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The rise of Internet of Things (IoT) applications has led to massive data generation. However, dealing with such massive
data is challenging. Nowadays, data pipelines are popular mechanisms used to properly deal with data operations at scale in
the IoT continuum. Serverless data pipelines (SDP) are one such approach to performing event-driven data analysis on data
streams. Data pipelines are composed of many components, and scaling the entire pipeline without leaving any bottlenecks is
challenging. This study aims to assess the performance of scaling mechanisms in handling stochastic workloads efficiently
and understanding critical resource utilization in fog environments. We applied workload-based techniques (Request per
Second, Queue Length, Message Rate) and resource-based scaling (CPU) on SDP components of two IoT applications: Aeneas
(long-running functions) and PuhatuMonitoring (short-running functions). Using Azure serverless workload patterns, we
compared scaling approaches in real-time fog environments, evaluating QoS metrics like processing time and CPU utilization.
Our analysis of suitability, using the weighted average scoring method on two QoS metrics, revealed that for compute-intensive
tasks, the resource-based scaling approach works effectively for jump, steady, spike, and fluctuation workloads. For short
execution time tasks, workload-based scaling suits all four workloads.

CCS Concepts: • General and reference→Evaluation; • Computer systems organization→Distributed architectures,
Self-organizing autonomic computing; • Computing methodologies → Distributed computing methodologies;

Additional Key Words and Phrases: serverless computing, data pipeline, auto scaling, fog computing, edge computing

1 INTRODUCTION
The widespread use of IoT is enabled by the deployment of thousands of sensors that generate a huge amount of
raw data. Artificial intelligence and machine learning techniques are used to gain insights from the data and
generate the corresponding actions. This data analysis process involves several activities such as data extraction,
transformation, filtering, loading, feature preparation, selection, and training [1]. Currently, data pipelines are
widely used, which simplifies the design and deployment of such data processing activities.
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Data pipelines (DP) are workflows with a series of data processing components [2], where the output of
one component is an input to another component, and the data is moved and processed in a pipeline manner.
Creating and configuring such data pipelines for IoT data analysis brings several benefits, such as accountability
and guaranteed delivery [3–5]. In addition, data pipelines could be deployed in cloud environments that run
seamlessly as software services or on premise servers. Some examples of data pipeline services include the
AWS data pipeline and Azure Data Factory, and open source tools such as Apache NiFi, StreamSet, and Airflow.
However, moving and processing the entire data from IoT devices to the cloud imposes other bottlenecks, such as
high dependency on end-to-end tasks, higher response time, and more transfer and storage costs.

The emergence of Serverless computing has simplified the design of event based, real time, and scalable IoT data
processing [6]. It is also known as Function as Service (FaaS) and have several advantages in terms of function
design, reusability, and granular scaling allowing for greater efficiency. Combining the serverless computing and
data pipelines have brought significant benefits to avoid the underlying challenges of the cloud-centric approach
and reduce the complexity of designing multi layer (Edge, Fog, Cloud) IoT applications [7–9].

In the Serverless model, functions are individually deployed services that are triggered on certain events (e.g.
new database record or REST request arrival), receive data, and produce output. It is also significantly easier to
deploy individual functions in different locations closer to the data sources (e.g., Edge, Fog layers) as compared
to more monolithic applications (e.g., when compared to Apache Spark data analytic applications). To combine
both models (serverless and data pipelines), serverless data pipelines (SDP) [7] can be created where serverless
functions are used as pipeline tasks and are seamlessly invoked while the data moves through the pipeline.
Moreover, data pipeline technologies are used for data transport, routing, and function invocation. Our previous
work [7] investigated the design and performance of such SDPs approaches in three real-time IoT fog applications
(video processing, Aeneas, Pocketsphinx). Those approaches include Apache NiFi based SDP, MessageQueue
based SDP, and Object Storage based SDPs.
Message queues are widely used in IoT systems [10–12], to queue and route data. In this paper, we focus on

Message Queue based SDP designed for two IoT applications as described in Section 4. The Message Queue
based SDP focused on designing the pipelines using message queues as intermediate data carriers and serverless
platforms for processing the data operations. This approach has three pipeline components: Message Queue
(MQ), MessageQueue Trigger (MQT), also known as Function Invoker/Trigger, and serverless functions. When
data arrives in the pipeline into MQ on a specific queue, MQT triggers the corresponding serverless function; the
function executes, produces, and publishes the output back to MQ on a specific queue. This sequence of data
movement from and to MQ and serverless functions continues in the pipeline till the data sink.

Most of the IoT workloads are stochastic with critical QoS like latency and throughput [13, 44], such constraint
specific workloads are needed with auto scaling nature to adapt to the fluctuating demand. Auto scaling has
been categorized into two types: workload-based scaling, which focuses on user arrival rate or concurrency
of processing, and resource-based scaling, which works on resource utilization metrics like CPU and memory.
However, auto scaling in fog environments has to be optimal because over provisioning of resources (serverless
function or MQT replicas) can lead to higher utilization, which can consume more energy and hinder the
performance of other workloads; on the other side, under provisioning of resources may degrade the expected
QoS of running workloads.

Auto-scaling is driven by a predefined set of configurations and threshold-based rules that determine scaling
decisions. However, identifying appropriate scaling rules for each function or system component, such as a
Message Queue Trigger, can be challenging for developers. For instance, the incoming message rate in a Message
Queue might dictate the scaling of the Message Consumer, or the CPU utilization threshold could trigger server
scaling. Designing effective scaling rules and identifying the relevant components are critical tasks, particularly
in edge and fog environments, where improper scaling can result in resource over- or under-utilization, leading
to increased costs or service latency issues. Additionally, scaling decisions are often influenced by the arrival or
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event rate of inputs, which directly impacts service quality parameters [14]. This study leverages these input
patterns to analyze the efficiency and behavior of scaling strategies in IoT applications within fog environments.

We have selected two SDP applications with distinct characteristics: one with a longer execution time (2145ms)
and higher resource utilization, and another with a shorter execution time (986ms) and minimal resource
utilization. Aeneas deals with audio data that requires more network bandwidth, whereas PuhatuMonitoring
deals with text data that require less network bandwidth. This type of application is useful to understand the
performance and behavior of autoscaling mechanisms [15], as discussed in Section 5. Therefore, the management
of autoscale in serverless data pipelines can be challenging due to the need for synchronization between the
serverless platform and the components of the data pipeline [16]. The proposed work explores scaling techniques
using reactive mechanisms (workload- and resource-based) that can be applied on SDP components. In addition,
this study highlights the essential threshold metrics or optimal configurations that are required to define scaling.
Finally, we measure and compare the efficiency and behavior of workload-based and resource-based scaling
approaches for MessageQueue-based SDP components in fog environments using real-time applications.

Considering the above context, our work makes the following key contributions:
• We evaluated reactive scaling strategies, such as workload-based and resource utilization-based, on SDP
components.

• We used two real-time fog computing workloads, the Aeneas and PuhatuMoniroting applications, to
measure the performance, such as processing time, and resource utilization of the scaling methods for
various user arrival patterns that mimic the Azure real-time serverless workloads.

• We offer insights on the suitability of scaling approaches, experience and challenges encountered during
the implementation and evaluation of the scalability of serverless data pipelines in various configurations.

This study contributes to autonomous and intelligent systems by enabling adaptive, workload-aware scaling of
serverless data pipelines in fog computing environments. It addresses the challenge of maintaining performance
under dynamic and unpredictable IoT workloads. The findings offer practical insights for optimizing resource
utilization and ensuring consistent quality of service for autonomous systems.
The rest of the paper is organized as follows. In section 2, we present a literature survey on the current state

of the art autoscaling and technologies. We described the three tier architecture presented in section 3, and
section 4 provides an overview of real-time fog applications. Following this, all auto scaling approaches and
research questions are elaborated in section 5, and further, experiment setup, and results are outlined in section 6.
In section 7 we share our experiences from this investigation and propose recommendations for practitioners.
Finally, the concluding remarks along with proposed future work are discussed in Section 8.

2 BACKGROUND AND RELATED WORK
In this section, we discuss the reactive auto-scaling approaches and also provide an overview and comparison of
the state-of-the-art works and the approaches used in this paper.

2.1 Auto scaling approaches
Auto scaling is a mechanism for dynamically increasing or decreasing of the resources based on demand to
meet QoS expectations. Modern container orchestration tools such as Kubernetes (k8s) are equipped with easy,
granular auto-scaling mechanisms[28] compared to virtual machine scalability. This enables serverless platforms
to design with container technologies that make for fewer start-up delays by providing several instances at
scale with minimum management. Auto scaling is handled with reactive mechanisms in off-the-shelf container
orchestration tools and serverless platforms. Reactive scaling approaches are broadly classified into workload-
based and resource utilization-metric-based, respectively [20]. The former focuses on the increase or decrease
of the count of containers based on user traffic (mainly requests per second). In contrast, the latter focuses on
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adding additional containers or deleting based on the resource utilization threshold of the running containers,
such as CPU or memory. In the following we provide more insight into the scaling approaches used in this article.
Workload based scaling: The workload based scaling approach is heavily used in public cloud serverless

platforms like AWS Lambda. For example, scaling is based on the concurrency limit. Concurrency is the number
of in flight requests the AWS Lambda function is handling at the same time. If the function receives more requests
then additional replicas are spawned if the concurrency limit is exceeded. The other approach commonly used in
open source serverless platforms such as OpenFaaS is Request Per Second (RPS). Here, the function invocation
rate decides the scaling up or down of the function replicas. Similarly in message queues, for illustration adding
additional consumer instances dynamically when the number of the messages in the queue (RabbitMQ) exceeds
the limit or the arrival rate of messages per second exceeds a certain threshold. The scaling of serverless functions
involves adding additional replicas of function units, while in message queue scaling, it entails adding extra units
of message queue consumers to process the messages.
Resource based scaling: In this scaling approach, the system tries to keep the metrics, such as CPU and

memory, in a specified threshold limit. The scaling action is undertaken with the addition or deletion of resources
if the threshold is reached. This is a commonly used approach for scaling the microservices and virtual machines
in the cloud. The open-source serverless platforms like OpenFaaS, Fission, Nuclio, Knative, and other tools use this
approach for scaling the function replicas. In most of the Kubernetes-based serverless platforms, the Kubernetes
Horizontal Pod Autoscaler (HPA) is used to scale based on the CPU and Memory limits set to the functions.

2.2 Related Work
Auto scaling of micro services is a well investigated area of research [29–31]. However, in edge and fog com-
puting environments, especially latency sensitive data processing is most critical, and scaling of the processing
components is of considerable interest [17]. This section briefly summarizes the recent work done in the context
of scaling the serverless data processing architectures and models.

Schuler et al. [32] proposed a proactive custom Kubernetes (K8S) based approach for adaptive auto scaling of
serverless functions for various workload profiles. Their proposed system was tested using Knative with workload
based scaling, i.e., based on concurrency limits. However, the focus was on a steady workload with latency as the
highest priority. Our proposed approach utilizes four distinct workload profiles, as relying solely on a steady
workload is not suitable for all scenarios. On a similar line, Benedetti et al. [20] proposed a custom K8S based
scaling of the serverless function based on the CPU resource utilization metrics. Their system was tested using
the OpenFaaS platform. The goal was to find the optimal CPU limit and configure the same in the auto scaler
of the system to reduce the latency of processing the arriving IoT workload. Li et al. [18] proposed KneeScale
algorithm based CPU utilization as a metric for scaling serverless functions. They investigated spikes based on
user workload for verifying latency and throughput.

Resource based scaling of serverless functions was extensively studied by Zafeiropoulos et al. [21] and Tari et
al. [41], and they proposed various RL approaches such as Q Learning, Deep Q Learning, and DynaQ for scaling
serverless functions based on CPU as metrics considering the discrete and continuous state space. The approaches
were simulated using an Open Gym environment and integrated into the Kubeless serverless platform to tune
the CPU configurations to optimize the latency in serving the function invocations. Along the side, Junfeng Li et
al. [23] investigated the performance of workload and resource based scaling of various serverless platforms by
considering the steady and spikes workloads.

The workload-based approach was applied to message queues to scale the microservices and investigated the
elasticity based on the thresholds ofQueueLength and Message arrival rate for IoT steady workloads [26, 40].
Similarly, Mahmoudi et al. [27] investigated the concurrency threshold as a workload based approach for scaling
the serverless functions for steady workloads to reduce latency, and cost in cloud environments.
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Fig. 1. Three tier System architecture containing SDP components

A comprehensive comparison of related works and our proposed work is presented in Table 1. The comparison
is based on several characteristics such as the deployment environments (edge, fog, and cloud), the type of
approach used for auto scaling, and whether the focus was on workload or resource based metrics. Further, we
want to compare and understand which components (serverless, message queue) the authors focused on. The
end user workload pattern is a key characteristic in investigating the scaling behavior, so we compared the user
patterns considered with other works and also various performance metrics considered by the authors.
The comprehensive comparison shows that many of the works focused on scaling the serverless function

using a resource utilization based approach, to improve the latency and throughput for steady workloads. The
workload based approach was mostly used for scaling the message queue consumers and partly in serverless
functions. However, most of the existing studies have focused on scaling individual serverless functions, without
taking into account DAG based workflows, such as serverless data pipelines used for data processing in edge and
fog environments. This is a crucial consideration, as scaling serverless functions heavily relies on intermediate
data passing units (MQTs), which must be synchronized between the components. Apart from this, many of the
works focused on only one type of workload as compared with our work. Our proposed performance evaluation
work addresses this gap in the literature by taking into account the varying user patterns and function duration
in various IoT applications.

3 SYSTEM ARCHITECTURE
Based on the related work, we described an overall three tier architecture, that includes the required services
to accomplish the MessageQueue based SDP at the fog and cloud tier. Further, we described essential services
required for auto scaling the serverless and message queue components at the fog and cloud tiers. The system
architecture in Figure 1 is composed of three layers with required services to handle the scalability of pipeline
components for data processing. It contains three layers, namely, the Edge, Fog, and Cloud Tier, respectively.
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Fig. 2. Two real-time applications and their pipelines

The data generated from the various end point IoT sensors gathered in the edge tier moved to the Fog tier and
eventually to the Cloud tier for processing.

3.1 Edge Tier
The edge tier includes in situ IoT sensors deployed on the sensing environment, such as industrial floors, patients,
and vehicles. Along with a set of sensors, tiny servers, network devices, and other computing devices are used to
process the data with minimum operations. This tier manages the endpoint devices, collects and aggregates the
data, and performs pre-processing operations such as compression, filtering, etc. We use custom Python services
in this system to perform such data operations in the pipeline. The data pipeline initiated in this tier further
continues into the fog tier.

3.2 Fog Tier
Fog Tier is mainly responsible for receiving data in the pipeline from the edge tier and process in a scalable
manner. It constitutes a cluster of fog nodes configured with Kubernetes Engine. The Serverless platform, Object
Storage services, and MessageQueues are configured to store and process the data in the pipeline. MessageQueue
Triggers for Serverless functions and event-based scaling services are also part of the fog tier. The data received
from the Edge tier is processed in a scaleable manner based on QoS demands and further moved into the Cloud
tier for further processing and storage. Here, OpenFaaS is used as a Serverless Engine to create, deploy, and scale
the serverless functions. Furthermore, we use RabbitMQ as a message queuing service to store intermediate data
in the SDP. The RabbitMQ connector is used as an MQT for serverless functions whenever a message payload
arrives in the queue on a specific topic with associated routing keys. We also use Kubernetes Event Driven
Autoscaling (KEDA) for event-driven scaling. The metrics of the OpenFaaS gateway, RabbitMQ, CPU, and memory
utilization of pods are scraped using the Prometheus monitoring service.

3.3 Cloud Tier
The cloud tier is mainly responsible for processing the data processing tasks (functions) forwarded from the
fog tier. This tier constitutes the services for storing, visualization and generating alerts or notifications to the
integrated business processes. The primary focus of the cloud tier is to provide persistent storage, which acts as
data sink in the pipeline.
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Table 2. Execution time, CPU, and Memory used by individual functions of two IoT applications

Application Execution time (ms) Functions Function execution
time (ms)

CPU consumed
(milliCPU)

Memory used
(MiB)

Decompress 1 2 55
aeneas 2000 546 243
getText 100 5 4

Aeneas 2145 Store 44 6 7
preProcess 6 6 97
outlierIdentify 940 154 243
tagData 5 3 32

PuhatuMonitoring 986 storeData 35 4 65

4 REAL TIME IOT APPLICATIONS
Considering the system architecture, in this section, we provide an overview of the IoT applications used in
experiments. Aeneas [33] and PuhatuMonitoring [7] represent two IoT applications that take advantage of
event-driven architecture to operate and manage data processing. The event-driven characteristic positions
them as optimal candidates for including in a MessageQueue-based SDP design. Furthermore, we present the
realization of serverless data processing pipelines for these applications.
Aeneas application is a fog computing workload [33] and specialized in the automated synchronization of

audio to a given text file also known as forced alignment. It automatically generates a synchronization map
between a list of given text fragments and an audio file containing the narration of the text. The serverless data
pipeline implementation derived from [7] is shown in Figure 2(a). An audio data forwarded from the edge tier
is received in the fog tier and decompressed using Decompress function, further aeneas function retrieves the
text data from the storage to synchronize with the input to a given user audio file. The data is generated and
aggregated in the edge tier and forwared to the fog tier. The three functions Decompress, aeneas, getText resides
in the fog tier. Finally, it processes the audio file and produces the alignment output in a JSON document and
store function is used to store the final output to the cloud storage (data sink).
Aeneas based SDP contains four serverless functions and three message queues as described in Table 2 and

Figure 2(a). The SDP works as follows, the compressed audio file arrives to the message queue in the fog tier,
Decompression function is invoked, next output of the function is published into the queue. Next, aeneas function
is triggered with audio file as an input and the output of aeneas which is a JSON document published to the
queue and further store function is invoked to store it in the cloud tier. Here, aeneas function has a long running
time with more CPU and memory utilization. The total execution time for processing a single data unit (audio file
size of 512KB) by the SDP from source to sink was 2145ms and the execution time of the individual functions are
mentioned in Table 2.

PuhatuMonitoring [7] is an IoT application for observing the water level changes in a wetland in the Puhatu
Nature Protection Area (NPA), North West Estonia next to an open-pit oil-shale quarry. IoT devices are installed
for monitoring the environment and sensor data is collected and analyzed by geologists to understand the effect
of water level on the growth of the bog in the wetland. This system has several activities to perform such as
data collection, analysis, detection of outliers using machine learning algorithms, tagging of outlier data, and
storing the results. Figure 2(b) shows the message-queue-based SDP of the application. All the functions have
small running times and minimum CPU and memory utilization as mentioned in Table 2. These functions reside
in the fog tier, whereas data is compressed, aggregated and moved from edge tier.
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Fig. 3. Example of scalable components in the pipeline

5 AUTO-SCALING OF SERVERLESS DATA PIPELINES
By considering the three-tier system architecture and background knowledge, this section describes the auto
scaling components of the Message Queue Based SDP and how those components are scaled using workload and
resource based scaling approaches to provide seamless service to the stochastic IoT workloads.

The Message Queue based SDP contains mainly three components, namely, 1)Message Queue, 2)Message Queue
Server less Connector (Function Invoker or MQT) and 3) Serverless Functions as shown in the Figure 3. We have
considered two components to understand and investigate the scaling techniques based on workload and resource
characteristics (MQ Trigger and Serverless Functions). The message queue is configured as a highly available
cluster with multiple containers to handle the amount of workload used in the scalability testing.
Identifying the metric characteristics of the selected pipeline components is essential for defining scaling

rules for various scaling approaches. As previously discussed, the two scaling approaches—workload-based and
resource-based—are associated with distinct metrics. It is crucial to determine the relevant metrics for each
pipeline component. Accordingly, we will define metrics for the MessageQueue Trigger (MQT) and serverless
functions (SF) below.
InMessageQueue Serverless Connector (Function Invoker or MQT) component, as part of workload

based scaling, two metrics are essential, namely, the number of messages (QueueLength) in the queue and the
arrival rate of the message (incoming Message Rate, i.e., measured as messages per second). The scaling rule is
defined as the threshold ofQueueLength or Message Rate is met, then additional MQT instances are added to
the system infrastructure. However, further investigation of choosing the optimal configuration is necessary
because, for example, if we set QueueLength=1, then 100 messages arrive in the queue then 100 MQT instances
will be spawned, which heavily hinders the system infrastructure; hence it’s very crucial to decide the size of
the metric in edge and fog computing environments. Here, MQT is a message subscribing service that triggers
or invokes a serverless function, and theQueueLength metric decides the invocation rate of the functions. For
resource based scaling, CPU and memory are the metrics used, with specific threshold values configured. CPU
is considered a critical metric for scaling MQT instances, but identifying the optimal threshold value is crucial
to avoid performance issues such as latency. Further investigation is necessary to determine the best threshold
value [20] because that may hinder the latency and other performance issues.
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Table 3. Scaling configurations of serverless functions and MQTs

Function belonging to Functions/MQTs K8s HPA KEDA RPS

Aeneas

Decompress CPU threshold Replica limit cpu_limit cpu_request memory_limit memory_request QueueLength MessageRate rps threshold Concurrency limit
aeneas 20 10 1000m 500m 512Mi 50Mi 3 0.3 0.2 20
getText 50 15 500m 100m 100Mi 50Mi 4 0.3 0.2 50
Store 50 15 500m 100m 256Mi 128Mi 4 0.3 0.2 50

PuhatuMonitoring

preProcess 50 15 500m 100m 256Mi 128Mi 4 0.3 0.2 50
outlierIdentify 50 15 500m 100m 256Mi 128Mi 4 0.3 2 50
tagData 50 10 1000m 500m 512Mi 50Mi 3 0.4 2 50
storeData 50 15 500m 100m 256Mi 128Mi 4 0.3 2 50

MQT

MQT-aeneas 50 15 500m 100m 256Mi 128Mi 10 0.3 2 50
MQT-store 50 15 500m 100m 256Mi 128Mi 10 0.3
MQT-outlierIdentify 50 15 500m 100m 256Mi 128Mi 10 0.3
MQT-tagData 50 15 500m 100m 256Mi 128Mi 10 0.3
MQT-storeData 50 15 500m 100m 256Mi 128Mi 10 0.3

In Serverless Functions component, the scaling metric for the workload based approach is request per second
(RPS) [23]. The RPS based approach is a default auto scaling mechanism in modern Serverless platforms. It’s
defined as the number of requests arriving at the function per second unit of time and is inherently correlated to
the rate of invocation of the functions. To configure the scaling, the threshold value of the RPS metric needs
to be calculated. This metric value varies for various functions, for example, the RPS values are significantly
different from functions with long running and short running times. Our study focuses on both types of functions.
Concurrency or capacity limit for each function instance or replica is another metric used in workload-based
scaling [27]. Here, concurrency indicates the set of user requests processed by each function concurrently.

Table 3 provides an overview of the approaches, metrics, and corresponding SDP components. In theworkload-
based approach, we have considered RPS, Message Rate, andQueueLength as key metrics for scaling SF and
MQT respectively. RPS metric is used as the default scaling approach in serverless platforms and we are not using
any of the external services to perform the scaling. We used the Message Rate and QueueLength to scale the
MQT. This is accomplished using an extra service known as Kubernetes Event driven Auto Scaler1.

Service Requests

Message
Queue MQT

MQT
QueueLength = n

Message Rate= m/s

pod

instances

KEDA k8s-HPA
spawn

Pod scaling request on every n mesages

Fig. 4. KEDA based scaling architecture

Figure 4, shows the working details of KEDA and its integration with MQT to monitor the scaling metrics and
apply the scaling decisions. KEDA can drive the scaling of the instances or pods in k8s cluster based on certain
events such as topics in Apache Kafka, streams in Redis, or events in S3. KEDA has many scalers2 that decide the
activation and deactivation of the deployments. An example of KEDA based scaling of MQT is shown in Figure 4.
The KEDA and MQT, both are configured as a service in the k8s infrastructure and the detailed experimental
1https://keda.sh/
2https://keda.sh/docs/2.9/scalers/
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setup is described in Section 6. The internal architecture of KEDA has two components namely, keda-metric API
server and keda-scaler respectively. Considering Figure 4, the keda-metric API server is used to monitor and pull
the metrics (QueueLength and incoming Message Rate) on certain polling time intervals from the MessageQueue.
These metrics are used by keda-scaler to calculate the pod or instances count to scale and further send a signal to
k8s Horizontal Pod Auto scaler to activate the deployment with the estimated count. The threshold values for
the metrics such as QueueLength and Message Rate (MR) with associated queue names are configured in the
deployment file and the corresponding ScaledObject is created in k8s cluster. The example of the ScaledObject
file is shown below. The triggers section has two types of auto scaling triggers, firstly based onQueueLength
and secondly on Message Rates. Here, queueName indicates the name of the queue to monitor, Value indicates
the threshold to scale beyond this. The metric values are scrapped using the HTTP endpoint of the queue. The
scaling decision is made based on the highest value achieved while scrapping the metrics.

- type: rabbitmq
metadata:
protocol: http
mode: QueueLength
queueName: aeneas
value: "4"

In the resource based scaling approach, we use Kubernetes Horizontal Pod Auto Scaler3 (k8s-HPA) for both
of the SDP components. The k8s-HPA is part of the K8s environment used for horizontal scaling, meaning adding
extra pods or removing them based on metric values such as average CPU utilization, and average memory. In
our experiments, the CPU is used as a scaling metric and configured into the auto scaler with a certain threshold.
Considering the Message Queue-based SDPs from the Figure 2(a) and 2(b), scaling metrics and approaches

in Table 3 and further with the above questions, our objective is to investigate the performance of the scaling
approaches on SDP components for various user workloads using performance metrics defined in Section 6.
However, the question which arises is: Does scaling only Serverless Functions improve the efficiency of the
pipeline or scaling both of the components. To answer the question, our investigation focuses on using a
combination of workload and resource based approaches to MQT and SF respectively.

Considering this, we define the six approaches for auto-scaling (see Figure 5) as follows:
1)KEDA and RPS(keda+rps) approach: In this approach, as shown in Figure 5, the combination of the KEDA

and RPS is used to auto scale the SDP. KEDA is used to monitor the queues and further scale the consumers
(Message Queue Triggers) that invoke the associated serverless functions. On the other side, the Request per
second approach is used to monitor and scale serverless functions. In KEDA-based scaling, the MQT is created
for each queue, for example, in the Aeneas application, three MQTs are created to invoke the functions. In 2)
KEDA and KEDA (keda+keda) approach as shown in Figure 5, the KEDA scalers are configured to watch the
queue metrics and scale the function replicas based on the target values, for example, QueueLength or Message
Rate metrics. Similar to approach 1, KEDA scalers are configured to monitor the queues and auto scale the queue
consumers. However, In 3) KEDA and K8s HPA (keda+k8shpa) approach as shown in Figure 5, the K8s
Horizontal Pod Auto scaler is configured with target CPU on all serverless functions. The optimal target CPU
is chosen for each function by running several experiments. Further, in 4) No Scaling and KEDA (no+keda),
5) No Scaling and K8sHPA (no+k8shpa), and 6) No Scaling and RPS (no+rps) as shown Figure 5, scaling
techniques are configured individually on serverless functions without scaling the MQTs. This approach enables
the identification of key differences in the QoS of the SDPs.

3https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
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Message Queue Message Queue
Trigger Serverless Engine

Scaling methods
1. KEDA
2. K8sHPA
3. RPS

Scaling methods
1. KEDA

User Requests

Sr. No Approaches MQT Serverless functions

1 keda+keda KEDA KEDA
2 keda+k8shpa KEDA K8sHPA
3 keda+rps KEDA RPS
4 no+keda no KEDA
5 no+k8shpa no K8sHPA
6 no+rps no RPS

Fig. 5. Approaches for auto-scaling the serverless data pipelines

6 PERFORMANCE EVALUATION
All the scalingmechanisms described in the previous section are realized, implemented for Aeneas and PuhatuMon-
itoring applications, and deployed on the system infrastructure as mentioned in Section 4. Further, experiments
are conducted with real time workload patterns observed in Azure Cloud and provided a detailed analysis of the
obtained results. We also provide underlying challenges and experiences learned during our experiments.

6.1 Performance Metrics
This subsection provides six potential performance metrics that are used to evaluate and check the efficiency of
scaling SDP over variable user demands. The resource utilization metrics such as CPU, memory, and pod counts
are collected using Prometheus, cadvisor software services. PromoQL (PrometheusQuery Language) is used to
calculate the metrics for the specific time period. Further, processing time and throughput are calculated using
logs collected from the data source (Message arrived into the Queue) and data sink (final result stored in the
MinIO storage).

6.1.1 Processing Time. In IoT applications latency is a primary concern, and it directly correlates to system
scalability. In this regard, we calculated the processing time of user requests, received in the pipeline until the
response reached back to the end user or storage unit. Processing time is measured in seconds in our experiments
and it’s the total time taken from the data source, processing units (serverless functions), intermediate storage
units, and final data sink. The preliminary goal of our investigation is to see how the processing time is optimal
by considering scaling approaches of various components in the SDP. We performed an extensive analysis of
function execution and queuing time of user requests varies in scaling approaches. Further, we realized the
processing time distributions using the Cumulative Distribution Function (CDF) to understand the efficacy of the
scaling approaches.

6.1.2 Success Rate. The success rate is a metric used to find the number of users who succeeded to reach the
data sink, alternatively, it measures the number of users processed on the given workload size. It is measured in
percent and calculated by the ratio of users processed to the total number of users fed into the pipeline at a given
time window.
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6.1.3 CPU and Memory Usage. The resource utilization metrics such as CPU, memory, network, and disk, are
essential parameters to compare the other scaling approaches because over and under provisioning of resources
may lead to degrading the application and system infrastructure performance. In contrast, these are important
metrics in IoT environments because of resource constraints in the fog infrastructure. We measure the average
CPU and memory consumption over a range vector of 10s. The formula for CPU utilization of 8Cℎ user request
in workload is as given below in equation 1 and is similar for memory utilization. We find the average CPU
utilization by adding together the cpu usage of all the replicas of the serverless functions and MQTs, then dividing
the sum by the total number of replicas.

�%*C =
∑

(�: ∈(�
( 1
9
∗

∑
�' 9 ∈�'

2?D (�': 9 )) +
∑

"&)<∈"&)

2?D ("&)<) (1)

where C = 10B , (� = {(�1, (�2, . . . , (�: } is a set of : number of serverless functions and �' = {�'1, �'2, . . . , �' 9 }
is a set of 9 replicas of :Cℎ function and"&) = {"&)1, "&)2, . . . , "&)<} is a set of< MessageQueue Triggers.

6.1.4 Number of Pods. Whenever scaling activity happens in the system, an extra number of pods or replicas
or instances are added to the system to accommodate the huge demand. However, comparing the pod counts
between various scaling approaches provide insight into its over and under usage during its scaling lifetime. We
sum up all the replicas of the serverless functions and MQTs used during the experiment for each workload.

�>D=C ('4?;820BC ) =
∑

SF‖ ∈SF
�>D=C ((�: ) +

∑
MQTm∈MQT

�>D=C ("&)<) (2)

where t with time window of C = 10B step in metric collection, (� = {(�1, (�2, . . . , (�: } is a set of : number of
serverless functions and"&) = {"&)1, "&)2, . . . , "&)<} is a set of< MessageQueue Triggers.

6.1.5 Fairness Index. This metric is used to calculate the fairness index for the processing time of user requests
in serverless data pipelines. The fairness index determines how user requests are served using auto scaling
components in the SDP. We calculate using Jain’s fairness [34] index (JFI) and values are between 0 to 1, where
a values 1 represents good fairness, i.e, all user requests have lower processing time. The value 0 indicates the
disproportion processing time. Overall, JFI provides insights into the level of variability in the processing time of
user requests and can be used to compare the fairness of different scaling approaches. By analyzing the fairness
index, we can identify potential improvements in optimizing the configurations and resources of serverless and
message queue scaling components. The formula to calculate is:

� � � =
(∑ %)8 )2

= × (∑8 %)
2
8
)

(3)

where %)8 is Processing Time (PT) calculated for 8Cℎ user request or workload.

6.2 Serverless Workload Patterns
In this section, we explore the workload patterns of serverless applications based on Azure Function Traces [35].
These traces are available along with invocation logs for a duration of two weeks. To analyze the invocation
patterns, we considered two days of data consisting of 41407 functions triggered by various sources such as
Event, HTTP, queue, storage, orchestration, and others. Out of these functions, we selected 230 functions that
are triggered by queues, which may include Service Bus, Queue Storage, RabbitMQ, Kafka, and MQTT. We
followed the approach described in ServiBench work [14] to select and classify the workloads. We categorized
the invocation patterns of the 230 serverless functions into four types: Fluctuating, Spikes, Jump, and Steady
workloads as depicted in Figure 6. Our chosen data set indicates that 5.2% of the functions exhibit steady workloads
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Fig. 6. Azure serverless workload invocations patterns

Table 4. Characteristics of the workload

Characteristics of the Workload Fluctuation Jump Steady Spike
Mean 2.9 0.8 2 1.87
Standard deviation 1.2 1.56 0 0.97
Minimum 0 0 2 1
25% of the workload 2 0 2 1
50% 3 0 2 2
75% 4 1 2 3
Maximum 6 5 2 4
Total requests generated 3442 1055 2390 1646

that remain stable throughout the invocations over time. The fluctuating workload (34.37%), shown in Figure 6,
represents the load with constant fluctuations and frequent small bursts during invocations. The spike workload
(27.08%) indicates occasional extreme bursts with or without a steady base load. Finally, the jump workload
(30.5%) represents sudden load changes that occur only for a moment and may exist for a temporary period.

To use the four workload patterns, it was necessary to transition from per-minute to per-second invocation
patterns. This transformation was achieved by leveraging fractional Brownian motion, as detailed in Scheuner et
al.’s work [14], which enabled the synthesis of perturbations at the granularity of seconds while preserving the
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Fig. 7. Hardware setup and process flow of experiments

overarching characteristics observed in the Azure traces. The adjustment also involved reducing the workload
intensity; for instance, in the case of the spike workload, the maximum intensity originally was at 450 requests
per second (rps), and this was lowered by 4 rps. Similar reductions were applied to the intensities of other
workloads, as illustrated in Figure 6. The specific characteristics of the workload are described in Table 4, with
values expressed in requests per second (rps). The fluctuation workload exhibited a peak intensity of 6 rps, while
the steady workload maintained a constant intensity of 2 rps. The standard deviation metric signifies the extent
of aggressive changes in workload intensity, with the jump workload displaying a deviation of 1.56 rps. In the
case of fluctuation workload, 75% of the instances surpassed 4 rps. The duration of the experiment was set at
1200 seconds, during which the fluctuation workload generated 3442 user requests, while the jump workload
produced 1055 user requests.

6.3 Experimental Setup
The fog tier includes a hardware unit consisting of nine Raspberry Pi (RPi) 4B model clusters with specifications
of Quad-core Cortex-A72 (ARM v8) 64-bit 4 CPU cores, 8 GB RAM, and 60GB storage. Cloud tier with two
virtual machines with 4 vCPUs, 8 GB RAM resembling the capacity of m2.medium size of AWS EC2 instance is
provisioned from the University of Tartu’s OpenStack cloud. The edge RPi 3B model is used as a gateway, and
RPi 4B model is used as a client to simulate the user behavior. All the edge and fog tier nodes are connected
over LAN using Netgear GS116E-200PES, 16-Port Smart Managed Gigabit Switch with speed up to 2000Mbps.
Figure 7(a) shows the hardware setup with RPis stack connected to the router with the network system.

The lightweight Kubernetes (k8s) Engine k3s (v1.25.5+k3s1) is installed in the fog tier, and similarly, k8s engine
v1.26 is configured in the cloud tier. OpenFaaS serverless platform faas-netes(0.23.0)4 is installed in the fog and
cloud tier as a serverless engine to create, manage and scale the serverless functions. RabbitMQ is installed as
three pod clusters in the fog layer, with one virtual host, one exchange, and three message queues. The MinIO
object storage service is configured on the cloud tier to store the results after processing the serverless data
pipeline acting as a data sink. The serverless functions are created and deployed using the OpenFaaS Command
line interface. Further, Python 3.9 run time is used to develop the serverless functions. The Prometheus, along
with the c-advisor, captures and monitors the k8s service metrics. Further, Prometheus REST API is used to get
the metrics after completing the experiments.

Since fog tier nodes arewith ARMarchitecture, some of the services like KEDA, OpenFaaS-RabbitMQ-Connector
(MQT), and RabbitMQ k8s operator are rebuilt (from other architecture-based deployments to ARM) and further

4https://github.com/openfaas/faas/releases/tag/0.23.0
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Fig. 8. Comparison of processing time for Aeneas application

deployed on the RPi-based k8s cluster. Those docker images can be found here in the docker hub5. After setting
up hardware and software services, Jupyter Notebook is used to code and deploy the serverless data pipeline
components of the Aeneas and PuhatuMonitoring applications. The process flow of experiments conducted is
shown in Figure 7(b). The locust tool is used to publish the user requests with data according to Azure workload
scenarios (Jump, fluctuation, steady, and spikes) to the message queue and initiate the pipeline. The data input size
for the Aeneas application includes the range from 512KB to 1MB audio files considered from the projects6, 7. We
use the real-time data collected in the Puhatu IoT application as input in the PuhatuMonitoring application. Once
user requests were processed by SDP and final outputs were stored in the data sink (MinIO Storage in Aeneas
and Influxdb in the PuhatuMonitoring application). After the SDP execution of each workload scenario, CPU,
Memory, and Pod Count metrics were pulled from Prometheus using PromoQLQuery as an HTTP invocation
with step 10s. We collected Function Execution Time, andQueueing Time using custom services (python code)
by scrapping from the OpenFaaS gateway. Finally, the Data Profiling service was used to parse and generate
the required performance monitoring graphs. The source code of the two SDPs of the real-time applications and
performance analysis notebooks can be found in GitHub8.

6.4 Results and Discussion
An auto-scaling behavior largely depends on the arrival rate of user workloads. So, performance validation
of auto-scaling needed to generate stochastic user workloads, and to mimic such user behavior, python-based
locust9 tool, which is mainly used for HTTP-based load testing, but we have written the python scripts10 to
publish the user workload into RabbitMQ channels. Several experiments are conducted to realize the results
with a minimum error rate over all the experiments. The following subsections provide a detailed analysis of the
Aeneas and PuhatuMonitoring application of the obtained results.

6.4.1 Aeneas Application. The processing time is shown in Figure 8 for the Aeneas application and is measured in
seconds. These four box plots provide the overall processing time of four quartile groups for six scaling methods.
The processing time for fluctuation workload is shown in Figure 8(a), the no+rps have a median value of 18.03s,
as compared with others, which shows that with this approach most of the users have faster processing time,
whereas keda+k8shpa has a highest average processing time of 22.15s with a maximum value of 56s. Figure 8(b)

5https://hub.docker.com/u/shivupoojar
6https://gitlab.doc.ic.ac.uk/st220/COSCO/-/tree/master/framework/workload/DockerImages/Aeneas/assets/audio
7https://github.com/readbeyond/aeneas
8https://github.com/shivupoojar/autoscalingsdp.git
9https://locust.io/
10https://github.com/shivupoojar/autoscalingsdp/../k6_locust.py
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Fig. 9. Average Function Execution Time (FET) and AverageQueuing Time (QT) of Aeneas application over scaling approaches

shows for jump workload, the keda+k8shpa experienced an average PT of 9.12s with outliers, whereas keda+rps
had a maximum of 21.73s. This indicates that keda+k8shpa is capable to handle the jump workloads in a given
time. Figure 8(c) and 8(d) show the processing times of steady and spikes workloads.
The keda+k8shpa and no+k8shpa experienced median values of 7.97s and 7.14s respectively, in steady and

spikes workloads. This indicates that no+k8shpa can handle the spikes workload, this is because Aeneas has
a long running function with compute intensive, and CPU-based autoscaling works satisfactorily here. In the
K8shpa-based approaches, the response time and data loss for the long-running and compute-intensive function
(aeneas) are lower than those of rps and KEDA-based approaches. In a serverless platform, the rps threshold value
is the same for all functions, which does not provide optimal performance for long-running functions, resulting
in more data loss. However, in the K8shpa approach, the optimal CPU threshold value of (20%) for Aeneas is
configured, which reflects the optimal scaling decision and achieves a lower response time.
Further, the processing time of SDP is the sum of function execution time (FET) and queuing time (QT). To

understand the correlation of queuing time and efficiency of scaling approaches, we show the comparison of the
average FET and QT of the Aeneas application in Figure 9. In fluctuation workload, no+rps had the lowest QT of
0.36s and FET of 17.67s, whereas keda+k8shpa experienced 0.62s and 21.53s of QT and FET, respectively. This
suggests that rps for serverless functions can handle frequent alterations in the event patterns of the workload,
ranging from a minimum of 2.6rps to a maximum of 4.25rps of input. With keda+k8shpa, hpa configured on
serverless functions wait for the cpu to reach the threshold before provisioning the replicas, which increases the
time taken for the function to execute. However, in spikes and jump, the keda+rps and keda+k8shpa have lower
QT and FET of 0.08s, 11.29s, and 0.47s, 8.66s, respectively. This result indicates that the rps approach in serverless
functions can be flexible for frequent changing workloads, whereas the k8shpa approach can easily deal with
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Fig. 10. Cumulative Distribution Function of Processing Time for Aeneas application over scaling approaches
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Fig. 11. Success rate of Aeneas application over scaling approaches

sudden and aggressive workloads. In steady workload, keda+k8shpa has minimum QT and FET compared to
other approaches.

To understand the variance and distribution of processing time of all workloads, we calculated and plotted the
Cumulative Distribution Function (CDF) for all workloads. The CDF for the Aeneas application for workloads is
shown in Figure 10. It shows that, in fluctuation workload, 80% of the workloads have the PT of below the ≈ 28B
in no+rps, whereas keda+k8shpa has ≈ 34B . The RPS approach has a faster scaling activation than the k8shpa
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Fig. 12. Scaling pattern of Aeneas function w.r.t to message arrival rate

based approach configured for serverless functions, potentially reducing the PT. Surprisingly, keda+k8shpa have
80% of below 12s in steady workload. This is because the scaling decision in k8shpa is consistent w.r.t. steady
workload. Similarly, in jump workload, keda+k8shpa have 80% have PT below 15s. However, for spikes, workload
no + k8shpa 90% of them are within 27s compared to other approaches. The CDF results show that no+rps can
deal efficiently with fluctuations, while keda + k8shpa works better for jump and steady workloads. However,
no+k8shpa works satisfactorily to deal with spikes. The overall results indicate that the long-running functions of
the Aeneas application were handled by k8shpa for jump,steady and spikes.
The success rate is a crucial performance metric that indicates the percentage of user requests or workloads

that are processed and stored successfully in the data sink. It is used to evaluate the efficiency and reliability of
different scaling approaches. Figure 11 presents a comparison of success rates for various scaling approaches
used in the Aeneas application. The figure shows that no+keda and no+k8shpa achieved a similar success rate of
86%, indicating their inability to handle 14% fluctuating workloads. However, in steady workloads, keda+k8shpa
had the highest success rate, processing 98% of users, while in jump workloads, it achieved a success rate of 91%.
Conversely, no+k8shpa demonstrated the highest success rate of 98% in spike workloads. The keda+rps was least
reliable in dealing with the fluctuation workload with 45%, and similarly in jump with 38%. In keda+rps approach,
keda-based scaling approach in MQT dequeues user requests and invokes serverless functions, rps lead to data
loss due to time out of the user requests queued in the serverless function internal queue. The maximum data
loss appeared for the aeneas function which was with a long-running time.

In order to gain a deeper understanding of how the scaling approach, which relies on the stochastic arrival of
messages in a queue, behaves, we conducted an analysis of the scaling patterns exhibited by the Aeneas function
under different workloads. This analysis is presented in Figure 12. The x-axis represents the pod count, while
the y-axis represents the message arrival rate measured in messages arrived per second. Our observations from
Figure 12 reveal that the no+rps and keda+rps approaches progressively increase the replicas (pods) as the message
arrival rate increases. On the other hand, the keda+keda, no+keda, keda+k8shpa, and no+k8shpa approaches
aggressively react to workload spikes but maintain a constant number of replicas due to fluctuations in the arrival
workload. In the case of a steady workload, the RPS based approaches react slowly and keep incrementally raising
the replicas until saturation was reached. On the other hand, the k8shpa based approaches raise the replicas
over the first few seconds, while KEDA based approaches raise the replicas instantly and then downscale to a
steady count of 7 replicas. Interestingly, the KEDA and k8shpa based approaches were more volatile to changes
in workloads, while the RPS based approaches show similar progressive behavior. However, no+k8shpa approach
aggressively reaches a maximum count of replicas despite the load downscaling in the workload.
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Table 5. Overview of performance metrics of scaling approaches in Aeneas application

Workload jump steady spikes fluctuation
MessageQueue Trigger no keda no keda no keda no keda no keda no keda no keda no keda no keda no keda no keda no keda
Serverless rps rps k8shpa k8shpa keda keda rps rps k8shpa k8shpa keda keda rps rps k8shpa k8shpa keda keda rps rps k8shpa k8shpa keda keda
Count 1055 1055 1055 1055 1055 1055 2390 2390 2390 2390 2390 2390 1646 1646 1646 1646 1646 1646 3442 3442 3442 3442 3442 3442
Suceess Rate 72 38.1 91.5 92.5 83.8 80.8 88.8 90.4 89.6 98.3 92.2 87.3 67 69.3 98.3 93.6 94.2 92.5 76.6 45.4 85.9 79.9 86.2 84.4
PT Sum (sec) 11390 8736 9260.8 8905.4 11497 11574 23644 21714 20084 18737 33600 38229 15066 12965 11549 16030 15129 14764 47539 35059 54564 60936 56499 61005
PT Mean 15 21.7 9.6 9.1 13 13.6 11.1 10.1 9.4 8 15.2 18.3 13.7 11.4 7.1 10.4 9.8 9.7 18 22.4 18.5 22.2 19 21
PT Max 59.1 50.8 47.6 47.8 50.8 59.3 48.1 54 52.4 39.1 42.4 49.1 60 43.3 39.1 58 59.9 48 50 59.5 59.6 58.4 59.6 55.5
PT Min 0.4 2.8 2.7 2.8 2.8 0.4 2.8 2.9 2.8 2.8 2.8 2.8 2.5 2.7 2.8 2.8 2 2.8 2.8 0.2 1.8 2.8 2.8 0.1
PT STD 15.6 13.3 10.4 10.1 10.7 12.6 8.7 7.5 7.2 5.7 9.5 10 12.8 10.6 6.2 10.1 9.4 9.6 10.3 13 10.5 11.8 10.5 11.2
PT 90th 38.6 38.9 27.8 28.6 29.4 31.7 23.5 20.6 19.5 15.4 28.6 31.3 33.3 28.3 15.5 26.6 25 25.7 32 39.5 32 38 33.5 35.8
Avg FET 11.6 19.4 9.1 8.7 11.7 11.6 9.8 9.5 9.1 7.8 14.7 18 12.9 11.3 7 9.4 9.4 9.4 17.7 20.4 17.9 21.5 18.2 19.9
Avg QT 3.39 2.35 0.54 0.47 1.32 1.97 1.34 0.58 0.29 0.15 0.56 0.3 0.8 0.08 0.13 0.99 0.37 0.3 0.36 2.01 0.56 0.62 0.8 1.11
JFI 0.52 0.27 0.54 0.55 0.59 0.45 0.59 0.45 0.59 0.45 0.59 0.45 0.59 0.45 0.59 0.45 0.59 0.45 0.59 0.45 0.59 0.45 0.59 0.45
Avg CPU 9.08 5.29 12.13 12.59 13.91 13.94 25.34 25.4 26.41 27.26 28.36 28.54 11.89 12.48 16.44 16.08 16.65 17.17 30.42 19.43 33.93 37.17 34.9 38.7
Avg Memory 548 402 794 1676 892 699 1793 1818 1809 2270 1769 1739 701 823 1224 1202 1256 1159 1926 958 2168 2338 2424 2388
Pods Count 23 9 15 15 18 19 31 33 19 19 21 21 26 29 18 18 23 22 33 22 19 19 23 23
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Fig. 13. Comparison of CPU and Memory utilization of Aeneas application for various scaling approaches

We computed the Jain’s fairness Index (JFI) for all workload patterns of the Aeneas application to assess the
variation in processing time as compared to the expected average processing time. Table 5 presents the results.
For jump workloads, all scaling approaches exhibited moderate fairness in processing user requests, but the
keda+rps approach had a higher fairness index than the others, despite its low success rate and low CPU utilization.
However, it processed 402 requests out of 1055 user requests, with a success rate of 38.1% which degrades the QoS.
In steady workloads, both the no+keda and no+rps approaches had relatively higher fairness indexes compared to
other scaling approaches. The fairness index for steady workloads indicates that all approaches were moderately
fair in processing user requests. However, for fluctuation workloads, the fairness index is higher, suggesting that
a larger proportion of user requests are processed close to the average processing time with less variance.

When processing IoT data in fog environments, the utilization of CPU and memory by application components
is crucial for determining the effectiveness of scaling approaches. These metrics provide insights into the amount
of resources consumed by application components and can aid in evaluating the efficiency of the scaling approach.
Figure 13(a) and Figure 13(b) show the CPU and memory utilization of the Aeneas application in fog environments
respectively. In Figure 13(a), the y-axis represents the average CPU consumption measured in millicore, with
1000m indicating 1 core, while the x-axis represents the workload patterns.

For jump workloads, the keda+rps scaling approach has a relatively low CPU consumption of around ≈
19<8;;82>A4 , while the KEDA based approaches (no+keda, keda+keda) have maximum CPU consumption of around
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≈ 38<8;;82>A4 . This indicates that the no+rps approach may be more efficient in terms of CPU utilization for this
workload pattern. In spikes workload, similar to jump, keda+rps has a lower CPU utilization of ≈ 25<8;;82>A4 ,
whereas keda+keda had a maximum CPU utilization. In steady workloads, both keda+rps and no+rps have a
minimum CPU utilization of around ≈ 19.43<8;;82>A4 , while KEDA based approaches consumed the maximum
CPU. Considering the overall CPU utilization metrics, KEDA based approaches consume more CPU resources
because the scaling decision is based on the QueueLength and hence more replicas are spawned, leading to more
CPU consumption.

The memory consumption of scaling approaches across various workloads is shown in Figure 13(b). The y-axis
represents the memory utilization measured in MegaBytes (MB). In jump workload, keda+rps consumes minimum
memory, whereas the keda+k8shpa consumes more memory. However, keda+rps has a success rate of 38.2%,
hence consuming less memory. The keda+k8shpa in steady workload utilized more memory of ≈ 2270"� as
compared with other approaches. In spikes, no+rps had minimum memory utilization, whereas K8shpa based
approaches have maximum memory utilization. Similarly for fluctuation, keda, and k8shpa based approaches
have more memory utilization, keda+rps has minimum memory consumption, however, the success rate is 45%.
Aside from the previously mentioned performance metrics, there are several other crucial parameters that

influence the efficacy of scaling techniques for the Aeneas application. These parameters include the Processing
Time Standard Deviation (PT STD), the 90th percentile of PT, the Minimum of PT, and the Maximum of PT. PT
STD is particularly important as it indicates the consistency of processing time across a given user workload. A
lower PT STD implies strong consistency in the processing times, which is essential for the real time processing
of audio data in Aeneas. Similarly, the 90th percentile of PT, Minimum of PT, and Maximum of PT are significant
performance metrics that can help determine the best and worst case scenarios for the system’s response time.
Together, these performance parameters provide a comprehensive view of the system’s efficiency, allowing
developers to optimize scaling approaches for Aeneas.
Along the side, Table 5 provides an overview of all the performance metrics of all scaling approaches with

different workloads. From Table 5 it is evident that keda+k8shpa is able to efficiently process jump workloads
with a success rate of 92.5%, with minimum PTmean, PT STD, FET, and QT of 9.1s, 10.1s, 8.7s and 0.47s respectively.
However, higher utilization of CPU and Memory utilization but a moderate replica count of 15. Considering PT
(latency) as a key metric, the keda+k8shpa works a better scaling approach for auto scaling the message queue
consumers (MQT) and serverless functions. Similarly in steady workload, keda+k8shpa processed adequately
with a success rate of 98.3% and with a minimum in other performance metrics. However in spikes, without any
scaling approach at MQT, and k8shpa scaling approach at serverless functions worked efficiently with a success
rate of 98.3%. On the other side, no+rps and no+k8shpa could able to handle the fluctuation workload adequately,
but keda+rps is not efficient in dealing workload. Overall results show that for the Aeneas application, k8shpa
based scaling approach works better due to long running functions in the pipeline.

6.4.2 PuhatuMonitoring Application. Similar to the Aeneas application, the performance analysis of the Puha-
tuMonitoring (PM) application is described in this subsection. The PM application has a short running time
and moderately low compute intensive functions as discussed in Section 4. The overview of processing time for
various workloads is shown in Figure 14. In fluctuation workload, no+rps, keda+k8shpa and keda+rps approaches
yielded lower processing time with a mean of 0.66B . This shows that the k8shpa and rps based approach works
well, however the success rate of k8shpa was higher, which means lower data loss. Similarly in jump workload,
no+rps, no+k8shpa and no+keda processed PM data with mean of ≈ 0.70B , however keda+k8shpa had maximum
value of 7.3B . Scaling approach configured serverless functions capable to deal the jump workload, where as no
scaling of MQT was necessary. In steady workloads, keda+rps and no+keda processed data with a mean of 0.79B ,
where as no+rps has a maximum value of 10.92B . On the other hand, in spikes workload no+rps, no+k8shpa and
no+keda similar minimum mean of ≈ 0.5B and no+k8shpa has maximum of 3.8B .
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Fig. 14. Comparison of processing time of Puhatu application

Furthermore, Figure 15 shows the comparison of the average FET and QT of PM applications for various
workloads. Three approaches (no+rps,no+k8shpa and keda+k8shpa) have average FET of 0.6B but keda+keda has
minimum average FET of 0.56B , however the QT was maximum of 0.12B . Surprisingly, the QT mean was higher
than FET, which indicates longer waiting in the queue. This is due to the longer waiting time in the message
queue, where no scaling of MQT and keda scaling approach in serverless functions scale the functions based on
the configuredQueueLength, which is not sufficient to handle load. In steady workload, no+rps and no+keda have
lower mean QT of 0.07 but keda+rps has lower FET as compared with the other approaches. For spikes workload,
no+k8shpa has lower mean QT of 0.04B but moderately more FET time. The no+keda was efficient in handling the
jump workloads with mean QT of 0.06B .

The CDF of PT of the PM application is shown in Figure 16, In fluctuation workload, the no+k8shpa has 86% of
them are processed within 1sThe no+keda and keda+rps have similar distributions initially. In the steady workload,
keda+rps have 90% of them have PT of 1.1s, however, no+rps has 1.3s not performing better as compared to the
others. Interestingly, no+rps performed well, with 90% of the workload’s PT under 0.58s, whereas keda+keda had
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Fig. 15. Function Execution Time (FET) andQueuing Time (QT) of PuhatuMonitoring application over scaling approaches

1% of workload’s PT over 25s as compared with other approaches. In jump workloads, the no+rps’s distributions
show that 90% of them were in 1.2s and work better as compared with other approaches.

The success rate of various workloads for PuhatuMonitoring application is shown in Figure 17. For fluctuation
workload, no+k8shpa has a higher success rate of 99% and keda+rps was less with 95%. However, in steady
workload no+keda was with a high success rate of 98%, whereas keda+rps and keda+k8shpa were similar with
96%. The no+rps is capable to handle 99% user requests in jump workload. Interestingly, keda+k8shpa was able to
succeed in processing 89%, whereas other approaches reached a success rate of 99% in spikes workload.

The scaling patterns in response to the arrival rate of messages of outlierDetection function are shown in Figure
18. In fluctuation workload, keda+rps and no+rps progressively increases the replicas based on the increase in
message rate, however, keda+rps reached the maximum of 14 replicas due to parallel requests arriving from keda
based MQT. The keda+k8shpa and no+k8shpa increase the replica initially, and further, tune to the arrival rate.
All the scaling approaches become to stagnant to certain replicas over a period. However, in steady workloads,
keda+keda and no+rps increases the replicas aggressively based on message rate and becomes stationary with
certain replicas. But, RPS based approaches increase the replica progressively and reach the stationary value.
Interestingly in jump workload, due to the sudden raise in arrival rate, all approaches took the decision for
scaling, however, scale down for rps was faster. In spikes, keda+keda and keda+rps reach the stationary point
after initial scaling, not eventually reactive to the arrival rate, whereas keda+k8shpa and no+keda reacts to the
spike workload. Considering this scenario, keda+keda and keda+rps may not be suitable for fog environments
due to the overconsumption of resources.
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Fig. 16. CDF of processing time for puhatu application over scaling approaches
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Fig. 17. Success rate of PuhatuMonitoring application over scaling approaches

The Jain’s Fairness Index (JFI) for fluctuation workload, no+k8shpa is moderately higher as compared with
other approaches with an index of 0.4, whereas keda+keda with a least of 0.23. This indicates that 40% of the
fluctuation workload was processed up to the mean value of PT. Similarly in steady workload, no+keda and
no+rps with higher indexes of 0.48 and 0.50 respectively. In jump workload, no+rps has higher fairness index of
0.39, however, in spikes workload, it has the highest fairness of 0.81.
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Fig. 18. Scaling pattern of outlierDetection function message arrival rate
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Fig. 19. Comparison of CPU and Memory utilization of PuhatuMonitoring application for various scaling approaches

Considering the CPU and memory utilization shown in Figure 19, for jump workload, keda+k8shpa used
minimum average CPU (1.5 millicore) and memory (107.56 MB) as compared with other approaches. Similarly for
steady workload, with 8.6 millicore and 464MB respectively. However, in spikes no+k8shpa with CPU of 2.07
millicore and memory of 178 MB. In fluctuation workload, keda+k8shpa had used minimum CPU and memory.
Overall, K8shpa based approaches used minimum CPU and memory in puhatu monitoring application, this is
due to the scaling decision of K8s HPA based cpu threshold neither on arrival rate.
Considering the performance metrics described above and other metrics in Table 6. We calculated PT Mean,

Max, STD and 90th percentile, also pod count apart from the above described metrics. From the table values,
it indicates that, For jump workload, all the approaches aggressively react to the arrival rate, and no approach
is optimal to consider, however, based on the success rate and fairness index no+rps approach works better
compared to other approaches. Further, in steady workload, no+keda works satisfactorily as all the metrics
values are minimal as compared to other approaches. The primary reason is the KEDA service configured for the
serverless functions spawns the replicas only according to message arrival and it tunes to optimal replica count
over time. On the other side, KEDA may over provisioning the replica counts and degrade resource utilization.
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Table 6. Overview of performance metrics of scaling approaches in PuhatuMonitoring application

Workload jump steady spikes fluctuation
MessageQueue Trigger no keda no keda no keda no keda no keda no keda no keda no keda no keda no keda no keda no keda
Serverless functios rps rps k8shpa k8shpa keda keda rps rps k8shpa k8shpa keda keda rps rps k8shpa k8shpa keda keda rps rps k8shpa k8shpa keda keda
Count 1060 1060 1060 1060 1060 1060 5958 5958 5958 5958 5958 5958 1646 1646 1646 1646 1646 1646 3442 3442 3442 3442 3442 3442
Suceess Rate 98.9 97.6 98 96.9 98.3 93.6 96.9 96.7 97.1 96.1 98 97.2 99.9 99.4 99.8 89.4 99.1 99.1 98.4 95.5 99 97.1 97.5 97.2
PT Sum (Sec) 766.66 1029 785.13 1098 785.1 1136 5006 4564 5063.3 4951.8 4646.2 4756.6 798.3 994.4 835.53 900.27 831.6 1074 2240 2785.1 2263.5 2312.4 4470 2244
PT Mean 0.73 0.99 0.75 1.07 0.75 1.14 0.87 0.79 0.88 0.86 0.8 0.82 0.49 0.61 0.51 0.61 0.51 0.66 0.66 0.85 0.66 0.69 1.4 0.67
PT Max 10.44 18.79 14.68 7.35 14.68 39.18 10.92 17.36 16.63 22.97 14.75 18.33 2.95 18.25 3.83 14.99 7.42 25.72 17.04 18.11 16.75 19.11 59.81 16.07
PT Min 0.37 0.37 0.36 0.36 0.36 0.37 0.37 0.37 0.37 0.37 0.37 0.36 0.36 0.37 0.36 0.37 0.36 0.37 0.36 0.36 0.36 0.36 0.36 0.36
PT STD 1.04 1.97 1.23 1.4 1.23 3.37 0.87 1.03 1.04 1.17 0.83 1.04 0.24 1.18 0.3 1.06 0.38 1.78 0.87 1.48 0.81 1.2 4.98 1.24
PT 90th 1.27 1.42 1.15 3.52 1.15 1.73 1.36 1.15 1.39 1.29 1.17 1.17 0.58 0.65 0.77 0.82 0.65 0.61 0.95 1.08 1.05 0.86 1.02 0.89
Avg FET 0.75 0.83 0.7 1.02 0.7 0.68 0.8 0.7 0.8 0.78 0.72 0.72 0.45 0.5 0.47 0.52 0.45 0.48 0.63 0.77 0.62 0.62 0.65 0.56
Avg QT 0.02 0.17 0.05 0.05 0.05 0.46 0.07 0.09 0.08 0.08 0.08 0.1 0.04 0.11 0.04 0.1 0.06 0.18 0.03 0.08 0.05 0.07 0.68 0.12
JFI 0.39 0.2 0.3 0.37 0.27 0.1 0.5 0.37 0.41 0.35 0.48 0.38 0.81 0.21 0.74 0.25 0.64 0.12 0.37 0.25 0.4 0.25 0.3 0.23
Avg CPU 2 2.09 1.89 1.51 1.89 1.91 9.65 9.01 8.86 8.63 9.1 9.94 2.59 2.66 2.07 2.12 2.64 2.79 5.02 4.93 4.53 4.28 5.31 5.37
Avg Memory 246 285 264 107 264 223 729 794 522 464 697 754 384 507 179 166 388 436 513 455 293 252 590 552
Pods Count 24 27 21 9 21 19 35 39 15 15 38 37 35 40 9 9 34 39 36 36 10 10 38 38

Table 7. Suitability analysis using weighted average scoring

Weights Jump Spikes Steady Fluctuation
U Processing Time (Latency) Resource Utilization Aeneas (Compute) Puhatu (Latency) Aeneas (Compute) Puhatu (Latency) Aeneas (Compute) Puhatu (Latency) Aeneas (Compute) Puhatu (Latency)
0 0% 100% keda+rps keda+k8shpa no+rps no_k8shpa no+k8shpa keda+k8shpa keda+rps keda+k8shpa
0.2 20% 80% keda+k8shpa no_k8shpa no+k8shpa no_k8shpa keda+k8shpa no+keda no+keda no+rps
0.4 40% 60% keda+k8shpa no+keda no+k8shpa no+rps keda+k8shpa no+keda no+keda no+rps
0.6 60% 40% keda+k8shpa no+keda no+k8shpa no+rps keda+k8shpa no+keda no+keda no+rps
0.8 80% 20% keda+k8shpa no+keda no+k8shpa no+rps keda+k8shpa no+keda no+keda no+rps
1 100% 0% keda+k8shpa no+keda no+k8shpa no+rps keda+k8shpa no+keda no+keda no+rps

6.5 Suitability Analysis of Scaling Approaches
In this subsection, an overview and suitability analysis of scaling approaches for two applications is provided.
The applications were experimented with using four types of workloads, and the effectiveness of different scaling
approaches. To understand the suitability of each workload, we used the weighted average scoring method
to rank the scaling approaches. We used two criteria to choose the scaling approach, namely processing time
(latency) and resource utilization. Latency is a key primary metric in IoT environments and is directly correlated
with the scaling approach. Resource utilization is highly critical in fog computing environments due to resource
constraints. Our result analysis in the previous section shows that resource utilization is directly proportional to
the scaling approach with the decision of spawning replicas. Further, to decide the suitable Scaling Approach (SA)
based on the weighted average for two criteria, we used the following equation 4.

(�F = U ∗ (2>A4 (%)F) + (1 − U) ∗ (2>A4 ('*F) (4)

where F is a set of workloads { 9D<?, BC403~, B?8:4B, 5 ;D2CD0C8>=} and %)F is the score obtained by using the
weighted average technique on PT metrics onFCℎ workload, similarly '*F is the score for resource utilization
metrics onFCℎ .
So, to calculate the score for each workload, using a weighted average scoring method, weights need to be

assigned for selected performance metrics. To choose the critical parameters in our performance metrics from
Table 5 and Table 6, we selected six metrics that are highly essential in estimating the processing time (latency)
and three metrics that contribute to resource utilization. In addition, we also assign higher weights to the metrics
that are important considering the critical requirements of IoT applications similar to the approach used in the
article [39][7]. Such essential metrics for PT and their weights are (Success Rate, 0.5), ( PT Mean, 0.1), (PT 90th,
0.2), (FET, 0.05), (QT, 0.05), and (JEF, 0.1). The resource utilization metrics and associated weights are (CPU, 0.5),
(Memory, 0.2), and (Pod Count, 0.3).

We applied the weighted average scoring method with various values of U on all the scaling approaches with
four workloads for two applications and the highest scored scaling approach was chosen for each value of U as
shown in Table 7. When, U = 0 it indicates that, resource utilization metrics have high priority than processing
time and results show that, for jumps and spikes workload, RPS based approaches are efficient for Aeneas
application because of less resource utilization, however, k8shpa based approach is better in PuhatuMonitoring.
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This is because k8shpa makes the decision to spawn the replicas based on CPU usage and periodically scales the
replicas.
Considering the results for different U values, applications, and workloads from Table 7, it indicates that as

processing time becomes the highest priority, scaling approaches were consistent with ranks. In the Aeneas
application, keda+k8shpa is highly suitable for Jump and Steady workloads. Similarly, no+k8shpa can able
to handle the spikes in the workload, however, no+keda is well suited for Fluctuations. This is because KEDA
spawns the replicas based on the message arrival rate into the queues and replicas were scaled in hand before the
invocations. Since the Aeneas application has compute heavy functions and k8shpa is well-suited to handle such
functions. Surprisingly, results show that the KEDA scaler configured for MQT improves the efficiency in Jump
and Steady workloads, whereas not beneficial in Spikes and Fluctuations.

For the PuhatuMonitoring application, no+keda is well suited for Jump and Steady workloads, as mentioned
earlier KEDA spawns the replicas instantly based on message arrival in the queues. Comparatively, no+rps
adequately handles the spikes and fluctuations, this was because the PM application was not having the long
running time function and easily scales up and down the replicas based on arrival rate. Interestingly, no scaling at
MQT was necessary for PM application, however, minimizing the waiting time, and scaling of MQT is essential.
Efficient resource consumption and low latency are crucial metrics in IoT applications in fog environments to
facilitate real time data processing and delivery. Nevertheless, experimental findings reveal that scaling approaches
encounter several bottlenecks that limit the ability to simultaneously optimize processing time and resource
consumption.

7 EXPERIENCES AND RECOMMENDATIONS FOR PRACTITIONERS
A series of experiments and corresponding results, we discussed in previous subsections, highlight the considerable
variation in the performance of scaling approaches depending on workload patterns and application diversity,
such as those featuring long running functions (e.g., Aeneas) or short running functions (e.g., PuhatuMonitoring).
Nonetheless, achieving optimal latency and resource consumption is significantly related to appropriate scaling
decisions made by the algorithms. The aim of the proposed article is to gain a better understanding of the behavior
of such scaling approaches and to offer insights to developers.
During the experiment design phase, significant time was devoted to brainstorming, experimenting, and

analyzing scaling configurations for KEDA, K8s HPA, and RPS approaches across both the MessageQueue Trigger
(MQT) and serverless functions of two SDPs. Determining and fine-tuning the ideal scaling configurations is
critical for administrators and developers to minimize costs, latency, and resource consumption. However, this
process revealed numerous bottlenecks and challenges.
For instance, in the KEDA-based approach, selecting the target thresholds for scaling metrics such asQueue-

Length and Message Rate proved difficult. The optimal values of these metrics are closely tied to the concurrency
limits of serverless functions and the execution time of each invocation, both of which significantly influence
the success rate. Similarly, in K8s HPA-based approaches, extensive experimentation was required to determine
optimal CPU and memory requests and limits for individual functions, ensuring alignment with the desired
concurrency limits. Additionally, identifying the appropriate CPU utilization thresholds for each function took
considerable time, as incorrect configurations could lead to resource overuse—a significant drawback in fog
environments.
In the RPS-based approach, selecting scaling rules posed unique challenges. Developers and administrators

needed prior knowledge of workload patterns and user behaviors, as these factors critically influence scaling
decisions. The scaling rules also varied for individual functions, depending on their execution characteristics (e.g.,
long-running versus short-running functions).
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Ultimately, the performance of SDPs heavily depends on selecting optimal scaling configurations and settings.
However, the complexity of choosing appropriate scaling rules and configurations for intricate applications
underscores the need for automated solutions that leverage state-of-the-art techniques [37–39] to streamline this
process.
The following key recommendations for practitioners derived from the experiences and outcomes of the

experiments:

• Understand the workload patterns: IoT operations exhibit diverse arrival patterns, including steady,
jumps, fluctuations, and spikes. To achieve desired Quality of Service (QoS), scalability algorithms need
to adapt to these arrival patterns. So, recommendation is to consider such workloads and suitable scaling
approaches in their design of the IoT system.

• Know the characteristics of serverless functions: SDP often consist of multiple functions, each
with varying characteristics such as compute intensity, memory intensity, and potential involvement of
external I/O operations, which can introduce contention during execution. As per the Universal Scalability
Law, scalability becomes nonlinear due to factors like contention and coherence. Therefore, it’s crucial to
understand the characteristics of these functions for effective scalability management within serverless
data pipelines.

• Optimal scale configurations: IoT developers have to focus on determining and fine-tuning the ideal
configurations of scaling components to minimize costs, latency, and resource consumption.

8 CONCLUSIONS AND FUTURE WORK
In this paper, we described workload and resource based scaling techniques such as KEDA, K8SHPA, and RPS
scaling the Message Queue based serverless data pipelines. We applied these approaches to the Aeneas and
PuhatuMonitoring IoT application and investigated their performance using the metrics such as processing time,
and resource utilization (CPU, Memory) and rigorously analyzed the results by calculating the suitability index
and it shows that workload based scaling is useful for faster response times, whereas resource based scaling
is useful for consistent throughput and moderate CPU, memory utilization. However, an opportunity exist to
test the approaches using long running time, and multiple applications such as compute intensive, bandwidth
intensive, and memory intensive IoT applications. We also observed that the CPU, and memory provisioned were
not fully utilized and this challenge helps to investigate further to provide optimal solutions using novel scaling
algorithms.
Our future work will focus on two key aspects. The first aspect involves selecting resource configurations,

concurrency limits, and other function settings in the SDP without incurring additional costs. This can be achieved
through the use of statistical and machine learning based optimization techniques. Additionally, approximation
of theQueueLength and Message Rate thresholds for scaling the MQT can be improved using these methods.
Secondly, none of the current scaling approaches have achieved a 100% success rate or ideal SDP processing time
for any single user workload, as shown in Table 2. For example, KEDA and RPS based approaches have scaled
more replicas than necessary, potentially leading to higher resource utilization and hindering other applications.
These approaches may also not perform optimal scaling for long running functions. While the K8shpa based
approach performs better in this regard, it is harder to achieve a 100% success rate. Therefore, optimal scaling
decisions for the MQT and serverless functions can be achieved through reactive mechanisms, which can be
designed and implemented using state-of-the-art algorithms such as statistical modeling, machine learning, and
other optimization techniques. The experimental results provide a road map to model the behaviour of the scaling
approaches using well known scalability laws such as Amdahl’s Law and Universal Scalability Law.
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