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Abstract--The ]nternet of Things (IoT) revolutionizes smart 
city domains such as healthcare, transportation, industry, and 
education. The ]nternet of Medical Things (]oMT) is gaining 
prominence, particularly in smart hospitals and Remote Patient 
Monitoring (RPM). The vast volume of data generated by IoMT 
devices should be analyzed in real-time for health surveillance, 
prognosis, and prediction of diseases. Current approaches 
relying on Cloud computing to provide the necessary computing 
and storage capabilities do not scale for these latency-sensitive 
applications. Edge computing emerges as a solution by bringing 
cloud services closer to IoMT devices. This paper introduces 
SmartEdge, an A]-powered smart healthcare end-to-end 
integrated edge and cloud computing system for diabetes 
prediction. This work addresses latency concerns and 
demonstrates the efficacy of edge resources in healthcare 
applications within an end-to-end system. The system leverages 
various risk factors for diabetes prediction. We propose an Edge 
and Cloud-enabled framework to deploy the proposed diabetes 
prediction models on various configurations using edge nodes 
and main cloud servers. Performance metrics are evaluated 
using, latency, accuracy, and response time. By using ensemble 
machine learning voting algorithms we can improve the 
prediction accuracy by 5% versus a single model prediction. 

Keywords - Artificial Intelligence, Cloud Computing 
Diabetes, Diagnosis, Edge Computing, Ensemble Learning, 
Health care, eHealth, Internet of Things, Machine Learning, 
Prediction, Prognosis 

I. INTRODUCTION 

The pervasive influence of Internet of Things (IoT) 
devices is significantly reshaping applications in different 
smart city domains such as healthcare, transportation, 
industry, and education [I]. Projections indicate that the IoT 
paradigm is poised to yield a staggering economic impact of 
$11 trillion annually, with an estimated deployment of one 
trillion IoT devices by 2025 [2]. These devices are anticipated 
to play a pivotal role in monitoring and managing diverse 
smart systems in real-time across different domains, including 
the realm of smart healthcare [3]. Within the context of smart 
hospitals, the deployment of Internet of Medical Things 
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(IoMT) devices is becoming increasingly widespread. The 
loMT devices often fail to satisfy the computation and 
communication requirements of healthcare applications due to 
low computing capabilities and limited battery life. While 
cloud-based approaches are designed to handle large volumes 
of data and process these data in complex compute-intensive 
applications, they result in high latency due to the long 
distance between the IoMT devices and the cloud. To remedy 
this latency issue, edge and fog computing are introduced 
bringing the cloud services closer to the IoMT devices and 
users. Edge computing uses nodes, gateway, and routers to 
deliver services that can be both energy efficient and low 
latency. There is a need to develop an AI-powered smart 
healthcare system that leverages the capabilities of integrated 
Edge-cloud computing. This work aims to address this void. 
We propose SmartEdge, an end-to-end automated system that 
supports low latency applications and provides high accuracy 
using ensemble learning diabetes prediction. Diabetes is one 
of the deadliest diseases in the world. It is then crucial to be 
able to detect it at an early stage [4]. SmartEdge provides a 
novel architecture for smart healthcare application 
enablement. It integrates the power of high accuracy 
ensemble-learning and low latency ofEdge computing nodes, 
harnessing FogBus2 [5] as a backend framework. For diabetes 
prediction, SmartEdge provides ensemble learning with the 
most performing machine learning algorithms Random 
Forest, and the mostly used Logistic Regression, and Support 
Vector Machines[6]. Furthermore, SmartEdge  emphasizes 
effective feature selection techniques, identifying and 
prioritizing key variables that play a pivotal role in diabetes 
prediction using real-life diabetes datasets. SmartEdge for 
diabetes prediction is designed to support a large number of 
connected patients, thanks to its powerful and flexible 
framework. Our main contributions are as follows: 

We proposed a system architecture that leverages 
ensemble prediction on the Edge. 

• We developed SmartEdge, an automated end-to-end 
diabetes prediction system powered by ensemble 
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learning and the networking capacity of Edge-enabled 
infrastructure. 
We deployed SmartEdge using Fogbus2 in an IoT-edge-
cloud integrated computing system. 
We evaluated SmartEdge performance using a variety of 
metrics in terms of system performance and model 
accuracy. 
We analyzed the ensemble learning approaches in 
SmartEdge using a set of different metrics: Accuracy F-
measure, network latency, and response times. We used 
real-life patient data to determine the prevalence of type 
II diabetes. 

The rest of this paper is organized as follows. We present 
the related work in Section 2, the background cloud/edge 
technologies description is provided in Section 3. The 
proposed architecture is described in Section 4, Section 5 
details the design, and Section 6 the implementation of this 
architecture. In Section 7 we present the experimental setup 
and analyze the results of performance evaluation. 
Conclusions and future work are presented in Section 8. 

II. RELATED WORK 

In the literature we can find a variety of approaches and 
innovations in the field of diabetes prediction using machine 
learning (ML), each contributing to some extent to 
understanding and presenting a methodology for tackling 
Type 2 Diabetes Mellitus (T2DM) through predictive 
analytics. While papers like [7] focus on specific populations, 
such as the Pima Indians, offering insights into the utility of 
ML in addressing diabetes within ethnically and 
geographically distinct groups,[8] work on a rural Chinese 
population underscores the importance of considering diverse 
demographic and geographic contexts in diabetes prediction, 
highlighting differences that may exist between rural and 
urban populations. The various studies utilize a range of ML 
models, including logistic regression, neural networks, 
decision trees, and ensemble methods, to predict the onset of 
Type 2 Diabetes. The work from [9] uses logistic regression 
as a baseline or comparison model, given its popularity for 
binary classification tasks such as predicting the presence or 
absence of diabetes. Logistic regression is favored for its 
interpretability and efficiency, making it a staple in medical 
research for assessing risk factors. Random forest is an 
ensemble method that combines multiple decision trees to 
improve prediction accuracy and robustness used in studies 
like [7] for classifying Pima Indian Diabetes Mellitus data. 
Decision trees are described as intuitive and easy to interpret, 
making them useful for understanding which features (e.g., 
glucose levels, BMI) are most predictive of diabetes. Work 
like [10] presents a way to use patient networks for disease 
prediction that leverages algorithms capable of handling 
relational data and graph-based representations, such as 
Graph Neural Networks (GNNs), to exploit the structure and 
relationships within patient data for improved prediction 
outcomes. Other common ML algorithms used for machine 
learning prediction include deep learning models, such as 
neural networks, that are employed in some of the papers to 
handle complex interactions between features and to model 
non-linear relationships. SVMs are used for example in [11] 
for diabetes prediction, the authors pinpoint their 
effectiveness in high-dimensional spaces and their ability to 
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use different kernel functions to transform the feature space 
into one where a linear separator can divide the classes. 
Neural networks also are used, they are naturally powerful for 
high-dimensional data and can capture complex patterns that 
simpler models might miss, making them suitable for datasets 
with a rich set of patient features [12]. In work in [13], by 
leveraging a voting classification scheme, the authors 
underscore the value of ensemble methods in healthcare 
analytics, particularly in improving the accuracy and 
reliability of predictive models. Additionally, understanding 
which health-related features (e.g., BMI, blood pressure, 
glucose levels) significantly impact diabetes prediction is a 
common theme. [14] , for instance, investigate health-related 
features and their roles in enhancing prediction accuracy. [10) 
introduce an approach by using patient network-based 
models for disease prediction, suggesting the value of 
integrating diverse data sources and considering patient 
interactions or similarities. None of this work uses ensemble 
voting in an end-to-end prediction system implemented using 
the full scale of the edge/fog/cloud paradigm. This paper 
addresses the gap. 

Table 1 summarizes the works on machine learning-based 
diabetes prediction. 

III . SMART EDGE HEALTHCARE SYSTEM ARCHITECTURE 

The SmartEdge model uses an IoT Edge Cloud model to 
integrate software and hardware components to deliver 
accurate and fast diabetes prediction. SmartEdge is composed 
of different pieces of hardware equipment and software 
components. Fig.I presents the architecture of SmartEdge. 
The different components and their interaction are explained 
next. 

Foc lkuCloudNode 

Dodo, Q '= =,==:~;:=:=:=~~~---k.:.:..:..:.:..: 
JJi1l li-l~11.+-,,.;,,,==-.,1 

Fig. I .   : Smart Edge Healthcare System Architecture 

A. SmartEdge Hardware Components 
1) Patient Monitoring devices: The patient can use 
several devices which aim to monitor diabetes risk factors 
[18] . [17] provides a survey on diabetes IoMT devices. 
2) In SmartEdge this component constitutes a Blood 
Pressure (BP) monitor which can provide measures for blood 
pressure systolic/diastolic and heartbeat levels [17]. A 
smartphone using Bluetooth technology acts as the gateway 
device. 
3) Gateway Device: IoMT devices monitoring patients 
send data into the system via gateway devices. This gateway 
is paired with its corresponding monitoring   device for 
communication. Each patient owns a gateway device (e.g. 
smartphone, tablet, or laptop). The gateway device is the 
initiator of the processing. 
4) Fogbus2 Framework Modules: there are 3 levels of 
modules in Fogbus2 that we use for SmartEdge. 
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TABLE I. RELATED WORK ON DIABETE S PREDICTION 

Work Dataset Algorithms Outperforming 
compared algorithm 

[14] Private dataset from LR, SVM, OT, RF, and N/R 
hospitals in Saudi Arabia EMV 

[15] Private dataset from LR, Glmnet, RF, LR 
Slovenian primary XGBoost, and light 
healthcare institutions GBM 

[16] Private dataset from LR, RF, SVM, RF 
Hanaro Medical XGBoostt , stackingt 
Foundation in Seoul, South , soft votingt , and 
Korea confusion matrix-

based ensemblet 
[12] Dataset 1: cross-sectional Bayes Point Machine DF 

diabetes survey in Saudi (BPM), AP, DF, LO-
Arabia SVM, DJ, boosted DT, 
Dataset 2 : national Health and NN 
and Nutrition Examination 
Survey 
Dataset 3 : PIMA Indian 

[9] PIMA Indian LR and DT LR 

[7] PIMA Indian NB, RF, and DT RF 

[8] Henan rural cohort study LR, CART, ANN, SVM, GBM 
RF, and GBM 

[10] CBHS health funds LR, kNN, SVM, NM, RF 
company in Australia DT, RF, XGBoost, and 

ANN 
[17] Dataset 1: PIMA Indian LR, RF and SVM RF 

Dataset 2: Sylhet 
Dataset 3 : MIMIC Ill 

[11] 1999-2020 NHANES CATBoost XGBoost CATBoost 
database RF, LR, SVM 

This PIMA Indian CATBoost XGBoost Ensemble Voting 
paper RF, LR, SVM, 

Ensemble Voting 

a) Master node: this component receives the requests 
from the gateway device and oversees assigning available 
resources in the Fogbus2 network to fulfill the request. 
b) Worker Node: this component performs the tasks 
transmitted by the master node. A worker node receives data 
from the gateway and sends back the results. Such a node 
typically performs calculation tasks like data preprocessing 
and even more complex machine learning prediction. 
c) Task Executor: this component carries out the 
functions assigned by the actor component. It includes a 
diabetes prediction task, which features a predictor module. 
This module utilizes the established prediction model to 
estimate diabetes occurrence in a user, drawing from data 
provided by a hypertension-monitoring loT device. 
5) Cloud servers: in the situation where edge resources 
are over-utilized, or some tasks receive data whose size 
exceeds their capacity, SmartEdge can leverage the Cloud 
servers. The tasks must be latency-tolerant. So, compute-
intensive tasks like training machine learning models with 
updated datasets can be performed by HeathEdge, without 
compromising the stability of the system. 
The system is designed for dynamic load balancing and 
efficient utilization of resources based on the current load 
conditions and the presence or absence of Cloud resources. 

B. Software Components 
The SmartEdge system is composed of the following 
software components. On the master node, the software 
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loTand Performance Ensemble Distributed Al End-to-end 
Edge Analysis Voting ML Model 

Accuracy 

" " 
" " 
" " 

" " 

" " " " " " 
" " 

" " " 
" " 

" " " " " 

component receives the job requests and/or input data from 
Gateway devices. The request input module receives job 
requests from Gateway devices just before transferring the 
data. 

Fig . 2 . SmartEdge lmplementation 

The Security Management module provides secure 
communication between different components and protects 
the collected data from unauthorized access or malicious 
tampering of data to improve system credibility and data 
integrity. The arbitration module (part of Resource Manager 
in the master node) takes as input the load statistics of all 
worker nodes and decides which node or subset of nodes to 
send jobs to in real-time. On the worker node: the software 
components perform the main tasks allocated by the Resource 
Manager of the master node. Worker nodes can comprise 
embedded devices or small computers. In SmartEdge, 
Worker nodes can contain sophisticated deep-learning 
models to process and analyze the input data and generate 

system 

" 

" 
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results. In addition, the Worker node can include other 
components for data processing, data filtering, and mining, 
Big Data analytics, and storage. Task Executor node is 
similar to the Worker node, in the specific implementation for 
SmartEdge, the Task Executor performs individual machine 
learning prediction. 
Gateway Device: The Gateway device initiates the job 
request process by sending job requests and input data to the 
Broker node. 

C. Processing 
For data processing in the non-cloud scenario, the Gateway 
device sends the job to the Worker/Broker node. The Broker 
node, based on the workers ' loads, cpu, and memory usage 
decides which node is more suitable. The decision-making 
process may involve considerations of compromised workers 
and security measures. The efficiency of load checks and 
decision-making processes is discussed concerning the 
increasing number of Workers. 

D. System worliflow 
System worktlow is described in Figure 3. The process begins 
with Gateway devices initiating job requests and data transfer 
to the Broker node. The Broker node receives job requests 
and input data from Gateway devices. Security Management 
ensures secure communication and protects data integrity . 
The Arbitration module in the Resource Manager 
dynamically allocates tasks to Worker nodes based on load 
statistics. Worker nodes perform assigned tasks, which can 
involve sophisticated machine-learning models. Worker 
nodes accommodate diverse functions, including data 
processing, filtering, mining, analytics, and storage. 

l~cTaskTl 

Fig. 3. Health Edge Scheduling 

IV. SMARTEDGE DESIGN 

A. Data Preprocessing 
We use a Pima Indians Diabetes Database dataset with 
relevant features for diabetes prediction. 
Data preprocessing involves addressing missing values, 
eliminating outliers, scaling data, and selecting relevant 
features . Missing values can be managed by either deleting 
the corresponding records or inserting synthetic values. 
These synthetic values can be created using either statistical 
methods (such as mean, mode, or median) or machine 
learning techniques (such as SMOTE [19]). Data scaling can 
be performed through normalization and/or standardization. 
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It is essential to normalize numerical features with different 
ranges to prevent model bias towards features with larger 
ranges [91]. Recursive Feature Elimination [20], which 
identifies the most relevant features for predicting diabetes. 

B. Machine Learning 
The system architecture of SmartEdge described in the 
previous section uses a diabetes dataset that includes risk 
factors and diabetes data for patients. The dataset is then used 
to develop a prediction model. For a new user, the system 
takes diabetes risk factors data, measured using sensors and 
medical tests, as input and uses the prediction model to 
determine whether the user will have diabetes or not, and 
sends back the prediction results. This is implemented using 
the preprocessing module, machine learning module, and 
gateway interface as described in this section. 
Diabetes dataset processing involves data splitting: we divide 
data into training, validation, and testing sets in the ratio of 
70:10:20. The model training utilizes the training set for 
training the model, the validation set for tuning the model, 
and the test set for evaluating model performance on new 
data. 

C. Communication 
The process begins with the Gateway sending a Job 

request to the Broker node in evety scenario. Broker Node 
Response (Worker Node or Cloud): Based on the scenario, the 
Broker node responds to the Gateway with either: Worker IP 
address (of the same LAN) or Master IP address (with/without 
cloud forwarding). In the Broker-only case, the Broker node 
may or may not check the loads of workers. If all workers have 
heavy loads or are compromised, and the Cloud is disabled, 
the Broker sends its IP without cloud forwarding to the 
Gateway. If there are workers not heavily loaded, the Broker 
sends the IP address of the least loaded Worker node to the 
Gateway. The decision-making process involves load checks 
on Worker nodes. Increasing the number of Workers would 
increase the arbitration time as more load checks need to be 
performed. In the non-cloud scenario, the Gateway device 
directly sends the job (input data for analysis) to the 
Worker/Broker node. The Worker/Broker node then runs pre-
processing on the received input data for analysis. 

The SmartEdge communication protocols ensure efficient 
utilization ofresources by dynamically allocating tasks based 
on the scenario, load conditions, and user-defined 
configurations. The system is designed to adapt to varying 
conditions, promoting effective load balancing and secure 
data processing in different deployment scenarios. 

D. Algorithms 
Voting algorithms: When using the ensemble method for 
machine learning, we use a voting algorithm. There are two 
main ways to perform the vote: hard voting and soft voting. 
The hard voting method is straightforward: each member of 
the classifier group casts a vote for a prediction, and the 
collective decision is based on which option receives the most 
votes. For instance, if two classifiers determine a diabetic 
diagnosis, then the diabetic diagnosis is selected. Soft voting 
considers the prediction confidence levels of each classifier. 
Every classifier provides a probability estimate for each 
category, and the ensemble's decision reflects the category 
with the greatest cumulative probability. For instance, if a 
classifier assigns a 0.9 probability to positive diabetics and 
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another gives a 0.2 probability of not being, the collective 
prediction will favor the diabetic diagnosis. 

Fig. 4. SmartEdge Experimental Setup 

V. SYSTEM IMPLEMENTATION 

The elements outlined in Section 5 are implemented using 
various programming languages. Python is utilized for the 
pre-processing and ensemble machine-learning components. 
The preprocessing module removes observations with 
missing risk factor values based on their distribution. For the 
ensemble machine learning application, the SciKit Learn 
Library [21] was employed. Our voting scheme utilized, RF, 
Cat Boost, and LR. During training, the model randomly 
distributed data among classifiers. During diagnosis, it 
considered all predicted classes and outputted the majority 
prediction. Worker selection followed the default Fogbus2 
policy, considering the worker with the minimum CPU load. 
The chosen worker received the CSV file for analysis. The 
Execution Interface Module in each worker instantiated the 
Ensemble Learning code for data analysis. The result was 
sent back to the Worker node, which, in turn, forwarded the 
ensembled result to the gateway device. The system can 
sustain continuous monitoring thanks to its robust framework 
infrastructure. 

VI. P ERFORMANCE EVALUATION 

We implement SmartEdge for ensemble learning diabetes 
prediction using Fogbus2 framework [5] on the backend. We 
evaluate the performance of the proposed system in terms of 
prediction accuracy, communication and computation times, 
and network overhead. We also assess the performance 
improvement when using voting ensemble methods for 
diabetes prediction versus single model prediction. 

A. Experimental Environment 
We conduct the experiments on an edge-cloud setup 

consisting of 3 cloud servers and 3 edge nodes. Each cloud 
server node is a virtual machine with 2 CPU AMD EPYC 
7763 64-Core Processor, 8GB RAM. This CPU features data 
Ll cache of 32 KiB per core, 8-way set associative, Ll 
instruction cache of 32 KiB per core, 8-way set associative, 
L2 cache of 512 KiB per core, 8-way set associative and L3 
cache of256 MiB. Each Edge node is a Raspberry Pl. All the 
nodes are connected through a WIFI network. The connection 
between the edge and the cloud nodes is a lGbits network. 

B. Dataset 
We employ the Pima Indian Diabetes dataset [22] from the 

National Institute of Diabetes and Digestive and Kidney 
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Diseases. This dataset serves to diagnose whether a patient is 
diabetic or non-diabetic based on different risk factors. The 
dataset encompasses nine features : (1) pregnancies (number 
of times pregnant), (2) glucose (plasma glucose concentration 
at 2 hours in an oral Glucose Tolerance Test), (3) diastolic 
blood pressure (mm Hg), (4) triceps skin fold thickness (mm), 
(5) 2-hour serum insulin (µU/ml), (6) Body Mass Index (BMI) 
calculated as weight in kg divided by the square of height in 
meters, (7) diabetes pedigree function (indicating the expected 
genetic influence of diabetic and non-diabetic relatives), (8) 
age (in years), and (9) outcome (diagnosis of diabetes with a 
value of 1 for diabetic and O for non-diabetic). 

~,., L_ ~l.e 

~" 
_ , 

' ' ' -
'' u ., 1.$ 100 " 

,., 
"' ......,.._ -r , ,., 

L_ .s , . ., ., M ., 
llbcd~ S,..,Thd,,,,.. 

§= L r , 
' -. .. " .. .... , '"" 

§ ...___ ! IC,, , . ,. •o 1 ) ,. 
" " " Dl3bet91Pedlgreeft.lldDI ... 

Fig. 5. Distribution of PIMA Indian diabetes dataset features for diabetic 
and non-diabetic classes. 

The dataset comprises medical records for 768 patients (i.e., 
observations), with 268 (34.9%) identified as diabetic and 
500 (65.1%) as non-diabetic. Figure 5 presents the 
distribution of numerical features for diabetic and non-
diabetic classes. To preprocess the data, we eliminate 
observations with missing values. As depicted in Figure 1, 
skin thickness, blood pressure, and BMI features have 'O' 
values, indicating missing data. Consequently, the 
preprocessed dataset after removing observations with 
missing values consists of 537 records, including 179 
(33.3%) diabetics and 358 (66.7%) non-diabetics. The 
preprocessed information is stored in a Comma Separated 
Value (.csv) file. 

C. Experiments 
We use the PIMA Indian dataset to measure the performance 
of our ensemble learning model in predicting the prevalence 
of diabetes. The dataset is partitioned into 70%, 10%, and 
20% for training, validation, and testing of the model 
respectively. The preprocessed dataset consists of 537 
observations. The dataset is divided equally among the 
different worker nodes to train prediction models. The system 
is evaluated in terms of accuracy, recall, precision, F-
measure, ROC, AUC, arbitration time, latency 
(communication time), execution time, network response 
time, and latency. We compare the performance of our 
ensemble model with individual learning algorithms used in 
our ensemble approach. The list of experiments is as follows: 
Perform training of the model on the chosen dataset. Perform 
the prediction using the trained models and collect 
performance measurement using the following metrics: 
prediction accuracy, precision, recall , F-measure, ROC, and 
AUC, for both settings: single-model prediction, and 
ensemble model prediction. We perform learning using the 
following models SVM, RF, Logical Regression, and 
Decision Tree. We then perform the prediction and record the 
values of the voting result, and Accuracy, ROC, F-measure, 

Authorized licensed use limited to: University of Melbourne. Downloaded on January 21,2025 at 01:30:18 UTC from IEEE Xplore.  Restrictions apply. 



132

and AUC performance metrics, according to the number of 
edge nodes. We also evaluate the confidence in the model. 
The latency and response time are also measured for the 5 
cases. In addition, we also record network usage execution 
time in different cases. The time measurement is done using 
gettimeofday function on Linux system. We first make a run 
with all voting entities on the same machine to analyze the 
performance of voting. Then make different experiments 
varying the number of edges nodes and roles assignment. The 
experimental scenarios are: 
I. 4 nodes: A+BCD, ABCD are all R Pi model 5, 8 cpu 
cores, 4 gb ram, arm,,connected with WiFi. 

Node A: FogBus2 User 
Node B: FogBus2 Master + Actor0 

Node C: FogBus2 Actor I 
Node D: FogBus2 Actor2 

2. 2 nodes: A+B: A and B are R Pi model 5, 8 cpu cores, 4 
gb ram, arm, WiFi 

Node A: FogBus2 User 
Node B: FogBus2 Master + Actor0 + Actor! + Actor2 

3. 4 nodes with cloud A+BCD: A is a RP i model 5, 8 cpu 
cores, 4 gb ram, arm, WiFi, and BCD are A WS EC2 m4.4xlarge, 16 
cpu cores, 64 gb ram. 

Node A: FogBus2 User 
Node B: F ogBus2 Master + Actor0 
Node C: FogBus2 Actor I 
Node D: FogBus2 Actor2 

D. Pe,formance Results Analysis 
We test our system as described in the experiments and 

perform the analysis. The analysis is done using prediction 
accuracy, precision, recall , F-measure, ROC, and AUC and it 
is prediction-based. We evaluate the performance of the 
ensemble prediction versus the centralized one, in terms of 
accuracy, and latency. The numerical parameters for this 
study are the response time, latency, and execution time. 

When studying the accuracy performance in Table III and 
Fig 7, we can see that the chosen prediction models perform 
similarly on the selected dataset. We notice that using 
ensemble voting model improves consistently accuracy by 
5%. 

E. Response times study 
Figure 10, 11 , and 12 illustrate the response time at the 

Broker node for various scenarios, including: (1) A+BCD, (2) 
A+B, (3) A+BCD Cloud. Our results show that the response 
time is minimal (approximately 55 ms) when tasks are sent 
directly to the Broker/Master or Cloud. However, as the 
number of Edge nodes increases (scenario A+BCD compared 
to A+B), the Broker needs to perform additional load checking 
at each Worker node to identify the node with the minimum 
load, resulting in a corresponding increase in response time. 

F. Latency study 
Figures 8,9,10 illustrate the variation in latency, which is 

the sum of communication time and queuing delay. (We 
observe that the latency is similar when tasks are sent to the 
Broker or any of the Edge nodes, as all communication occurs 
through single-hop data transfers. In contrast, the latency is 
significantly higher in the Cloud for the user to master 
communication as there are multiple hops to reach the cloud. 
But for internal communication in the cloud, latency is lower 
because it uses a fast-wired network, and the edge nodes (in 
A+BCD) scenario use a WIFI network. When studying the 
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accuracy performance in Table III and Fig 7, we can see that 
the chosen prediction models perform similarly on the 
selected dataset. We notice that using ensemble voting model 
improves consistently accuracy by 5%. Figure 13 illustrates 
the variation in execution time. As expected, the execution 
time is very low in the Cloud setup due to the higher resource 
availability. The Broker's execution time is shorter than that 
of the Worker nodes, which are Raspberry Pis with lower 
clock frequency processors. 
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Fig. 6. Diabetes Prediction Performance 

Notably, our results also demonstrate the benefits of 
ensemble voting. Regardless of the number ofEdge nodes, the 
ensemble voting approach consistently outperforms the non-
ensemble method (best or average), achieving higher 
accuracy. 
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Fig. 9. Scenario A+ BCD Response times 

G. Discussion 
The application deployment system offers flexible 

configurations that cater to different user requirements, 
providing a trade-off between accuracy and latency. Based on 
our experimental results, we recommend the following 
deployment strategies for SmartEdge: 

• For heavy and latency-tolerant tasks, the cloud 
configuration is recommended. This setup is necessary 
to ensure successful task completion, as resource-
constrained Edge worker nodes may struggle to handle 
such tasks otherwise. 

• For latency-critical tasks, worker nodes are the ideal 
choice. This setup ensures rapid result delivery due to the 
proximity of worker nodes. If network bandwidth 
constraints exist, ensemble machine learning predictions 
should be disabled to conserve resources. However, if 
resources permit, enabling ensemble voting can improve 
accuracy. 
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TABLE II. DIABETES PREDICTION RESULTS 

Algorithm Ace F-Measure Precision Recall AUC 
LogisticRegression 0.7784 0.7243 0.7685 0.7102 0.7102 

RandomForestClassifier 0.7722 0.7325 0.7507 0.725 0.725 
GradientBoostingClassifier 0.7667 0.7293 0.7436 0.7241 0.7241 

DecisionTreeClassifier 0.7037 0.6661 0.6679 0.6681 0.6681 
Voting SVM, DT, LR 0.8086 0.7021 0.7154 0.6981 0.6981 
Voting RF SVM LR 0.784 0.7435 0.7664 0.7333 0.7333 
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VII. CONCLUSIONS AND FUTURE WORK 

In this research, our focus was specifically on improving 
healthcare services for diabetes prediction through the 
development of an Edge-based Smart Healthcare System, 
named SmartEdge, that utilizes deep learning and loT for the 
automated prediction of diabetes. SmartEdge improves 
healthcare delivery by offering edge services that adeptly 
handle data from diverse loT devices, enhancing patient data 
management. By incorporating deep learning within edge 
computing devices SmartEdge has been applied successfully 
to real-world heart disease analysis. Unlike previous efforts 
that lacked the use of deep learning and thus suffered from 
inadequate prediction accuracy, our approach enables the 
embedding of complex machine learning networks within 
edge computing frameworks. We achieved this through 
innovative communication and model distribution strategies, 
such as ensembling, ensuring high precision with minimal 
latency. The efficacy ofSmartEdge was demonstrated through 
validation against real patient data, employing the FogBus 
framework within an edge computing environment, and 
evaluating the system's performance across several metrics 
including power consumption, network response time, 
latency, and accuracy. 

Looking ahead, we aim to evolve SmartEdge by 
integrating cost-effective execution strategies that consider 
various Quality of Service (QoS) attributes and edge-cloud 
cost dynamics. Although SmartEdge currently operates on 
file-based input data, future iterations will seek direct sensor 
data integration to enhance user interaction. Additionally, we 
plan to refine the model training approach, which presently 
involves independent training at each worker node followed 
by an ensemble of models through bagging. By exploring 
more sophisticated ensemble techniques, we anticipate further 
enhancements in prediction accuracy. Moreover, we intend to 
expand the robustness and versatility of the proposed 
architecture to support a wider range of edge computing 
applications beyond healthcare, including agriculture, weather 
forecasting, traffic management, and smart city initiatives. 
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