
battery data and control systems. The attackers can exploit vulnerabilities in the battery’s
software and hardware and could gain access to sensitive information. This could possibly
result in battery failure, data theft, or other security issues. The smart grid collects a large
amount of data from consumers, which can include sensitive information such as energy
consumption patterns and personal preferences. Attackers can exploit these data further to
breach consumers’ privacy.

3.9.2. Mitigation Approaches

The security of the smart grid necessitates a multi-layered approach that addresses vul-
nerabilities across cloud-based systems and individual components. Robust authentication
mechanisms, data encryption, and intrusion detection systems can enhance cloud security.
The integration of post-quantum cryptography (PQC) to secure the smart grids can be a
future-proof solution. With quantum computing poised to undermine traditional crypto-
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graphic methods, PQC algorithms—resilient to quantum attacks—ensure the long-term
security of communications and data within smart grid infrastructures [205].

Regular security audits, employee training, and incident response plans are also
important to ensure the security of these systems. To mitigate these security concerns,
manufacturers of smart batteries should implement strong encryption and authentication
measures to protect data and communication channels. They should also incorporate
tamper-evident features to prevent physical attacks on the battery. Moreover, routine
firmware updates can help mitigate numerous security vulnerabilities and enhance the
security of both the battery’s software and hardware.

Security vulnerabilities in the smart grid can be life-threatening, leading to a loss
of critical services, physical damage to infrastructure, and potential safety hazards for
individuals. Early detection and mitigation are of the utmost importance, as vulnerabilities
can disrupt critical services, damage infrastructure, and pose potential safety hazards.
Researchers are exploring various approaches to mitigate these risks. For instance, Yılmaz
and Uludag [206] proposed a framework for anomaly detection and attack recognition
that leverages data from various sources, including IoT devices, network traffic, and system
logs. The mitigation and response mechanism involves isolating the affected devices and
shutting down the affected systems to prevent further damage. To address the cybersecurity
issue in smart grids, Muyeen’s group [207] suggested the use of machine learning to tackle
the issue. They acknowledged that machine learning can be used for cybersecurity in
smart grids, including intrusion detection, threat intelligence, anomaly detection, and risk
assessment.

The smart grid is vulnerable to both faults and cyber attacks, and a comprehensive
security scheme is necessary to ensure the reliable and secure operation of the grid. There
should be multi-layer security to mitigate vulnerabilities in the smart grid against faults
and cyber attacks. Chen et al. [208] proposed a three-layer security scheme that includes
the physical layer, network layer, and application layer security. A distributed trust man-
agement system (DTMS) can be used to mitigate false data injection attacks (FDAs). FDAs
inject malicious data that can evade traditional detection methods, thereby threatening
grid reliability and causing major operational challenges [209] The DTMS consists of a
set of trust nodes that are responsible for verifying the data received from the sensors
and measurement devices of the smart grid. The trust nodes use a distributed consensus
algorithm to reach a consensus on the correctness of the data [210]. However, DTMS has
limitations, including the requirement for extensive collaboration among stakeholders,
which may not always be feasible.

To address the privacy breach, the smart generative adversarial network (GAN) can
be used to obfuscate consumer data. GAN generates synthetic data that are similar to real
data but do not reveal the consumers’ actual information. The synthetic data are then used
for analysis and decision-making, while the real data are obfuscated to protect the privacy
of the consumers [211]. To mitigate cyber and physical attacks, big data and AI technologies
can be used to analyze and predict the security risks in the smart grid. To mitigate DDoS
attacks in smart grids, various techniques like intrusion detection systems, firewalls, and
load balancing mechanisms can be used. One such approach has been proposed by Chehri
et al. [212], a framework that consists of four phases: data collection, data preprocessing,
risk modeling, and risk evaluation. In the risk modeling phase of the four phases, diverse
AI techniques like machine learning and deep learning are employed to model security
risks within the smart grid.
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3.9.3. Open Problems

The global shift to smart grids offers significant benefits in energy integration and
management, as seen in Germany’s IoT-enabled grid optimizing renewable energy. How-
ever, this transition introduces security risks. As many capitals aim for IoT-based smart
grids to achieve net-zero goals by 2050, the increase in devices heightens security concerns.

Key future challenges include developing robust security frameworks, ensuring data
integrity and privacy, and establishing standardized protocols for smart grid technologies.

3.10. Category 10: Cloud-Based IoT in Aviation
3.10.1. Security Challenges

Cloud-based IoT solutions are transforming aviation by streamlining data collection,
processing, and analysis in the industry. Some of the key applications of cloud-based
aviation IoT are Smart Airport [213], predictive maintenance [214], improving customer
satisfaction [215], safety management [216], improving the overall performance by reducing
emissions [217], luggage management [218], in-flight entertainment systems [219,220], etc.
In addressing security challenges within this category, data security emerges as a foremost
concern. Given that cloud-based Aviation IoT systems extensively depend on data collection
and transmission, safeguarding the integrity and confidentiality of these data is of prime
concern. Any data breach has the potential to result in harm to aircraft, passengers, and the
airline’s reputation [221].

A recent study by Aboti [222] discusses escalating security challenges and threats faced
by smart airports due to the integration of IIoT and the increased use of smart devices. The
integration has opened doors for vulnerabilities like malware, cyber attacks, and insider
threats. The authors emphasize the importance of implementing robust cybersecurity
governance in smart airports to protect against cyber threats and enhance operational
practice. Cho et al. [223] provided a case study highlighting the importance of cybersecurity
in commercial aviation. The main security issue discussed by Ukwandu et al. [224] is
the vulnerability of aviation infrastructure to cyber attacks, particularly from Advanced
Persistent Threat (APT) groups that operate in collaboration with a particular state actor to
steal intellectual property and intelligence to advance their domestic aerospace capabilities
as well as monitor, infiltrate, and subvert other sovereign nations’ capabilities.

Lazaro’s group [225] conducted a study by combining interviews with airport security
personnel and a survey of airport users to gather data on the cyber security risks and vul-
nerabilities of Spanish airports. The study identified several cyber security risks, including
inadequate user authentication measures, vulnerabilities in airport software systems, and
the use of insecure communication channels. In the context of aviation cyber security, the
use of Electronic Flight Bags (EFBs) adds a layer of risk, as unauthorized access to EFB
servers could potentially compromise the safety and security of aircraft operations.

Hackers exploit vulnerabilities in the remote desktop protocol or use phishing attacks
to steal login credentials and gain unauthorized access to aviation IoT systems. This
unauthorized access can lead to a variety of negative consequences, such as stealing
sensitive data, causing equipment malfunctions, and compromising the safety of passengers
and crew. Considering the significant volume of data collected by IoT devices in the aviation
industry, ensuring the privacy and confidentiality of these data becomes a major concern.
Additionally, the complex environment of connected IoT devices in aviation increases
vulnerability to cybersecurity threats. In the worst scenario, hackers might manipulate or
disable critical equipment, leading to malfunction and potential hazards. Overall, robust
security measures must be implemented to mitigate these risks and protect the aviation
sector from potential cyber attacks.
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3.10.2. Mitigation Approaches

The aviation industry is facing a growing challenge from cyber attacks. To counter
this challenge, researchers are exploring several approaches. One such approach has
been proposed by Sam Adhikar [226] that leverages 5G and intelligent cyber defense
mechanisms to enhance the security of aviation systems, focusing on high-speed data
transfer and advanced threat detection.

Airports have robust security measures, such as the use of encryption technologies,
regular security audits, and employee training programs. Moreover, Blockchain-based
decentralized identity management systems can significantly enhance authentication
mechanisms. It will enhance authentication in aviation IoT by decentralizing identity
repositories, reducing single points of failure, and strengthening security through improved
transparency and traceability [227].

In a study, Belkens’s group’s suggested approach consists of three main components

(1) A 5G-enabled communication network that provides high-speed, low-latency
connectivity between aviation systems and enables real-time threat detection
and response;

(2) An intelligent cyber defense system that uses AI and ML algorithms to detect and
mitigate cyber threats in real time; and

(3) A set of best practices and guidelines for the implementation and operation of the
cybersecurity framework [224].

In another measure, Lazaro et al. [225] recommended that a proactive and collaborative
approach to cybersecurity is essential to guarantee the safety and security of Spanish
airports and the well-being of passengers. In another study, Zkik et al. [228] proposed a
secure and reliable model for the traceability of records in the airline supply chain using
Blockchain and machine-learning technologies. The model is designed to enhance the
efficiency and security of the supply chain by providing real-time tracking and monitoring
of records related to cargo and other goods. ML and AI could be better alternatives to
finding solutions for security attacks caused by electronic flight bags.

Bitton et al. [229] proposed a system that utilizes a combination of feature engineering
and machine-learning algorithms to detect and classify intrusions in real time. The study
focuses specifically on securing remote desktop connections, which are a common attack
vector for cybercriminals seeking to gain unauthorized access to EFB servers. In addition
to the general security measures, specific security measures need to be taken for IoT
devices in the aviation sector. Such measures encompass adopting secure communication
protocols, enforcing robust authentication and access control, conducting routine security
audits, maintaining up-to-date firmware, and encrypting sensitive data. Through the
implementation of these security measures, the aviation sector can mitigate risks linked
with IoT devices, thereby guaranteeing the safe and secure integration of this technology.

3.10.3. Open Problems

Despite advancements in security, aviation IoT continues to face significant challenges,
including data security risks like passenger data breaches and vulnerabilities to cyber
threats such as malware and phishing attacks. Malware can compromise, steal data,
and disrupt operations, while phishing can deceive passengers into revealing sensitive
information, leading to financial losses. These issues threaten system integrity and pose
substantial risks. To enhance the safety and security of aviation IoT systems, implementing
robust security measures like encryption, access control, regular audits, and comprehensive
employee training on cyber threats is essential.
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4. The Way Forward: In Search of Uniform Solutions for All Security
Challenges

The rapid growth of IoT devices highlights the urgent need for global cybersecurity
measures. Consequently, 2024 emerges as a pivotal juncture prompting governments to
scrutinize advancements in laws and regulations [230]. To accomplish this goal, numerous
nations have developed distinct regulatory standards aimed at enhancing the security of IoT.
For instance, the European Union introduced the Cybersecurity Act and Cyber Resilience
Act to bolster cybersecurity throughout the EU, complementing existing legislation such
as the GDPR and the Network and Information Security Directive [230,231]. Likewise, in
the United States, IoT regulatory standards encompass the Federal Trade Commission Act,
the Cybersecurity Information Sharing Act, and COPPA [231]. Other countries are also
subject to their own nation-specific laws, with some currently in the process of formulating
regulations. Despite the nation-specific IoT regulations, there is a universal desire for a
standardized security solution along with some similar ongoing work [232]. Addressing the
myriad of security and privacy challenges in cloud-based IoT and creating a one-size-fits-all
security solution for the diverse security and privacy challenges in cloud-based IoT is a
complex task (RQ3). Various ongoing industrial collaborations are underway to achieve this
goal [233]. Thus, the solution to RQ3 is feasible but remains a challenging task to implement
across all categories of IoT. The rationale behind this lies in the distinct characteristics of
each category of traditional and cloud-based IoT devices. For instance, consumer-oriented
devices can easily scale up to accommodate more hardware resources, while medical
wearable devices must remain compact and portable. Consequently, security solutions
must be tailored to the specific features of each category. In our section on mitigation
approaches, we delve into potential solutions, recognizing the need for category-specific
security measures. Nonetheless, we put forth an optimal approach aimed at mitigating the
security issue to a certain extent. In the realm of IoT devices intended for consumer use, a
complex ecosystem involving multiple third parties is typically at play, which can generally
be categorized into three levels: the manufacturer (responsible for hardware components
like sensors, memory cards, etc.), third-party services (involving tasks such as device code
development, natural language processing, etc), and cloud services (facilitating internet
connectivity, communication with end-users, etc.). We advocate for the implementation
of a multi-level protocol verification framework tailored for IoT, emphasizing rigorous
security checks across manufacturing, third-party services, and cloud service levels. This
approach ensures a structured and consistent security evaluation process. To cater to
IoT categories with higher resource constraints, such as medical wearables or AIoT, we
propose integrating adaptive verification systems driven by machine learning. These
systems can dynamically adjust security measures based on real-time device usage patterns,
enabling scalable and efficient implementation. For large-scale IoT ecosystems, AI-driven
modular verification systems can adapt security protocols based on device complexity. For
instance, consumer-oriented IoT devices may rely on more scalable solutions like cloud-
based security checks, while life-critical IoT devices, such as healthcare IoT or autonomous
vehicles, would require more intensive localized verifications to ensure real-time safety
and data integrity. Additionally, incentivizing manufacturers and cloud providers to
adopt these frameworks through compliance rewards or certifications could accelerate
adoption. Hence, we believe this standardized verification mechanism has the potential
to be a significant milestone in addressing security concerns, particularly in the context of
life-critical IoT devices.



Sensors 2025, 25, 79 33 of 45

5. Limitations
Although this paper categorizes cloud-based IoT into ten distinct types, we recognize

that the field is continuously evolving, and additional categories or hybrid domains may
emerge over time. To address this dynamic nature, the proposed framework is intentionally
designed to be flexible and adaptable, providing a robust foundation for future research
and development in enhancing the security of cloud-based IoT systems.

6. Conclusions
This paper introduces a novel method to analyze IoT security by categorizing devices

into ten distinct areas, each with unique challenges (as shown in Table 2). The goal is to
identify and address the security issues of each category and explore existing solutions,
highlighting areas for future research when solutions are lacking. This study also notes
that some IoT devices may not rely on cloud computing and possess their own security
challenges, which are expected to increase as they integrate more with cloud services. This
paper discusses the added risks, such as data breaches and DDoS attacks from cloud inte-
gration, especially for resource-limited devices like wearables, emphasizing the importance
of proactive security measures in IoT design and deployment. Additionally, the possibility
of implementing standardized security solutions across all categories is explored to enhance
overall IoT security and protect user data.

Table 2. Short summary table for each category.

Category Issues Mitigations Use Cases Ref.

Consumer-oriented IoT

VSA, third-party criticality,
interoperability issue,

MITM, DDoS attack, flash
memory issue, data
leakages, debugging

interface issue,
hardcoded-password

issue, authentication issue,
data collection issue.

SkillFence, cryptosystem,
SDN, flow filtering,

honeypot technique, rate
limiting approach, MTD,

Traceback, LOKI.

Amazon’s Alexa, Google
Assistant, Samsung’s

SmartThings, web
camera*, Nest smoke

alarm.

[7,14,23,29,36–77]

Children’s IoT

Eavesdropping issue,
camera privacy issue,

weak encryption, access
control issue, POST tokens

issue, jamming attack,
plain-text API issue,

personal information leak,
authentication bypass
issues, direct browsing

issue, privilege escalation
problem, backdoor

credential leaks, remote
cell access issue, unlock

protected passwords issue,
UART issue,

authentication issue,
DDoS attack.

Built-in security
mechanism.

Hydrogen tracker, smart
robots*, smart dolls*, hello

barbie doll, BB8, baby
application monitor.

[5,8,16,30,78–87]

Healthcare IoT

Encryption issues,
dictionary attacks for

passwords, weak
passwords, memory card

issues, plaint-text API
issues, DDoS attacks, data

integrity, data
confidentiality, data

availability issues, replay,
MITM, impersonation,
and privileged-insider

attacks.

Anonymization
techniques, Blockchain
mechanisms, bulwark,
decision tree algorithm,
ML-based healthGuard,

cryptographic techniques,
GHOSTDAG, deep
learning concepts.

HRPM*, pulse oximeter*,
DCT*, glucometers*, fire

safety and security
monitoring, indoor

localization for healthcare
facilities.

[6,11,88–90,92–101,103–
110]
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Table 2. Cont.

Category Issues Mitigations Use Cases Ref.

Industrial IoT

Insufficient industrial
hardware data protection,
hardware memory dump,

unprotected hardware
interface, analog signal
processing issue, DDoS,
and device infiltration.

TPMs, STC scheme, VFNs,
FLEAM.

Temperature/pressure
sensors*, proximity server,

smart meter,
temperature-based control

system*, cloud-based
video surveillance

systems.

[15,53,111–128]

Smart Vehicle

Privacy threat, data
authenticity attack,

availability attack, Sybil
attack, GPS deception
attack, authentication
attack, masquerading

attack, wormhole attack,
replay attack, data

injection attack.

Secure software
development practice,
secure boot processes,

hardware-based
encryption methods, AI

and ML, Blockchain-based
architecture, and

cloud-based sandboxing
approach.

Smart vehicles. [31,129–132,134–137,234]

Wearable IoT

CIA triad, DDoS attacks,
data leakage, MITM

attacks, phishing attacks,
eavesdropping,

side-channel attacks,
compromised attacks,

personal information leaks
in case of theft, hardcoded

password issues, code
injection issues, unsecured

API issues, web
application vulnerability

issues, and lack of
encryption in

communication.

Out-of-band biometrics
authentication (OOB BA),
attack-Surface Reduction

by Design, soft computing
approach, continuous
authentication, attack

trees, FPAS.

Smart cloths*, smart
wrist-wear, smart jewelry,
smart foot wear*, smart

eye wear, sensor patches*,
medical wearable devices.

[11,138–151]

Smart Retail
Cyber breach, personal

behavior breach, financial
information leaking.

ML, AI, and Blockchain.
Fog computing, cloud

computing, custom
hardware solutions, edge

computing.

Contactless POS system,
mobile transactions, or

smart shelves*, IoT-based
fruits and vegetable sales

system*.

[27,152–157,159,160,162–
165]

Agriculture IoT

Sensor hacked, data theft,
access control sniffing

attacks and service
interrupt attacks, MITM,

SQL injection attacks,
signature wrapping

attacks, cloud malware
injection attacks, flooding
attacks, phishing attacks,

access attacks, DDoS
attacks, data transit
attacks, and routing

attacks.

Intrusion detection
mechanism using ML,

data aggregation scheme,
SP2F, multi-party

computation techniques,
homomorphic encryption

technique, FPDP PEFL.

Ag vehicles, concept cars*,
drones, smart sprinklers,
lights, coolers, heaters*,

DroneSeed, SenseFly
SoilCares, moisture

sensor*, allMETEO, Smart
Elements, Pycno, CropX,

Mothive,
FarmappGrowlink,

GreenIQ, Arable, Semios,
SCR and Cowlar, attitude

model.

[166–185,187,189–
192,194,195]

Smart Grid

Data privacy issues,
malware attacks issue,

DDos attacks,
standardization issues,

transparency issues, false
data injection attacks,
unauthorized access,

insider threats.

Strong authentication
mechanisms, data

encryption, intrusion
detection systems, regular
security audits, employee
training, incident response
plans, anomaly detection

and attack recognition,
DTMS, GAN, big data and
AI technologies, firewalls,

and load balancing
mechanisms.

Smart switches and
sensors*, smart metering
systems, smart inverters,

grid sensors*, smart
thermostats, smart

batteries.

[196–204,206–208,210–
212]
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Table 2. Cont.

Category Issues Mitigations Use Cases Ref.

Aviation IoT

Data security, malware,
cyber attacks, inadequate

user authentication,
insider threats,

vulnerabilities in airport
software systems, insecure
communication channels,

unauthorized access to
EFB servers, equipment

malfunctions, and
compromising the safety
of passengers and crew.

AI, Blockchain, data
encryption, regular

security audits, employee
training programs, feature
engineering, ML, secure

communication protocols,
strong authentication, and
access control measures.

Predictive maintenance,
monitoring aircraft
performance and

optimization operations,
smart baggage, smart

airport, safety
management*, flyers

experience, and in-flight
entertainment system.

[213–226,228,229]

Penultimately, we envision an ideal world where responsible citizens take proactive
measures to safeguard their digital lives. By actively updating device passwords and
firmware and limiting the sharing of private data, individuals play a pivotal role in address-
ing security and privacy concerns. This collective effort towards adopting best practices
empowers us to create a safer and more secure digital environment for all.
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